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WELCOME TO MADEIRA

Survival is the art of taking the appropriate decisions at the right
opportunities, using the available information in a sensible way. From
that point of view, it was arguably its superior ability to evaluate risks
and probabilities that gave the human species a break in the
evolutionary process.

Scientific research is now widely recognized as the most rewarding
single investment of mankind, and I feel proud that the Government of
Madeira, under my leadership, gave such a high priority to education
and to research, realizing that this is a major asset for our future
welfare.

Probability and Statistics, being exciting sciences in themselves, are
now unavoidable tools for the development of all sciences. We may
indeed claim that the modern paradigm of Science changed with the
development of statistical inference, and that experimental design was
a major revolution in scientific methodology. New developments in
Statistics will certainly change the methodology of Science further, as
well as our views of Society, improving our capacity of inventing order
out of apparent surface chaos.

As a politician, and as a former journalist, I am well aware of the role
of Probability and Statistics in the process of gathering and evaluating
information, of extracting knowledge from information, of decision
making based on the sensible use of incomplete (and sometimes
messy) information. Statistics is a cornerstone of democracy and of full
citizenship, and we feel grateful to those who develop the right tools
and models we all need and use.

We feel therefore happy to host the 239 Eurgpean Meeting of Statisticians.
Welcome to Madeira. I wish you a constructive Meeting, and I expect
that participants and their families will have a memorable time off in
Madeira.

Alberto Jodo Jardim,
President of the Regional Government of Madeira
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Foreword

This special issue of Revista de Estatistica — Statistical Review contains the
extended abstracts of the invited papers for the 23 European Meeting of
Statisticians, Funchal, 13-18 August 2001, and the papers submitted to the jury
of the Berardo Foundation Prize “Young Statistician 2001” We wish to express
our gratitude to the members of the Jury,.

Laurens de Haan (Erasmus University, Rotterdam)

Arnoldo Frigessi (Oslo Un. and Norwegian Computing Centre)
Nils Lid Hjort (Oslo University)

Isaac Meilijson (Tel-Aviv University)

Michael Sgrensen (Copenhagen University)

M. Anténia Amaral Turkman (Lisbon University)

for the hard work involved.

FCT - Fundagio Para a Ciéncia e Tecnologia and Calouste Gulbenkian
Foundation sponsored the EMS 2001, and so underpinned the preparation of
this special issue of Revista de Estatistica — Statistical Review.

The 23 European Meeting of Statisticians, organized under the auspices of
the European Regional Committee of the Bernoulli Society, has been a joint
venture of the University of Lisbon, the University of Madeira and INE —
Instituto Nacional de Estatistica. The invited programme was organized by
the Programme Committee:

Anthony Davison (Lausanne), Chairman
Isaac Meilijson (Tel-Aviv)

Mauro Piccioni (L'Acquila, Rome)

Nils Lid Hjort (Oslo)

Olle Haggstrom (Goteborg)

Teresa Alpuim (Lisboa)

with help from the Bernoulli Society representative Arnoldo Frigessi (Oslo).

We wish to express our warm thanks to all the invited speakers and
session organizers for their contribution to the high scientific standard of EMS
2001.

We wish to express our gratitude to Mr. Nuno Barreto for his careful
retyping and editing part of the papers, and to Mrs. Liliana Martins for her
skill in desktop publishing.

Anthony Davison

Adrido Ferreira da Cunha
Isabel Fraga Alves

Dinis Duarte Pestana

Lisboa, 2001 May 12th
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Some Statistical Challenges in Modern Genetics

Peter Donnelly
University of Oxford
Department of Statistics,
1 South Parks Road, Oxford OX1 3TG
UK
donnelly@stats.ox.ac.uk

Driven by the genome projects, the advent of high-throughput experimental
techniques means that there are growing amounts of data which document DNA
sequence variation between individuals within populations. In principle, such data
shed light on the evolutionary processes themselves, and on the past history of the
relevant populations. Such data from humans is often augmented by information
about the disease status of the individuals involved (for one or sometimes several
diseases). In this case there is also information about the genetic basis of the diseases
in question.

Sensible interpretation of this kind of data represents a considerable statistical
challenge. Natural probability models for observed data arise from stochastic
processes which model the evolution of the population. Such.processes have been the
subject of intensive study over several decades, either forward in time, typically as
measure-valued diffusions, or backwards in time, via the coalescent, a random tree
which describes the ancestral relationships amongst sampled sequences.

Although the structure of the stochastic models is rather well understood, there
are no explicit expressions for probabilities of interest, and hence for likelihoods. On
the other hand, it turns out that at a single chromosomal location, DNA sequences
from distinct individuals are highly positively correlated. This severely limits the
information in such data, and puts a premium on the use of efficient, ideally
likelihood-based, inference methods.

We will give an informal introduction into the stochastic models which arise in
this context, and survey recent computationally-intensive statistical procedures for
approximating likelihood surfaces for population genetics data. Several substantive
applications will be described with the aim of illustrating the vital role played by
modern statistical science in answering key scientific questions.
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Random Polymers

Frank den Hollander
EURANDOM
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
DENHOLLANDER@EURANDOM.TUE.NL

Polymer chains can be modelled as random processes with a self-interaction.
Typically this self-interaction is long-ranged in space and/or time. As such, polymers
represent a new area in probability theory, different from the more classical areas of
Markov chains, Gibbs random fields, spin-flip systems and the like, where the
interaction is short-ranged.

In this talk we present a mini-review describing the progress that has been made
over the past 15 years in the mathematical analysis of polymer chains. We discuss five
examples:

I. soft polymers

2. elastic polymers
3. charged polymers
4. heteropolymers

5.

branching polymers

For each of these examples we present the main theorems and the main
conjectures, focussing on the scaling behaviour of the polymer in the limit as its length
becomes large. It turns out that the long-range nature of the self-interaction leads to a
remarkable dependence on the dimension and on the interaction parameters.



Information Theory in Probability and Statistics

Andrew Barron
Yale University
Department of Statistics
New Haven, CT 06520-8290
andrew.barron@yale.edu

The role of information theory in probability limit theorems and mathematical
statistics is reviewed. In probability theory, 1 discuss three themes to the use of
information theory. The first concerns use of a simple chain rule to identify and
characterize limits of Markov chains, martingales, and information projections and
associated Pythagorean inequalities for convex sets of distributions. The second
concerns characterization of large deviation exponents for sample averages and
empirical distributions and its relationship to conditional limit theorems and
concentration inequalities. The third concerns central limit theorems in which
measures of information and their derivatives provide natural proofs of convergence to
the normal distribution. The thread binding these areas of probability is the use of
increments of information to establish convergence and characterize the limit.

Information theory and, in particular, data compression theory provide equally
important tools for mathematical statistics. Efficiency, minimax rates, Bayes
asymptotics, and model selection criteria are some of the statistical topics fruitfully
addressed from this perspective. We briefly discuss some results for exponential
families and recent results for mixture model estimation made possible by examining
increments of information. In particular, each new component in a mixture sufficiently
increases the likelihood (and decreases the information divergence from a target
density) to provide information divergence of order 1/K using a K component mixture.

References

Andrew Barron (1986), "Entropy and the Central Limit Theorem," Annals of Probability, 14,
p.336-342.

Andrew Barron (1998), " Information-theoretic Characterization of Bayes Performance and the
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p-27-52.

Andrew Barron (2000), " Limits of Information, Markov Chains, and Projection,” Proceedings
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Andrew Barron, Lucien Birge, and Pascal Massart (1999), “"Risk Bounds for Model Selection
via Penalization," Probability Theory and Related Fields, 113, p.301-413.
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Principle in Coding and Modeling," JEEE Transactions on Information Theory, 44,
p.2743-2760.

Andrew Barron, Mark Schervish, and Larry Wasserman (1999), " The Consistency of Posterior
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Large Deviations and Exponential Tilting in Rare
Events Simulation

Saren Asmussen
Lund University
Sweden
asmus@maths.lth.se

The evaluation of small probabilities, of order from 107 to 10'°, come up in a
number of application areas like insurance risk, telecommunications and reliability.
The difficulty in evaluating them by simulation lies in controlling the relative error.
Formally, let A(x) be a family of events indexed by a parameter x and satisfying
z(x)=P(A(x)) — 0, x — oo. A simulation estimation scheme is then a family of r.v.'s
Z(x) which can be generated by simulation and has EZ(x) = z(x) (in practice, the
simulation of z(x) is performed by producing N i.i.d. replications of Z(x), using the
average as estimator of z(x) and assessing the statistical error by a confidence interval
based upon the empirical variance). If we let o’(x) = Var(Z(x)), the relative error is
defined as o(x)/z(x), and ideally, one looks for schemes having the property that this
quantity remains bounded as x— oo or at least grows slower than any negative power
of z(x) (this property is referred to as logarithmic efficiency). This fails in particular
for the crude Monte Carlo method, where Z(x) is the indicator of 4(x) and o’(x)is of
order z(x), implying that N must be chosen very large as z(x) becomes small.

The prototype of an algorithm with bounded relative error is Siegmund's 1976
algorithm for estimating the probability z(x) that a random walk with negative drift
ever exceeds level x.

If F is the increment distribution, the algorithm uses importance sampling,
where F is exponentially twisted with a certain parameter familiar from work of
Cramér and Feller.

A similar simple example of exponential tilting is the estimation of the
probability that a sum of # i.i.d. terms is much bigger than its mean, where the choice
of the tilting parameter is based upon the familiar saddlepoint argument.

In more complex situations, it is usually not obvious how to choose the
importance sampling distribution P* A general approach is based upon the
observation that choosing P* as P,, the conditional P-distribution given 4(x), would
lead to o° = 0. This choice is not practicable because the likelihood ratio involves z(x)
which is unknown, but suggest to try to make P* as close to P, as possible. This
necessitates a study of the asymptotic form of P,, in particular of describing the most
likely path leading to the rare event, and is often performed using large deviations
techniques. Indeed this approach explains the particular form of the exponential tilting
in the above two simple examples, as well as it applies to a number of other problems.

Rather recent counterexamples indicate, however, that the idea of involving
asymptotics of P, has its limitations. For example, Glasserman & Wang (1997) found
an example in tandem queues (mathematically, a two-dimensional reflected random
walk) where a path different form the most likely one gives so large a contribution to
o’ that the relative error blows up. The problem is associated with the role of the
reflecting boundary, which was further investigated by Asmussen, Frantz, Jobmann &
Schwefel (2000). They provided further counterexamples, but also an algorithm which
deals with the boundary problem in some simple cases.
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Exponential tilting requires the existence of sufficiently many exponential
moments and is therefore intrinsically impossible in problems involving heavy-tailed
distributions like the Pareto. Rare events simulation in this setting was investigated by
Asmussen, Binswanger & Hgjgaard (2000). The most likely path can still be described
in many cases (typically, it involves one large jump rather than many slightly biased
ones as in the light-tailed case) but it was found that simulating using this asymptotical
description typically yields an infinite variance. However, some logarithmically
algorithms were exhibited, one based upon order statistics and conditional Monte
Carlo, and one upon a different importance sampling scheme. Unfortunately, the class
of problems where the algorithms apply is rather limited, and the area of rare events
simulation in heavy-tailed settings is still largely open.
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Statistical Mechanics of the Hopfield Model:
Equilibrium and Dynamical Aspects

Véronique Gayrard
Univ. Lausanne

gayrard@masgl.epfl.ch

We intend to give a survey of the statistical mechanics spproach to the analysis
of the Hopfield model of neural networks. This model is intended to describe in a very
simplified way the the process of retrieval of information in an associative memory.
The functioning of the memory will be seen to be described by a family of reversible
Markov chains in random environment, indexed by a large parameter. We will first
focus on the study of the invariant measure of the chains - the so-called Gibbs measure
-: this corresponds to the analysis of the equilibrium statistical mechanics of the
model.The second part of the talk will be devoted to an investigation of dynamical
phenomena such as metastability and, depending on time, the aging phenomenon.

This talk will be based on joint works with G. Ben Arous, A. Bovier, M.
Eckhoff, and M. Klein.



Nonparametric Function Estimation and
Discontinuities
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The literature on nonparametric estimation of functions, as for example
densities, hazard and regression functions, is very vast. It is often assumed that the
functions of interest are smooth, i.e. are continuous, or have a certain number of
continuous derivatives. Therefore, most statistical methods are designed for such
smooth functions, and theoretical results also focus on classes of smooth functions.

In a number of important applications though it is more realistic to allow for a
model in which the function of interest is smooth except at a finite number of
locations where it shows, for example, a jump discontinuity. Examples of regression
functions with jump discontinuities (in the function itself or in its derivatives) are the
crown-heel lengths growth data (Lampl, Veldhuis and Johnson (1992)) and the stock
market data (Wang (1995)). Examples of hazard functions with discontinuities are the
heart transplant data (Miller and Halpern (1982)) and the leukaemia data (Brochstein
et al. (1987)). Regression or hazard analysis of such data require special techniques.
Indeed, application of common smoothing methods would lead to smooth curve
estimates. When dealing with unsmooth regression or hazard functions there are
various aspects of inference that are of importance: estimation of the locations of the
discontinuities, estimation of the "jump sizes", estimation of the entire function of
interest, testing for smooth versus unsmooth functions, confidence bands for the
unsmooth function, etc. It has been shown in the past years, how to adapt the classical
nonparametric estimation techniques, such as for example kernel smoothing methods,
spline methods and wavelet methods, to the situation of possible unsmooth functions.
In this talk we mainly focus on kernel methods and on wavelet deconvolutions, the
latter to a lesser extent. An overview of recent developments in this area will be
presented. See for example Antoniadis and Gijbels (2001) and Antoniadis, Gijbels and
MacGibbon (2000) for estimation of change-points in a regression function or a
hazard function respectively, using wavelet decomposition techniques.

In particular we mention the problem of practical choices of ‘smoothing
parameters' involved in inference problems for unsmooth curves. For a kernel-based
procedure proposed by Gijbels, Hall and Kneip (1999) we discuss a bootstrap
procedure that allows to deal with the crucial issue of choosing the smoothing
parameters in estimation as well as testing problems. The performance of the
bootstrap-based testing procedure has been compared with that of asymptotic testing
procedures such as those proposed by Miiller and Stadtmiiller (1999) and Grégoire and
Hamrouni (2001). See also Gijbels and Goderniaux (2000, 2001) and references
therein.
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Vertex Direction Algorithms for Computing
Nonparametric Function Estimates

Piet Groeneboom
Delft University
Department of Mathematics
2628 CD Delft
The Netherlands
p.groeneboom@its. tudelft.nl

Geurt Jongbloed
Vrije Universiteit
Department of Mathematics
1081 HV Amsterdam
The Netherlands
geurt@cs.vu.nl

In many situations where one wants to estimate a function nonparametrically,
the estimate is in fact determined by a relatively small number of parameters. Well-
known examples are the nonparametric maximum likelihood estimator of a density
under monotonicity or convexity constraints and the least squares estimator of a
monotone or convex regression function.

In the case of a monotonicity constraint, we know from the asymptotic
distribution theory that the estimator will generally have a number of jumps of order
n'”. This means that the number of parameters that has to be estimated is also of order
n'?, if n is the sample size. Similarly, in estimating a function under convexity
constraints the number of parameters that has to be estimated generally is of order n'".

This suggests that an efficient algorithm should use this information in such a
way that it should try to systematically search for these parameters, possibly starting
from scratch with zero parameters. However, the usual algorithms (like the EM
algorithm) work with a number of parameters that is at least as large as the sample
size. As an example, the EM algorithm will spend most of the time in reducing the
“nonrelevant” parameters to zero during its iterations. A similar remark holds for
interior point methods (both direct and primal-dual versions), since, for example in the
case of monotonicity constraints, the inequality constraints have to be strict during the
whole iteration process.

The need for an efficient algorithm is even more pressing in a situation where
one wants to estimate nonparametrically a multivariate function. As an example, in the
estimation of the nonparametric maximum likelihood estimator of the multivariate
distribution function for k-variate interval censored data one essentially has to estimate
again a number of parameters of order n'” (according to recently developed theory),
but the usual algorithms (like the EM algorithm again) try to estimate in fact n*
parameters.

This means that even for bivariate interval censored data the computing time of
the MLE for a sample size of 500 becomes prohibitive: the EM algorithm did not
converge to the solution at an accuracy of 107 in two full days for this sample size on
a Compaq AlphaServer 800 5/500, with a CPU of 21164/500 MHz Alpha, see Song
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(2001). Similar findings are reported in Song (2001) w.r.t. the vertex exchange
algorithm of Gentleman and Vandal (1999a-b).

It turns out to be possible to develop an algorithm which takes advantage of the
fact that the order of the number of relevant of parameters, given by the asymptotic
theory, is small in comparison to sample size. In this algorithm (Groeneboom,
Jongbloed and Wellner (2001)) we start “from scratch” with zero parameters and do a
systematic search for the relevant parameters, keeping the number of parameters
during the iterations small. This method can be used both for least squares estimators
and maximum likelihood estimators. This algorithm is what we call "of vertex
direction type” . 1t is related to the algorithm studied in Simar (1976) and Boehning
(1982).

The essence of our algorithm is that we add the parameters one by one,
alternating between a search without the constraints and a check whether the solution
without the constraints actually has a constraint violation. At each step we check
whether we can improve our solution by adding a parameter, corresponding to a
certain “direction”. For this direction we first compute an unconstrained solution,
involving all parameters we have at that iteration step. If there is a constraint violation
we remove a parameter which, according to a certain criterion, is the “worst violator”.
We then compute the unconstrained solution without this violator and make a step in
the direction of this new solution. We call this step the support reduction step and it is
a very essential step of our procedure. So the whole procedure proceeds by alternating
between adding new parameters and (if necessary) a parameter reduction step. It is
proved that this algorithm cannot run into a loop in the sense that newly added
parameters would be removed at the next iteration step.

An initial version of our algorithm was inspired by the “hinge algorithm”,
described in Meyer (1997), and used in Groeneboom, Jongbloed and Wellner (2000 a-
b). However, convergence of the latter algorithm to the solution of the optimization
problem has not been proved. For this reason we work with a modification of the
support reduction step as used in Meyer (1997) for which we can actually prove
convergence.

The theory will in particular be demonstrated for the example of bivariate
interval censoring where we use this algorithm in an iterative way by reducing the
problem of computing the MLE to an iterative least squares problem, although it is
also possible to use the algorithm in a version where a nonlinear optimization problem
would be used at each step. But it turns out that a “safe’ nonlinear optimization step at
each iteration takes more time than using a complete loop of the vertex direction
method in solving a least squares problem at each iteration.
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An Overview of Some Recent Results in Model
Selection via Penalization

Lucien Birgé
Université Paris VI and UMR CNRS 7599 "Probabilités et modéles aléatoires”
Laboratoire de Probabilités
boite 188 Université Paris VT
4 Place Jussieu F-75252 Paris Cedex
05 France
LB@CCR.JUSSIEU.FR

The purpose of this lecture is to give an account of the modern theory of model
selection via penalization, explain the main ideas, some recent results and how to
practically implement the method.
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Bikernel Oscillation Analysis for the Mixture
Complexity

Guenther Walther
Dept. of Statistics, Stanford University
Stanford, CA 94305, USA
walther@stat.stanford.edu

The problem under consideration is to determine the number of components in a
location mixture. Some prominent examples in the literature are the number of kinds
of chondrite in meteorites, the number of different paper types used in the production
of certain stamps, or the number of genetic components determining blood pressure.

Powerful theoretical results are available in the case where the class of
component distributions is parametric. There is also a large literature on an approach
where class of component distributions is nonparametric, motivated by the fact that
the parametric approach is sensitive to the structure imposed on the component
distributions. For example, if the mixture distribution is skewed and the class of
component distributions is the normal family, then many normal components are
required in the mixture to pick up the skewness, which can result in a considerable
overestimate of the mixture complexity. The nonparametric approaches usually
proceed by mode- or bump-hunting, i.e. by establishing a lower confidence bound on
the number of modes of $f$ or of "bumps' (maxima of the density derivative). One
disadvantage of such an approach is that it is not very sensitive to detect mixing. For
example, the means of two homoscedastic normal distributions need to be separated
by at least two standard deviations before a mixture becomes bimodal.

Comparing the refined theory for the parametric case with the nonparametric
approach suggests that progress in the latter case hinges on a better understanding of
the properties of mixtures in the nonparametric setting. This paper develops the
requisite theory for the nonparametric approach and the accompanying statistical
procedure. It is shown that a simple but powerful criterion is obtained by studying the
qualitative behavior of the sum of two certain convolutions, in terms of counting
certain upcrossings of this sum. The resulting procedure has the advantage over mode-
hunting approaches that it is sensitive to detect mixing in more general unimodal
situations, yet it cannot be improved upon in the more restricted situation where
mixing manifests itself in multimodality, even if one is allowed to use that knowledge
a priori. This is explained heuristically and made precise in the asymptotic minimax
framework.
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Bayesian Nonparametric Inference

Stephen Walker
Imperial College
London
massgw@maths.bath.ac.uk

Bayesian nonparametrics is concerned with constructing prior probabilities on
spaces of densities or distributions which cover more of these type of functions than
those provided by a prior probability which puts all mass on distributions indexed by a
nite dimensional parameter. One interpretation of the work of de Finetti (1938) is that
we should put priors which have all distributions in the support. Due to the previous
technical diZculties involved in doing this, common practice was to solve the
problem by limiting the support to a set of parametric distributions, and to induce a
prior on this set of distributions by constructing the prior on the parameter space. Not
doing this, we enter the realms of Bayesian nonparametrics.

Modern Bayesian nonparametrics took off following the paper of Ferguson
(1973) which formalised the notion of a Dirichlet process. These processes have
sample paths which are distribution functions and hence the prior is guaranteed to
exist because the process exists. This generated a lot of work on using stochastic
processes for characterising nonparametric priors; Doksum (1974), Dykstra and Laud
(1981), Hjort (1990), for example.

A lot of applied work has concentrated on the Mixture of Dirichlet Process
(MDP) model following the introduction of Markov chain Monte Carlo methods.
Pioneer work was done by Escobar (1994), Escobar and West (1995), and
MacEachern (1994). 1t is fair to say that a lot of the current work being done in
Bayesian nonparametrics is concerned with developing sampling algorithms for
estimating nonparametric models.

Bayesian nonparametrics offers modelling which, these days, are no more
dfficult to work with or understand than parametric models. A recent review and
comprehensive list of references is given in Walker et al. (1999). The key is that
Bayesian nonparametrics can be done and hence the need to look for suitable
parametric models is obviated. Also avoided is the need to keep reassigning
probability 1 to parametric models until a suitable model is found, if ever.

A topic receiving a lot of attention in recent years is the notion of Bayesian
consistency. This is a tough area, the mathematics being quite difficult. The task is to
construct priors which lead to posterior distributions accumulating in neighbourhoods
of the true model, as the sample size grows. Bayesians are divided as to whether this is
an important property or not. A good review with motivation is given by Wasserman
(1998).
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Asymptotics for Bayesian Density Estimation with
Mixtures

Subhashis Ghosal®
University of Minnesota
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Mixtures parametric family of densities give us simple flexible non parametric
classes of densities, and are very useful for model based inference such as the
Bayesian method. One can. then induce a prior distribution on the densities simply by
specifying a prior distribution on the mixing distribution. This approach was first used
by Ferguson (1983) and Lo (1984), who used a Dirichlet process prior for the mixing
distribution and gave expressions for posterior expectations of functions. These
expressions however involve too many terms, and are unsuitable for computations. To
address computational issues, Gibbs sampling techniques to compute the posterior
mean and other posterior characteristics have been developed, see, for example,
Escobar and West (1995) and the references therein.

In this article, we are concerned with consistency and the rate of convergence of
posterior distribution of the density in mixture models. Informally, the posterior is said
to be consistent at a true density p, if the posterior distribution on the density p, as a

random distribution, converges to the degenerate measure as more and more data are
generated from the density p,. Equivalently, the posterior probability of any

neighborhood of p, tends to one. To measure the, rate of convergence, the

neighborhood is let shrink with the increasing sample size. The minimum size of the
neighborhood that holds most of the posterior probability is defined as the rate.

A general theorem of Schwartz (1965) asserts that posterior is consistent at a
given point if the complement of any neighborhood of the true parameter can be tested
against the point null with exponentially small probability of errors and every
Kutlback-Leibler neighborhood of the true parameter has positive prior probability.
While Schwartz's theorem is very useful for the verification of consistency in many

nonparametric problems, a test with uniformly small probability of errors does not

exist for densities with variation distance on it due to the lack of compactness. Barron
(1986) pointed out that the condition could be relaxed by intersecting the complement
of the neighborhood of the true density with a set whose complement has
exponentially small prior probability. Barron, Schervish and Wasserman (1999)
showed that for densities with the Hellinger distance on it, suitable tests may be
constructed from bounds for the bracketing entropy. Ghosal, Ghosh and Ramamoorthi
(1999) constructed the desired tests based on merely a similar bound for the metric
entropy with respect to the variation distance. Ghosal, Ghosh and van der Vaart (2000)
studied the convergence rate of posterior distribution. They showed that the rate is
obtained as the maximum of the solution of the entropy .equation that gives the "best
rate” for estimators and the concentration rate of the prior probability at the true
density.

Most of the results reviewed here are collected from several papers written in collaboration with J. K.
Ghosh, R. V. Ramamoorthi and Aad van der Vaart.
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For density estimation on the real line, mixtures of normals form a flexible
class. Ghosal, Ghosh and Ramamoorthi (1999) showed that Dirichlet mixture of
normal prior gives rise to a consistent posterior under general conditions for the weak
topology and the variation distance. If the true density is a compact location mixture
of normal, or if it is itself compactly supported and satisfies Kullback-Leibler
continuity, then the posterior is weakly consistent. Compactness of the support can be
dispensed by bounding the tail of the mixture density using Doss and Sellke's (1982)
bounds for the Dirichlet probability. For consistency in the variation distance, one has
to consider suitable sieves. If the base measure has only thin tails and the prior density
for the scale of normal has high degree of contact at 0, then consistency in variation
holds. For instance, this holds if the base measure is normal and o® of the normal
kernel has a truncated inverse gamma prior.

Ghosal and van der Vaart (2001) showed that the posterior converges at a nearly
parametric rate if the true density generating the observations is also a mixture of
normals with standard deviations bounded away from zero and infinity. They
considered both location and location-scale mixtures of normals. For the location
mixture, the rate turns out to be (logn)'/Vn , where k=1 is a constant depending on the

tail of the base measure.

On the real line, the favorite kernel is the normal density, although other kerels
have also been used. Gasparini (1992) considered random histograms obtained as a
particular type of mixtures of the uniform kernel. He called this the Dirichlet density
process and showed consistency under finiteness of variance and a "Kullback-Leibler
continuity” condition. Special kernels may also be used to yield special shape of
mixtures. A scale mixture of uniforms will give rise to a decreasing density on the
positive half line. Symmetrization of this is a symmetric strongly unimodal density,
and is often a reasonable model for error distribution. Brunner and Lo (1989) used this
idea and attached a prior by considering a Dirichlet process prior for the mixing
distribution.

If the density is defined on a bounded interval, normal mixtures are no longer
appropriate. On the unit interval, beta densities form a flexible class. Indeed, by
Bernstein polynomial approximation, mixtures of only some special beta's will be able
to approximate any continuous density on the unit interval. Petrone (1999) used this
idea to construct a prior based on the Bernstein polynomials by putting an appropriate
prior on the index and the coefficients. Petrone and Wasserman (2000) showed that
the Bernstein prior is weakly consistent provided it has full support. The conclusion
can be easily strengthened to consistency for the variation distance if the prior for the
index decays rapidly. Ghosal (2001) obtained the rates of convergence of posterior for
the Bernstein polynomial prior: If the true density is itself Bernstein polynomial and
the prior for the index has exponentially decaying tails, then the posterior converges at
a rate (logn)/¥n. In general, if the true density is bounded below and twice

56

continuously differentiable, then the posterior converges at a rate » " (logn)

Mixtures of other kernels may be considered. On the positive half line, mixtures
of gamma, Weibull or lognormal densities form flexible families. Densities on the half
line are of interest in many situations. In particular, survival functions may be
modeled using such mixtures. This gives a convenient method for Bayesian survival
analysis, where the mixing distribution could be given a Dirichlet prior. The study of
consistency and rate of convergence for these priors will be of substantial interest.



References

BARRON, A. R. (1986). On uniformly consistent tests and Bayes consistency. Unpublished
manuscript.

BARRON, A. R., SCHERVISH, M. and WASSERMAN, L. (1999). The consistency of
posterior distributions in non parametric problems. Ann. Statist. 27 536-561.

BRUNNER, L. J. and Lo, A. Y. (1989). Bayes methods for a symmetric unimodal density and
its mode. Ann. Statist. 17 1550-1566.

Doss, H. and SELLKE, T. (1982). The tails of probabilities chosen from a Dirichlet prior. Ann.
Statist. 10 1302-1305.

ESCOBAR, M. and WEST, M. (1995). Bayesian density estimation and inference using
mixtures. J. Amer. Statist. Assoc. 90 577-588.

FERGUSON, T. S. (1983). Bayesian density estimation by mixtures of Normal distributions.
In Recent Advances in Statistics (Rizvi M., Rustagi, J. and Siegmund, D., Eds.)
287-302.

GASPARINI, M. (1992). Bayes Nonparametrics for biased sampling and density estimation.
Ph. D. thesis, University of Michigan.

GHOSAL, S. (2001). Convergence rates for density estimation with, Bernstein polynomials.
Ann. Statist. (to appear).

GHOSAL, S., GHOSH, J. K. and RAMAMOORTHI, R. V. (1999). Posterior consistency of
Dirichlet mixtures in density estimation. Ann. Statist. 27 143-158.

GHOSAL, S., GHOSH, J. K. and VAN DER VAART, A. W. (2000). -Convergence rates of
posterior distributions. Ann. Statist. 28 500-531.

GHOSAL, S. and VAN DER VAART, A. W. (2001). Entropies and rates of convergence of
maximum likelihood and Bayes estimation for mixtures of normal densities. Ann.
Statist. (To appear).

Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates I: Density estimates. 4nn.
Statist. 12 351-357.

PETRONE, S. (1999). Bayesian density estimation using Bernstein polynomials. Canad. J.
Statist. 26 373-393.

PETRONE, S. and WASSERMAN, L. (2000). Consistency of Bernstein polynomial posteriors.
Preprint.

SCHWARTZ, L. (1965). On Bayes procedures. Z. Wahrsch. Verw. Gebiete 4 10-26.

REVISTA DE
ESTATISTICA

412
PAGINA

2° QUADRIMESTRE-DE}2001-



VOLUME Il

2° QUADRIMESTRE DE 2001

Bayesian Nonparametric Inference for Survival Data

Paul Damien
University of Michigan Business School
pdamien@bus.umich.edu

Nonparametric Bayesian methods will be discussed within the context of
survival data. Full Bayesian inference with and without covariates will be exemplified
for hazard rate models.



Predictive Inference: A Review and New Developments
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Petrone, S.
University of Insubria
Via Ravasi 2, 21100 Varese, Italy
spetrone@eco.uninsubria.it

1. Introduction

The general predictive problem related to a sequence {X"} of random variables

involves the evaluation of the probability of an event, dependent on the future realisations
of some of the variables of the sequence, when the outcomes of a finite number of
variables of the same sequence are assumed to be known. The treatment of this problem
which takes into account only strictly observable events has been called completely
predictive. The recourse to a parametric model, even if it is not necessary, generally
simplifies the mathematical aspects of a predictive problem; this approach, which is
referred to as hypothetical, is the one prevalent in the traditional Bayesian literature.
However caution must be adopted when following such an approach; for instance,
consistently with de Finetti for whom only observable facts are subject to probabilistic
evaluation, it is possible to question the adoption of the hypothetical approach whenever
one is not in the position to elicit a prior distribution for the parameter appearing in the
model.

2. Parametric versus Nonparametric

The basic predictive assumption for a sequence of random variables is that of
exchangeability. De Finetti style theorems characterise models in terms of invariance. The
idea is that the statistician begins the model building phase by postulating reasonable
symmetries for the distribution of the observable facts.

Let X, X ,-.- be an exchangeable sequence of random variables defined on
X c R. . From de Finetti's representation theorem (de Finetti, 1937) there exists a random
distribution function F conditional on which X", X ,.... are i.L.d. from F. That is, there

exists a probability measure, defined on the space of probability measures on X , such that
the joint distributionof X", X',.... X, , for any n, can be written as

P(XleAl,...X"éA]’)z j{liI[F(Ai)}p(dF)

where p is the de Finetti (or prior) measure. Therefore, if we assume only the

exchangeability, the representation theorem involves an infinite dimensional parameter.
This parameter is the weak limit (with probability P one) of the sequence of the empirical
distribution functions. In order to justify the dependence of this limit to a finite-

=+
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dimensional parameter (hence a parametric approach) further assumptions must be
introduced on the observables. For example, as we shall see, the existence of a predictive
sufficient statistics.

3. Characterisation of Priors using Predictive Assumptions

The general predictive problem reduces to the computation of the conditional
probability

P(X,. el X XX,

for measurable sets 4. The assumption of exchangeability and the representation theorem
imply that

P(X e N X o X oo X, )=EFDI X X 5 X,)-

Without further assumptions, we need a prior on the infinite-dimensional parameter
F. Unfortunately, when de Finetti (1935) suggested the general predictive approach, non-
parametric priors were not known yet. Today, many proposals can be found in the
literature, but there remains the problem of how to select the prior. One approach is to
select p by appealing to prior information about F and attempting to incorporate this
information into p . This is often a difficult task for non-parametric priors. Alternatively,
we may try to describe our state of knowledge in terms of probabilistic assumptions on
X .. gven X, X .,... X ,,forn=1,2,..., and consequently characterise the prior u .

Indeed, when {Xn} is an infinite sequence of random variables, the completely

predictive approach to the construction of the law of the sequence is based on the
specification of the distribution ' of X", and of the predictive distribution = of

X, &gven X, X ... X, forall n>1. Whereas the Ionescu-Tulcea extension

theorem states consistency conditions which guarantee the existence of a unique law for
{Xn} determined by the sequence { Fn}, Fortini, Ladelli and Regazzini (2000) give

necessary and sufficient conditions on the sequence { F } for the exchangeability of the

H

law of {X”} This result characterises exchangeability in purely predictive terms; the de

Finetti measure of the sequence {X"} is then obtained by means of de Finetti's

Representation Theorem.

Many priors used in Bayesian nonparametrics can easily be constructed
following this approach; for example, the Dirichlet process (Regazzini, 1978; Lo,
1991), the Polya trees (Walker and Muliere, 1997a), the beta-Stacy (Walker and
Muliere, 1997b), the Neutral to the right processes (Walker and Muliere (1999).

4. Predictive Sufficiency

For justifying a parametric approach , we need further assumptions on the
observables, in addition to exchangeability. From a predictive point of view, an example
of such assumptions is predictive sufficiency. Predictive sufficiency and its properties
have been investigated in a number of papers among which: Campanino and Spizzichino
(1981), Cifarelli and Regazzini (1980,1981,1982), Dawid (1982), Secchi (1987), Muliere



and Secchi (1992), Fortini, Ladelli and Regazzini (2000). Related notions of sufficiency
have been studied by Lauritzen (1984,1988) and Diaconis and Freedman (1984).

In many practical situations, the researcher can assume, in addition to
exchangeability, that a statistic 7, summarises all the information provided by

X o Xy X, forpredicting X" . Then T is called predictive sufficient statistic.

When 7. is a linear function, Cifarelli and Regazzini (1982) have shown that,
under some hypotheses, the probability law of X", X",,... X', can be represented by

means of a parametric model, where the model F is the limit of the sequence of predictive
distributions of "  and the prior on the parametrer © is the limit law of the sequence

{ T n} . Fortini, Ladelli and Regazzini (2000) relax the hypotheses required.

This result does not say how to select the prior on ® . Anyway, Muliere and Secchi
(1992) show that it is often reasonable to approximate the posterior distribution of ®

given X, X ..... X', by means of the distribution of {T "} obtained by using a

bootstrap procedure. This procedure results equivalent, from the completely predictive
point of view, to those obtained by a Bayesian who decides to adopt a suitable improper
prior distribution for ® .

5. Urn Schemes for Constructing Priors

In the context of Bayesian non-parametric inference, the importance of Blackwell
and Mac-Queen's result (Blackwell and Mac-Queen, 1973) is that it gives a simple and
concrete procedure for constructing an infinite sequence of random variables with
Dirichlet process as de Finetti measure. The procedure has the additional advantage of
making intuitively clear some of the mathematical properties of the Dirichlet process, like
its conjugate property or the form of the predictive distribution of the (#+1)-th random
variables generated by a Dirichlet process conditionally on the values of the first »
variables.

In the spirit of Blackwell and MacQueen we present in this section a class of
stochastic processes defined on a countable space of Polya urns which will be convenient
for constructing more general classes of priors commonly used in Bayesian non-
parametric inference, such as Polya trees and beta-Stacy processes. There are situations
where the assumption of exchangeability for the sequence of observations is too restrictive
or does not incorporate all the relevant information about the data. A weaker assumption is
that of partial exchangeability, introduced by de Finetti (1938) and considered also by
Diaconis and Freedman (1980). For the connections between the two ideas of partial

exchangeability see Fortini, Ladelli, Petris and Regazzini (1999). When {Xn} is an

infinite sequence of random variables with values in a discrete space, partial
exchangeability (in the sense of Diaconis and Freedman)and recurrence imply that the law
of the sequence is that of a mixture of Markov chains (Diaconis and Freedman, 1980); that

is, conditionally on a random transition matrix I ,{Xn} is a Markov chain with

transition matrix IT. The prior distribution for IT may often be characterised in purely
predictive terms; for example, Muliere, Secchi and Walker (2000) introduce an umn
scheme called reinforced urn process which generates mixtures of Markov chains such
that the law of IT is the product of Dirichlet processes. Reinforced um processes have
applications to survival analysis whenever individual specific data is modelled by a
Markov chain and individuals from the population are assumed to be exchangeable.
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6. Consistency

For subjective Bayesians like de Finetti and Savage probabilities represent degree
of belief and there are no objective probability models. Bayesians learn from experience,
so opinions based on very different priors will merge as data accumulate. A general result
of this type was provided by Blackwell and Dubins (1962). A result relating merging of
opinions and posterior consistency is discussed in Diaconis and Freedman (1986).

Roughly speaking, the posterior is consistent for F, if it cumulates around F, as

the sample size increases, almost surely with respect the product measure F,” . Bayesian

nonparametric methods have only recently started to undergo asymptotic studies. Much of
the papers are influenced by the paper of Diaconis and Freedman (1986). For a
comprehensive review of this area see Wasserman (1998) and Ghoshal,Gosh and
Ramamoorthi (1997). Recent results are in Walker and Hjort (2001) and Petrone and
Wasserman (2001).

Our aim is to discuss consistency from a predictive point of view. In particular, we
shall focus on the asymptotic behaviour of the predictive distribution. As shown in the
previous sections, the representation theorem for exchangeable sequences and the results
about predictive sufficiency ensure that the sequence of predictive distribution functions
converges to the random distribution function F conditionally on which the observables
are ii.d. Our aim is to discuss how these results, which involve a random limit
distribution F, are related to the notion of consistency of Doob (1948) or of Diaconis and
Freedman (1986), in which F is the (fixed) true distribution.

On the other hand, starting from a paper by Diaconis and Freedman (1990) , we
might replace the true distribution function with the empirical distribution function. In
particular it is of interest to study the asymptotic distance (in some sense) between the
predictive distribution function and the empirical distribution function; results in this
direction are proved in Berti and Rigo (1997).
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Some Statistical Implications of Causality

D. R. Cox
Nuffield College and Department of Statistics
Oxford, UK
david.cox@nuffield.oxford.ac.uk

The aethos of statistics is on the whole healthily empirical and impatient of
philosophical discussion. This attitude has, however, some negative consequences,
notably a tendency to separate statistical analysis from deeper issues of interpretation.
Yet many if not the majority of applications of statistical methods have as their
objective the aiding of understanding of some phenomenon and this can be regarded
as involving some notion of causality; in particular, in a technological context we may
wish to assess the consequences of an intervention, medical or social for example.
How would the real world be if some change were implemented, medical treatment A
used rather than B, for instance?

Some recent discussions have tended to claim that causality can be relatively
readily established, sometimes with rather minimal subject-matter input and even with
cross-sectional observational studies. The ideas involved are interesting but
observation suggests that the conclusion is dangerous, in a medical context at least.

The implications for statistical analysis are not particularly controversial but
include the following, some of which will be illustrated by examples:

(i)  to incorporate background knowledge into statistical models

(i) to synthesize information from various sources, in line with Fisher’s
dictum

(iii) to check for the absence of qualitative interaction of effects under study
with background variables

(iv) to formulate regression-type models that are potentially causal

(v)  to be careful that the inclusion of explanatory variables in the models (iv)
is consistent with a causal interpretation of the parameters of primary
interest

(vi) to check in hierarchical systems that the regression coefficients used for
interpretation are at an appropriate level in the hierarchy.

L~
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Does Diet Affect Risk of Lung Cancer?

Sarah Darby, Richard Doll
University of Oxford, CTSU,
Harkness Building, Radcliffe Infirmary,
Oxford OX2 6HE, UK
sarah.darby@ctsu.ox.ac.uk

Elise Whitley
University of Bristol
Department of Social Medicine,
Bristol BS8 2PR, UK

Timothy Key
ICRF Cancer Epidemiology Unit,
Gibson Building, Radcliffe Infirmary,
Oxford OX2 6HE, UK

Paul Silcocks
Trent Institute for Health Service Research,
Queens Medical Centre,
Nottingham NG7 2UH, UK

In 1975, it was reported on the basis of an observational study that the risk for
lung cancer was about 60% lower in subjects with a high intake of vitamin A than in
subjects with a low intake. Subsequent observational studies confirmed this negative
association but suggested that the risk factor was provitamin A carotenoids, such as B-
carotene, rather than vitamin A (i.e. pre-formed retinol) itself. Negative associations
with lung cancer risk were also observed for a group of related dietary factors
including intake of several non-provitamin A carotenoids and total intake of fruit and
vegetables.

The consistent findings from observational studies led to the proposal that
dietary B-carotene might reduce lung cancer risk and to the establishment of
randomized controlled trials to test this hypothesis using supplements of B-carotene in
human populations. However, the results of the trials were surprising and have given
no support to the hypothesis: the two trials with the largest numbers of cases of lung
cancer found that risk was significantly higher in subjects who took B-carotene than in
those who did not, while other trials in lower risk subjects with smaller numbers of
lung cancers reported no significant effect.

Despite the results of the trials, which indicate that B-carotene itself almost
certainly does not protect against lung cancer, recently published observational studies
continue to show an inverse association of fruit and vegetable intake with lung cancer
risk, as do related indices such as carotene intake. The apparent protective effect of
fruits and vegetables could be due to a biological effect of one or several of the
thousands of chemicals naturally present in these foods, but it also remains possible
that the observed association with fruits and vegetables may be partly due to
confounding by other dietary factors and perhaps by smoking and non-dietary factors.

We have examined the relationship between diet and lung cancer in a case-
control study of 982 cases of lung cancer and 1486 population controls in south-west



England in which subjects were interviewed personally about their smoking habits and
their consumption of foods and supplements rich in retinol or carotene. Analyses were
performed for 15 dietary variables, including intake of pre-formed retinol and
carotene. When these were considered individually there were significant associations
(p<0.01) with lung cancer risk for 8 of them, after adjustment for smoking. When the
15 variables were considered simultaneously, significant associations after adjustment
for smoking remained for 5: pre-formed retinol (increased risk), and fish liver oil,
vitamin pills, carrots and tomato sauce (decreased risk).

It is unlikely that all 5 associations represent biological effects, or that they can
all be explained by residual confounding by smoking, or by biases. We conclude that
there is at least one as yet unidentified factor that is causally related to lung cancer risk
and of considerable importance in this population in terms of the number of cases of
lung cancer that can be attributed to it.

Reference
Darby SC, Whitley E, Doll R, Key T, Silcocks. Diet, Smoking and Lung Cancer: a Case-

control Study of 1000 Cases and 1500 Controls in South-west England. British Journal
of Cancer. In press.

b

s

REVISTA DE
ESTATISTICA

51¢
PAGINA

2° QUADRIMES‘FRE*DE{ZOO-’I-



Analyzing Clustering of Deaths in Criminal Cases. Can

Statistics Throw Light on the Causality?

0dd O. Aalen
University of Oslo
Section of Medical Statistics
P.O.Box 1122 Blindern
N-0317 Oslo, Norway
o.0.aalen@basalmed.uio.no

Clustering of deaths, particularly in health institutions, may lead to suspicion
that the deaths are not natural. For instance, there have been cases where an inordinate
number of deaths happened when a particular nurse was on duty. This has sometimes
lead to charges of manslaughter. The task of a statistical expert witness in such cases
will be discussed. To which extent can a statistical analysis throw light on the
evidence that the clustering represents. This is a challenge to the power of statistics to
assess causality.

Specific issues that arise in studies of this nature are the following:
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2° QUADRIMESTRE DE 2001

The charge against the defendant is raised after the statistical data appears.
There may be no prior suspicion, and so one is faced with the issue of
evaluating a hypothesis established aposteriori on the basis of an observed
cluster. This is a well-known situation in medicine. There are for instance
many reports of increased numbers of cancers in neighborhoods, work
places, schools etc. When evaluating such clusters one has to estimate the
probability that clusters of the kind shall arise by chance.

The statistical analysis of clusters is difficult because one must judge the
number of similar possibilities to consider. For, instance, when evaluating a
cluster of deaths in a nursing home, how many nursing homes should one
consider when evaluating the probability of the cluster arising occasionally
by chance. How large a geographical area, and which time period should be
considered?

A specific cause of the clustering of deaths is hypothesized, namely that for
which the defendant is charged. This is different from the usual statistical
study, say in epidemiology, where the causal connection is of a more diffuse
nature. For instance, when asserting that smoking causes lung cancer, one
implies that the total exposure to smoking over many years causes cancer in
a subset of those exposed to the risk. However, one can certainly not
pinpoint a single decisive event, and also the biological mechanism may be
only partially known.

If one concludes, when judging a cluster, that it can hardly have arisen by
chance, then the question of competing causal explanations arises. In
addition to the specific cause suggested in the criminal indictment, there may
be other, less specific causes that should also be considered. For instance, a
cluster of deaths in a nursing home could possibly be due to non-criminal
neglect on the part of a nurse. There is hardly much knowledge of whether
such neglect could influence the death rate, but one may have to consider the
possibility. Statistically, one can show that only small rises in the death rate
may have a big effect on the likelihood of extreme clusters.



e An important issue is which statistical approach to use. Should one compute
P-values or likelihood ratios, or should one use a Bayesian approach? P-
values (adjusted for an aposteriori hypothesis) may be reasonably simple to
compute under the null hypothesis of no criminal action. Likelihood ratios
presume that one can also compute probabilities under an alternative
hypothesis, and this is far more difficult. For instance, it might not be clear
what is a reasonable alternative hypothesis. It could be the specific charge
raised against the defendant, but this is dictated by the course of the police
investigation, and may not be a useful alternative hypothesis from a
statistical point of view. A Bayesian approach would in addition require
knowledge of the prior probability of guilt, which may be impossible to
assess. Also, courts don’t want posterior probabilities of guilt from an expert
witness.

e A statistical analysis may necessarily be somewhat technical, and courts
have been known to object to this. The task of the expert witness is to make
the analysis as accessible as possible. But there are difficult statistical issues
involved, and the question of layman understanding is certainly an issue.

e To which extent can statistical analysis constitute proof in the court? This
might differ between different countries, but statistics does not appear to
have been used as single or main evidence in a criminal case involving such
a serious charge as serial murder. The attitude seems to be that one must
have specific proof that at least one person has been murdered. Then the
statistical analysis can constitute important supplementary evidence.

A case that occurred in Norway a few years ago shall be used to illustrate some
of the above points. We shall also refer to similar cases that have been described in the
literature, see the references.
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On Concentration of Distributions of Weighted Sums

Sergey Bobkov
University of Minnesota
School of Mathematics
127 Vincent Hall, 206 Church Street S.E.
Minneapolis, MN 55455, USA
bobkov@math.umn.edu

Given a vector X in R" of non-correlated random variables, with unit variances,
denote by S(t) their wighted sum, with vector t of coefficients taken from the unit
euclidean sphere. It is known as an application of the concentration phenomenon on
the sphere [1] that, for most t's, the distributions of S(t) are very close to a certain
"typical" distribution (on the real line).In general, it depends on X, but in many cases
of interest, this typical distribution is standard normal. In one special situation, when
X is uniformly distributed over isotropic compact body in R", a quantitative discription
of this concentration property was resently obtained in {2]. We are discussing
closeness to the typical distribution in the general situation, as well as some
refinements for the class of log-concave probability distributions on the euclidean
space.
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Concentration Inequalities for Poisson Processes and
Applications in Statistics

Patricia Reynaud-Bouret
Laboratoire de Mathématiques
Département Probabilité et Statistiques
Bdt 425, Université Paris-Sud
91405 Orsay Cedex
Patricia.Reynaud@math.u-psud.fr

We establish concentration inequalities for suprema of integral functionals of
Poisson processes which are analogous to Talagrand's inequalities for empirical
processes. These inequalities are used as crucial tools to construct penalized projection
estimators of the intensity of an inhomogeneous Poisson process.

1. Probabilistic Results

A concentration inequality can be written in the following form:
Yu>0,P(Z2E(Z)+ f(u))<exp[-u]

where Z is a random variable, and f* a proper function.

Concentration inequalities were proved by B.S. Cirel'son, [.A. Ibragimov and
V.N. Sudakov for Z a 1-Lipschitz function of a Gaussian vector and f(u)=+2u
(see [ID).

M. Talagrand (see [2]) proved that such inequalities can be written in the » -
sample framework. More precisely, let (X,,...,X,) be n random variables, i.i.d.,
with law dP =sdp . Let P, be the associated empirical measure., Let {y,,a € A} bea
countable family of functions bounded by 1. Then a concentration inequality holds
with

Z =sup(P,(v,)-P(v,)),

aeA

aed =)

fu)= cl\/;";+c2u andv, = E[supi(\yu (X,.)—E(\ll,, (Xf)))zj,

where ¢,, ¢, are proper constants. The constants ¢, and ¢, are computed via M.

Ledoux's methods in a paper of P. Massart [3].
We prove that the same kind of inequalities hold for Poisson processes. More
precisely, let us give the definition of Poisson processes to fix the notations.

Definition 1 Let (X,X) be a measurable space. Let N be a random countable

subset of X . n is said to be a Poisson process on (X,X) if

e forall 4e X, the number of points of N lying in A is a random variable
N, which obeys a Poisson law with parameter denoted by v (A) ,



e for all finite family of disjoint sets 4,...,4, of X, N,,..,N, are
independent random variables.

The so defined function v : X — R, is a measure without atom and is called the

"mean measure” of N . This measure is supposed here to be finite to obtain almost
surely a finite set of points for N . We denote by dN the random discrete measure

ZTGNST '

Our main probabilistic result is the following:

Theorem 1 Let N be an inhomogeneous Poisson process on (X,X ) with finite
mean measure v. Let {y_,a € A} be a countable family of functions with values in
[-b,b]. One considers

Z =sup Lwa (x)(dN,—dv_ ) or sup

acA acA

[w. ()N, -dv,)
Then for any positive number u
IP’(Z 2 E(Z) + 2w + cbu) < exp(—u)

where v
1 2 2
v= —[E(sup J.\;/a (x)de) +sup j\ua (x)dvx:l
2 acA aeA

and where ¢ can be taken equal to 5/4.
We can remark the similarity between Talagrand's inequality and this result
with the correspondence ndP, = dN and dP =~dv, which can be interpreted through

the following property: the set of points of N, conditionally to the event {Ny =n}
has the same law as a n -sample of variables with law v /v (X).

The proof of this inequality is in two steps as the ones of M. Ledoux [4] and P.
Massart [3] in the empirical case. The first step provides a concentration inequality for

Z=su v, dN where the y 's are bounded positive functions which is of
paeA a a

independent interest.
L. Wu [5] recently proves analogous results for Z = f(N) where f is a I-

Lipschitz function (in some sense) of the Poisson process. His results can lead to
concentration formula for i.i.d. vectors of Poisson variables, already proved by S.G.
Bobkov and M. Ledoux [6]. Very general results about concentration inequality for
infinitely divisible vectors were also proved by C. Houdré [7]. The results of L. Wu
and C. Houdré are very general but provide weaker results concerning the variance
term v in the special case of suprema that we consider here.

2. Statistical Applications
The reason for focusing on suprema is that our aim is mainly to estimate

adaptively the intensity of an inhomogeneous Poisson process, i.e. the
Radon-Nikodym derivative s=4-, where v is the mean measure of the Poisson
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process and pu is a known measure on X ; these functionals will appear naturally in

the construction of our estimators. We apply penalized model selection methods
introduced by L. Birgé and P. Massart (see for instance [9]). These methods are
known to use concentration inequalities in several different frameworks like
n -sample framework or white noise framework (see for instance [8]). Let us give a
simple example in the Poisson framework: the histograms.

If m is a partition of the set X, we can construct the projection estimator on m
by

We wish to select the best partition, i.e. the one such that the risk
R, = E||s—§,,,||§ is minimal. Obviously, the optimal partition depends on s, and we

cannot find it without knowing s . The unbiased estimation of the risk leads to the
model selection criterion:

i =argmi“{‘ Jeda (), +22—(—)}

meMy lem M 1

where M, is a given set of partitions. The penalized histogram projection estimator
will be §, .
The unbiased risk principle relies heavily on the fact that:

) -2lb-s1)

where s, is the projection of s on the partition m i.e.

~

—-S

ﬂT m

J‘/ sdp
= 1I,.
sm ; l,l([) !

Hence to understand the performances of the selecting estimator s, , we have to

nr

understand how Xm =

s, =3, is small. This quantity is doubly random since the

index m is chosen randomly. Consequently, we have to control all the Am's, to
control this one. This explains why we need concentration inequalities. Since

I, sdp
Xm =su dN - S 13
ey ;a'u(l)( s(x)du.)= nuii]j;a' (1)

Theorem 1 can be applied as well as the results of S.G. Bobkov and M. Ledoux
[6], for instance. If we want to look at more smooth functions than histograms the

quantity Xm still exists (with a more general function instead of 11 /u ) but we

cannot assume that it comes from independent variables (the N,'s). That is the reason

why we need concentration inequality for suprema of integral functionals of Poisson
processes.

Moreover we wish to have a concentration inequality where the variance term
v does not depend any more on the dimension of space (the cardinality of the partition



for histograms, for instance). Without such inequality, the rate of convergence of our
estimator would not be optimal and this is precisely why we cannot use Wu's or
Houdré's inequalities. We can derive such an inequality from Theorem 1:

Corollary 1 Let N be a Poisson process on (X,X') with finite mean measure

v. Let {y,,ae 4} be a countable family of functions with values in [~b,b]. One
considers

Z =sup

aeAd

L‘Va (x)(an, —dvx)l and v, = sup waj (x)dv,.

acA

Then for any positive numbers « and € :

P(Z >(1+€)E(Z)+2-vou +-(8)bu)£ exp(-u),

where - =6 and -(g)=1.25+32/¢.
All the results we have presented here can be found in [10].
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Concentration Inequalities on Product Spaces for
Mixing Processes, Coupling Methods

Paul-Marie Samson
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samson@math.univ-miv.fr

The concentration of measure phenomenon has been deeply investigated by M.
Talagrand as a means to obtain new exponential deviation inequalities. One of the first
result of the starting point of his developments is the following simple inegality for
arbitrary product measure Talagrand. For i=1,...,n, let p, be probability measures

on [0,]] and denote by P the product measure pu, ®...®p . Then for every convex
Lipschitz function f on R" with | f “Lip <1, forevery t>0,

1) P(f>M+1)<2e" ",

where M is a median of f . Following M. Talagrand, M. Ledoux has proposed a
simple method based on logarithmic Sobolev inequality for product measures to reach
the deviation of f from the exact mean of f with the best possible constants. For

every separately convex functions f on R” with ” f ”Lip <1, forevery t20,
P(f > [fdP+1)<2e "

The deviation inequality (1) has been extended to some measures of contracting
Markov Chains by K.Maxton as a consequence of an information inequality.

The main purpose of this presentation is to extend Marton's information
theoretic approach to larger classes of dependent sequences such as Doeblin recurrent

Markov chains and ®-mixing processes. Let for example, (X, )‘,EZ be a Markov

chains or a @ -mixing processes. Denote by P the law on R" of a sample X of size
n taken from (X;) . We will introduce a matrix T' of dimension », with
coefficients that will measure the dependence between the random variables
(X,.,...,X,) of the sample X . In the interesting cases, the operator norm ||[| of the
matrix ' will be bounded independently of the size of the sample. This condition is
satisfied for uniformly ergodic Markov chains satisfying a so-called Doeblin
condition. Other examples are the ® -mixing processes for which the sequence of
@ -mixing coefficients is summable.

Let now P denote the law of the sample X on R”. Let f be a real function
on R" such that for every x,y in R",

10)-f ()£ 2 (), .,

As a main result, we show that for every probability measures Q with
Radon-Nikodym derivative dQ/dP with respect to the measure P,
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[rd0- [fap<|r|J2k(Q1P),| [YaidO,
i=]
where K(Q|P) is the Kullback distance between the measure Q and P,

a9

K(Q|P)= jlog(dp

Jao

Furthermore,

[ fap - [ro <|r|J2k (0| P) jgajdp,

Such Pinsker type inequalities (or measure transportation inequalities) are
obtained by coupling measures methods. We recently improve these methods to get
better results in the independent case.

One of the main interest of these inequalities is to provide exponential
concentration inequalities for the suprema of sums of random variables. In particular,
we simply obtain the following famous result of P. Massart for suprema of empirical
processes in the independent case. Let 7 be a countable set and let

(X L )teT,...,(X"‘,)teT be » independent processes. Assume that for every ¢ and &

the values of X,, are in [0,1]. Let us consider Z =sup,.; »'" X, . Then for every
A =20, setting ¢(l)zexp(l)—k—1,

E[ek(ZvE[Z])} < oBlZR(*)
which implies that for every 1 >0,
P[Z>E[Z]+]< ¢ M),

where h(u)=(1+u)log(1+u)—u, for u>0.

This concentration inequality can be viewed as a functional version of Benett's
or Bermnstein's inequalities for sums of independent and bounded real-valued random
variables. We will present some extentions of this concentration type inequalities in
our context of dependence.
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Disease Mapping and Spatial Epidemiology

Sylvia Richardson
Department of Epidemiology and Public Health
Imperial College
Norfolk Plac,
London, W2 1PG, UK.
sylvia.richardson@ic.ac.uk

1. An Introduction to the Session

Spatial analyses abound in the epidemiological literature. Indeed, analysing
sources of heterogeneity in diseases or health data provides valuable knowledge in
epidemiology. Geographical variations of chronic diseases have long been recognised
as been able to suggest important aetiological clues. Recently, the availability of
geographically indexed health and population data at a small scale, with advances in
computing and geographical information systems have opened the way for serious
exploration of small area health statistics based on routinely collected data, the recent
book by Elliott et al (2000) gives a series of interesting examples.

The statistical models developed are closely linked to the declared aims of small
area analyses and the type of data available. Disease mapping is carried out to
summarise spatial and spatio-temporal variation in risk. Geographic correlation
studies prolong disease mapping studies and are aimed at exploiting geographical
variations in exposure to environmental variables (such as air pollution, background
radiation, water quality) and lifestyle factors (such as smoking and diet), again in
order to gain clues as to disease aetiology. Finally, Point source type studies are
carried out when an increased risk close to a “source” is suspected. Morris and
Wakefield (2000) provide a review of the assessment of disease risk in relation to
point/line sources.

Disease mapping exercises require an exhaustive recording of cases and an
assessment of the population at risk. One can distinguish between point data where the
“exact location” of the case is known and area-referenced count data which
correspond to number of cases aggregated over geographically defined areas. In what
form disease data are made available follows usually from the public health
procedures and the confidentiality rules adopted in each country. Similarly, exposure
characteristics may be available at the individual level, at a continuum of locations, or
as aggregated summaries. Corresponding to these types of data, spatial models have
been defined using either a point process framework or directly at the aggregated level
(see Richardson, 2001, for a review). Most current approaches use the generic
methodology of Bayesian hierarchical models.

Two presentations (Green and Knorr-Held) are addressing disease mapping
issues. Both extend in an innovative manner the current family of models used for the
spatial analysis of disease counts and use data collected at the aggregated level. Issues
of model choice will be highlighted by Green, whilst Knorr-Held introduces further
stratification in disease mapping models based on classification of the disease
outcome into stages of severity. Wolpert’s presentation discusses the point process
framework and the problem of formulating appropriate models for data (outcome and
covariates) collected at different spatial scales. This is linked to the delicate question
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of how covariates are introduced in spatial models and the consequent ecological bias
issue (Greenland and Robins, 1994).
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Spatial Mixtures and Model Choice in Disease Mapping

Peter J. Green
University of Bristol
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1. Introduction

We consider the modelling of spatial heterogeneity for count data on a rare
phenomenon, observed in a pre-defined set of areas. This is a general set-up which
arises in many domains of application, for example in ecology or agricultural science.
The motivating situation that we have in mind throughout, that of observed disease
counts with few observed events in each area, belongs to the domain of epidemiology.
There are many reasons for suspecting heterogeneity in the underlying event rate and
wanting to characterise it. In disease mapping, for example, it is hardly plausible that
all the relevant factors acting on the underlying disease risk can be identified or
measured at the area level. Thus there remains residual heterogeneity, which is likely
to have a spatial structure inherited partly from that of risk factors for the disease.
Spatially structured heterogeneity also arises naturally in agricultural field trials and
other applications.

It is interesting to characterise this spatial structure further, as discovery of
either local discontinuities or smooth gradients can be exploited for further study or
action. In epidemiology, current aetiological hypotheses made at the individual level
can be usefully confronted with their aggregated counterparts, keeping in mind the
delicate issue of ecological bias. The suspicion of a local excess in disease occurrence
or the highlighting of geographical inequalities in medical treatment are important
public health concerns that can be addressed by an analysis of the spatial
heterogeneity. Note that, most often, we are in an observational framework where
there is little or no control over the sources of variability. Our aim in this paper is thus
to propose a new class of spatial models for the heterogeneity of count data and to
demonstrate its flexibility.

2. Models

Spatial heterogeneity of count data on a rare phenomenon occurs commonly in
many domains of application, in particularly in disease mapping. We present new
methodology to analyse such data, based on a hierarchical allocation model. We
assume that the counts follow a Poisson model at the lowest level of the hierarchy, and
introduce a finite mixture model for the Poisson rates at the next level. The novelty
lies in the modelling of allocations to the mixture components, where we consider
three possibilities, in each of which the number of components of the spatial mixture
is treated as unknown.

One follows a spatially correlated process, the Potts model (Green and
Richardson, 2000), and the others are based on multinomial draws from correlated
weights processes defined using gaussian fields (Fernandez and Green, 2000).
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Inference is performed in a Bayesian framework using reversible jump MCMC
(Green, 1995). The models introduced can be viewed as Bayesian semiparametric
approaches to specifying flexible spatial distribution in hierarchical models. They
could also be used in contexts where the spatial mixture subgroups are themselves of
interest, as in health care monitoring.

Performance of the models and comparison with an alternative well-known
Markov random field model specification for the Poisson rates (Besag, York and
Mollié, 1991) are demonstrated on synthetic data sets. We found that our allocation
model avoids the problem of oversmoothing in cases where the underlying rates
exhibit discontinuities, while giving equally good results in cases of smooth gradient-
like or highly autocorrelated rates. The methodology is illustrated on epidemiological
applications to data on rare disease and health outcome in France.

3. Model Choice

The final part of the talk will discuss choice between model specifications in
this area. In principle, model choice can itself be treated in a fully Bayesian way (as
was done, for example, in the context of ion channel data by Hodgson and Green,
1999), but there are obvious difficulties in relying on posterior model probabilities
alone in model choice decisions, not least the arbitrariness of prior model
probabilities. I will discuss the use of various decision-theoretic criteria in this context,
including the Deviance Information Criterion of Spiegelhalter, Best and Carlin (1998).
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1. Introduction

There has been much recent interest into the spatial analysis of observational
disease data. The work can be categorized into two groups, methodology for data
where the exact location of each case is known, and methodology for aggregated data,
where the total number of cases is given in predefined administrative areas. Bayesian
approaches for the second type of data includes the seminal work by Besag, York and
Mollie (1991) who propose a Markov random field model for the spatial smoothing of
disease rates. This model is nowadays widely used for ,,disease mapping®, the study of
spatial variation in disease risk, for reviews see for example Clayton and Bernardinelli
(1992), Knorr-Held and Becker (2000) or Wakefield ef al. (2000).

Probably the most prominent application is the statistical analysis of age-
standardized cancer mortality rates, as such data are routinely collected throughout the
world. A spatial analysis may help to identify a ,spatial signal®, which is particular
important for rare diseases, where the raw data exhibit too much variation and are not
particularly helpful in order to judge the variation of the underlying disease risk. The
estimated spatial pattern may give hints to relevant unobserved risk factors, although
some general problems of interpretation may remain due to the observational type of
the data.

In this paper we extend the methodology to the analysis of cancer incidence
data with additional knowledge on the stage of disease at time of diagnosis. Our aim
can be described as to adjust the crude observed data for effects which can be
attributed to age, and to assess whether there is any spatial variation left in the
(adjusted) stage proportions. This is of clear public health importance for diseases
where screening programs increase the probability of a cancer diagnosis in an early
stage of the disease and hence the probability of survival.

2. Model

Let n, denote the number of person-years at risk in district i =1,..../ and age

group j=1,...,J . For each cell (i, /) let Vi denote the number of diagnosed cases of
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disease in stage s =1,...,5. We assume that the stages are ordered by severity of the
disease with stage S being the most severe. Finally let y,, be the number of all

person-years under risk, which have not being diagnosed with the disease. We now
assume that y, =(¥,¢, V5, ¥;s)' follows a multinomial distribution with parameters

N
n; and probability vector n, = (1,7 ,,....,7 ;5 ) Where an =1.
s=0

We propose two formulations based on regression models for categorical data
on an ordered scale (for a recent review see Fahrmeir and Tutz, 2001, Chapter 3). In
the first approach we model cumulative probabilities of disease risk, whereas in the
second we model conditional probabilities. More specifically, in the cumulative model

we factorize the log odds of the cumulative probabilities m ., +m, +..+7,,

s=0,..,5-1, into spatial and age group effects. In the second formulation, the so-
called sequential model, we consider the probability that a person is diagnosed with
the disease in a specific stage, given that she is diagnosed in this or in a higher stage.

Hence we decompose the log-odds of the conditional probabilities
. +...+7, ) into spatial and age groups effects. The spatial and age group

iys 1
effects are assumed to be stage-specific in both formulations, i.e. for each stage
s there is a separate set of parameters.

Note that we work directly on data stratified by age, which is in contrast to
commonly used disease mapping methods, where the data are already standarized by
age in advance.

The two alternative models proposed above are now completed by assinging
prior distributions to all unknown parameters. For both the spatial and the age group
parameters we will use priors which favour a nearly constant pattern, implied by a
high prior mass on very small values of the corresponding variance parameter.
However, the priors we use for these variance parameters are highly dispersed, hence
the formulation will be flexible enough to capture spatial or temporal gradients or
trends if there is evidence in the data for it.

More specifically we use Gaussian pairwise difference priors (Besag ef al.,
1995) for the district and age group-specific parameters. These models neither impose
stationarity nor assume a specific parametric form; in fact they are closely related to
non- and semiparametric smoothing methods as reviewed by Fahrmeir and Knorr-
Held (2000).

Inference has been carried out using C++ routines developed by the first author.
We have used Markov chain Monte Carlo (MCMC) to sample from the two posterior
distributions, applying univariate Gaussian Metropolis random walk proposals for all
age group and spatial parameters, while Gibbs steps have been used for the remaining
precision parameter. The spread of each Metropolis proposal was tuned in an
automatic fashion - prior to the collection of the posterior samples - so that the
corresponding acceptance rate for each parameter was between 35 and 45%.
Alternatively one could employ a block sampling algorithm as recently proposed by
Rue (2001) and Knorr-Held and Rue (2001) to improve mixing and convergence
properties of the simulated Markov chain. Problems with single-site updating typically
arise for sparse data. However, the data we considered in our application is not
particularly sparse and MCMC mixing was fine for the single-site scheme we have
implemented.

- (m

is

n



3. Application

We apply the two approaches to incidence data on cervical cancer in the former
German Democratic Republic (GDR), 1980-1989. The data is stratified by 216
administrative districts, 15 age groups (15-19, 20-24, 25-29, ..., 80-84 and 85+) and
S=5 stages. Of particular interest is the first stage, which denotes an asymptomatic, not
yet malignant pre-stage of cervical cancer, typically diagnosed in screening programs.

For a first assessment of the model fit, we routinely monitor the multinomial
posterior deviance. There seems to be some evidence that the sequential model fits the
data better than the cumulative model, with a smaller posterior deviance.

The results obtained with the sequential model suggest that there are large
spatial differences in the (age-adjusted) proportions of the first stage, which indicates
spatial variability in the time of introduction and effectiveness of screening programs.
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Disease mapping and Small area Statistics

Robert L. Wolpert
Institute of Statistics and Decision Theory
Duke University
USA
wolpert@stat. Duke. EDU

Spatial detail is lost whenever data are aggregated in small area statistical
problems, sometimes distorting evidence due to the well-known phenomenon
variously known as the "modifiable area unit problem" (MAUP) or "ecological bias".
When exposure data, covariates, and health effects are available at different spatial
resolutions, some or all of which may differ from the resolution needed for the
inferential goals, it is common to pick some fixed partition of the region of interest
and begin by aggregating or interpolating all the data to a common resolution, just to
simplify the statistical analysis. This standard approach only exacerbates the problem
of ecological bias.

We use marked point process models to offer an alternative: spatially
continuous underlying random-field models that allow us to use each variable at its
natural spatial resolution, without any further aggregation or interpolation, and to
support inference at any level of spatial detail (or simultaneously at different levels).
There is still no way to restore any information lost in aggregation before we receive
the data, but by avoiding unnecessary further aggregation we reduce the effects of
ecological bias when compared with the standard approach.

The methods, based on a new computational algorithm for simulating point
processes, are illustrated with examples studying the incidence of respiratory disease
in Huddersfield, UK and in London. Most of the work was developed jointly with
Katja Ickstadt of Dortmund University, DE and Nicola Best of Imperial College, UK.
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Perfect Simulation Session

Jesper Mpoiller
Aalborg University
Department of Mathematical Sciences
jm@math.auc.dk

Over the last decade there has been an explosion of interest in developing and
applying Markov chain Monte Carlo (MCMC) methods in statistics. Regular MCMC
methods are only correct in the limit where an infinite number of steps in the
simulations have been performed. A recent topic, which has drawn great attention
after the seminal work of Propp and Wilson (1996), is "exact" or "perfect" simulation.
A simulation algorithm is said to be perfect when one is assured that equilibrium has
been attained when the algorithm finishes; here its running time is allowed to be
random. This is obviously appealing and useful for several reasons: One needs not to
worry about whether one has used an appropriate burn in before sampling; iid
sampling is possible so that e.g. asymptotic variances of Monte Carlo estimates can be
straightforwardly calculated; and one can compare other "non-perfect" algorithms with
perfect simulations.

Propp and Wilson consider MCMC algorithms (especially the Gibbs sampler)
for simulating lattice models from statistical physics satisfying a certain monotonicity
condition and with a finite but large state space such as the Ising model and the
accompanying random cluster model. The idea is to use possibly several runs of the
algorithm backwards in time (started from time 0) and by monotonicity and coupling
dominate these by some lower and upper chains until there is coalescence at time 0. A
drawback of ProppWilson type algorithms is their sensitivity to user impatience:
stopping very long runs of the algorithm before termination can cause significantly
biased output. An alternative perfect simulation algorithm by Fill (1998), based on
rejection sampling, overcomes this problem.

These ideas have now been extended in many ways, and today perfect
simulation techniques have proven to be particular useful in spatial statistics,
stochastic geometry and statistical physics. The range of applications for more
mainstream statistical problems, particularly in Bayesian statistics, is so far more
limited, but this view may quickly change as perfect simulation is an active area of
current research.

For references, including survey papers, see David Wilson's webpage on
Perfectly Random Sampling with Markov Chains:

http://dimacs.rutgers.edu/-dbwilson/exact. html/
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Perfect Sampling Algorithms: Descendants of CFTP
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1. Introduction

Propp and Wilson (1996) introduced a simulation algorithm called coupling
from the past (CFTP). This algorithm did something which on the face of it appeared
to be impossible: starting with a Markov chain simulation, it constructed a sample
which was distributed exactly according to the limiting distribution of the chain. The
recipe “run for an infinite length of time, then take a sample” was not needed, a finite
amount of computation was sufficient. This generated a great deal of excitement
among people doing Markov chain Monte Carlo, because it appeared to work around
the difficult problem of determining the “burn-in” period of a chain, after which
samples can be treated as though drawn from the limiting distribution. Though
progress has been made in applying CFTP to wider ranges of models (see David
Wilson’s web page <htip://dimacs.rutgers.edu/~dbwilson/exact. htmi> for a
comprehensive bibliography), it has not yet turned out to be a panacea: work is still
required to apply it to most problems, and many problems are still intractable. 1t is,
however, very effective on some Markov chains and other Markov processes,
particularly in stochastic geometry (Mgller, 2000).

This raises the question: if CFTP is so effective on certain Markov chains and
processes, might there not be related algorithms that are particularly effective in other
situations? In this paper we discuss two attempts to find such algorithms. Section 2
briefly reviews CFTP, and extracts a central idea which motivates our attempts.
Section 3 describes the first attempt: estimation of the limit of an alternating series.
Section 4 describes the second: simulation of stochastic differential equations.

2. Review of CFTP

A standard description of CFTP goes like this. Suppose we have a Markov
chain with a stochastic recursive sequence representation
1) X1 = 0(X:, Upry)

Here U.,; 1is a sample from a sequence of independent and identically
distributed random variables, and @(X,, U, ;) represents the algorithm that makes use
of this source of randomness to generate a new sample X, from an old one X,. Our
aim is to arrange that a particular simulated value (by convention, Xj) has the limiting
distribution of the chain. To do this, imagine simulating an infinite sequence of U,
values running back in time. (We will actually only generate them as needed, but
once generated, the value is fixed, so if we need it again, we see the same value.) We
then search backwards for a time 7 < 0 such that for every possible value of X7, the
resulting value of X, is the same. Since a chain that was run from the indefinite past
must have passed through some state at time 7, the distribution of X, must be the same
as if we had performed the infinite simulation, i.e. it must be distributed according to
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the limiting distribution of the chain. Papers such as Murdoch and Green (1998)
illustrate that CFTP can be practical even when the state space is a continuum.

What can we abstract from this algorithm? One nonstandard description of
CFTP is as follows. Let X be the value of X, that would be obtained by running (1)
forwards from some particular state at time 7 < 0 (e.g. X7 = 0). Then the distribution
of X" clearly converges to the target distribution as 7— —oo, and (assuming that CFTP
will succeed) we also know that the sequence X, T=0, -1, ... will eventually become
constant. Moreover, we have a way to determine when this occurs. Once it has
become constant we need simulate no more, we have our perfect sample from the
target.

There are many situations where we have a sequence of. approximations
converging to a target distribution. In the next two sections we describe two of them.
Our aim will be to couple the terms in the sum in such a way that the simulated values
eventually become constant, and we have a way to detect this event. We will then
have draws from the limiting distribution of the sequence.

3. Approximation of the Limit of a Series

Suppose that a, is a non-random decreasing sequence which converges to 0.
Then the sequence of alternating sums S, = Zj(-1)" a; converges to a limit S; our aim is
to approximate this limit. We will do this by generating a random variable X with
X~ N(S, 6°), for a specified variance ° .

We base our sampler on either the layered multishift coupler (Wilson, 2000) or
the bisection coupler (Green and Murdoch, 1998). Both of these couplers allow us to
generate a random function X() such that for each p, X)) ~ N(p, o). Both couplers
give piecewise constant step functions with the steps at random locations; Wilson’s
coupler is non-decreasing in .

We start by generating a single realization of X{n). We then evaluate a
sufficient number of terms S, so that we can determine which step of X(p) contains
X(S); this is straightforward, since the even partial sums Sy, S,, ... form a sequence
decreasing to S, and the odd partial sums S, , S;, ... form a sequence increasing to S.
We simply seek an interval /S,,.;, S5,/ which lies entirely within one step of X(1); then
X(S) = X(S:0).

Once we have drawn X(S), we can form a confidence interval for S by
elementary means. For example, a 95% confidence interval is X(§) + /.96c . Since we
were free to choose 6, we can choose to make this confidence interval as short as we
like. The cost of choosing a small variance is that the steps in X(p) will be very short,
so n will need to be large (and its distribution is highly skewed to the right). For
example, in one series of 1000 simulations approximating /og 2 to one decimal place
as the limit of 1 -1/2+ 1/3 - ..., the median number of terms in the sum was 31, the
mean was 238, and the maximum was over 140000.

All of this computation is not very useful. In all cases in this series of
simulations, the confidence interval was longer than the length of the calculated
bounding interval [S,,.;, S»,/. Since the intersection of the confidence interval and the
bounding interval is also a valid 95% confidence interval, we might expect that to do
better than either, but in the majority of cases (83%), the confidence interval generated
by this method completely enclosed the bounds. In other words, most of the time we
might as well not have generated it, because it gives no more information about S than
we had already. Since the overall coverage probability is 95%, the coverage in cases
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where the intersection is shorter than the bounds must be lower. In this simulation it
was 67%.

4. Stochastic Differential EquationsStochastic differential equations (SDEs)
represent continuous time processes, or diffusions. For example,

) dx, = w(x,) dt + o(x,) db,

denotes that the process x, tends to drift upwards at the rate p(x,), and diffuses
randomly with a variance of o(x,)’ per unit of time. Our aim will be to simulate x, at
one or more fixed time points, given the value at r = 0. If both the drift and diffusion
functions are constant, then the solution to this SDE is known: x,— xo ~ N(W, °1).
However, most other SDEs have no explicit solution, and approximations are
necessary for simulation.

A simple approximation is Euler’s method. Here one acts as though the drift
and diffusion functions are constant over small time intervals, and simulates using the
distribution given above. At the end of the interval the drift and diffusion rates are
recalculated, and the simulation is repeated.

This looks like a situation where the general principle of CFTP might apply.
One can improve the accuracy of the Euler approximations to any degree desired by
reducing the step size. Is it possible to couple together Euler approximations with
different step sizes, in such a way that as the step size tends to zero, the result of the
simulation eventually becomes constant?

5. Conclusion

It is clear that CFTP is not the only algorithm that can simulate from a limit
using only approximations to it. However, whether other algorithms exist that will
turn out to be as useful as CFTP remains to be seen.
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1. Introduction

While having established itself as an important statistical tool, Markov Chain
Monte Carlo (MCMC) needs careful implementation, in particular when deciding on
the length of the Markov chain run. Ideally one would like to run the chain until it is in
or close to equilibrium, but how do we decide on this? When the seminal paper by
Propp and Wilson appeared in 1996, it promised a solution to the notorious problem of
determining convergence. Their coupling from the past (CETP) algorithm dynamically
extends the run-time of the Markov chain until it has reached equilibrium. The
diagnosis of convergence is based on a clever coupling construction backwards in time
~ note that a corresponding forwards-time construction would lead to bias.

The method was enthusiastically received by the MCMC community, in
particular by researchers in stochastic geometry and spatial statistics. Important early
papers outside of the spatial statistics context include Foss and Tweedie (1996) and
Green and Murdoch (1996). Foss and Tweedie show that the CFTP algorithm by
Propp and Wilson is only applicable to uniformly ergodic Markov chains. But many
interesting Markov chains, especially in stochastic geometry, are only geometrically
ergodic. However, an extension of the original algorithm due to Kendall (1998),
dominated CFTP, makes the method also amenable to these chains. While this limited
space only allows for a very vague description of dominated coupling from the past,
an introduction to both classic and dominated CFTP can be found in Thénnes (2000).

2. Generic CFTP

Dominated coupling from the past was first developed for problems in
stochastic geometry where it has lead to successful developments, see for example
Kendall and Thonnes (1997), Kendall and Meller (2000) and Mgller et al (1997).
Classic CFTP is in fact a special case of dominated CFTP and so we speak of generic
CFTP when we refer to either classic or dominated CFTP without distinguishing
between the two methods, see also Kendall and Thonnes (2001).

Generic CFTP is based on two building blocks: a dominating process and an
envelope process. The dominating process is an easy to simulate, stationary process
that stochastically dominates the target Markov chain. Its function is twofold: it
supplies the randomness to evolve the target chain in form of random numbers or
marks and it provides stochastically varying random bounds on the values that the
target chain may take at a specific time. Naturally we need to specify a state space for
the dominating process which generally is an augmentation of the state space of the
target chain. The random bounds that the dominating process supplies are a subset of
this state space and, together with the marks, are passed on to the envelope process.
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We need to start the dominating process in equilibrium and extend it backwards in
time to produce a consistent stationary path on a time interval [-T,0] with increasing T.
If the dominating process is time-reversible then this is easily done by simulating it
forwards in time and then reversing it.

The purpose of the envelope process is to encompass the relevant paths of the
target chain and provide a sufficient criterion for the convergence of the target chain
based on the coalescence of the relevant paths. It uses the random bounds supplied to
the dominating process to choose an initial state at the appropriate time —T and the
marks to evolve forwards in time. It shares the state space of the dominating process
and so takes values that are subsets of the state space of the dominating process. Once
its state at time 0 is a singleton, this singleton constitutes a perfect sample.

This generic description lends itself to a computer implementation using an
object-oriented approach, see Figure 1. This implementation consists of two classes.
The first class is a dominating process which has a start method that determines the
starting time and an extend method which extends the current realisation backwards in
time. It has two attributes, the marks and the states, which are inherited by the second
class, the envelope process. The methods of the second class are an evolve method and
the coalesce method that tests whether the state of the process at time 0 is a singleton.
Of course, these generic methods and attributes need further specification adapted to
the specific problem at hand.

Generic CFTP

Attributes

Class:

Dominating process

Class:

Envelope process

state
Methods: Methods:
e Start _ e cvolve
e exXtend e Coalesce

Figure 1. Generic CFTP in an object-oriented approach.

For the simulation of Markov point processes using spatial birth-and-death
processes the two building blocks, dominating process and envelope process, appear
as quite natural constructions. The dominating process is a stationary birth-and-death
process D whose birth rate is higher and whose death rate is lower than the
corresponding rates in the target Markov chain. The envelope process uses as its
starting state at time —T the set of all subsets of D_r. Its evolution can then be derived
from the dominating process by modification of transitions.

Classic CFTP as originally developed by Propp and Wilson assumes that the
state space of the target chain is equipped with a partial order and a maximal and
minimal element with respect to that partial order. All states of the target chain are
thus bounded between the maximal and minimal element. The dominating process is



now simply a marked, set-valued process which is actually constant, taking as value
the set of states that lie between the maximal and the minimal element, and thus the
state space of the target chain. However its marks vary so as to allow the evolution of
a coupled target chain. Using the randomness supplied by the dominating process, the
envelope process then describes the values that the paths of the target chain started in
all initial states may take at a specific time if coupled to the dominating process.

3. Going Beyond Stochastic Geometry

While dominated coupling from the past has been a success story in spatial
statistics and stochastic geometry, its application in non-spatial statistical problems
has been limited. However, the extension of perfect simulation techniques from
stochastic geometry to non-spatial applications promises to be rewarding.

On one hand, dominating coupling from the past may produce perfect samples
in shorter runtime (in terms of number of iterations) than classic coupling from the
past. On the other hand, and more importantly, dominated coupling from the past
methods for stochastic geometry are bound to have useful analogues in non-spatial
applications.

One example of a non-spatial application that can be addressed using dominated
coupling from the past is the exact simulation of solutions to stochastic difference
equations, see Kendall and Thonnes (2001). Let the distribution of X be defined by
the equation

L(X) = L(B(X+C)),

where L(X) denotes the law of X, and B and C are non-negative random variables
which satisfy certain sufficient criteria. We can use this equation to define a Markov
chain whose equilibrium, given ergodicity, is a solution to the above stochastic
difference equation. Dominated CFTP for this example is based on a dominating
process in form of a random walk with negative drift. By an appropriate reflection at
zero, which is inspired by the associated random walk, the process not only
stochastically dominates the target chain but also delivers an equilibrium distribution
that is standard and easy to simulate. This dominating process is not time-reversible
but its extension backwards is straightforward as its time-reversal is easily computed.
‘The evolution of the envelope process is based on a y-coupling (see Lindvall, 1992, pp
18-20) using marks supplied by the dominating process as well as marks that are
generated when necessary.

The scope of the developed CFTP algorithm is quite general. Examples of
distributions that fit into this context are perpetuitics as well as simple ARCH and
GARCH models. Moreover, in amenable cases, the algorithm allows for
“omnithermal” CFTP, that is it produces perfect samples for a whole distribution
family of B and C.

4. Conclusions

While perfect simulation has been successfully implemented in many
applications, in particular in stochastic geometry, one challenge is to widen the scope
of these methods. Generic CFTP formalises the methods used in both dominated and
classic CFTP and may thus clarify the use of these methods in other contexts. One
area of interest is whether the methods that have been so successful in stochastic
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geometry can be generalized to non-spatial applications. For an overview on what has
been achieved so far, the interested reader is referred to David Wilson’s webpage at

http://dimacs.rutgers.edu/~dbwilson/exact.html.
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1. Introduction

The goal is to obtain a random sample from a complicated target distribution.
To this aim we combine two quite powerful ideas that have recently appeared in the
Markov chain Monte Carlo (MCMC) literature: the slice sampler (SS) and perfect
simulation (PS).

The SS is a method of constructing, with the aid of auxiliary variables, a
reversible Markov chain with a specified stationary distribution (Swendsen and Wong,
1987). The simple SS (SSS) is a special case where a single auxiliary variable is used.
As for every MCMC method, draws from the stationary distribution, the target
distribution, are obtained only after a "sufficiently long" run of the simulation. It is
typically impossible to determine how long is sufficiently long.

Perfect simulation is a clever way of running a Markov chain which ensures that
the terminal value of the implementation is an exact draw from the stationary
distribution of the chain (Propp and Wilson, 1996).

By exploiting monotonicity properties of the SS we show that a perfect version
of the algorithm can be easily implemented, at least when the target distribution is
bounded. This eliminates the problem of determining how long the SS Markov chain
must be run before it has reached stationarity.

Numerous practical extensions and real applications of the perfect SS are
presented in Mira et al. (2001), including a prefect SS for unbounded distributions.
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2. Slice Sampler

Here we will briefly introduce the SS. More extensive descriptions of the
algorithm can be found in Mira and Tierney (1998) and Roberts and Rosenthal (1999).

Suppose m(x), x€X is an un-normalised integrable density with respect to
the measure p and let v_ be the corresponding probability measure. In the SSS we

introduce an auxiliary variable, u € I , and construct the joint distribution of » and x
by taking the marginal for x unchanged and defining the conditional distribution of

given x to be uniform on (O,TC (x)) .

An irreducible and aperiodic Markov chain {(X U, )}:D:O is then set up over the

enlarged state space X xU having the probability measure corresponding to
m(x,u)oc 1{14<1r(x)}(x’u) , as its unique stationary distribution, where /,(x) is the
indicator function of the set 4. In particular we will perform a Gibbs sampler: in the
vertical update u | x is sampled uniformly on (O,n (x)) ; in the horizontal update x |u

is sampled from the normalisation of the restriction of p to the set

A, (u)={x:m(x)>u}. The marginal X -chain {X,}"
distribution and can thus be used to estimate integrals with respect to 7 .

When X =R? and p is the d -dimensional Lebesgue measure, the SSS is

has v_ as its stationary

uniformly ergodic if m is bounded and the support of n has finite Lebesgue measure
(Mica and Tierney, 2001 ).

The simple SS is stochastically monotone with respect to this ordering (Roberts
and Rosenthal, 1999):

1) x<x'ifand only if 7 (x)<m (x')

3. Perfect Slice Sampler

Consider a positive recurrent Markov chain with invariant distribution v_,

specified by a stochastic recursive sequence (SRS): X,,, = f(X,.y,).n>0, where
{v, }fz_w is a sequence of iid random variables, » € Z . Below we briefly describe the

Propp and Wilson (1996) coupling from the past (CFTP) algorithm. Let X ,(,"") be the
value at time n of the chain started in x at time —z. The CFTP algorithm applies, in
theory, provided the vertical backward coupling time,

T =inf {t >0: X0 = x§ for all x,y} , is almost surely finite. In fact

x{0 = x0 = x8 —y_ for all states x,y, and times ¢> T . PS becomes feasible, in
practice, if there is a partial ordering < on the state space such that f(x,y )< f(y,y)

if x<y and if there exist a maximal, x and a minimal, x state (i.e.

max ° min ?

X <X < x_.,Vx). Usually these states are assumed to be unique, but for the perfect
SSS more than one maximal or minimal state exist, furthermore the existence of x

max
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can be eliminated (Mira et al. 2001). CFTP works as follows. Choose a time 7, >0,

generate {y, }:'l“n and set,

XE;:‘M\TI) =x X(Xmax,Tn) — f(Xr(le_wTI)’,Yn)’ _ Tl S n< O’

max > n+l

— “min? A+l n

XE;‘Tin,ﬂ) =x X(xmin‘rl) — f(X(X'"i"’Tl),'y"), —'T; <n<0.

If X (()"m““m =X g"m‘“’m that is if coalescence occurs, then X(()"'“"“’T‘) = XS"’T‘) far all x,
and the common value, X é"r') , 1s necessarily distributed as v_. Otherwise choose a
new value 7,>7, >0 and restart the backward simulation from time —7,. When

running the simulatton over the time range [—TI ,0] , we need to reuse the same random
numbers, {yn };]:_T , used in the first stage of the simulation. The procedure is repeated

for k=1,2,... until X\ = x{=")  whereby X = X{™ and so we return

X (()x'“““rk) ~v_ . Notice that sample paths of maximal and minimal chains started at time

point further back will be sandwiched in between paths started at earlier times
(funneling property).

We now give an explicit SRS for the SSS, which preserves monotonicity with
respect to the order given in (1). We assume for simplicity that maximal and minimal
states exist and are unique; in fact, as explained in Mira et al. (2001), all we need to

assume is that p(X’) and supm are both finite. The SRS construction allows the

continuum of chains implicitly defined in the PS, to be mapped to a countable
collection of images in any particular iteration, of which only a finite number need
ever be explicitly calculated. We shall carry out the vertical slice first, followed by the

horizontal slice. For all <0 define a vertical slice variable, g, ~ U [(0,1)] . Then, for
the chain that, at time ¢, is in state x, set U,(x)=¢mn (x). The horizontal slice is

more complicated. At each time #<O0 construct an infinite sequence of random
variables, W, = {W,_j j= 1,2,...} by W, ~ U[An (U, (% ))] and

W, ~ U[A" (n (W,J_, ))] Let o,(x)= inf{j >1:n (W,j) ZU,(x)} , and set

@) f(x(e, W) =W,

It is easy to check that o,(x) is almost surely finite for all xeX. Since
y,=(¢,,W,), teZ, is independent of x, (2) is indeed an SRS representation for

some Markov chain. The chain simulated is in fact a SSS because W.o ) given

U,(X,,)=u is distributed as F,: this is just an adaptive rejection sampling scheme
where the rejection region becomes more and more refined as the simulation proceeds.
The function in (2) is monotone in its first argument since, for all ¢, #,, and o, (-) are

non-decreasing sequences (the W 's with respect to <) by construction. Hence, using
(2), we have a CFTP algorithm for simulating from v_. Because of the funnelling
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property and since G, () is non-decreasing, it will never be necessary to increase the

number of simulated #, 's.

4. Extensions

Even if an ordering has been defined on the state space it can be hard or
impossible to find a maximal and/or a minimal state. Following ideas well
summarized in Kendall and Meller (2000), it is possible to construct upper and lower
bounding stationary processes which allow the identification of upper and lower
starting values for the sandwiching algorithm algorithm outlined in the previous
section. A way of exhibiting a bounding process for the SS is described in Mira at al.
(2001b). This is probabilistically the most natural construction since it is based

entirely on Q, (u)= u[AR (u)] a function that completely characterizes the SS

(Roberts and Rosenthal, 1999). Unfortunately implementation of this idea in real
applications is hampered by the fact that explicit information about Q'/Q is needed,

and this is unlikely to be available. A more practical construction appears in Mira et
al. (2001a) where various other extensions of the perfect SS are also discussed
including the perfect product SS with multiple auxiliary variables. Examples of
applications are the Ising model on a two dimensional grid at the critical temperature
and various other auto-models.

References

Kendall, W. and Moller, J. (2000). Perfect Metropolis-Hastings simulation of locally stable
point processes. Adv. Appl. Prob. 32, to appear.

Mira, A. and Tierney, L. (1998). Efficiency and Convergence Properties of Slice Samplers.
Scandinavian Journal of Statistics, to appear.

Mira, A., Moller, J. and Roberts, G. (2001x). Perfect slice samplers. J. Royal Stat. Soc. B. To
appear.

Mira, A., Moller, J. and Roberts, G. (2001b). Perfect simple slice sampler. Proceedings of the
181 conference 2001. To appear.

Propp, J. and Wilson, D. (1996). Exact sampling with coupled Markov chains and applications
to statistical mechanics. Random Structures and Algorithms 9, 223-252.

Roberts, G. and Rosenthal, J. (1999). Convergence of slice samper Markov chains. J of Royal
Statistical Society B 61, 643-660.

Wilson, D_ (1999). How to couple from the past using a read-once source of randomness.
Random Structures and Algorithms.



4

REVISTA DE
EsSTATiSTICA

89°
PAGINA

{ ST
2° QUADRIMESTRE-DE 2003-1«

PROBABILITY AND STATISTICS IN BIOINFORMATICS

Organizer: Timo Koshi

Invited Speakers: Jotun Hein
Sophie Schbath




VoLume i

2° QUADRIMESTRE DE 2001



Probability and Statistics in Bioinformatics

Timo Koski
Linkoping University
Department of mathematics
S-581 83 Linkoping
Sweden
tikos@mai.liu.se

With the completion of the human genome and the genomes of many other
organisms the task of organizing and understanding the generated data becomes
more and more important. In the past decade computational approaches to
molecular and structural biology have attracted attention from computer scientists,
mathematicians and statisticians (Salzberg et.al. 1999, Waterman 1995). Among
available computational methods those that are based on explicit probabilistic and
statistical models are the focus of this session. Since bioinformatics explicitly or
implicitly concerns the analysis of  biological data that are intrinsically
probabilistic, such models should be also at the core of bioinformatics.

In the past decades we have witnessed the likelihood approach to pairwise
alignments and to construction of phylogenetic trees, probabilistic methods to RNA
secondary structure, the EM —algorithm for finding regulatory binding motifs and
the Markov and the hidden Markov models for for DNA base composition analysis
and gene prediction and analysis of DNA words.

Probabilistic models in bioinformatics apply a notion of modularity: complex
systems are built by combining simpler parts. Probability theory serves as the
foundation whereby the parts are combined , and ensuring that the system as a whole
is coherent (in a Bayesian sense) and providing ways to interface data. (Durbin et.al.
1998).
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Algorithms for Statistical Multiple Alignment

J. Hein, J. L. Jensen, K. Mouridsen, C. S. N. Pedersen
Aarhus University
Denmark
Jjotun.hein@biology.au.dk

Statistical approaches to alignment based on an explicit evolutionary model of
insertions and deletions have great potential for real data analysis.  Alternative
algorithms are here presented that allows the calculation of the probability of a set of
sequences related by a binary tree that has evolved according to the Thorne-Kishino-
Felsenstein model (1991) for a fixed set of parameters. One central idea is to define a
Markov chain that generates ancestral sequences and their alignment at two
neighboring nodes in atree.  The running time of these algorithms are k'th power (I -
sequence length, k -number of sequences).

A Gibbs sampling approach is also presented that should be applicable for
larger number of sequences.

Finally, open problems extending the basic statistical alignment problem are
discussed, such as combining statistical alignment with comparative genefinding and
the relationship between hidden Markov model alignments and statistical alignment.
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Counts of words are part of the elementary statistics used in biological sequence
analysis, for example to find significantly under- or over-represented words. These
words having a frequency either too high or too low might point out unknown
biological constraints. Recognized by specific proteins, exceptional words may be
involved in the DNA protection, the replication, the gene expression etc.

The knowledge of the statistical distribution of these counts is necessary to
assess the significance of the observed results. Because a DNA sequence is naturally
represented as a finite but long sequence of letters among the 4-letter DNA alphabet
{A, C, G, T}, Markovian models are widely considered. As we will see, the choice of
the order of Markov model has an important influence in the interpretation of the
results.

The exact distribution of the count of a word is known under the hypothesis that
the letters are independent or under a Markov model (see Regnier (1999) or Robin and
Daudin (1999)). It is given through its probability generating function which is a
rational function. The Taylor expansion of this generating function can then be
obtained with a finite recurrence. It is theoretically possible to calculate this
distribution for any word in any sequence. In practice, it is impossible to compute it in
a reasonable time for long sequences or for very frequent words. On the other hand,
two kinds of approximations exist: Gaussian approximations (Kleffe and Borodovsky
(1992), Prum et al. (1995)) and compound Poisson approximations (Schbath (1995),
Geske et al. (1995)). The asymptotic framework in which these approximations are
valid are different but they both require that the length of the sequence tends to
infinity. Their main advantage is that, in most cases, they require very lower
computation times.

A special attention has to be given to the influence of the estimation of the
transition probabilities according to the observed DNA sequence.

Moreover, exact and approximate distributions of word counts depend on the
overlapping structure of the word; indeed, two occurrences of a word can or cannot
overlap in a sequence.

After describing these two approximations, we will discuss their quality with
respect to the word frequency and the sequence length. We will also present the rules
suggested by Robin and Schbath (2000) for choosing between the Gaussian
distribution, the compound Poisson distribution and the exact distribution when
finding exceptional motifs in DNA sequences.

This talk will be illustrated by the E. coli genome analysis, in particular, the
significantly high frequency of the so-called Chi motif and the significantly low
frequency of the 6-letter biological palindromes will be presented.
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Here are some additional related references : El Karoui et al. (1999),
Erhardsson (2000), Reinert and Schbath (1998), Reinert et al. (2000), Rocha et al.
(1998), Schbath et al. (1995).
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Probability Approximations for Rare Events

Holger Rootzén
Chalmers University of Technology
Dept. Mathematics
S-41296 Gothenburg
Sweden
rootzen@math.chalmers.se

Probability approximations for rare events form an interesting and beautiful
body of mathematical theory. However, the driving force behind the large effort spent
on such approximations comes from applications — often connected with serious or
catastrophic occurences — to many different parts of science and technology.

A main line of development was started by Fischer and Tippet in 1928 with
their delineation of the possible limits for linearly normalized maxima of i.i.d random
variables. This was largely completed by Gnedenko in 1945, and in later work by de
Haan. Through contributions of many researchers, including Berman and Leadbetter,
this theory has been vastly extended to large classes of stochastic processes. The
proofs often consist of quite sophisticated use of rather elementary probability
calculations. They also include an important and broadly useful set of analytical
inequalities for multivariate normal distributions, in various guises going under the
names Slepians inequality and the Normal Comparisons Lemma. For a good
exposition of this, and many other useful facts about normal distributions, see Tong
(1990).

It was early realized that asymptotic results for maxima are immediate
consequences of Poisson approximations for indicator functions. The connection is
obvious: the maximum of a set of variables is less than a level « if and only if the
indicators that the variables are greater than u sum to zero. It was also noted that
standard proofs for maxima often, with minor changes only, in fact proved Poisson
approximations, and applied to much more general rare occurences than maxima. In
particular this leads to the asymptotic distribution for all extreme order statistics and
not just for maxima. Books reviewing parts of this development include Leadbetter et
al. (1983), Resnick (1987) and more recently Piterbarg (1996) and Embrechts et al.
(1999). The last mentioned reference is a good place to start if one wants to learn more
about the subject.

The first talk of this session is a part of the still very vigorous development of
this theory and also links with upcrossings as discussed below. In another direction,
the results are currently being extended to more complicated situations, often coming
from spatial or geometric models.  This includes many challenging and difficult
mathematical problems. The second talk of this section is concerned with one such
problem. The so-called Stein-Chen method is used as a part of the proofs in this talk.
This method is a very important basic tool which is useful a very wide range of
problems and in current research perhaps is the main tool for deriving probability
approximations for rare events. The basic reference for the Stein-Chen method is the
book by Barbour et al (1992).

A somewhat different line of development was started in the 1940-ies with
celebrated papers by Rice and by Kac where they, using different methods, found
explicit formulas for the numbers of upcrossings of a level by continuous time
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processes. Cramér later noted the close relation between upcrossings and maxima.
This theory has since been refined and generalized through the efforts of many
researchers, and also has developed into a much used tool for many engineering
problems, including metal fatigue, structural safety and ocean engineering. Leadbetter
et al (1983) contains a review of the state of this theory in the mid 1980-ies, and more
recent references may be found e.g. in Albin (2000) . The third talk of this session
derives a very general version of these results from a theorem by Banach, and shows
how they may be used in important applications.
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Extremes of Infinitely Divisible Stationary Processes
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A unified theory for local and global extremes (rare large values), of infinitely
divisible (i.d.) stationary stochastic processes, with (at least) exponentially light tails,
is presented. The case of i.d. processes with subexponential heavy tails is already well-
understood, at least locally, by completely different methods, from work by Rosinski
and Samorodnitsky (Ann. Probab., 1993).

In _additio‘n to more or less usual tricks and estimates in the field of extreme value
theory, we use Esscher transforms and stochastic comparison of i.d. random vectors,
using their spectral (dynamical) representation (model), thus converting qualitative
and quantitative issues for multivariate "rare i.d. probabilities”, to simpler such,
yielding to the usual tricks.

Locally, the theory extends to non-stationary processes in different ways. Not
suprisingly, stationary increment processes cause a little extra trouble, and similarly
with self-similar processes.
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The Longest Edge of Certain Graphs
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For any finite set 4 of points in RY, denote by NNG(A) and MST(A) the
nearest neighbor graph and minimal spanning tree, respectively, generated by the
points in 4. Let M xngay and M msta) be the longest edge length of NNG(A) and

MST(A), respectively. For a given distribution function F on R, let P, be the set
of points of a Poisson process with intensity measure equal to nF and Z the set of
points comprised of » iid. random variables distributed according to F . This paper
considers the asymptotic distributions of M M M ) and M

NNG(R )2 YmsT(r) 2 INNG(z, MST(Z,)

for a class of distribution functions F . Such problems have been investigated in
Penrose (1997, 1998), in which F is assumed to be uniform in the unit cube or
symmetric normal. Here, we are primarily interested in the case where F has an
unbounded support.

We will assume that d =2 for convenience. Write u(x)=—log(f(x)) where

f is the density of F. Let x(-,u) denote the level curve u(x)=u. We first focus on
the case where the level curves are parallel and are given by the following;

x(t,u)=c(1)+o (u)n(z) for rte1=[0,L) and u=some u,>0
where ¢(¢) is a closed, strictly convex curve parameterized by length, o () is an
increasing function with @ (u,)=0 and w («0) =00, and n(r) is the unit normal of ¢
at the parameter /. Assume that ¢(r) is twice-differentiable with ‘c(z)‘ (0,00) and
o(u)=u" exp(ra(y)ydy) where a >0, a(y)—>0 and ya'(y)—>0 as y—>o.
Yo

Then for each t >0,

IA

lim P( Mo <1, ) = lim P M r

n0 HD0

)

)= lim P(M

n—»0

MST(7,)

=1imP(M

n—w

=3

_ T
NNG(R,) < MST(R,) < ’71) =e

where, with & (v) =1/0'(u) and A (u) = length of the level curve x(-,u),

r,=1E (logn)(log[é (logn)k(logrz)}—1210g2 [é (10gn)k(logn)]—log(r \/2—7;))



This generalizes the main results in Penrose (1998). We also consider a few
cases where the level curves x(-u) are not parallel, including skewed normal

distributions.
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Description of Ocean Waves: Applications of the
Generalized Rice’s Formula

Igor Rychlik
University of Lund
Centre for Mathematical Sciences
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§-221 00 Lund, Sweden
igor@maths.lth.se

The celebrated Rice formula, Kac (1943) and Rice (1944, 1945), for the
expected number of times a stationary process X(t), 0<t<i, “crosses” a fixed level u
has found application in various engineering problems, especially in safety analysis of
structures interacting with the environment, for example through wind pressure, ocean
waves or temperature variations. The safety of a structure may depend on extreme and
rare events such as loads which exceed the strength of a component, or on everyday
load variability that may cause changes in the properties of the material, e.g. cracking
(fatigue) or other types of aging processes. In the first case, the number of rare events
that occur in time or in space is often modeled as a Poisson process. Then, the Rice
formula is used to compute the intensity of events, and hence gives the parameters in
the Poisson model. In the second case, the aging process may depend both on the
event frequencies and of their magnitudes. A magnitude of an event is called a
“'mark". Such questions have resulted in the so called Slepian model processes, see
Kac and Slepian (1959), describing process after an arbitrary crossing of level u.

In this talk we shall restrict our attention to the environmental loads originating
from motion of ocean waves. Although, sea surface elevation for a developed sea
W(x,y;t), say, is usually described by a two-dimensional field evolving in time, the loads
acting on structures, like oil platforms or ships, are often related to the size and shape of
individual waves. Consequently a sea surface is seen as a collection of moving “apparent
waves”. An observer easily recognizes individual waves. However, his impressions are
difficult to formalize mathematically. Consequently, first we need to define the concept of
an apparent wave, and then we specify some measurable properties of such a wave, called
the wave characteristics. Wave height, wavelength, period, steepness or wave speed, are
all examples of such characteristics. The most basic statistical problem in this context is to
determine how many, in average, waves have some specific property, e.g. how many
waves have crest above 10 meters. Answers to such questions depend both on what kind
of data that are available and also on the way we measure “how many”. For example,
measurements of a buoy, sea level recorded by a moving vessel, photography or a movie
of a sea, represent different data sets. In the case of a movie, where time dynamics is
involved, there are, mathematically strictly speaking, uncountable many waves to analyze;
giving a clear meaning to “how many” becomes crucial.

The first results of this types where obtained by Longuet-Higgins (1957) who
derived formulas for the velocity of a point on a contour line defined as {(x.y):
W(x,y;0)=u} for a fixed level u. (The contour line represents the front of a wave.) Here the
term “how many” means the average length of the contour where the velocity satisfies
some restrictions. The normalized length becomes a probability measure describing:
motion of waves. In the case of sea elevation a contour is a line in two-dimensional space.
However the object can be generalized to higher dimensions. Then length of contour




becomes a suitable Hausdorf integral. The formula for the average “length” of the contour
line is called a generalized Rice’s formula, see work by Zihle (1984). The velocity of
points on a contour, considered by Longuet-Higgins, was, maybe, the first application of
this formula. Another example taken from this pioneering work is the velocity of local
extremes of the sea surface. In this case the contour consists of isolated points and one
wishes to compute the intensity of local extremes for which the velocity satisfies some
restrictions, e.g. has speed higher than some threshold. The formula derived by Longuet-
Higgins has been generalized (and formally proved) independently by Belyaev (1972) and
Brillinger (1972). The result is a special case of the generalized Rice’s formula.

In this talk we shall introduce the generalized Rice’s formula and demonstrate its
relation to the classical results from analysis such as; Banach theorem, see Banach (1925),
and area and co-area theorem; see Federer (1969). The applications of the formula for
computation of distributions of different wave characteristics will be given. Examples are
taken from Podgorski et al (2000a), (2000b) and Rychlik (2001).

The formulas themselves would be worthless if they would not allow for effective
computations. This is an issue here as the generalized Rice’s formulas are complicated
multidimensional integrals (often infinite dimensional). However for Gaussian fields
refined numerical techniques have been implemented. They are available in the form of a
MATLAB toolbox WAFO making the theory available for practitioners. The toolbox is
available, free of charge, at:

http.//www.maths.lth.se/matstat/wafo/.
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Quantum Probability and Statistics

Inge S. Helland
Department of Mathematics, University of Oslo,
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Both quantum theory and modern statistics had its initial development in the
beginning of the last century. Both are based on probability theory, and both are
concerned with the prediction of new observation on the basis of data. Nevertheless,
the lack of scientific contact between the two disciplines has been striking. The
mathematical foundation of quantum mechanics was laid by von Neumann in the
1930th at about the same time as Kolmororov gave us the foundation of ordinary
probability theory. At about the same time as Dirac was developing relativistic
quantum theory in Cambridge, R.A. Fisher completely independently founded modern
statistical inference in Rothamsted and London. Similarly, while modern quantum
field theory was being developed by Feynman in Princeton and Schwinger in Harvard,
J. Neyman and coworkers developed the statistical theory as we know it today. One of
the few early contacts is Feynmann's (1951) Berkeley Symposium paper on the
interpretation of probabilities in quantum mechanics.

The lack of contact between the two disciplines is of course closely related to
the difference in foundation. In statistics, the state of a given system is given simply
by a probability measure on some measurable space. In quantum theory in its most
common formulation the state of a system is given by a vector v in some abstract
Hilbert space, each observator is associated with a selfadjoint operator 4 on the same
Hilbert space in such a way that the expectation of this observator in the state v is
given by (v,4v). A consequence of this is that one gets transition probabilities of the
form |(v,u)|’. Also, in the absence of socalled superselection rules, linear combination
of statevectores form new statevectors, which lead to interference phenomena
unknown to classical statistics. Related to this are several apparent paradoxes of
quantum mechanics, which still are much discussed in the literature.

The quantum formalism as such is the result of a long development within
physics, starting with discoveries by Max Planck, and where contributions have been
made by Bohr, Pauli, Schrédinger, Heisenberg and many others. There are many good
books on quantum theory. Two of these, which can be recommended because they
also include discussions of philosophical aspects, are Peres (1993) and Isham (1995).

Many authors have tried to find deeper foundations leading to the formalism of
quantum theory. Several mathematical approaches are discussed in Wightman (1976).
One such approach is quantum logic, treated in detail by Beltrametti and Cassinelli
(1981).

The earliest book on the mathematical foundation of quantum mechanics is von
Neumann (1932); in English translation: von Neumann (1955). This book has had
great influence, and it can be considered to be a forerunner of quantum probability.
For physicists, von Neuman’s book is supplemented by the book of Dirac (1930),
which also may be looked upon as a forerunner for modern quantum field theory.

The development of quantum probability as a mathematical discipline was
started in the 1970’s. A first important topic was to develop a noncommutative
analogue of the notion of stochastic processes; see Accardi (1976) and references
there. Other topics were noncommutative conditional expectations and quantum
filtering and prediction theory (Belavkin, 1985).

Quantum probability was made popular among ordinary probabilists by Meyer
(1995). A related book is Parthasarathy (1992), which discusses the quantum
stochastic calculus founded by Hudson and Parthasarathy, but also many other themes
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related to the mathematics of current quantum theory. An account of several
differents topics in quantum probability may be found in the series Quantum
Probability and Applications edited by L. Accardi and co-workers. An example of a
symposium proceeding aiming at covering both conventional probability theory and
quantum probability is Accardi and Heyde (1998).

There are also links between quantum theory and statistical inference theory. A
systematic treatment of quantum hypothesis testing and gantum estimation theory was
first given by Helstrom (1976). In Holevo (1982) several aspects of quantum inference
are discussed in depth; among other things the book contains a chapter on symmetry
groups. A survey paper on quantum inference is Malley and Hornstein (1993).

As an example of a particular topic of interest, consider that of Fisher
information. Since a quantum state ordinarily allows several measurements, this
concept can be generalized in a natural way. A quantum information measure due to
Helstrom can be shown to give the maximal Fisher information over all possible
measurements; for a recent discussion see Barndorff-Nielsen and Gill (2000).

In this way one can point at several links between ordinary probability and
statistics on the one hand and their quantum counterparts on the other hand. However,
a general theory encompassing both sides, based on a reasonably intuitive foundation,
is still lacking; many will say that it is impossible to find such a theory.
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The fact that the mathematical formalism, used to make predictions on quantum
phenomena, is completely different from the mathematical formalism used in classical
probability, was recognized since the early days of quantum theory in the late 1920’s.

However only in the early 1980°s it was realized that this difference of the
mathematical formalisms reflects a deeper probabilistic phenomenon: namely the fact
that, in general, the Bayes definition of “conditional probability” cannot be applied to
the conditional probabilities that are considered in quantum theory (cf. [Ac8la],
[Ac84] and [Ac86]) for a more systematic exposition.

This discovery lead to a rethinking of the basic axioms of probability theory in
the light of the new probabilistic ideas emerged from quantum physics.

The new elements that quantum theory bought into the probabilistic thought are
essentially two:

1. the existence of incompatible events
2. the “chameleon effect”

Classical probability is based on Boolean logic, where it is postulated that the
“join” of two meaningful proposition P and Q(PQ) is always a meaningful
proposition. However, if we replace the platonic notion of “proposition” by the
empirical notion of “experimentally verifiable proposition”, we see that the existence
of incompatible events implies the existence of statements which, when considered
individually, are empirically verifiable, but whose “joint event” is not. The most
famous example, first pointed out by Heisenberg, is given by the two statements:

. QO(?) : the position of a particle at time ¢ is in an interval /
. P(t) : the momentum of a particle at time / is in an interval J

It is known that, if the intervals / and J are small enough, the joint event
O(t)M P(2) is not empirically verifiable because of the Heisenberg principle. Notice

that this principle concerns a single particle and no probability is involved. A few
years later H. Weyl formulated a statistical variant of the Heisenberg principle,
expressing the fact that the product of the covariances of position and momentum in a
given quantum state cannot be smaller than a certain quantity (4/2m) which is

independent of the state considered.

The Heisenberg principle, in its original formulation, expresses a physical
limitation, not a logical impossibility. There is no logical reason why we should not be
able to measure with arbitrary precision, on the same particle and at the same time,
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position and momentum. In fact classical mechanics is a perfectly coherent theory
from the logical point of view, but does not contemplate such an impossibility.

The development of quantum probability has brought to light new forms of
incompatibility between pairs of events, which have a logic rather than physical root.
This type of incompatibility is not peculiar to quantum theory.

Consider, for example, the response of an iron ball, rotating along fixed axis A
to the action of a constant magnetic field, directed along a different axis B . For
example one can imagine that B is the z -axis of a frame, that the rotating particle is
“fired” in a direction perpendicular to the B -axis, and that one measures if it deviates
on the left or on the right of the B -axis. This is a perfectly measurable event and the
same is true if we replace the B -axis by another axis C, not parallel to B .

Let us denote [ 4, B] the former event and [ 4, C] the letter.

A little thought shows that the joint event [A,B]}N[4,C] cannot be

experimentally realized because a single particle cannot be simultaneously subject to
the “only action of the B -field” and to the “only action of the C -field”: two different
magnets cannot be put in the same space point.

Another example can be taken from medicine: suppose that two different
medicines B and C are proposed as a cure of the same illness 4. We can separately
experiment medicine B or medicine B on a patient, but again the point event
[A4, B]N[A,C] makes no sense because the same patient, at the same time, cannot be

cured “only by medicine B and “only by medicine C”.
A third example is given by the colour of a chameleon: the chameleon is in a
box and an experimentalists can measure either its colour on a leaf C  or its colour

on the wood C, . It is clear that the simultaneous point event C .NC, makes no

sense because the same chameleon cannot be at the same time both “only on the leaf”
and “only on the wood”.

Notice the physical difference between the three examples described above and
the following, more classical situation: in a box there are many balls whose colour can
be either green or brown. Moreover each ball is either made of glass or of wood.
Clearly in this case we can make an experimental analysis of the joint statistics
“colour-material™.

The difference between the two types of examples considered above is that, in
the former case one measures the “response” to an action; in the latter one measures a
property which is pre-existing to the measurement and independent of it.

Notice however that in all the above situations the results of the measurements
are “pre-determined”: the laws of classical electromagnetism allow (in principle) to
predict exactly the deviation of the particle once the initial data (velocity, angular
velocity, strength of the magnetic field,...) are known; the laws of chemistry and
biology allow a similar prediction for the medicines; the knowledge that the
chameleon is a usual one and not a mutant which becomes brown on a leaf and green
on a piece of wood, allows to predict deterministically its colour; finally for balls the
situation is even simpler.

However it is also clear that the word “predetermination” is used with a
different meaning in the two contexts: in the case of balls “we measure what it was”;
in the case of chameleons “we measure what it happens™.

In the former case we will speak of “passive systems”; in the latter we will
speak of “adaptive systems”.



The difference between the two cases has rather deep consequences on the type
of inductions that we can make in the two situations. Since statistical inference is a
generalization of inductive inference, it is clear that these consequences will also have
non trivial implications on the kind of statistical inference we can make on the two
types of systems.

To illustrate the implications for statistics of the difference between active and
passive systems let us consider the following variant of the above experiments:
consider two boxes; in one there are pairs of balls; each pair contains 1 green ball and
1 brown ball, moreover one ball of the pair weights 10 grams and the other one 20
grams. The other box contains pairs of chameleons: exactly one, in each pair weights
10g and the other 20g, moreover, in each pair, exactly one is healthy (becomes green
on a leaf, brown on a piece of wood) and the other one is a mutant (green on wood,
brown on leaf). In both cases we do not know the statistics of the joint distributions
colour-weight.

Suppose you are interested in such a statistics at time ¢, but the rules of the
game are such that you can do only one measurement at a time, both on balls or on
chameleons (incompatibility). A reasonable strategy for balls would be the following:
at time ¢ you measure the colour of one ball and the weight of the other one. Suppose
you find: “brown” in ball 1 and “10g” in ball 2. Then you conclude that ball 1, at time
t, is brown and weights 20g and ball 2, at time £, is green and weights 10g.

Suppose now you want to apply the same strategy of measurement to
chameleons. Can you draw the same conclusion? No of course! In fact suppose that, at
time £, you measure the weight of chameleon 2 while he was in the box and you find
10g. Suppose you measure, at time ¢, the colour of chameleon 1 on the leaf and you
find “brown”. You can only be sure that “if you had measured the colour of
chameleon 2 on the leaf you would have found green”. However nothing prevents the
possibility that the chameleon in the box, i.e. at time ¢ is brown. Since you are
interested in the joint statistics colour-weight at time ¢, you are not allowed to make,
for chameleons, the same inference you made for balls.

Can we push this difference further? The answer is “yes”. In my talk a simple
experimental situation will be described in which, by exploiting the chameleon effect,
one can reproduce exactly, by local independent binary choices of individuals who are
situated far away of each other and do not communicate with each other, exactly the
same empirical correlations that are experimentally obtained in the well known
Einstein-Podolsky-Rosen experiments. In the past 37 years the possibility of realizing
such an experiment has been firmly denied by the entire community of physicists.

Without using the Chameleon effect, the possibility of such a reproduction is
excluded by a mathematical constraint: an inequality among these correlations,
discovered by Bell and violated by some quantum mechanical system. The
probabilistic meaning of this inequality, first pointed out in [Ac81a] will be shortly
reviewed.
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The Bayesian method in quantum signal processing was initiated by C W
Helstrom and developed in quantum detection [1], estimation [2,3] and hypothesis
testing [4] theory in the 70". The aim of this theory was to find an optimal quantum
measurement, minimizing a cost function of the quantum state estimation under the
given probabilities of the possible states. The usefulness of the entropy restrictions for
finding of quantum estimation was shown in [2], where the quantum regression
problem was solved under the condition of fixed entropy of quantum measurement.
This corresponds to the maximal entropy principle in classical statistics.

In the 80™ we developed these methods into the dynamical theory of quantum
estimation, prediction and filtering using the analogy with the classical filtering theory
for Markov processes. The main result of this development was the derivation of new
stochastic wave equation for quantum posterior states in quantum mechanics with
continuous nondemolition observation. This equation in its non-normalised and
normalised forms plays a similar role in quantum statistics as the Zakai or
Stratonovich equation in the classical Bayesian statistics of stochastic processes. In the
beginning of 80™ this equation was taken by physicists as the stochastic quantum
Master equation of the Modern Quantum Theory which treats quantum dynamics
together with classical trajectories of quantum experimental events such as jumps,
diffusions, reductions and localizations. We show how the paradoxes of old quantum
mechanics can be reduced to the statistical problems of quantum state estimation in
the framework of the modern quantum mechanics which we call here the Bayesian
quantum mechanics. The main purpose of this quantum mechanics is the Bayessian
predicrion of the statistics of quantum events, and the main mathematical tool is the
quantum filtering equation for the posterior quantum states.

Quantum entanglements give seemingly a possibility to gain more information
in a quantum system than in the corresponding classical one, described by the same
rank algebra. We show it by analysing the mathematical notion of quantum
entanglement and comparing the mutual information achieved via quantum
entanglements with the semi-classical one, achieved via encodings, corresponding to
the nondemolition measurements. In order to prove that it is a real achievement, we
have to introduce the notion of value of quantum information in the sense of
valuableness of one bit of information for the purpose to achieve a certain aim. We
find the value of so called g-bit, achieved via quantum entanglements, in comparison
with the value of a classical c-bit, achieved via the semi-classical entanglements. This
makes a link of quantum information theory with the theory of quantum estimation
and hypothesis testing.

We consider the dual maximum entropy problem for the quantum
measurements under the condition of a fixed mean error of quantum estimation. The
corresponding classical problem, well-known as the Kolmogorov epsilon-entropy
problem, was elaborated into the theory of value of (classical) information by R
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Stratonovich [5]. So we give the formulation and preliminary results for a new branch
of quantum measurement and information theory, the quantum epsilon-entropy theory,
related with classical problem of optimal quantization [6]. We restrict ourselves to the
simplest quantum systems, described by the algebra of all operators in a Hilbert space.
The general case will be developed elsewhere by use of more general notion of the
entropy [7] and relative entropy [8] within the C*-algebraic approach to quantum
information.
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I first discuss an experiment recently carried out in Delft, the Netherlands, by the
group of Hans Mooij, see http://vortex.m.tudelfi.nl/. The experiment was reported in
Science in 1999. Switching on a magnetic field causes electric current to flow around a
superconducting aluminium ring. The aluminium ring is a thousandth of a millimeter in
diameter, and a billion electrons are involved in the current flow. From a classical
physical viewpoint one can imagine just two kinds of current flow of a given size in this
little circuit: clockwise, and anti-clockwise. The claim of the experimenters was that they
produced an electric current in the state o|clockwise>+p|anticlockwise>, where oo and f3
are two complex numbers, with | o |?+|B|>=1. |clockwise> and |anticlockwise> stand
for two orthogonal unit vectors in a complex vector space, we can think of them as two-
dimensional complex column vectors, say the unit vectors, (1 0) and (0 1), transpose. This
object has been called The Delft Qubit; a qubit being a single bit in the memory of a future
quantum computer. A classical computer works with a memory, the bits of which can
register only 0 or 1, however a quantum computer allows coherent superpositions of 0 and
1, such as the state T have just talked about. Another description is The Schrodinger Squid,
this name refers to the device: a Superconducting Quantum Interference Device; and to the
infamous Schodinger cat. Now one might ask, how could the experimenters know that
this state has been produced? Well, by repeating the experiment about ten thousand times,
and each time measuring the current. This is done by a second squid, surrounding the first,
and connected to the outside world by a lot of circuitry. It does not directly give us
estimates of o and B. In fact, in first instance, it does nothing interesting at all: the
measurement essentially looks to see whether the current is flowing clockwise or
anticlockwise. This forces the quantum state to jump into either of the states |clockwise>
or |anticlockwise>, and it makes this choice with probabilities| o | >and |Bl> The
experimentalists find the same values of these probabilities (relative frequencies), as are
predicted by an elaborate theoretical physical calculation concerning the whole system.

So this does not prove anything at all: one would have seen the same relative
frequencies, if the qubit had from the start been, in a fraction | o ? of the times, in state
clockwise>, and in a fraction | | * of the times, in state [anticlockwise>. However, small
developments in the technology of this experiment will make the finding more secure. The
aim is not just to create qubits but to manipulate them. In particular, it should be possible
to implement the following linear (unitary) transformation of the state, sending the basis
vectors (1 0) and (0 1) (transposed), into (1 1) and (1 -1) (divided by root 2, and
transposed). The result of this unitary transformation is to convert the original qubit into
the state (a+p) |clockwise>+ (a—fP) lanticlockwise> (divided by root 2). If we now
measure, we will find relative frequencies of [a+B|?/2 and|a-B|2/2, different from
the relative frequencies had the state been inititally in a fraction lol? of the times,
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Iclockwise>, and in a fraction IB|% of the times, anticlockwise (as the reader may
compute, one would then observe 50:50 clockwise, anticlockwise).

The idea of quantum computation is to store programme and input of some
algorithm, coded in a sequence of 0's and 1's, into the basis states [0> and [1> of a large
number of qubits. The whole system next evolves unitarily, and at the end of the
computation, a series of (possibly random) zeros and ones are read off by measuring each
qubit separately. The possibilities allowed by the basic model of quantum mechanics
allow, for instance, (with an algorithm of Peter Shor) to factor large integers in polynomial
time, which will make all currently used cryptography methods obsolete! Fortunately
quantum cryptography promises a secure alternative. One cannot look at a qubit without
disturbing it, and if this idea is cleverly exploited, it becomes possible to transmit
messages coded in qubit states, such that the action of any eavesdropper would be detected
by the recipient.

What is the basic mathematical model behind all this, what then are the statistical
problems, and what do we know about the solutions? We have seen the notion of states
(more precisely, pure state), mathematically formalized as unit vectors in a complex vector
space. States can be unitarily transformed, that is to say, one may implement an
orthogonal transformation (change of basis) and get a new state. In principle, any desired
unitary transformation could be implemented by setting up appropriate external fields. It is
a manipulation of the state of the quantum system, involving, for instance, magnetic fields,
which one can control, but without back-action on the real world outside. No information
passes from the quantum system into the real world. What I have not yet told you is the
mathematical model for bringing initially separate quantum systems into (potential)
interaction with one another. This is the essential ingredient of the quantum computer: one
should not have N separate qubits, but one quantum system of the N qubits together. The
appropriate model for this is the formation of tensor products. In words, two separate
systems brought together have as state, a vector in a space of dimension equal to the
product of the two original dimensions; and the new state vector has as components, all the
products of a component of each of the two original state vectors. The N qubits of a
quantum computer live in a 2" dimensional state space. The initial state is a product state,
but a unitary evolution can bring the joint system into a state, which cannot be represented
as a product state. This phenomenon is called entanglement.

The last ingredient has already been touched upon, and that is measurement. At this
stage, and only at this stage, is information passed from the quantum system into the real
world. The information is random, but its probability distribution depends on the state of
the system. The system makes itself makes a random jump. The basic measurement is
characterized by a collection of orthogonal subspaces of the whole state space, together
spanning the whole space; together with a real number or label, associated to each
subspace. This collection of subspaces and numbers somehow corresponds to an
experiment one might do in the laboratory. When the experiment is carried out, the state
vector of the quantum system gets projected into one of the subspaces (and renormalized
to have length one); the corresponding real number or label becomes known in the real
world; and that happens with probability equal to the squared length of the projection of
the original state vector into the subspace. By Pythagoras, these squared lengths add up to
1.

These are all the ingredients: state vectors (also called pure states), unitary
evolution, entanglement (formation of product systems), and (simple) measurement. In my
talk I will illustrate them by the beautiful example of quantum teleportation, discovered by
Charles Bennett (IBM) ef al. in the mid nineties, and done in the laboratory, just a couple
of years later, by Anton Zeilinger, in Innsbruck. The experiment is done with polarized



photons, and the basic states can be thought of as |horizontal>, |vertical>. The problem is
as follows. Alice is given a qubit (polarized photon) in an unknown state. She wants to
transmit it to Bob, and can only communicate with Bob by email. What can she do? She
could measure the qubit, e.g., look to see if the photon is polarized horizontally or
vertically. She gets the answer: yes or no; it is random, with probabilities depending on the
unknown o, [. The photon's original state is now destroyed, we cannot learn anything
more about it. So all she could do is email to Bob: it was (e.g.) horizontal. He makes a
horizontally polarized photon. This is a poor, random, copy of the original one, and the
original one has gone. Can they do better? Well, there are many other measurements Alice
could make, but they all have the same property, of only providing a small, random,
amount of information about the original state, and destroying it in the process. In fact it is
an old result from the theory of quantum statistical inference, that whatever measurement
is carried out by Alice, the Fisher information matrix based on the probability distribution
of the outcome of the experiment, concerning the unknown parameters o, f3, hasa
strictly positive lower bound.

In order to succeed, Alice and Bob need a further resource. What they do is arrange
that each of them has another photon, these two (extra) photons in the joint state [0>
tensor-product |1> - |1> tensor-product |0> (divided by root 2). This is nowadays a routine
matter. Now we have three qubits, living together in an eight-dimensional space, of which
four of the dimensions - two of the qubits - are on Alice's desk, the other two dimensions -
one qubit - on Bob's desk. In my talk I will show you three lines of elementary algebra,
with the astounding implication that Alice can carry out a measurement on her desk, get
one of 4 random outcomes, each with probability 1/4, then email to Bob which outcome
she obtained; he correspondingly carries out one of 4 different, prescribed, unitary
operations, and now his photon has magically transformed into an identical copy of the
original, unknown, qubit which was given to Alice. Two (unknown) complex numbers o
and B have been transmitted, with complete accuracy, by transmitting two bits of
classical information .

Now it is worth asking: how can we know that a certain experiment has actually
succeeded? The answer is of course by statistics. One needs, many times, to provide Alice
with qubits in various states. Some of these times, the qubits are not teleported, but are
measured in Alice's laboratory. On the other occasions, the qubits are teleported to Bob,
and then measured in Bob's laboratory. The predictions of quantum theory are that the
statistics of the measurements at Alice's place, are the same as the statistics of the
measurements at Bob's place.

Now I am close to describing new and interesting statistical problems. For instance,
suppose I am given N qubits in an identical, unknown, state, what is the best way to
determine that state? It is known that whatever one does, one cannot do better than a
certain inaccuracy, of the order of size of 1 over root V. It is not known what constant over
root N, is best. And a most intriguing question, only partially solved, is: does it pay off to
consider the N qubits as one joint system, having a state of rather special form in a 2"
dimensional state space, or can one just as well measure them separately? Note that
considered collectively, we have a much vaster repertoire of possible measurements, so
from a mathematical point of view, the answer should surely be that joint measurements
pay off. However physical intuition would perhaps say the opposite. I have worked on
asymptotic versions of this problem. So far the physicists have hardly considered this
route, and the literature has largely seen calculations in rather special situations (N=2, for
instance), with conclusions which depend on all kinds of features of the problem - prior
distributions if you are a Bayesian, loss functions in any case - which are really arbitrary.
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The advantage of my approach is that these extraneous and arbitrary features become
irrelevant for large, but finite V; the problem localizes, second order approximations are
good, loss functions might as well be quadratic, prior distributions are irrelevant. Using the
van Trees inequality (a Bayesian Cramér-Rao bound) | have, together with Serge Massar,
derived frequentist large sample results on what is asymptotically best, under various
measurement resource scenarios. At http://www.math.uu.nl/people/gill are reprints of a
survey paper on quantum asymptotic statistics, Gill (2001, IMS Monograph 36, 255-285),
the original work Gill & Massar (2000; Phys. Rev. A 61, 2312-2327), other reprints, and
work in progress, including a new survey paper on quantum statistical inference,
Barndorff-Nielsen, Gill & Jupp (2002, to appear).

Before describing our work, I must extend the notion of state used so far. Above, a
so-called pure state is described by two complex numbers o , B; |o|*+|B|*=1 .1
cheated a little: one can multiply these two numbers by the same, but arbitrary, complex
number of absolute value 1, and we are still talking about the same state (the same future
predictions, same statistics, for whatever measurements). So I can renormalize the state so
that oo = cos 0/2, B = &* sin /2 , where 0,¢ are real angles, and we are
still talking about the same state. Now it turns out that one can usefully consider the angles
6,0 as polar coordinates of a point on the surface of the unit sphere in real three-
dimensional space. This geometric picture corresponds sometimes to directions in the real
world, for instance if we had been talking about spin of an electron. Moreover, the most
simple measurement devices also correspond to real directions, and the probabilities of
different outcomes can be read off from the joint geometric picture of state and
measurement. In particular, a measurement of spin of an electron in a (real, physical)
direction, produces spin-up, and spin-down (relative to that direction), with probabilities
proportional to the lengths by which the projection of the state (point on the surface of the
sphere), onto the diameter of the sphere in the direction of the measurement, divides the
diameter.

Suppose we had not been given particles in a given, pure state, but particles in
various states according to a probability distribution over the surface of the sphere. Then it
turns out that all that counts, for predictions and measurement statistics, is the centre of
gravity of that mass distribution over the surface of the sphere: namely, a point inside the
unit ball. Such a state is called a mixed state. Not just for qubits, but in complete
generality, one can extend the notion of pure, to mixed states, which are in general
represented by certain complex matrices called density matrices. We must also consider
more general measurements. One might for instance take a particle in an unknown state,
bring it into interaction with another, in some known state; after a unitary evolution,
measure the auxiliary particle, discard it, bring in a third, carry out another unitary
evolution and do another simple measurement, all depending on the results of the first.
Considering all possibilities together we have a vast spectrum of possibilities for getting
real data out of measurements of a quantum system. Surprisingly, there is a compact
mathematical representation of every possible way (using only the ingredients above) to
measure a quantum system, using the notion of Operator-valued Probability Measure. It
beautifully meshes with the notion of mixed states, and provides us with a clean
mathematical framework which can be used as a starting point for constructing optimal
experiments.

The most exciting result we have found is as follows: if the unknown state is known
to be pure, then a certain very simple but adaptive strategy of basic yes/no measurements
on the qubits, achieves the maximal achievable accuracy. If however the state is mixed,
then we do not know the best strategy. Limited to separate measurements, we do know
what can be achieved. We know that joint measurements can achieve startling increases in
accuracy. But we do not know how much can be maximally achieved (there are known
bounds, but they are known to be inachievable). This seems to be a promising future
research direction.
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Recent Developments in Time Series

Jan Beran
University of Konstanz
Germany
JanBeran@compuserve.com

Some of the currently most active areas in time series analysis are nonlinear
processes (in particular modelling of volatility), long-range dependence, non- and
semiparametric inference, distinction between various types of stationarity and
nonstationarity, and wavelets. The variety of topics and methods in these areas is
illustrated by the following three talks.

Liudas Giraitis (joint work with Kokoszka, Leipus, Robinson, Surgailis)
considers nonlinear time series models with long memory, with special emphasis on
temporal dependence in volatility, leverage effect and applications to financial time
series. Many time series in finance exhibit almost no correlations in the returns but
strong and possibly long-range dependence in volatility. A second effect is a negative
cross-correlation between volatility and levels, the so-called leverage effect. In this
talk several classes of nonlinear models that are suitable modifications of ARCH
models (in particular the so-called LARCH model) are discussed. In particular,
conditions are derived under which long memory in levels and volatility, and the
leverage effect occur. These results are of fundamental importance for modeling
volatility and leverage effect, with short- or long-range dependence.

Yuanhua Feng (joint work with Jan Beran) discusses semiparametric time series
models, in particular the so-called SEMIFAR model.

The SEMIFAR model incorporates stationarity, difference stationarity,
nonparametric trends and a fractional dependence structure, including short memory,
antipersistence and long memory. An important problem addressed in this context is
how to distinguish between long-range dependence, strong short-range dependence,
stochastic nonstationarity and deterministic trend. A key issue is optimal data-driven
nonparametric smoothing. Here, recent methods, algorithms, asymptotic results,
simulations and applications to observed series (in particular from finance) are
discussed. Most of the algorithms are based on an iterative procedures using
asymptotic expressions for the integrated mean squared error of the estimated trend
function. A distinction between the various components is possible sample sizes of
about 200 and above. Further improvements are to be expected by using more accurate
finite sample criteria.

An alternative way to dealing with possible trend components is outlined in the
talk by Peter Craigmile (joint work with Donald Percival).

The wavelet transfom is particularily suited to separate a deterministic trend
from random, and possibly nonstationary noise, and for estimating the dependence
parameters of fractional processes. This is demonstrated in the specific context of a
polynomial trend plus a fractionally differenced process. The trend is separated from
the stochastic component using the discrete wavelet transform (DWT) and a maximum
likelihood approach.

These results are a further important step towards building a wavelets-toolkit for
the analysis of time series that may be nonstationary and may exhibit a wide range of
dependence structures, including antipersistence, short- and long-memory.
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Wavelet-Based Maximum Likelihood Estimation for
Trend Contaminated Long Memory Processes

Peter F. Craigmile
Department of Statistics
University of Washington

Box 354322
Seattle, USA
WA 98195-4322
pfc@stats.washington.edu

Donald B. Percival
Applied Physics Laboratory
Box 355640
University of Washington
Seattle, USA
WA 98195-5640.
Insightful Corporation
1700 Westlake Avenue North
Suite 500
Seattle, USA.

WA 98109-9891
dbp@apl.washington.edu

A common problem in the analysis of time series is how to deal with a possible
trend component, which is usually thought of as large scale (or low frequency)
variations or patterns in the series that might be best modelled separately from the rest
of the series. Trend is often confounded with low frequency stochastic fluctuations,
particularly in the case of models such as fractionally differenced (FD) processes,
which can account for long memory dependence (slowly decaying auto-correlation)
and can be extended to encompass non-stationary processes exhibiting quite
significant low frequency components. In this talk we assume a mode! of polynomial
trend plus FD noise and apply the discrete wavelet transform (DWT) to separate a
time series into pieces that can be used to estimate both the FD process parameters and
the trend. The estimation of the process parameters is based on an approximative
maximum likelihood approach that is made possible by the fact that the DWT
decorrelates FD process approximately. We discuss the large sample theory for
estimators based upon this approach.
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ARCH Models with Long Memory

Liudas Giraitis
London School of Economics
Department of Economics
Houghton Street, London, WC2A 24E, U.K.
L.Giraitis@lse.ac.uk

Donatas Surgailis
Institute of Mathematics and Informatics
Akademijos 4, 2600 Vilnius, Lithuania
sdonatas@ktl.mii.lt

The interest in models of heteroskedastic time series with long memory exists in
econometrics and finance, where empirical facts about asset returns motivated the
necessity to study stationary processes which exhibit long memory in conditional
variance. A number of such models were proposed in the ARCH literature; however,
long memory properties of some these models have not been so far theoretically
established, and even the existence of a stationary solution remains controversial
(Mikosch and Stiricd (2000)). The classical GARCH( p,q) and ARCH (o0 ) models
are known to be short memory (Giraitis, Kokoszka and Leipus (2000)).

Robinson (1991) introduced the Linear ARCH (LARCH) model, in which the
conditional variance o’ of observable sequence, 7

>

is the square of a linear
combination of r,,s <¢ with square summable weights a;, j>1. The LARCH model

specializes, when o, depends only on 7_
(1990), and, when o, depends on finitely many r,s<¢?, to the Quadratic ARCH
model of Sentana (1995). The LARCH model was recently studied in Giraitis,
Robinson and Surgailis (2000), Giraitis et al. (2001). As shown in Giraitis, Robinson

and Surgailis (2000), integer powers #',0 >2, can have long memory

,» to the asymmetric ARCH model of Engle

autocorrelations. The cross-covariance function between future volatility and levels,
h, = Cov(c 2,r), was studied in Giraitis et al. (2001), and a linear inhomegeneous
equation for 4, derived. It was shown that the LARCH model (unlike GARCH (p,q)
models) incorporates the leverage property such that #, <0 for 0<r<k, where the
value of k may be infinite. As shown in Giraitis et al. (2001), the #, decay in the
manner of the moving average weights a, which may be chosen as in long memory

ARFIMA process.

As far as ARCH models have zero conditional mean, attempts have been made
to generalize them to include non-zero conditional mean (Ling and Li (1997),
Teyssiérre  (2000)). Giraitis and Surgailis (2001) introduce the following
generalization of the LARCH model:

) n=80,+m,

where &, is an i.i.d. noise, and ©,, m, are moving averages in r,,s <t, with square

summable weights a,,b,, respectively. In (1), m, = E[r | r,s<t] 1is the conditional
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mean and o} =var{r,|r,s <] is the conditional variance. Stationary solution of (1)
is obtained as an orthogonal Volterra series. In the case o, =1, (1) is the classical
AR( o ) model, while m, =0 gives the LARCH model. Another particular case of (1)

is the ARCH( o« ) model (Giraitis, Kokoszka and Leipus (2000)). In the general case,
(1) may exhibit long memory both in conditional mean and in conditional variance,
with arbitrary memory parameters 0 < d,,d, <1/2.
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1. The SEMIFAR Models

SEMIFAR (semiparametric fractional autoregressive) models, introduced by
Beran (1999), provide a unified approach for simultaneous modelling of deterministic
trends, stochastic trends as well as short-memory, long-memory and antipersistent
components in an observed time series. This paper summrizes recent developments on
SEMIFAR models. The focus is on a data-driven algorithm for estimating such a
model, which combines the nonparametric estimation of the deterministic trend and
the maximum likelihood estimation of the parameters characterizing the model.

A SEMIFAR model is a Gaussian process Y. with an existing smallest integer

m € {0,1} such that '
0 o (B)(1-BY {(1-B)" 7 ~&(1)} =<,

where £, =i/n, g, (i=..-10,1,..) iid withE(g,)=0, var(e,)=c.<w, g isa

smooth function, BY, =Y, and ¢(B)=1- iq)_/Bj, o(z)=0 for |z[<1,
=

1

~1/2<& <1/2. Here the fractional difference (1—B)® introduced by Granger and
Joyeux (1980) and Hosking (1981) is defined by

@) (1-BY =3 b,5)B"
with
3) b= (1) —1@*D

L(k+D0@ —k+1)
Let ¥, =(1-B)"Y, (with ¥, =0 for m =1). Then we have
“@) Y=g(t)+X,, i=12,.,n,
where X, =¢~'(B)(1- B)f6 ¢,. Equation (4) is a nonparametric regression model with

e long memory (for & >0),
e short memory (for § =0) and
e antipersistence (for & <0).
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2. Estimation of the SEMIFAR Models

The trend g has to be estimated nonparametrically. A kernel estimate of g
(Hall and Hart, 1990 and Beran, 1999) is given by

WOPHRE o (il
%) 2= nbgk[ - )Y,- ,

where K is a k -th order kernel function (with & even) and & is the bandwidth.
Local polynomial estimates g,(f) of g are considered in Beran and Feng

(1999a). They are defined as the solution of the local least squares problem

(6) Q:i{yx—iﬁj(tl—t)/} K(L:bi}:mlna

where K is a second order kernel and p (odd) is the order of the local polynomial. It
can be shown that g ,(¢) is asymptotically equivalent to a certain k -th order kernel
estimate with boundary correction, where k= p+1.

Let 8°=(c.0,d",9),-0°) =(c2,,m°") be the true unknown parameter vector
in (1), where d° =m"+8°, —=1/2<8°<1/2 and m" {0,1} . Then ¥, in (1) admits an

!

infinitive autoregressive representation
(7) Za-l(no)[cf(no))’;i—j _g(li—j)] ’
j=0

where the coefficients a, and a,c; are obtained by matching the powers in B. For a

chosen value of 8 = (¢7,m+8.,d,,....0,) =(c,n)" denote by

i~m=2

® e =Y. a,mlc,)Y_, —&(t_;m],

j=0

the (approximate) residuals. Following the idea in Beran (1995), Beran (1999)
considered an approximate maximum likelihood estimate 6 =(621)of 8°, where 1
is obtained by minimizing

1 n
9) S,)==> &M
i=m+2
with respect to 1 and
R 1 Il
(10) Sl=—2 €.
i=m+2

Under regularity conditions the following asymptotic results can be obtained:

1. The asymptotically optimal bandwidth for estimating g is:
b —_ C (28 ~1)(2k+1-28)

ot = Copt , where C__ is an unknown constant,

opt
2. The rate of convergence of g ,(¢) (or g,(7)) with b, is of order
O(n(ZS—I)k/(ZkH—ZS))
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3. @ is root n consistent under some condition on the rate of convergence of
g.
In particular, the condition on g in 3 is fulfilled for all —1/2<d <1/2,if
k =4 is used.

3. A Data-Driven Algorithm

The iterative plug-in idea in Gasser et al. (1991) is adapted by Herrmann et al.
(1992) and Ray and Tsay (1997) to select the bandwidth in nonparametric regression
with short or long memory, respectively. Another variant of this idea is proposed by
Beran and Feng (2000). Different algorithms for estimating SEMIFAR models are
developed by combining the data-driven estimation of g and the maximum likelihood

estimation of 0° (see Beran and Feng, 2000). The algorithm consists of three steps. In
step 1, a bandwidth for estimating m° is obtained. The BIC is used for determining the
autoregressive order and for deciding between m=0 and m=1 (see e.g. Beran et al,,
1998). In step 2, m° is estimated. In step 3, iterations are carried out for obtaining an
optimal bandwidth for the trend function, alternating between estimation of 0° and g.

4. Simulation and Applications

To study the practical performance of SEMIFAR models and the proposed
algorithms, a large simulation study was carried out, including three regression

functions and the parameter combinations with m® €{0,1},
§°€{-04,-0.2,0,02,04}, ¢ ’{-0.7,-03,0,0.3,0.7} . Here we have p,=0 for
¢ =0 and p,=1 otherwise. 200 replications were simulated for each parameter
combination with two sample sizes # =500 and »=1000. The simulation results
show that the proposed data-driven algorithm works well in all cases, although the
performance differs from case to case. For a detailed report of the simulation study see
Beran and Feng (2000, 2001a).

SEMIFAR models were applied to analyze data from different areas, such as
financial markets (see e.g. Beran and Ocker, 1999, 2001). Forecasting with SEMIFAR
models is discussed in Beran and Ocker (1999). Beran and Ocker (2001) apply
SEMIFAR models to study volatility in financial data. Climatological data are
considered in Beran (1999). Modelling of exchange rates and commodity price series
is discussed in Beran et al. (2000).

5. Concluding Remarks

The SEMIFAR models may be extended in different ways. One simple
extension is to introduce an MA part on the right hand side of (1), thus defining a
SEMIFARMA model. Another useful extension is obtained by using non-iid
innovations ¢,. Beran and Feng (1999b) propose the SEMIFAR-GARCH model,

where €, is assumed to be a GARCH (generalized autoregressive conditional
heteroscedastic) process and derive asymptotic results, such as the asymptotic
normality of & ,(¢) and g, (¢).

Another important field of current research is the design of optimal algorithms.
The data-driven algorithm discussed in section 3 is based on the iterative plug-in
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bandwidth selection rule. Such an algorithm requires the estimation of the & -th order
derivative of g based on the assumption that g'* exists. Another well known

bandwidth selection rule is the double-smoothing procedure based on bootstrap idea
(see e.g. Miiller, 1985, Hardle et al., 1992 and Heiler and Feng, 1998). Beran et al.
(2000) show that the double-smoothing method is superior to plug-in algorithms, both,
theoretically and in practice, at least for nonparametric regression with iid errors. An
adaptation of the proposal in Beran et al. (2000) to nonparametric regression with
long-range dependence is currently being developed.
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Statistics in the Environmental Sciences

K. F. Turkman
University of Lisbon
Department of Statistics and Operations Research
DEIO, Faculdade de Ciéncias
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1749-016 Lisboa, Portugal
kamil turkman@fc.ul pt

Environmental statistics has developed rapidly over the last decade becoming an
important, high profile specific theme. Many organizations, from universities to
specialised institutions are signalling their commitment to this theme by including it in
their research and education portfolios, as sections in their societies and as sessions in
their conferences. Environmental statistics differs from other statistical topics not
only in the areas of application in such diverse fields as conservation, pollution
control, monitoring of ecosystems, management of resources but also on the use of
specific statistical methodologies and models, demanding new approaches and
methods. Environmental statistics is thus becoming one of the most active fields and
particularly modelling spatial-temporal dependence structures has been one of the
leading areas of research.

Almost all environmental processes show variability over space and time
involving complicated spatio-temporal structures and interactions. The modelling of
space-time variability is inevitably complicated by the fact that we need to capture the
space and time dependence structures as well as the structure that creates space-time
interactions. This quest is further complicated by the fact that most environmental
series are non-linear and nonstationary, thus suggesting that we should model the
dependence structures by methods other than the classical use of second order
moments for linear models. Related problem is the insufficiency of the Gaussian
processes for most of the environmental series. These difficulties together with the
large data sets typical of many environmental problems, often require the practitioners
to apply many unrealistic assumptions in their models. Typically, a practitioner will
need to assume that there are no space-time interactions, in the sense that the spatio-
temporal dependence structure separates through additive or multiplicative models
into two parts and that a linear or better yet a gaussian structure govern the spatial and
temporal variation. Even then the problems are complicated due to the curse of
dimension; one needs to work with very high dimensional multivariate normal
distributions whose covariance structure in principle needs to be estimated. Bayesian
hierarchical models (Wikle, Berliner and Cressie, 1998 and Zidek, White, Sun and
Burnett, 1998) seem to be particularly suited for the modelling of spatio-temporal
processes. Such models provide simple strategies for incorporating complicated space-
time interactions at different stages of the hierarchy, thus making it relatively feasible
to implement in high dimensions. However, there is still much work to be done on
Bayesian hierarchical models, as the problem of model validation has not been
addressed sufficiently, and models other than the ones based on Gaussian structures
are very difficult to implement.

One strategy to model spatio-temporal variation is to model this complicated
structure through the mean function of the process at various stages, assuming
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conditional independence. See for example, Wikle, Berliner and Cressie (1998).
Other possible alternative is to model this variation through the estimation of the
massive covariance structure as it is advocated by Brown, Le and Zidek (1994). In any
case, all these methods are based on the assumption that the space-time dependence
structures do not have interactions, in other words it is assumed that the underlying
Gaussian process has a separable spatio-temporal covariance structure. Recently
Cressie and Huang (1999), De Cesare, Myers and D. Posa, (2000) and De laco,
Myers and Posa (2001) gave new methodologies for developing classes of
nonseparable spatio-temporal stationary covariance functions in closed forms. Once
statistical methods of identifying and estimating these covariance structures become
available, we should be able to use more realistic models for the environmental series,
nevertheless still within the restriction of normality and linearity.

Related and equally important subject is the modelling of extremes of spatial
processes. Standard measures of dependence such as variogram and covariogram are
second order properties of the spatial processes and for processes other than the
Gaussian, they do not give information regarding the dependence on the tail of joint
distributions. As such, they are not very useful tools in extrapolating extreme events in
space and indeed they can be quite misleading. Therefore, there is an urgent need to
define new concepts of spatial dependence of extremes. The pioneering work on this
area can be found in Ancona-Navarrete and Tawn (2001).

This session on Statistics in the Environmental Sciences will focus on modelling
spatio-temporal dependence structures. Specifically, the invited papers will focus on
the geostatistical perspective of space-time models, space-time interaction issues in
spatial prediction of pollution levels and modelling extreme values of spatial
environmental processes.
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1. Introduction

Obtaining an understanding of the spatial behaviour of the extreme values of
various environmental processes is important for the protection and insurance of
property and life. There are two components of any description of the extreme values
of a spatial process: a model for how the marginal characteristics change over space
and a model for the spatial dependence structure. Asymptotically motivated models
for the extremes of univariate series are widely used, and can easily be adapted for the
marginal component of the spatial model. The focus here is on discussing ways of
measuring, and modelling, spatial dependence among extreme values, for which much
less is known. The dependence structure and the spatial nature of the process are often
ignored in analyses of environmental extremes. The aim here is to show that
dependence modelling is a fundamental component of some analyses. The talk will be
illustrated with applications to rainfalls and sea-levels.

2. Measuring Pairwise Extremal Dependence

Standard measures of spatial dependence, such as the variogram, describe the
dependence in the body of the process and depend on the marginal properties of the
process. When a process may have different characteristics for extreme and non-
extreme events or when it is heavy tailed, the variogram can give a false impression of
the spatial dependence in extreme events. Here a measure of pairwise extremal
dependence for spatial processes, that is marginally invariant, will be introduced.

There are three forms of extremal dependence: asymptotic dependence,
asymptotic independence and exact independence. If the process is asymptotically
dependent then large values at different sites tend to occur in the same event however
large the values are, whereas for an asymptotically independent process large values
can occur in the same event, but increasingly they tend to occur in different events for
the larger values. For any pair of locations, the measure enables us to distinguish
between the different classes of extremal dependence and provides us with an estimate
of the associated degree of dependence in the selected class. This is valuable
diagnostic information for modelling the extreme values of a spatial process. In the
few spatial extreme value studies previously undertaken the process has been assumed
to be asymptotically dependent (e.g. Coles and Tawn, 1996) which, if false, leads to
bias in estimates of the spatial risk. The measure of dependence that will be
introduced is motivated by results of Ledford and Tawn (1996, 1997, 2001) for
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bivariate dependence. The measure has many properties similar to the variogram, for
further details see Ancona-Navarrete and Tawn (2001).

3. Higher Order Dependence

Pairwise dependence does not fully characterise the dependence structure of the
extreme values of a process; so measures of higher order dependence need to be
studied. For the class of asymptotically dependent processes I will describe work of
Schlather and Tawn (2001) on the higher order structure. These results are required
for the construction of self-consistent dependence models and to enable the
construction of self-consistent estimators for higher order dependence measures.
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1.Introduction

The modeling of space-time processes has been recognized as a critical and
fundamental issue in the environmental field: air, soil and groundwater pollution, climate
changes, forest and other biopopulations evolution are just a few examples.

This paper aims at presenting a geostatistical perspective of spatio-temporal
modeling — a probabilistic framework for data analysis, inference and prediction based on
the joint space-time correlation between observations. Based on two decades of
applications, the geostatistical space-time modeling can be viewed as an extension of
spatial analysis to include the additional time dimension.

Among the different families of stochastic models of natural resources in earth
sciences, this paper will focus on those that can be defined as spatial models, usually the
scope of geostatistics or spatial statistics, and that incorporate a temporal component. With
these models the objective is to predict, at a given spatial location and in a fixed period of
time, the distribution of the attributes of a natural resource or a property of a spatial
phenomena, or to access the uncertainty about the knowledge of that attribute or property.
The characterization of a plume of contaminants in soil or water, which is sampled or
monitored in several periods of time in some spatial spots, the analysis of the air quality of
a region which is systematically monitored over time, the planning and control of a
ecological resource observed in a given sample pattern at different periods of time, are just
a few examples of problems that can be approached by such models.

There are as many approaches to space-time modelling as there are specificities of
each case study regarding the amount of available information and the final objectives of
the study. The objectives of the models treated in this study can be summarised according
to the purpose of the use of the time data:

e Data collected in the past, at different periods of time, is used in a joint space-
time framework to infer the spatial distribution of a given attribute at the present
time or in a period in the very near future.

e Historical data is used to build a spatial and time trend. These trends are
interpreted as spatio-temporal random fields and are inferred in space for fixed
periods of time.

e Spatio-temporal uncertainty assessment is the aim of the third type of models
presented in this paper. Deterministic models that mimic the complexity of some
dynamic phenomena can be used, together with spatial stochastic simulation
models, for uncertainty assessment and to visualized extreme scenarios of the
attribute.
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Examples of air pollution characterization and ecological applications are presented
to detail and illustrate some of the methods that are presented.

2. Joint Space - Time Models

Consider an attribute Z(x,t) defined at a spatial location x, xeD, and at instant of
time teT, two different conceptual models can be adopted, regarding the decisions of
stationarity of the random function RF Z(x,t):

1. Z(x,t) can be considered a second order stationary RF, which means considering
a constant mean in spatial and time domain: E{Z(x,t;)} = E{Z(x2,%2)}= m and
considering the space and time covariance independent of the space-time
location (x,t):  C(Z(x,t). Z(X2,t2)} =C(h,t) where h=x;-x; and t=t;-t,.

2. When a time, space or space-time trend is evident in the physical phenomenon, a
non-stationarity of Z(x,t) can be assumed. The RF Z(x,t) is decomposed into a
mean component (the trend) M(x,t) and a residual component of zero mean
R(x,b): Z(x,tFEM(x,)+R(x,t). The mean M(x,t) and R(x,t) can also be
decomposed into space and time components.

Stationary Joint Space-Time Models

Assuming the second order stationarity of Z(x,t), the problem consists in predicting
in any spatial location x0 € D and in a time period teT the unsampled value Z(xy,t). This
can be done by an ordinary kriging predictor (Isaaks and Srivastava, 1989, Cressie,
1993,Goovaerts, 1997):

Z(xg 1 )*= YA (x,)Z (%7, )

where Z(xa.to) are the neighbourhood observations at (xa.,tot).

Space-time covariance C(h,t) is required to calculate the above predictor. Some
possible approaches can be used to estimate C(h,t) from the experimental observations
Z(x,t) (Kyriakidis et al, 1999):

The space-time covariance can be decomposed into a space and a time component
(Rouhani and Myers 1990, Cressie and Huang 1999, De Cesare et al, 1997), or assuming
the same parametric form in space and time ( Armstrong et al, 1993) or even defined in a
metric across the space and time domains (Buxton and Plate, 1994).

Example 1: This is a case study of air quality control in an industrial area (
Barreiro-Seixal) located south of Lisbon. Values of SO, are systematically measured on a
daily basis in a series of monitoring stations. This is a typical situation of high density
measurements in the time domain in just a few monitoring stations. Maps of predicted
values of SO2 with space-time model will be presented ( Fig 1.a).

Spatial Models with Time and Space Trends

The second type of model treated in this paper can be used to deal with non-
stationary situations. The attribute value z is decomposed into a trend and a residual:
Z(x,t)=M(x,t)+R(x,t). Two similar models that include historical data in a time and spatial
trend are presented below. Host, More and Switzer (1995) proposed the decomposition of
Z(x,t) into the following terms : Z(x,t}=M(x)+Rx(t)+S(x).S(t).R(x,t)

M(x) is a purely spatial component; Ry(t) is a temporal modulation of the field at
discrete times t. It is a zero mean residual corresponding to a correction of M(x) for time t;
S(x).S(t) can be viewed as the standard deviation of Z(x,t) which is decomposed into a
spatial and a time component S(x) and S(t) respectively; R(x,t) is the spatio-temporal
residual with zero mean and unitary variance. All these components are interpreted as
spatio-temporal random fields.

Example 2: This model was applied to the prediction of airborne solid particles in
Setubal peninsula (south of Lisbon). The particulate pollutant basically comes from a



cel;r)lent plant and is captured at some monitoring stations in regular time intervals ( Fig.
1.b).

Another model is proposed by Santos et al (2000) with a similar objective of
incorporating historical data in a space and time trend. While in the previous model the
data is collected at the same sampling stations, here the data is collected at different spatial
locations in each period. As the data is not collected in all time periods at the same
sampling plots, the idea introduced in this algorithm is to make a weighted average of the
Nt predicted maps, in which one predicted point value is weighted by a proximity
measure to the neighbourhood experimental data of each year. In each time period ti the
values Z(xo,t;) are predicted for the entire region. The spatial trend M(x,t) is then obtained
by a linear combination of predicted values [Z(xo,t})] at different periods of time t;, i=1,
N.., where the weights are given by a the kriging variance.

Example 3: This model was applied to predict the abundance of a migratory bird —
the wood pigeon - in order to control and plan this ecological resource in time and space.
Prediction of wood pigeon abundance should take into account the migration pattern of
this species and local abundance of individuals measured in each sampling resort.
Predicted pattern of wood pigeon abundance for the period 1992/1996 and the predicted
map of 1996 pigeon abundance will be the final output of this study ( Fig. I c).

3. Space-time Uncertainty Assessment

The characterization of spatial uncertainty using only spatial models has been
addressed, in earth sciences, through the use of stochastic simulation algorithms (Deutch,
Journel, 1998, Goovaerts, 1997). In dynamic processes, the two components — space and
time — usually have quite different levels of uncertainty: the heterogeneity of the static
component — normally related to the space — sometimes cannot be compared with the
complexity of the dynamic part of the process; on the other hand the knowledge that one
have about both components is usually quite different. This is possibly the main reason
why simulation algorithms of spatial processes with a time component are still at an early
stage.

However, according to how the dynamic and static components are combined in the
same model, two different type of approaches are presented in this study:

i) the first type of approach uses simulation as a tool for spatial uncertainty
assessment at a fixed period of time, taking into account the spatio-temporal
model and available data in space and time. In these models the time component
is used to assess the spatial uncertainty of the static component of the system.
An example of simulation of particulate emissions at Arrabida peninsula is
presented.

i) Another type of approach has a completely different objective, which is to
preview extreme scenarios regarding the dynamic of the physical phenomenon.
Hence a deterministic model, which mimics the dynamics of the physical
phenomenon, is added to a stochastic model in order to give the uncertainty
related to different possible situations of the static and dynamic components of
the reality. This approach is illustrated with the prediction of extreme scenarios
of air pollution impacts by simulating a solid particulate contamination with a
deterministic model - Gaussian dispersion plume Pereira et al. (1997).
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Fig 1- a)-predicted values of SO2 at Barreiro-Seixal; b) Prediction of airborn solide
particles at Arrabida peninsula ; ¢) Predicted pattern of wood pigeon (1992/96)
and pigen abundance (1996) in Portugal.

VOLUME I

2° QUADRIMESTRE DE 2001



e

REVISTA DE
ESTATISTICA

1397
PAGINA
i
2° QUADRIMES?;E"'? "
Pl

Space-Time Interaction Issues in Spatial Prediction of
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Our focus in this paper will be the ambient hourly P10 field over Vancouver,
Canada. Interest in this pollutant (and its relative PM2.5) derives from its established
association with acute morbidity and mortality, in particular cardiovascular mortality.
Controversy about the role of measurement error in this association has led to the need
for better estimates of human exposure and in turn for reliable methods for predicting
local levels of pollution from ambient levels.

One of the well known computational models for predicting population
exposure levels, pNEM, requires hourly levels as an input even though most
epidemiological studies rely on daily or longer term concentration aggregates.
Regulatory criteria may also require hourly levels even though they may eventually be
expressed in terms of aggregates such as daily maxima, daily averages or the
maximum of moving averages over the day.

The need for spatial prediction arises in diverse fields, in particular geostatistics
wherein the method of kriging was introduced in the 1960s by Matheron (Cressie,
1991). At any given unmonitored location, kriging uses a best linear predictor based
on concentration levels observed at existing monitoring stations. The coefficients of
that predictor are inversely proportional to the distances of the unmonitored location
from the “"gauged’’ stations. However, optimality of the predictor assumes a known
spatial covariance or equivalently variogram. The method has been greatly refined
over the years and can now incorporate covariables as well as deal with multivariate
responses through co-kriging (see Haas 1990).

A limitation of kriging methods for use in the spatial prediction of air pollution
concentrations stems from their dependence on spatial stationarity or even isotropy in
the spatial covariance structure for the response field being predicted. In our
experience that covariance does not depend on just the vector difference between the
locations of sites and certainly not on the Euclidean distance between them.. Other
factors such as elevation or local climate can play an important role in determining
concentration levels so that two stations in close proximity can have very different
concentration series. _

A potentially serious problem may arise from the failure in kriging to
incorporate uncertainty about the spatial covariance. The resulting impact on
prediction error intervals can be considerable and in the wrong direction (see Sun
1998). That is, decision makers my be imbued with unrealistically high levels of
confidence due to unduly short intervals. Attempts have been made to compensate for
this limitation (e.g. Handcock and Stein 1993, De Oliveria et al. 1997). However,
these modifications still require isotropy for the response field.
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Developed as a geostatistical tool where the response field is fixed, kriging does
not seem well suited to the analysis of dynamically evolving space-time fields. In
particular, much data from previous realizations of the response field are ignored
when applied to the analysis of pollution fields. In turn, this means that an
unrealistically large number of stations may be required to make application feasible.
However, in practice there may just a few such stations in an urban area.

Limitations like this led the authors and their co-investigators in earlier work, to
develop an alternative approach to spatial prediction. (Le and Zidek 1992, Brown, Le
and Zidek 1994a). Our hierarchical Bayesian approach leaves the spatial covariance
function completely unspecified. Temporal and spatial modeling can be done in a
convenient and flexible way. Uncertainty about the covariance structure is
incorporated through the second level prior; unrealistically small credible regions for
the interpolants are thereby avoided. Moreover, the isotropy assumption is avoided
through the use of appealing non-parametric approach of Sampson and Guttorp
(1992).

Finally, the usual Bayesian updating process will correct model mis-
specifications as new data become available.

The orginal theory of Le and Zidek (1992) has been substantially extended
through a succession of improvements that take account of practical difficulties which
can arise in application to pollution fields. The need to deal with a multiplicity of
pollutants led to a multivariate version of the theory (Brown, Le and Zidek 1994a).
Networks can be a union of earlier networks developed for a variety of purposes. As a
result differcnt gauged stations may systematically measure different suites of
pollutants and this led to a further extension of the theory (Le, Sun and Zidek 1997).
Stations may also start operations at different times so that the combined dataset has
the structure of a “staircase” . To take full advantage of such data within the Bayesian
framework requires a further extension. That extension was made for a single
poliutant in the first instance (Le, Sun and Zidek 2001). It was subsequently extended
to handle multiple poliutants (Kibria, Sun, Zidek and Le 2001). Both of these latter
works take advantage of the added flexibility in prior modelling of spatial covariance
structures afforded by the Generalized Inverted Wishart distribution developed by
Brown, Le and Zidek (1994b). Unlike the classical Inverted Wishart with has a single
degrees of freedom parameter to represent the level of uncertainty in the model, its
more general cousin has more such parameters as well as a more flexible
hypercovariance structure. In particular, different degrees of freedom can be assigned
to the different steps in the data staircase.

Validation studies (Sun et al. 1998) indicate that the method performs very well.
In particular, based on cross-validatory assessment, prediction intervals derived from
the Bayesian posterior predictive distribution seem quite well calibrated so that 95%
intervals do cover the true concentration about 95% of the time. As well, the method
has been used successfully in several health impact studies of air pollution (Duddek et
al. 1995, Zidek et al. 1998a), including one in BC.

However, in the work cited above, applications involve daily or even monthly
levels of aggregration over time. The resulting response fields seem fairly
uncomplicated. In particular, temporal and spatial correlations are “separable”. That
is, the space-time series can be “whitened” simply by fitting the same autoregressive
model to all individual series so as to remove the temporal correlation. The theory
above then gets applied to the residual series. After the residuals have been spatially
predicted, the AR components can be re-installed to get back onto the original data
scale.



The space-time correlation structure for short time (for example, hourly)
temporal aggregate series proves to be inseparable and generally more complicated.
Li et al (1998) analyze hourly ambient log PM10 concentrations collected in the
Vancouver and find that the series at each monitoring site follow an AR(3) series
pretty well after removing the same trend model T = mean + hour +day +week at
each site. (Although some evidence of correlation at lag 40 hours is seen by these
authors.) Initially, we expected to be able to whiten the residual series in the same
manner as in the earlier studies, by fitting an AR(3) model and then applying the
spatial predictor the resulting residuals.

Our expectation proved to be ill-founded. For hourly (and other short term
temporal) aggregates of Vancouver’s log PM10 series removing temporal structure in
this way also removes the spatial structure on which spatial prediction must inevitably
rely. Thus for inseparable processes like that for log PMI10 a new approach was
called for. That approach will be the subject of the presentation which will be based
on a paper of Zidek, Sun, Le and Ozkaynak (2001).

The approach we use “blocks” the temporal series by day so that responses are
24 tuples of hourly levels. It turns out for the series we have examined, including log
PM10, these 24 tuples prove to have a multivariate AR(1) structure. By fitting the
same multivariate AR(1) model to all the series, we successfully whiten them while
losing little of the spatial correlation. The multivariate predictor can now be used to
spatially predict the residual 24 tuples in the manner described above.

We will demonstrate the approach using Vancouver data from 10 monitoring
stations using TEOM monitors over the period, 1994 to 1996. In doing so we will
discuss both meteorological and structural trends. Such trends will be removed before
going to the MAR (1) analysis.

We believe the approach in the paper will work with other such series as well,
but further analysis is currently underway. The method can easily be extended to
multiple pollutants by taking vectors of pollutants within hours. In a current
investigation we are conidering 5 pollutants meaning that our approach will have to
address 5*24 = 120 tuples of responses at the various sites.
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For a long time, the extremal limit theorem attracted far less attention than the
central limit theorem, and the work of Fisher and Tippett (1928), Fréchet (1936), von
Mises (1936), Gnedenko (1943) and Mejzler (1956) on limit distributions for suitably
normed extremes of independent random variables had much lesser impact in
probability theory and statistics than their counterparts for sums.

But the world is not normal, and the extreme part of the sample has an
outstanding relevance in many applied areas, ranging from hydrological,
climatological and environmental problems to risk management in the financial
industry, extreme claim sizes and structural reliability. Thus, the Statistics of Extremes
soon caught the interest of statisticians as may be seen in the pioneering book by
Gumbel (1958). From 1960 onwards Order Statistics and Extreme Value Theory
(EVT) had an enormous development, and the books by David (1970), Galambos
(1978), Leadbetter et al. (1983), Resnick (1987) and Reiss (1989) are just a few
providing excellent overviews of the field. The more recent books by Beirlant ef al.
(1996), Embrechts et al. (1997) and Reiss and Thomas (1997) have a more applied
scope, dealing with the statistical modelling and analysis of extremes. In fact, this
latter one has even a broader scope, since the view of the authors, with which we
entirely agree, is that "the analysis of extreme values must be embedded in other
various approaches of main stream statistics".

Topics like parametric modelling of extremes based on "exploratory" diagnostic
tools, inference methodology associated to max-stable distributions and to generalized
Pareto distributions (which are stable on their own right in the POT scheme), random
censoring, the fail and the extremal index, rates of convergence and penultimate
approximations, multivariate extremes are a list of what extreme value can offer to
Insurance — large claims in actuarial decisions, probable maximum loss, reserve
questions and ruin theory —, to Finance — extreme returns in asset prices, extremes
of time series with ARCH or GARCH structure —, to Environment — site-specific
flood frequency analysis, sea levels, pollution data analysis, clustering of extremes and
global warming, to mention a few applications of the field of Statistical Extremes. We
would dare to say that nowadays the fashion of Extremes lies essentially in its
application to the field of Finance. Indeed the VaR (Value at Risk) is a high quantile,
and consequently, a parameter of rare events, being then adequate the use of Statistical
Extremes' methodology for its adequate estimation and validation. Speaking of EVT,
Embrechts ef al. (1997) claim the following: "though not providing a risk manager in
a bank with the financial product he or she can use for monitoring financial risk on a
global scale, we will provide that manager with the stochastic methodology needed for
the construction of various components of such a global tool".
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Till the early seventies, parametric methodologies were the most commonly
used among the practitioners in the field of Extremes, and those methodologies were
essentially based on the asymptotic results derived first for maximum values, later for
the other extreme order statistics, and still later for the asymptotic behaviour of the
excesses over a high level u. Indeed, the push on Statistical Extremes was due to
several criticisms put forward to the classical Gumbel's method, also called the
method of Annual Maxima, where maximum values of arbitrary large subsamples
were recorded and assumed to be a random sample from an Extreme Value model:

1. The classical asymptotic results related to maximum and minimum values
were associated to an original i.i.d. set-up. But the dependence inherent to
real data led immediately to the question of whether it was possible to
generalize those asymptotic results to dependent schemes, either stationary
or non-stationary.

2. There seemed to be no reason for not to consider further top order statistics
of the sample, whenever available. Surely they would provide additional
relevant information on the tail.

3. And why should we consider arbitrary sub-samples, and not the excesses of
the whole set of data over a high deterministic level u, or equivalently a
sample of the high top order statistics of the whole set of data?

Item 1. led to the development of a nice asymptotic theory of extreme values in
dependent structures, summarized in the nowadays classical book of Leadbetter,
Lindgren and Rootzen (1983), but further developed in a great variety of papers, of
which we shall have here an application. Item 2. led to multidimensional parametric
models, studied first by Weissman (1978), Gomes (1978, 1981), Smith (1986), and
largely applied in practice, mainly in the fields of Climatology and Hidrology. Item 3.
led to the Peaks Over Threshold (POT) methodology, initiated by Todorovic and
Zelenhasic (1970), and further studied by Davison and Smith (1989) among others,
and was in a certain sense the root to the development of the whole lot of semi-
parametric estimators, dating from Hill (1975) and Pickands (1975) work, where the
high level instead of deterministic is random.

These semi-parametric methodologies have received an enormous attention in
the last two decades. Under a semi-parametric approach there is always the need to
choose the adequate number k of top order statistics to consider, or equivalently to
choose the adequate threshold  above which we have relevant information on the tail.
The choice of the threshold has been an open problem for a long time, but in the last
decade asymptotic methodologies together with computer intensive methods, made
possible to find solutions to this problem. And we have several interesting ways to
approach the problem, among which T would like to mention

o the regression diagnostics technique of Beirlant et al. (in a series of papers
from 1996 onwards), of which we will hear more in this session;
o the bias estimation technique of Drees and Kaufmann, 1998;

e the bootstrap methodology of Draisma et al. (1999) and Danielsson et al.
(2001).

It is also worth mentioning the effort in reducing the bias of the most common
semi-parametric estimators of parameters of rare events. Here the Jackknife
methodology has played an interesting role, and reference should be made to Gomes et
al. (1998), but we cannot forget also the revival of the maximum likelihood and least-
squares estimation under a semi-parametric context, undertaken by Feuerverger and



Hall (1999), as well as Drees (1996) and Beirlant et al's (1999) techniques of bias
reduction.

The new developments in the field of multivariate extremes and spatial
extremes, with applications to Environmental Science and Structural Engineering,
using mainly rich parametric models, with all sorts of covariates have increased the
importance of EVT, and have a pioneer in Tiago de Oliveira. Intrincate dependent
structures have been put forward, and interesting models have been developed. Here,
the ability to test for independence in multivariate extremes is important for applied
statistical modelling (see, for instance, Tawn (1988) and Ledford and Tawn (1996)),
and we shall also hear more of it in this session on Statistics of Extremes.
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1. Introduction

We consider the classical problem of univariate tail estimation under the maximum
domain of attraction condition. To this end, let X,,X,,...,X, be a sequence of

independent and identically distributed random variables with distribution function F* and
with tail quantile function U defined by U(x) = inf { yv:F(y)z1-1/ x}. Further we

denote the order statistics by X,, < X,, <...£ X, . Then we assume that the properly
centred and normed sample maxima X, , = max{X,...,X,} converge in distribution to a

non-degenerate limit, or that for some y e R there exist sequences of constants a, >0,
b, € R such that

n—rm

X, ~b
e)) lim P( Mt < x) = H, (%),

n

where H, denotes the extreme value distribution defined as

= P00 e 2

The main objective of an extreme value analysis is the estimation of extreme
quantiles x, =U(1/p) or small tail probabilities 1- F(x), where a necessary

exp(—e™) for y =0.

intermediate step is to estimate the extreme value index y . In such an analysis several

problems occur, e.g. the adaptive choice of the number of largest observations (denoted
here by & ) that will be used in the estimation, the substantial bias of most estimators at
some instances and, correspondingly, the use of non-reliable asymptotic confidence
intervals, the non-invariance of several estimators with respect to shifts, etc. Our purpose
is to indicate that on the basis of certain regression models for different kinds of
(generalized) spacings between the largest observations, methods can be constructed that
help to relax the problems mentioned above.

In the case y >0, which corresponds to the Pareto-type distributions with

U(x)=x"¢(x) for some slowly varying function /, a first generalized regression model
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of this kind was proposed by Feuerverger and Hall (1999) and Beirlant ef al. (1999) for the
spacings Z, = j(log X,_,,, —log X,_; ):

@ ij(y +b-(%+1)_pjfj, 1< j<k,

with beR, p <0 and f,, f,,... denoting an i.i.d. sequence of standard exponential rv's.

In the next section we indicate how this regression model, which arises from asymptotic
considerations with respect to the Hill (1975) estimator for y >0, can help to reduce the

bias of this estimator for y >0 and of Weissman's (1978) estimator for x,, to obtain
estimates of y and X, which are much more stable.as a function of k& ,and to create

methods to choose & both for the Hill and for the Weissman estimator.

In a final section we generalize this approach to all maximum domains of
attractions. Here regression models can be constructed with, for instance, the
following generalized spacings quantities as response variables:

V.:legX"—jH’"Hj—l’n _jlog .] + .] , 2S1Sk,
J X, .H,, Jj=1 j-1

where M, denotes the Hill estimator based on the j+1 largest observations, or

alternatively, with

n—j+l,n -

W:jlog—)—(——ﬂ, 1< j<k.
J X __X

n—-j.n n—k.n
We will concentrate on the variables W, while representations of V/; are discussed

in the contribution presented by A. Guillou in the present volume.
2. The Pareto-Type Case

In this case the Hill estimator still plays a central role in extreme value literature,
partly due to its variance-optimality in asymptotic sense. The Hill estimator can be viewed
as the maximum likelihood estimator for y under the reduced model (2) setting b=0:

k
Hk,n = ‘}(“21(10g Xn—i+l,n - ]Og Xn—i,n )

i=|
Turning to high quantiles, it is natural to construct estimates based on the regular
variation of the tail quantile function U, relating the quantile x, =U(1/ p) of interest to

U(n/k), which is then estimated by the empirical quantile X This leads to the

Hyn
')%j)(?l)r = Xn—k,n k+1 .
(n+D)p

One can reduce the bias of these estimators using maximum likelihood estimators
Y., b, and p, for the parameters y , » and p under model (2) and this for each

k=3,..,n—1. As (2) is based on the classical slow variation with remainder condition
on £, given by

n—k.®

Weissman estimator

f(Ax

log ")

p_
)~b(x)7b ! as x —» o forall A >1
o .
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with 5(x) — 0, one can adapt the Weissman estimator to

s 1 (e g
’i(pl;( = Xn—k,n (ﬁlk—j eXp bk_(—k;l_—)—
(n+Dp Py

2

which yields estimates that are much more stable as a function of £ .

Concerning the selection of tail sample fractions when using a classical tail index
estimator such as Hill’s estimator, it is intuitively clear that estimates for the bias
parameter b in (2) provide help when locating the values of £ for which the bias of the
estimator is too large, or the value of &k for which the mean squared error of the estimator
is minimized.

i) Guillou and Hall (2001) propose to choose H, ~where k is the smallest value
of k for which

k bLS,k‘
PP ccrit
12 H,,

forall k> k. Here ¢
is the least squares estimator of & in (2), obtained after setting p =-1.

denotes a critical value such as 1.25 or 1.5, while l;LS’k

crit

ii) When using the mean squared error criterium, one can substitute the estimates of

Y, b and p in the expressions for the value of k,, which minimizes the

asymptotic mean squared error.

In case of the Hill estimator this leads to simulation results which compare
favorably with other methods such as the bootstrap procedure of Danielsson et al. (1997),
or the sequential procedure of Drees and Kaufmann (1998). A similar mean squared error
method can also be applied to the Weissman's estimator.

3. The General Case y € R

In the general case the concept of second order regular variation can be
incorporated from de Haan’s (1970) formulation of the maximum domain of attraction
condition (1): for some measurable function a,, and all >0

U(tx) - U(x) :{(ﬂ ~1/y for vy #0,

X—>0 aU (x)

3
©) log? for y =0.

Based on (3), one can derive the following approximate representation of the
random variables W, :

Y .
@ W=—-——/f, 1<j<k
1 - (%ﬂ )y
By construction the maximum likelihood estimator ¥, of y under (4) is shift and
scale invariant. Moreover, it extends the qualities of the maximum likelihood estimator
from the peaks-over-thresholds method for y >—1/2 (Smith, 1987) to all real y . In

comparison with other estimators, such as the moment estimator, this novel estimator
performs well.

Continuing this line of research, an extreme quantile estimator can be constructed
on the basis of (3), estimating a,(n/k) from the following (approximate) exponential

representation of the simple spacings S, = X X

a—j+lan ~ Yn—jn
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JS, =au(%)(k—f§)_y £ 1<j<k.

This leads to the estimator

N
AVARWI

for a,(n/k), and the extreme quantile estimator

~
( k+1 )y“ -1
W ~ n (n+1)p
X, = Xn_k’n + 4y, (4)_—*—}7”, .
k

Introducing slow variation with remainder conditions, representation (4) can be
refined to

Y+b(%+l)_p
/Y )
]—(%H) exp{b s }

which makes it again possible to calculate joint estimates Y7, b° and p? for the
parameters y , b and p by maximization of the corresponding loglikelihood. The bias-

W, =

reduced estimator ¥, can be used as an interesting data analytical tool complementary to
¥+ . When plotting both extreme value index estimators for a particular data set, y; will
inform the analyst of the quality, and especially the bias of ¥, . If the estimators show a
similar pattern over a sizable range of k -values, then one can rely on ¥, with a proper
choice for the position of the threshold X ideally situated in or just beyond the region

n—k.n?
of congruence. If the patterns diverge rapidly one should be cautious. Further, an
adaptive selection method as the one given by Hall and Guillou for Pareto-type tails is also

feasible here. Finally, with similar techniques the extreme quantile estimator chtk can be
corrected for bias.
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In this talk we use extreme value methodologies to characterise the performance
of single-objective stochastic optimizers. We consider the performance of an
optimizer in terms of the quality of the solutions produced within a given time of
execution.

Single-objective optimizers produce one scalar outcome per optimization run,
which is the best objective value found within the run. Optimizer performance
depends greatly on the objective function and on the optimization algorithm. The same
algorithm may produce very different results if applied to different objective
functions. Also, the initial conditions (starting point) and the parameters of the
algorithm have a strong influence on the quality of the solutions obtained. In this work
we consider two specific objective functions and an evolutionary algorithm described
in Baeck et al. (1991).

Stochastic optimizers can be seen as estimators of the optimum value of the
objective function. By describing the distribution of optimization outcomes, the
performance of the optimizer can be assessed, for instance through the usual measures
of estimator qualities such as bias or mean square error. The optimum value is usually
the endpoint of the distribution and we consider its estimation both through a
parametric and a semi-parametric approach.
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Given that the result of an optimization run is the best value (minimum value)
among all generations within itself , it is natural to expect that, for a large number of
generations, its distribution is close to an extreme-value distribution. Estimation of the
tail index of this distribution clearly suggests a Weibull fit. We apply different
goodness-of-fit tests for the Weibull distribution described in Lockhart et al. (1994),
not only to the outcomes but also to the minimum value of groups of outcomes, since
the tests tends to fail when applied directly to the outcomes.

In order to produce reliable parameter estimates, in particular of the endpoint, a
large number of optimization runs is required and the procedure may become
unrealistic in terms of required time. Ideally it would be desirable to use the
intermediate steps of each run in the estimation process.

In most optimization algorithms, the intermediate steps produce dependent (and
in many cases non-identically distributed) solutions. In order to be able to use classical
extreme-value theory methodologies to estimate the endpoint, certain dependence
conditions must be verified. One of these conditions is the D condition for asymptotic
independence introduced by Leadbetter (1974). Under this condition the Extremal
Types Theorem is generalised for a large number of stationary random sequences.
Theoretical validation of D condition is generally technically difficult and has been
done for several models such as Autoregressive Moving Average models and certain
Markov chains. However, practical validation of the condition raises several problems,
which are difficult to deal with. In some situations the condition is indirectly validated
through fitting a model to the data for which the condition is known to hold. We
propose a non-parametric hypothesis test of quasi-independence, which may be used
to determine the consistency of a sample with the hypothesis of validation of D
condition, without any assumptions on the underlying model. The test is then applied
to the values within optimization runs.
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The ability to test for independence in multivariate extremes is very important
for applied statistical modelling, allowing simplification where appropriate and thus
the selection of parsimonious models. Various regimes for testing independence in
multivariate extremes have been proposed in the literature. Our focus here is on those
based on score statistics, and our starting points will be the test given by Tawn (1988),
and additionally, the related Ledford and Tawn (1996) test that is derived under a
more general modelling framework. Both of these approaches yield nonregular test
statistics that are asymptotically standard normally distributed. However, simulation
shows that impractically large data sets are required for normality to hold acceptably.
Thus for sample sizes typical of practical applications, the sampling distribution of the
score statistic under independence needs to be explored, typically via large scale
simulation, in order to determine appropriate critical points. Exploiting these existing
tests in practical work therefore remains problematic and time consuming. In this talk
we will focus on regularising these existing results in order to obtain score tests that
converge rapidly to normal distributions.

1. Introduction

We start by examining the Tawn (1988) and Ledford and Tawn (1996)
independence testing frameworks. For algebraic simplicity we focus on the bivariate case,
and initially restrict attention to unit Fréchet marginal distributions and the logistic
dependence structure. Let (X,,Y,),...,(X,,Y,) denote independent and identically

distributed  observations from the Dbivariate extreme value  distribution
F(x,y) =exp{—(x""* +y™"*)*} where 0 <o <1 is a dependence parameter. Note
that @ = 1 corresponds to independence.

The above set up is essentially that of Tawn (1988), except that unit Fréchet
marginals are used here rather than unit exponential. For our purposes, the important point

is that the joint distribution F(x,y) = exp{—(x~"* + y™"*)*} is assumed to hold over
the entire (X,Y) domain. Thus, under this framework, the likelihood contribution of each
observation is precisely the joint density f(x,y)= {*F(x',»")/ {x' 'l - Ledford
and Tawn (1996) relaxed this approach by assuming that this joint distribution holds
explicitly only in the region R,, = {(x,y):x > u,y >u} where u denotes a fixed high

threshold. In order to construct the likelihood under this assumption they used censoring.
They took the likelihood contribution of a point falling in R, to be the joint density, as

above; that of a point with coordinates (x,y) in region Ry, = {(x,y):x <u,y > u}
they took to be Pr(X <u,Y =y)={F(x',y")/ {)'|.,, - A corresponding expression

holds for points in region R, ={(x,y):x >u,y <u}, whereas the likelihood
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contribution of a point in region Ry ={(x,y):x<u,y<u}was given by
Pr(X <u,Y <u) = F(u,u).
Under either approach, the score contribution for the point (.X,,Y,) for testing
independence is given by
dlog L(a; X, 1))
U, = :
do |a=]

where L(a; X;,Y;) denotes the corresponding likelihood expression. It can be shown

{

that U, has mean zero and infinite variance in both cases. Hence the usual vn
normalisation in the Central Limit Theorem is not powerful enough to yield a non-
degenerate limit distribution for the total score U, =Z:=1U,. Instead, a more powerful

normalisation is required, and it may be shown that U w /N(n/2)logn converges in

distribution to a standard normal random variable in the limit as » — . It is well known
that extremely large values of 7 are required for this limit result to be acceptable as the
basis for an approximation, so the resulting tests are not straightforward to implement
practically.

2. Regular Testing

In both the Tawn (1988) and Ledford and Tawn (1996) frameworks, it is the infinite
variance of U, that leads to the nonregularity. Careful examination reveals that this is due,

in both cases, to the joint density being used as the likelihood contribution over a region
that extends to (x ,x ). Our approach to overcoming this drawback in both approaches is

to modify them by applying censoring to region R,, . Specifically, we take the likelihood
contribution of a point falling in region R,, to be the joint survivor probability of region
R,,, which, for the logistic model specified above, is given by

Pr( X, >u,Y, >u)=1-2exp(—1/u) +exp(-2%u™").
[t is straightforward to show that the resulting likelihoods yield score contributions

with zero mean and finite variance. Hence the total score may be normalised by \/; in
order to obtain a normally distributed nondegenerate limit. This simple procedure
therefore yields a regular test of independence. Assessing the impact of the additional
censoring is clearly an important issue.

During the presentation we will derive modified score tests as described above and
will show results that compare their performance against those of the existing tests for a
range of sample sizes. The rapid convergence of the modified tests to normality will be
demonstrated. The power functions of the original and modified tests will be discussed,
and we will show that any loss of power introduced by the additional censoring is small.
We will also consider the associated likelihood ratio tests and will examine how these
perform in comparison to those from the unmodified approaches. Robustness of the
various tests will be examined, and alternative dependence structures, such as the mixed
model, will be considered.

References
Tawn JA (1988). Bivariate extreme value theory: models and estimation. Biometrika, 75, 397-415.

Ledford AW and Tawn JA (1996). Statistics for near independence in multivariate extreme values.
Biometrika, 83, 169-187.




STOCHASTIC MODELS IN FINANCE

Organizer:

Invited Speakers:

Wolfgang Runngaldier

Ernst Eberlein
Monique Jeanblanc
Kristian R. Miltersen
Marek Rutkowski

7}/”
REVISTA DE
ESTATISTICA

157°
PAGINA

2° QUADRIMESTRE-



VOLUME II

"2° QUADRIMESTRE DE 2001



Stochastic Models in Finance

Wolfgang J. Runggaldier
Univ. Padora
ltaly
runggal@math.unipd.it

The purpose of this session is to make the audience aware of what kind of
stochastic models may arise in the applications to current problems in Finance.

Traditionally, Brownian motion was used for modeling risk factors such as equity
processes, interest and foreign exchange rates, etc. Based on empirical evidence on stock
return distributions, researchers have started to use instead Levy processes in order to
increase accuracy of the models. The presentation by ERNST EBERLEIN deals with this
issue by considering models driven by a generalized hyperbolic Levy motion. The
presenter will discuss various aspects related to such models, that can be used to describe
not only equity prices, but prices of zero coupon bonds as well.

A broad area in Finance, where the modeling framework is still under discusison, is
the term structure of interest rates. Traditionally, the primary elements were taken to be the
instantaneous interest rates, that are highly theoretical objects and do not correspond in any
simple way to real interest rates. More recently, researchers and especially practitioners
have therefore started to consider interest rates with finite compounding periods assuming,
furthermore, a lognormal structure to justify the widespread use of the

Black and Scholes formula to price interest rate derivatives. Despite this further
evolution, there are still some open problems, e.g. in the analysis of futures prices. The
presentation by KRISTIAN MILTERSEN is devoted to a very recent approach that is
intended to overcome the latter problems by using futures prices as the basic building
blocks.

The traditional pricing approaches in bond markets did not take the possibility of
default of bond issuing companies into account. As this is an important reality, it has led to
recent approaches to the modeling of credit risk. Both the presentations by M. Jeanblanc
and M. Rutkowski fall into this area, but their aims are quite different thus allowing for a
more extensive overview of modeling issues in this important field.

Concentrating mainly on what is called the reduced form approach to credit risk
modeling, MONIQUE JEANBLANC deals with the role that various levels of information
may play. Despite its considerable impact in practice, the role of incomplete or only partial
knowledge has been mostly ignored in the past. It has however become a topic of major
current interest and M. Jeanblanc is going to show some of its aspects in the context of
credit risk. For the case when defaultable zero-coupon bonds are traded, she will
furthermore show a representation theorem that links hedging strategies in default-free and
defaultable markets.

Default need not come as a surprise. Bond issuing institutions may be more or less
solid and their rating level may change over time. The riskiness, from the point of view of
credit risk, of an institution can therefore be linked to its rating and the presentation by
MAREK RUTKOWSKI is intended to model credit migrations. One of the goals is to
model the price process of a defaultable bond, for a given initial credit state. To this effect
one has to take into account not only the fluctuations of the price due to the presence of a
Wiener noise, but also to the sudden jumps due to rating upgrades or downgrades.

For the key references please consult the individual abstracts.
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More Realistic Modelling of Risk in Finance

Ernst Eberlein
Universitdt Freiburg
Institut fiir Mathematische Stochastik
Eckerstrasse 1
D-79104 Freiburg
eberlein@stochastik.uni-freiburg.de

The shape of the distribution of returns is a key assumption in modelling asset
prices. Until nowadays the models used by practitioners such as the classical
geometric Brownian motion

dS, =S, (udt + odB,)

are driven by a Brownian motion (B,),5,. This means that they assume normally

distributed returns. Analysis of data from the financial markets shows instead that
empirical return distributions derived from daily or intraday asset prices are far from
being normal. Typically there is a higher peak at the origin, less mass in the flanks
and much more mass in the tails. This observation is not restricted to empirical
distributions from stock price data. The same characteristics can be observed for bond
prices, i.e. interest rate data, as well as for foreign exchange rates. If one considers not
only the changes in value of a single instrument, but of a large portfolio of instruments
including derivatives, a further phenomenon arises. The return distribution is often
skewed in a way which can no longer be neglected. This rules out the assumption of
normal returns from the beginning.

In order to increase accuracy of the statistical model one has to look for a more
flexible class of probability distributions. Generalized hyperbolic distributions turned
out to be tailor-made to fit the returns from financial time series. They contain as
subclasses hyperbolic as well as normal inverse Gaussian and many other well-known
distributions. Their density is given by

doy (9 =a(Aa B,0)(8 +(x - )’

x K, s (a«/é‘z +(x—,u)2) exp(B(x - u))

2 2\M2
(«*-8%)
chxk"'/zéhl(x (5«/0{2 - BZ)

K 1s a modified Bessel function of the third kind with index A and 4, a, £, 6, y are the

parameters. Although available in the literature since 1977, when they were
introduced by Ole E. Barndorff-Nielsen as a variance-mean mixture of normal and
generalized inverse Gaussian distributions, in the context of finance generalized
hyperbolic distributions were only used in recent years (Eberlein and Keller (1995),
Eberlein, Keller, and Prause (1998), Barndorff-Nielsen (1998), Eberlein and Prause
(1998)). Since they are infinitely divisible, they generate in a canonical way a process

(3-y2)/2

where

a(l,a,ﬂ,5)=



(X,)5o with stationary, independent iﬁcrements, the generalized hyperbolic Lévy
motion. The asset price model derived from this is
S, = S, exp(X,).

This model is natural since along time intervals of length 1 it produces returns
which have a generalized hyperbolic distribution. Thus one gets exactly those
distributions which one sees in the data.

—f (1) + (22 ) (3u1) +(2,0) (91) +—;—(6”f)(y,t)c
om0

As the classical Brownian motion, this new model can be used for a number of
‘problems in finance: pricing of derivatives and structured products, modelling of term
structures, risk management as well as portfolio optimisation. For risk-neutral
valuation of derivatives one has to identify equi-valent martingale measures first.
Those can be characterised by the triplet of characteristics (b,c,F)of the Leévy
process, where b describes the drift term, ¢ the Gaussian part and F the Lévy
measure. It is only this triplet together with the interest rate » which determines the
value f(,,7) of an option, written as a function of the log forward price

¢, =In(e""™8,)and time ¢. fis the solution of the following partial integro-
differential equation
with boundary condition f(y,T)=w(e”), where w is the payoff of the option. Since

the risk-neutral value is given by the conditional expectation of the discounted payoff
w, this result extends the Feyn-man-Kac formula. Via duality theory one can show
that the choice of a minimum distance martingale measure corresponds to maximizing
expected utility with respect to a unique utility function (Goll and Riischendorf
(2001)).

By writing X, in the form

t
dX, =cdL,

where (L), is a standardized Lévy process and replacing ¢ by a random process

(0,);5p one can improve the model further to take stochastic volatility into account

(Eberlein, Kallsen, and Kristen (2001)). Substantial work in modelling (o,),5, has

been done recently by Barndorff-Nielsen and Shephard (2001).

Under weak assumptions on the moment generating function, Lévy processes
can also be used to model prices of zero coupon bonds. Starting from the standard
Heath-Jarrow-Morton diffusion model in the risk-neutral setting one can replace the
driving Brownian motion by an appropriate Lévy process. The result obtained is the
family of processes '

P, T)=P0,T) exp[ﬂr(s)ds - J;G(G(S,T))ds + '[;G(S,T)dXS}

where 0(u) = log( E[exp(uX,)]) denotes the log of the moment generating function.
The processes P(t,T) given above describe a subclass of general semimartingale

interest rate models developed by Bjork, di Masi, Kabanov, and Runggaldier. It has
been shown recently by S. Raible that the martingale measure for this model is unique.
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The aim of these lecture is to provide a relatively concise - but still self-
contained - overview of mathematical notions and results which underpin the
valuation of defaultable claims.

Our goal is to furnish results which cover both the classic value-of-the-firm (or
structural) approach, as well as the more recent intensity-based methodology.

We study in particular the case when an information flow - formally represented

by some filtration (F,7>0) - is present. At the intuitive level, (7,7 >0) is generated

by prices of some assets, or by other economic factors (e.g., interest rates). We
establish a representation theorem, in order to understand the meaning of complete
market in a defaultable world and determine the links between the hedging strategy in
the default free world and the defaultable one. Whereas the default time is mainly the
time where a stochastic boundary is reached, the role of the information plays an
important role, especially in the context of partial information. We developp this last
point in a structural approach, which leads us to uses the reduced form tools to solve
the problem.
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Interest rate futures are basic securities and at the same time highly liquid traded
objects. Despite this observation most models of the term structure of interest rate
assume forward rates as primary elements. The processes of futures prices and rates
are therefore endogenously determined in these models. In addition, in these models
hedging strategies are based on forward and/or spot contracts and only to a limited
extend on futures contracts.

Inspired by the market model approach of forward rates by Miltersen,
Sandmann, and Sondermann (1997), the starting point of this paper is a model of
future prices. Moreover, we show that the futures model is an extension of the forward
LIBOR model. In addition to the pricing of caps and floors with the Black formula,
this new approach allows for the pricing of future style options in closed form. As an
important example we price options on the Eurodollar futures as closed form solutions
as well.

1. Introduction

For the last 25 years the modeling of the term structure of interest rates has been
one of the most deeply studied subjects within the arbitrage theory of financial
markets: In general two questions have been raised. Firstly, the question of the proper
model: Contrary to the dynamic modeling of one stock price process, the modeling of
the term structure of interest rates cannot concentrate only on one zero coupon bond
price process. Instead, the price processes of bonds (both coupond bearing and zero
coupon) with different maturities as well as interest rates (both spot and forward for

Financial surport from the Danish Social Science Research Council is gratefully acknowledged by all
three authors.
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different compounding intervals) have to be integrated within a single consistent
arbitrage free framework. Secondly, the question of the pricing of different interest
rate derivative, contracts: This includes options on bonds, nominal interest rates, and
interest rate swaps among others. Since the basic methodology of no-arbitrage pricing
is a relative pricing approach, the derived pricing formulas for these contracts are only
valid relative to the assumed modeling framework.

In contrast to the generally accepted Black-Scholes framework for the pricing of
options on stocks, the modeling framework of the term structure of interest rates is for
practitioners as well as for academics under principle discussion. Without going into a
detailed discussion the breakthrough result in modeling the term structure of interest
rates has been given by Heath, Jarrow, and Morton (1992). The so-called
Heath-Jarrow-Morton model is based on the dynamics of instantaneous forward rates.
The dynamics of these forward rate processes are the exogenous elements to the
model. The no-arbitrage condition implies an important constraint to the process
specification, i.e. the specification of the drift process, whereas the volatility processes
can be specified freely as modeling parameters. The modeling framework of Heath,
Jarrow, and Morton (1992) highlights the dynamic relationship between different
interest rate depending objects like bonds of different maturities, yields, forward rates,
etc., which has to be satisfied in a continuous time dynamic setting without arbitrage.

The strength and elegance of the Heath-Jarrow-Morton model comes from the
exogenous modeling of the instantaneous forward rate processes, however, this is also
the most critical aspect of the model: The instantaneous interest rates are only highly
theoretical objects definde by taking the limit as the compounding interval approach
zero. These rates does not correspond in any simple way to interest rates observed in
real financial markets. It seems to be at least an interesting question whether the
disregard of the difference between the dynamics of real observed interest rates with
finite compounding periods and instantaneously compounded interest rates lead to
precipitate conclusions. A first hint in this direction has been given by Sandmann and
Sondermann (1997). One way to exclude negative forward interest rates within the
Heath-Jarrow-Morton framework is to assume a lognormal volatility structure. As
pointed out by Hogen arid Weintraub (1993) this modeling assumption imposed on
instantaneous interest rates implies that rollover returns are infinite. Furthermore,
Eurodollar futures cannot be evaluated within this model specification. It was further
argued that this negative result about lognormal term structure modeling takes over to
the caplet formula by Black (1976). Therefore, Black's formula was thought to be
inconsistent with an arbitrage free model of the term structure of interest rates. As
shown by Sandmann and Sondermann (1997) the negative result of lognormal interest
rates is a result of modeling the wrong rates. If one, instead, imposes the lognormality
assumption on a more realistic interest rate notion, namely the effective interest rate,
then we get a finite expected value of the rollover return. Although the notion of
interest rates was changed, the paper was still based on the instantaneous concept of
interest rates. The next step was to consider finite compounding periods. Assuming a
lognormal structure on nominal or effective interest rates Miltersen, Sandmann, and
Sondermann (1995,1997) justified Black's formula for caps and floors and derived the
relationship between what has later been termed the market model approach and the
Heath-Jarrow-Morton framework. Hence, it was -shown that Black's formula is indeed
consistent, i.e. it is justified that for given assumptions on the dynamics of the nominal
forward rates, Black's formula gives arbitrage free prices for caps and floors in a full
fledged term structure of interest rates model. Further insights including
approximation and pricing of swaptions were then subsequently derived by Brace,



Gatarek, and Musiela (1997) and Jamshidian (1997). Recently the modeling
assumption has been extended to include other volatility structures, cf. e.g. Andersen
and Andreasen (2000) as well as Ziihisdorf (2000).

From the modeling point of view the main impact of the market model approach
is to shift the objective to nominal forward rates. Instantaneous forward rates are
within this context endogenously determined; and therefore, the modeling assumptions
are more closely related to observed market data. On the other hand the analysis of
futures prices has not been addressed in this context. This paper tries to approach this
problem. Contrary to the traditional setup this model uses futures prices as the basic
building block. In addition to the pricing of caps and floors with the Black formula,
this new approach allows for the pricing of future style options in closed form. As an
important example we price options on the Eurodollar futures as closed form solutions
as well.

The paper is organized as follows: In Section 1 we recall some known results of
the relationship between forward and futures prices and rates. Section 2 contains the
main model of the term structure of interest rates. This model is within the
Heath-Jarrow-Morton framework. Using the insight from the Heath-Jarrow-Morton
model clarifies the relationship between the volatility structure and the initial future
rate curve. This section also survays-in a probabilistic fasion-the important steps of the
convensional market model. Inspired by this, Section 3 introduces a similar structure
based on futures rates that the convensional market model does based on forward
rates. This structure includes the forward rate market model as a special case. The
pricing of futures style options on futures prices and future rates is adressed in Section
3.1. Within the market model approach closed form solutions for these options are
derived. Finally in Section 3.2, we derive several pricing result for exotic interest rate
option in the context of the market model.
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A new approach to modelling of credit risk, to valuation of defaultable debt, and
to pricing of credit derivatives is presented. The model - based on the Heath, Jarrow &
Morton (1992) methodology - uses the available information about the credit spreads
combined with the available information about the recovery rates to derive the
intensities of credit migrations between various credit ratings classes. Our results
complement previous work of Arvanitis, Gregory & Laurent (1999), Duffle &
Singleton (1998), Jarrow, Lando & Turnbull (1997), or Schénbucher (1998), among
others. Let us finally mention the recent papers by Maksymiuk & Gatarek (1999) and
Pugachewsky (1999), who also deal with various generalizations of the HUM
framework that cover the credit risk; they do not allow for the credit migrations,
though.

1. Default-Free Bonds

Let B(¢,T) and D.(1,T) denote time ¢ prices of default-free and default-risksy

(or defaultable) zero coupon bonds maturing at time 7T, respectively. The default-free
bond pays $1 at time 7 . The recovery payment for the default-risky bond needs to be

modeled. The meaning of the subscript C, in the notation D (#,T) will be explained later

in the text. For simplicity, we focus on the recovery scheme in which the recovery
payment is received by the holder of the defaultable bond at the maturity time of the bond
(this is referred to as the fractional recovery of treasury). Of course, if the defaultable bond
does not default prior to or on the maturity date, then it pays $1 at maturity.

For a fixed horizon date 7° >0, let (©,F,P) denote the underlying probability

e !

space, endowed with the filtration F=(F,) 0r]: The process » represents the

4 . .
short-term interest rate, and 5, :exp( L rudu) is the savings account, as usually. In

addition, let the default-free instantaneous forward rate be f (t,T ) , so that the price

B(1,T ) of a unit default-free zero coupon bond equals

T
1) B(I,T):exp(—J: f(t,u)du).
Suppose that there are K credit classes or states, the K " state denoting the state of
default. Thus, the risky bond can be in any of the states i € K ={1,...,K} which represents

its credit quality. For any i < K , we write g, (¢,T ) the conditional instantaneous forward
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rate for the risky bond that is in class i at time ¢. We assume the HIM-type dynamics for
the instantanecous rates f(7,7) and g, (¢,7),i=1,...,K—1, under the real-world
probability P, namely,

?) df (t,T)=o (¢, T)dt +c (1,T)dW,,

and

3) dg,(t.T)=o,(1,T)dt +o,(1,T)dW,,

where W is the Wiener process under P . It should be stressed the process
0 D,(t,T)= exp(— fg,.(T,u)du)

does not represent the price process of a tradable security. In other words, "the risky bond
that is in state / at time ¢" is not a tradable asset. In the present framework, a particular
defaultable bond is formally defined by its face value (by convention, equal to 1), the
maturity date 7, the bond's recovery covenants, and the bond's initial rating, that we

denote by C,. As a consequence of (2)-(3), we get the following dynamics of B(¢,T) and
D,(#,T) under the equivalent risk-neutral probability P’

5) dB(t.T)=B(t,T)(rdt+b(1,T)aw,),
and
(6) dD, (t,T) = D,(6,T)((r; + w,(t))de+b,(,T)aw;),

where p, (t) is an F -adapted stochastic process related to a Girsanov's transformation,

and W" denotes the Wiener process under P .

2. Credit Migrations

Let C, = (C,‘,C,z) denote a two-dimensional conditionally Markov process taking

values in K x K . In financial interpretation, process C models migrations between credit
grades. More specifically, C, is the current rating of a bond, and C? represent its previous

rating grade. It is thus natural to assume that the states ( K,i ),i € K are absorbing. We

wish to model the price process of a defaultable bond, for a given initial credit state C, at

time 0. We need to take into account not only the fluctuations of the price due to the
presence of the Wiener noise (interest rate risk); but also the sudden jumps which are due
to rating upgrades or downgrades (credit risk).

Let 5, € [O,]),i =1,...,K -1, denote the recovery rates. This means that if
T -maturity unit bond defaults before or at time 7, its owner is entitled to the payoft §, at

maturity date 7', provided that the bond belonged to class i just before default occurred.
In order to construct the arbitrage-free defaultable term structure, it will be

important to appropriately specify the infinitesimal generator of C' at time ¢, given the
o -field F,, that is, the K -dimensional matrix

7“1,1 (t) e Mg (t)
o A - . .



where A, Zx, ;(2) for i=1,...,K—1, and where A, , are F -adapted processes.

To this end, we need to postulate that the processes A, ; satisfy the following consistency

condition: for i =1,...,K -1 and r €[0,T]

®) Kz‘: 2o (D, (6T) =D, (6,T)) + & (1) (3,2(£.T) = D, (1,T) )+, (1) D, (5,T) = 0

J=l =i

where we set Z(¢,T)=B(t,T)/B,, so that dZ (¢,T)=Z(1,T)b(1,T)dW, . Let us stress
that the entries of the matrix A should be chosen in such a way that A, ,,i# j, follow
non-negative processes. In a very special case of zero recovery (i.e., when 6,=0 for
i=1,..,K—1) we may take, for instance X, (1)=p,(¢) for i=1,...,K—1 and &, =0
foreach i when j<K-1.

To produce a process C with desired properties we need to enlarge the underlying
probability space (Q,IF,Q*), where Q' is the extended risk-neutral probability. The

filtration F = (7 ),e[o ] is an enlargement of Wiener filtration, and is also accounting for
random shocks leading to credit migrations. Let us set

M, ; (1)=H, (1)~ LX,.J (s)H, (s)ds, Vie[0,T}],
where H, (1) = I{c'=,-} ,and H, (1) represents the number of transitions from i to j by

C' over the time interval (0,7]. It can be shown that the processes M, are F-

martingales under the extended risk-neutral probability Q'. To explain the conditional
Markov feature of C', let us denote by £ the o -field generated by the observation of
credit migration process C up to time ¢. Then for arbitrary s> and i, j € K we have

Q' {C,=(LNEVE Y= {c = (i) Fv{c =(c.c)}}
The formula above provides the risk-neutral probability that the bond is in the credit
grade i attime s> ¢, and the immediately preceding bond's class was j, given the bond

was in the credit class C' at time ¢ which was immediately premed by class C’. (Note
that the event {C, = (1,1)} indicates that bond has never left the credit class i prior to time

1)
3. Defaultable Bond Price

We specify the dynamics under the risk-neutral probability Q" of the price process
D,.(#,T) of a defaultable bond by setting

doc(z,T):E l(Dj(t,T)—D,.(t, ))dm +K_'(aBzT D,(1,T))dM, (1)
+ ZH )b, (¢,T)aw, +Z§H (1)B(L,T)b(¢,T)dW, .

Notice that the process D, (t,T ) follows a (local) martingale under Q" . It can be

shown that the price process of a defaultable bond, for any initial condition C,,, is given by
the following intuitive expression
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) D.(t,T)= I{c,':K} exp(— .[Tgcl, (t,T)du) +6c,21{c,'=1<} exp(— ‘[T(I,T)du)
for every ¢ €[0,T]. Put another way,
(10) D.(1,T)= Lg-Pe (t,T)+8C121{C’,=K}B(t,T).
Therefore, for any initial condition C,, at any time t we have D.(1,T)=D,(t,T)
on the set {C,' = i} for every i< K . Furthermore, D, (¢,7)=38,B(t,T) on the set

{(C,' ,C? ) =(K.,i )} We thus see that D,(#,T) does indeed represent the price at time ¢

of a T -maturity defaultable bond, provided that the bond is currently in the i ™ credit
class. Due to the conditionally Markovian structure of the model, the value D, (t,T) does

not depend on the history of a particular defaultable bond, so that we have a unique price
for all defaultable bonds which are currently in a given credit class. For each i€ K, we

define the i " credit spread v, (t,u) by setting v, (¢,u) =g, (t,u)— f (t,u).

Combining (1) with (4), we get D, (¢,T) = B(t,T)exp(— J;Tyi (t,u)du).

Also
amn D.(1,T)= B(t,T){I{C'l:K} exp(_ I,TYCJ (t,u)du)+5dl{q.=l(}}.

To simplify formulae (9) and (11), it is convenient to denote /(2,7 ) =g, (1,T}, so
that v, (£,T)=0. Then (9) and (11) become D, (1.T)= X, exp(— [ g, (t,u)du), and

D.(,T)=B(1,T)X, exp(_ _[,TY . (z,u)du), respectively, where X, is the promised
payoff from the defaultable bond, as at time 7 ; specifically, X, =1 fcl-r) +0 .1 fci=k)

Finally let us introduce the default time by setting © = inf {t eR,:C =K } . Thus
) +0 .1

X, can also be represented as follows X, =1 ( i

<t
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Stochastic Models in Telecommunications

Walter Willinger
AT&T Labs-Research
180 Park Avenue, Room C284
Florham Park, NJ 07932
walter@research.att.com

1. Overview

The global Internet has experienced a fascinating evolution, especially since the
early days of the Web. Unprecedented in its growth, unparalleled in its heterogeneity,
and unpredictable or even chaotic in the behavior of its traffic, the Internet has become
a gold mine for new, exciting and challenging scientific problems. Resolving some of
these problems will be essential for the efficient design and effective engineering and
management of the next generation communication networks. Furthermore, solving
these problems will rely more and more on an interdisciplinary approach to Internet
research that looks to other areas in the natural and social sciences where
experimenting with and analyzing complex interacting dynamical systems has a long
tradition, ¢.g., physical sciences, mathematical sciences, and economics.

Recent empirical discoveries concerning various scaling properties of the
temporal dynamics of Internet traffic (e.g., self-similarity) or of some of the
topological features associated with the physical structure of the Internet (e.g.,
power-law distributions) have resulted in a number of novel models or "explanations"”
of these "emergent" phenomena. In fact, unprecedented opportunities for providing
mathematically rigorous phenomenological explanations for the observed scaling
properties make the networking area distinctly different from other fields in science
and engineering which have a rich history in dealing with scaling phenomena (e.g.,
hydrology, atmospheric sciences, freeway traffic, finance, biology), but where
physical explanations are generally given only in an ad-hoc manner, often without
serious attempts for validating them empirically. Realizing this difference and the
ensuing opportunities for new scientific discoveries, researchers from many different
scientific disciplines with a common interest in scaling phenomena have started to
view the global Internet as a vast experimental playground, accessible to anyone with
an Internet connection.

The observed scaling phenomena in Internet-related measurements have also
lead to the emergence of wavelets as an important set of tools for analyzing and
mining the vast amount of collected data. Internet measurements tend to be unique and
outstanding, not only with respect to quantity and quality, but, more importantly, with
respect to the amount of information that is typically contained in every single
observation (e.g., TCP header, BGP table). While it is hard to think of many other
areas in the sciences where the available data provide such detailed information about
so many different facets of system behavior, surprisingly little of the collected data is,
in general, diligently "mined” and most of the available data is simply ignored. By
providing a "mathematical microscope" for analyzing the scaling behavior of network
measurements over many time scales, wavelet-based methods have recently been
proven to be a viable alternative that is able to exploit the many facets of the measured
data and in the process can give rise to new insights into the complex dynamics of
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large-scale networks such as today's Internet. in a system as immense as the Internet
where scale is a major concern.

2. Session Structure

This session focuses on some recently considered wavelet-based approaches to
mining Internet-related measurements and offers a glimpse at the increasingly
experimentation- and measurement-driven nature of Internet research. To this end, the
session consists of the following three talks:

1. "Infinite Divisibility and Traffic Data"
Darryl Veitch (EMUlab, University of Melbourne, Australia)
Email: d.veitch@ee.mu.oz.au
URL: htip://'www.emulab.ee.mu.oz.au/~darryl

2. "Limit Approximations of the Infinite Source Poisson Traffic Model and
Comparisons with Measured Traffic"
Henrik Nyberg (Ericsson Radio Systems AB, Sweden)
Email: henrik.nyberg@era.ericsson.se
URL: see http://www.md.chalmers.se/Stat/Research/researchgroups/telecom. html

3. "Dynamics of Internet Traffic"
Anja Feldmann (Computer Science Department, University of Saarbruecken,
Germany)
Email: anja@cs.uni-sb.de
URL: http://www.cs.uni-sb.de/~anja/

3. References

In addition to the speakers home pages, the following web sites and references
provide useful pointers to additional papers on topics related to the session theme.
1. P. Barford and S. Floyd, Atip://www.cs.bu.edu/pub/barford/ss-Ird.htm!

2. V. Paxson arid S. Floyd, "Why we don't know how to simulate the Internet"
http:/fwww.aciri.org/floyd/papers/wsc.ps

3. W. Willinger and V. Paxson, "Where Mathematics meets the Internet”
Notices of the American Mathematical Society, Vol. 45, pp. 961-970, 1998.
[ip://fip.ee.lbi.gov/papers/internet-math-AMS98.ps.gz

4. W. Willinger, "The discovery of self-similar traffic"

In: Performance Evaluation: Origins and Directions, Lecture Notes in
Computer Science, Vol. 1769, pp. 493-505, Springer-Verlag, 2000.



Dynamics of Internet Traffic

Anja Feldmann
Universitdt des Saarlandes
Saarbriicken, Germany
anja@cs.uni-sb.de

Polly Huang
ETH Ziirich
Ziivich, Switzerland
huang@tik.ee.ethz.ch

Walter Willinger
AT&T Labs-Research
Florham Park, NJ
walter@research.att.com

In the past decade the Internet has expanded explosively in terms of size,
heterogeneity, traffic volume; and diversity of protocols and applications, and will
continue to grow and undergo changes in the foreseeable future. Even though humans
design the networks, the protocols, the application we do not understand the resulting
dynamics of the overall Internet. Yet, understanding the dynamics of Internet traffic is
one of the fundamental task of understanding, locating, and fixing performance
bottleneck in the Internet.

Within the last few years, the availability of traffic measurements from various
different places in the network, at different times, and under various networking
conditions has enabled us to study some components that contribute to the traffic
dynamics, such as packet arrival process [1, 2, 3, 4, 5, 6, 7], TCP connection process
[8], flow characteristics [9, 10, 11, 12, 13], and traffic matrices [14, 15]. In this process
we found traditional statistics inference and model fitting techniques often inadequate.
Instead scientific inference and physical-based model building based on the available
measurement data and the knowledge about the networking context proved extremely
useful.

In this talk [ will show what kind of information is available in network data by
presenting the results of one study. The goal of this study is to detect performance
problems, such as excessive packet delays, packet losses, load changes, or route
changes, by relying solely on passive packet-level traces of existing traffic collected
from a single tap point in the network. The study takes advantage of a number of
structural properties of aggregate TCP/IP packet traces that can be compared across
different time periods and across parts of the traffic destined to different subnets. To
expose these properties we exploit the built-in scale-localization ability of wavelets.
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Limit Approximations of the Infinite Source Poisson
Traffic Model and Comparison with Measured Traffic

Henrik Nyberg
Ericsson Radio AB
Torshamnsgatan 23, Kista
Stockholm, Sweden
Henrik Nyberg@era.ericsson.se

1. Introduction

The infinite source Poisson model (or M/G/wo input model) is a fluid queue
approximation of network data transmission that assumes that sources begin constant
rate transmissions of data at Poisson time points for random lengths of time. This
model has been a popular one as analysts attempt to provide explanations for observed
features in telecommunications data such as self-similarity, long range dependence
and heavy tails. Some features of this model is surveyed, in particular the asymptotic
self-similar approximations when transmission lengths are governed by a heavy-tailed
distribution. It turns out that different self-similar limits are possible depending on the
scaling. This observation raises the issue of selecting the limit that best describes real
aggregate traffic. Four traffic data sets are investigated with techniques to estimate tail
parameters, Hurst exponents and other parameters of importance for modelling with
self-similar models. The agreement with the infinite Poisson model is evaluated. This
paper summarises a part of the investigation presented in [1].

2. Preliminaries

A common assumption is that transmission times are given by i.i.d file sizes with a
common distribution F which may be heavy tailed with a regularly varying tail so that

(1) F(x)=1-F(x)ocx*L(x), x >0,
. . . F(x) o,
where L(x) is a slowly varying function, i.e. lim F(r) =x", x>0.

Three important cases can be distinguished: 1) F has infinite expectation and
0<a <1;2)F has a heavy tail with 1 <o <2 so that the variance is infinite whereas the
expectation is finite; 3) F has finite variance, which includes classical models with thin
(e.g. exponential) tails.

To estimate o, exceedences of a given level was modelled with a generalised
Pareto distribution of the form

.
c
If y >0, this is a heavy-tailed distribution with a=1/y . If y =0, (2) is the
exponential distribution and if y <0, the distribution has a finite upper endpoint.

-1/y
) G(x):l-(]ﬂ—xj 1+2%50,650,7 eR.
[9)

A stochastic process {X (t);0£t<oo} is said to be self-similar if the finite

dimensional distributions of the time changed and rescaled process 67X (81) are the
same as for the original process, i.c.

fidi
@) 0" X(0)= X(-) for 0<0.
A second order process is said to be second order self-similar if its covariance
function C satisfies

@) 07"C(05,01)=C(s,t) for 0<0 .
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A fractional Brownian motion (FBM) B, is a centered continuous Gaussian
process with a covariance function that satisfies (4). Thus, B, is self-similar with Hurst

parameter H. (H=0.5 gives the ordinary Brownian motion.) Another self-similar process
is stable Lévy motion which has i.i.d. increments with a non-normal stable distribution
with index o, 0 <a < 2. The Hurst parameter is in this case H =1/a .

Let T, and L, be the arrival time and the life time respectively of the kth active
source. The number of active sources, N (t) , at time ¢ is a Poisson random variable with

{
expectation m(t):=A jﬁ (s)ds where ) is the Poisson arrival rate of active sources.
0

It is assumed that data is sent at unit rate from the source during transmission. The
cumulative traffic in [0,t] is

) A= [N(s)ds= 3 min(Lot-T,).

Ky <r
The traffic rate process, taken as the cuamulative traffic over intervals of length A>0
is
(6) Y, (k)= A((k+1)A)-A(kA), k=0,12,...

3. Limits and Approximations

For limits in the infinite source Poisson model, we have three principally different
cases depending on the tail parameter o as mentioned in the previous section. The scope is
here limited to the case | < < 2. For this case, two different limits can be obtained. The
FBM limit is obtained by first letting the Poisson arrival rate & — o and then letting the
time scaling T — o . The Lévy stable noise limit is obtained by letting 7 — oo while A
is fixed.

Let p be the (finite) expectation with respect to F. The asymptotic variance of the

cumulative traffic rate, as 7 —> oo, is given by
2A

e 2 _ ' : 2 A = ~

@) V[A(T)] =0 (T) —kG[E[mm(Lk,s) j‘dsoc 2060 T F(T).

For the case that A is constantand 7 — oo , the standardised process

n oy A(Tt) =Tt

®) G, (t)= o (7)
does not converge (not even in the sense of finite dimensional distributions) to a self-
similar Gaussian process. However, it is possible to get stable limits. Let ' be the left
continuous inverse of a monotone non-decreasing right continuous function f: R+ R.
Let

© or)=(5) (=Tn(),
for some slowly varying function L, . Observe that 5(T}/c (T)—>0 as T > .
Then, for fixed A ,

(10) &, ()L _ATY=MIE_ (i oo,

5(T) b(T)

where X, (-) is o -stable Lévy motion with totally right-skewed marginal distribution.

On the other hand, if 7 —>oco after letting A — o0, A(-) approaches a fractional

Brownian motion. The interpretation might be that on large time scales with moderate
input rate, stable Lévy motion is a reasonable approximation, whereas on small or




moderate time scales and for high input rate, fractional Brownian motion is a better
approximation. The following result gives conditions for an input rate A (7') that depends
on the time scaling 7 to give either the stable limit or the FBM limit. The complete
theorem and a proof are given in [2].

Proposition 1 Assume a family of infinite source Poisson models indexed by T
with Poisson rate A =A(7) and with cumulative input process A, (-). Assume that
A =X(T) depends on T so that the following slow growth conditions holds:

lim, , ATF(T)=0
Then the cumulative process (AT (Tt),t 2 O) satisfies the limit relation
A (T)=Thp() 7 ),
b(AT) *
where X (-) is a Lévy stable motion.
Assume that the following fast growth condition holds:
lim,_, ATF(T)=o
Then the cumulative process (AT (T),t > 0) properly normalised as
Ar (T ) - Thp()
JATE(T)
converges in D[O,OO) to a fractional Brownian motion with self-similarity parameter
H=03-a)/2.

4. Data Analysis and Results

The four data sets investigated are 1) the Boston University 1995 study of
WWW sessions; 2) the UC Berkeley home IP HTTP data collected in November
1996; 3) traces collected in 1997 at a Customer Service ATM Switch in Munich and
4) detailed data from a corporate Ericsson WWW server from October 1998. Only
data sets 1, 2, and 4 are covered here due to space limitations. The form of the data
analysed is as aggregate flow rate (bytes per 1 or 10 seconds) generated by the users
during the measurement period. The BU data was modified ('BUburst’) by lumping
together file requests by a user that were at most 0.5 seconds apart. As a reference,
simulated M/G/oo traffic is added ('simM/G/«"). For comparison, synthetic traffic
traces, '"UCB CBR' and 'Eri CBR', were made from the UCB and Ericsson data using
the original file sizes but transfer times corresponding to a constant bitrate (CBR).

Estimation results for the traces are summarised in Table 1. A is the estimated
Hurst parameter. H* is the Hurst parameter estimated from the file size tails as
H"=(3-0a)/2. The fourth column shows the estimated values of ATF (T ) used in
Proposition 1. Columns 5-6 indicate the goodness of fit to normal and stable marginal

distributions. The last column indicates the type of dependence. The precise definition of
the dependence classification is given in [1].

Data set H H* | ATF (T) Gaussian | Stable | dependence
SIMM/G/oo .90 +.01 .90 8 good bad strong/long
BUburst10s | .89+.02 } .67 +.01 09 med. good | strongflong

BUburst 1s .81+.01 [ 67+01 .07 med. bad [ nonstationary

UCB 10s .58 +.03 [ .62 +.01 16 bad good | independent

UCBCBR10s| .95+.07 | .62+.01 16 good bad strong/lon

Ericsson .88+.02 | .86+.08 5 bad bad | nonstationary

EriCBR1s |1.48+.02].86+.08 5 med. med. | strong/long
Table 1. Results of traffic rate characterisation.
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Table 2 shows the estimated tail parameter y =1/o associated with file transfer
times, file sizes and the mean transfer rate per file.

Data set | transfertime:y | file size:y | mean rate:y

BUburst 60+.02 69+.13 1.01 14
ucB 57 +£.02 52+.02 79 +.04
Ericsson 78 +.16 1.15+18 -

Table 2. Tail parameters related to file transfers

The Hurst parameter was estimated with wavelet methods (regression on time
scales of squared wavelet coefficients). The tails of the distributions of file sizes, transfer
times and traffic rates were investigated with maximum likelihood (ML) estimation of the
generalised Pareto distribution given by equation (2) applied to the top 5% of the
observations. The goodness of fit was checked with QQ-plots. The parameters of stable
Lévy motion were estimated with ML methods. Dependence in the heavy-tailed data was
investigated using the heavy-tailed acf. Details and references for the estimation methods
are given in [1].

5. Conclusions

The infinite source Poisson model is a fairly flexible model to predict the limiting
behaviour of aggregate traffic. Global statistical properties such as heavy tails and long
range dependence appeared in the data as predicted by the model. File sizes were
consistently heavy tailed, usually with 1<a <2. The scaling behaviour summarised in
the estimated Hurst parameters was compatible both with FBM and the stable noise
model. However, all measured marginal distributions are far from normal except for the
synthetic traces (in particular the 'UCB CBR 10s' in Table 1).

The overall impression is that the infinite source Poisson model is not sufficient to
adequately capture the properties of the data. A discrepancy from the model assumptions
is that file transfer rates appear to have considerable variation, see Table 2. This is
probably the center of the problem and has led to subsequent work on the impact of
random transfer rates in the infinite source Poisson model [2]. See e.g. Taqqu etal. [4] for
related research.
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Infinite divisibility is well known as a defining property of important families of
probability distributions, and a key concept underlying the semi-group formulation of
Markov processes. Its connection to scaling phenomena is far less appreciated, with
the exception of the statistical theory of turbulence where it has been exploited for two
decades, albeit to a limited extent. In this talk we clarify and explain the role of
infinite divisibility in the description of scaling behaviour, through the unifying
viewpoint of Infinitely Divisible Cascades. We introduce a wavelet formulation of
these models as a compact description of the diverse forms of scaling behaviour
found in packet data in telecommunications networks, and illustrate their advantages
over other scaling models.

The Infinitely Divisible Cascade models contain as special cases important
classes of scaling processes, used to date to model scaling behaviour in teletraffic as
well as in diverse other fields. These include long range dependent, exactly self-
similar, and multifractal models. More than just being a larger class however, the
semi-group structure of [DCs allows one to put into context the underlying structural
assumptions of the simpler alternatives. It constitutes a {\it natural} generalisation
which does away with the notion of scaling as being synonymous with power-laws.
As stable distributions form an infinitely divisible class, infinite moment models with
scaling features are also included in a natural way.

An IDC framework could be used in the time domain, however there are many
advantages in basing the study of time series with scaling properties on wavelet
coefficients.

We will describe estimators, based on the wavelet coefficients of underlying
time series, which can be used to first detect the presence of scaling and the
corresponding range of scales over which it exists, and second, to estimate the
corresponding parameters of the cascades. Particular attention is paid to correctly
discriminating between non stationarity and scaling phenomena.

Through the IDC lens, we present an analysis of exceptionally precise TCP/IP
data made available by the WAND group at the University of Waikato at
http://wand.cs.waikato.ac.nz/wand/wits/index.html. This set of data, the “Auckland IT'
traces, are taken from both directions of the access link of the University of Auckland
to the external Internet.
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The capture hardware developped at WAND (measuring ATM technology at
$155 $\Mbits/s for Auckland 1I) is capable of loss-less measurement with
synchronised timestamps accurate to below $1\,\mu$s. >From the raw data many time
series have been extracted and analysed, for example at the IP level the byte and
packet flow rates are examined. At a higher protocol level, TCP connections (and
UDP flows) are examined through such series as the arrival rate, durations, and
interarrival times of TCP connections (TCP is the protocol used for reliable data
transfer over the Internet, including Web based data retrieval).

The traces we analyse offer a representative vision of TCP/IP traffic, the
behaviour of which is a key problem in the current Internet. We will discuss how the
broader framework that IDC models offer gives insight into the statistical origins of
the different scaling behaviours found over different scaling regimes, and the
relationships between the very different scaling properties found in different time
series. Such insights are valuable in the search for physical, that is network based,
origins of scaling in traffic, which are in turn essential in order to answer key
questions such as the robustness of the fractal traffic phenomena in the face of the
rapid, and interlinked, evolution of networks and the teletraffic they carry.
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On the Infinite Divisibility of the Spacings of
Exponential Mixtures
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University of Azores
Department of Mathematics and C.E.A.U.L.
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9501-801 Ponta Delgada (Codex), Portugal
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The arithmetic properties of mixtures of distributions have been object of study
of many statisticians. Goldie (1967) by proving that the product of two independent
non-negative random variables is infinitely divisible if one of them is exponentially
distributed, proved that an exponential mixture is infinitely divisible. Steutel (1967),
on the other hand, established a sufficient condition for a generalized exponential
mixture (i.c. an exponential mixture with some negative mixing coefficients) to be
infinitely divisible.

In this paper we will be interested in proving the infinite divisibility of the
spacings of an exponential mixture. We will do so by showing that the spacings
are themselves exponential mixtures and, therefore, infinitely divisible.

Let
Z _ {Xl XZ o Xm
b P o P
where :;] p,=1, p,>0, and X, is exponentially distributed with scale

parameter §, , i.e. with distribution function (df) F, (x)=1- e x>0,

Since the random variable Z is a mixture of exponential random variables, it
has df

(1) Fz(z)=ipk(1—e‘”5*), z>0.

Let Z,, denote the ith ascending order statistic of a random sample of size n
from a population with df (1). The probability density function (pdf) of the spacing
u,.=2,-2Z i =1,...,n, with the usual convention Z, =0, is given by

iaym in i—ln >

! 1 & , t!
fo0=G 5 T s B

(1_2)!k,+-»~+km:n~i+\ m Jrbet =t Ji .]m,
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when i=2,...,n; and

\ n! P A k] k kl k
— toL. m| e X —_ ey
fUI»";m (u) k|+-;,,,=" kl !' . 'km ' pl pm (61 8 p 8 8 !

m 1 m

for u>0.

The expressions above remain valid if we consider a generalized exponential
mixture instead. However, to ensure in this case that we will have a proper pdf, the
parameters p, and 8, must satisfy some conditions (cf. Steutel (1967),
Bartholomew (1969) and Harris et al. (1992)).

The “popularity” of the exponential model often relies in the fact that it
allows, most of the time, a simple analytical treatment. Therefore, when
investigating alternative models to the exponential, the Laplace model emerges as
a natural candidate given its simple expression obtained as the difference of two
independent and identically distributed (iid) exponential random variables. And
just like the model itself, the laplacian spacings will prove to be infinitely
divisible.

Let (X,,,...,X,,) be the vector of ascending order statistics associated with

a random sample of size » from a Laplace population with location parameter A
and scale parameter d , i.e. with pdf

f(x) =—2—lé—exp(—|x;)—kD, —0<X<w0,

and let

denote the ith spacing.
Considering, without loss of generality, A=0 and & =1, we obtain the
following expressions for the pdf of V;,

n—i
n—2i

S, =ie” [P(R 2i+1)+ P(R= i)}+
2)

+(n_l.)e-(n—i)vl:P(RSi_l)_;.P(R:i):'a v>0
n—2i

if n—2i#0, and

n —Hv n n —ny n
3) T, =0 /Z[I—P(Rzgﬂ+(—2—j2ve /ZP(RIEJ,V>O

if i=n/2,where R is a binomial random variable with parameters n and p=1/2.
A closer observation of the exponential coefficients of (2) reveals that these

coefficients have opposite signs. In fact, if

n—i

n=2i

p =P(R>i+1)+ P(R=i) and pzzP(RSi—l)—;ZP(Rzi)
n—24i

then p, >0 and p, <0 if i<n/2, while p, <0 and p, >0 if i>n/2. Hence, the
“ laplacian spacings are generalized exponential mixtures of two components, and
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therefore are infinitely divisible (cf. Steutel (1967)). On the other hand, if #n is
even, the central spacing which is a mixture of an exponential and a gamma
distributions also prove to be infinitely divisible, since we will see that the
characteristic function has a Lévy-Khinchine’s representation of an infinitely
divisible characteristic function.

Although the symmetry of the Laplace model is not reproduced in the
distributions of the spacings, other forms of symmetry will be pointed out. On one
hand, the coefficients of the mixtures come from the symmetrical binomial model.
This property is obviously the consequence of the generation of the Laplace
distribution as the difference of iid exponential variables in a symmetrization
process. On the other hand, the spacings having a symmetrical standing in what
regards the central spacing, or central spacings if » is odd, are identically
distributed.

Given that the exponential is a special case of the Generalized Pareto model,
we will also see that it is possible to generalize the results obtained for the
spacings of an exponential mixture to the ratios of consecutive order statistics of a
Generalized Pareto mixture.
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Spatial Point Pattern Analysis by Using Voronoi
Diagrams and Delaunay Tessellations — A
Comparative Study
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1. Introduction

An important task of the analysis of spatial point patterns is to check how well a
model fits the observed data. The benchmark that point patterns are often compared
with is the point process that is completely spatially random (CSR), which means that
the patterns are realisations of a Poisson or binomial point process. The CSR or any
other model is usually tested by comparing some summary characteristics of the
observed pattern with those of the hypothesised model. Often used approaches for
analysing mapped data are based on nearest-neighbours, quadrat counts and inter-
point distances.

Another approach, which has not been widely developed, is based on the
Voronoi polygons and Delaunay triangles. This approach was originally proposed by
Evans (1967) and advocated by various researchers (see Okabe et al., 2000). For a
given point pattern, we associate all locations on the plane with the closest member(s)
of the point pattern. The result is a tessellation of the plane into a set of the regions
associated with members of the point pattern. This tessellation is called the Voronoi
diagram generated by the point pattern and the regions constituting the Voronoi
diagram are called Voronoi polygons. If we join all generator points whose Voronoi
polygons share a common Voronoi edge, we obtain a second tessellation called the
Delaunay tessellation generated by the point pattern. Both the Voronoi diagram and
the Delaunay tessellation are uniquely determined by the point pattern, and vice versa.
Thus, characteristics of these tessellations are also characteristics of the point pattern.

Hutchings and Discombe (1986) compared the power of the Monte-Carlo
simulation tests based on the distributions of area, the perimeter and the number of
sides, and suggested that the best single Voronoi polygon characteristic for
distinguishing both regular and clustered empirical patterns from a hypothesized
pattern of CSR is area, while perimeter is sensitive to clustering only. They also
found that the Monte-Carlo simulation test based on the length of an edge in the
Delaunay tessellation is effective in distinguishing both regular and clustered patterns
from those of CSR. Boots (1975) and Vincent et al. (1977) analysed patterns of urban
settlements in various parts of the United States and showed that, in this context, the
Pearson goodness-of-fit test for the distribution of an angle of a Delaunay triangle is
more effective than the nearest neighbour approach in correctly rejecting a null
hypothesis of CSR. Mardia et al. (1977) and Boots (1986) used the distributions of
the minimum angle and the maximum angle, respectively, to construct tests for CSR
and the latter found that the minimum angle has a higher overall power.

Recently, numerically tractable expressions of the distributions of various
characteristics of Voronoi polygons and Delaunay triangles have been derived. These
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expressions enable us to compare the empirical distributions obtained from a point
pattern and the theoretical distributions, under the CSR hypothesis, by using the
Kolmogorov—Smirnov test. The advantage of using the Kolmogorov—Smirnov test
is that critical regions can be approximated without simulations.

2. Results

The distributions of the length of an edge in the Voronoi diagram, and the area
and the perimeter of a Delaunay triangle have been derived by Mecke and Muche
(1995), Rathie (1992) and Muche (1996), respectively. These expressions have not
yet been used in analysing empirical point patterns.

The powers of the Kolmogorov—Smirnov tests based on the above three
distributions, as well as the distributions of the length of an edge in the Delaunay
tessellation, a randomly chosen angle, the minimum angle, the middle angle and the
maximum angle of a Delaunay triangle, and the distance between a point in the point
pattern and a vertex of the Voronoi polygon containing the point for testing CSR are
compared.

Preliminary investigations have been done. For clustered patterns, the tests
using angles of a Delaunay triangle are less powerful than the others, among which the
distance between a point in the point pattern and a vertex of the Voronoi polygon
containing the point is more effective than the others. For regular patterns, again the
angles are less powerful but the differences are smaller than in the clustered cases.
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1. The Receiver Operating Characteristic Curve

The receiver operating characteristic (ROC) curve is an important tool to
summarize the performance of a medical diagnostic test for detecting whether or not a
patient has a disease. In a medical test resulting in a continuous measurement 7, the
disease is diagnosed if T > ¢, for a given a threshold ¢. Suppose the distribution
function of T is F; conditional on disease and F, conditional on non-disease. The ROC
curve is defined as the graph (1-F(c), 1-Fx(c)) for various values of the threshold ¢, or
in other words, sensitivity versus 1 - specificity, power versus size for a test with
critical region {7 > c}. This enables one to summarize a test’s performance or to
compare two diagnostic tests. For more information about ROC curves and their use,
we refer to Swets and Pickett (1982) and references therein.

An alternative definition is R(p)=1-F,{F;'(1-p)} for 0 < p < 1, where F,’
denotes the inverse function of F,. For estimation of this ROC curve, there are several
approaches, such as fully parametrically (Goddard and Hinberg, 1990), fuilly
nonparametrically, either via empirical distribution functions (Hsieh and Turnbull,
1996), or using kernel estimators (Lloyd, 1998). For a semiparametric approach we
refer to Li, Tiwari and Wells (1999). We focus on smoothed empirical likelihood
estimation.

2. Empirical likelihood estimation

Denote by 6, the parameter to be estimated, more specifically, 8, = R(z;) =1-
Fi{F 7 (1-1))}, where 0 < ,< 1. Clearly, there exists a quantity 1o such that #, =F,”(1-
&) = Fz"’(l-to). LetX;,...,X,and Y}, . .. ,Y, be random samples from populations
with (unknown) distribution functions F, and F», respectively; denote by p=(p;, . . .,

p.) and g=(q,, . . . , q.») two probability vectors (that is, z p,= Zq ;= 1landp, g;=

0). For this setting, the smoothed empirical likelihood for &, evaluated at 0, is defined
as

L(8,) = sup [H”)(qu

(PgM)\_ =1
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- wherew, (n,X,)=G, (n_;l—)(f)—(l—eo)and wz(n,Yj)sz(n

subject to the constraints
n Y n
qu [ -le—to, and ijG,(
’ i=l

G(t)= LD K, (u) du, for a kernel function K; and where /; is a bandwidth sequence.

1—1_—)(’):1—90,Where, for j=1, 2,
i

To better appreciate this definition, consider the first constraint which is used
in the non-disease population only, to estimate the quantile 7, = F,'(1-#,) via empirical
likelihood. For ROC estimation, however, we add the second constraint, which
determines the estimation of the 1-6, quantile in the disease population. A challenging
aspect of this approach is that the parameter of interest is not this quantile, but instead
R(t9)=6y. The link between both populations, disease and non-disease is through the
receiver operator characteristic relation.

Using the method of Lagrange multipliers, the empirical log likelihood ratio
(multiplied by minus two) is defined as

10,)= 221n{l+k w, (1, X)}+2Zln{l+k w,(q,Y))},

Jj=1

where (7:, ,):2 ;) are solutions to the following set of equations

wmnX) _, e mmy)
§l+k,vv,(n,Xi) ’ ;,1+kzwz(n,)’j) ’

. wx) e wny)
Z1+7»w,(n X)) ZZ:l+7u wz(n )

i 1-¢
h2 _( 0)-

The maximum smoothed empirical likelihood estimator for the ROC value at t,
is that value 6 for which the smoothed empirical likelihood function is maximized.
Under some regularity conditions on the population distribution functions, the kernels,
bandwidth sequences, and the rate at which the two sample sizes, n and m, are allowed
to grow, we obtain existence, strong consistency and asymptotic normality of the
estimator.

As an illustration, this estimation method will be applied to a medical dataset.

i=1

3. Pointwise confidence interval

One natural way to construct a confidence interval for R(z,) is via the normal
approximation to the distribution of its estimator. This, however, can be improved
upon in a number of ways. There are several advantages in employing empirical
likelihood methods (Owen, 1988) for the construction of confidence intervals: the
shape of the confidence region is determined automatically by the sample, as opposed
to the symmetry imposed by a normal method, and the empirical likelihood regions
are Bartlett correctable; see for example Hall and La Scala (1990), or DiCiccio, Hall
and Romano (1991). Another advantage, especially for application to the ROC setting,
is that the method of empirical likelihood avoids searching for transformations which




would result in less skewness of the estimator’s distribution, in order for the normal
approximation to perform better. See Zou, Hall and Shapiro (1997), who apply a logit
transformation to estimators of both 1-F,; and 1-F,.

The definition of the ROC curve by means of R(f) instead of as a graph of
sensitivity versus 1- specificity, combines information about both populations, and
hence avoids the philosophical issue of constructing a confidence interval vertically
(for 1-F(p)), horizontally (for 1-F,(p)), or perhaps a two-dimensional confidence
region for (1- F;(p), 1- Fx(p)).

Chen and Hall (1993) introduce the method of smoothed empirical likelihood
for the construction of a confidence interval for quantiles. We adapt this method for
application to the ROC curve, which is a combination of a distribution function and a
quantile function,

Under some typical regularity conditions we show that the log empirical
likelihood ratio statistic /(@) converges in distribution to a chi-squared distribution
with one degree of freedom. This is a nonparametric version of Wilks’s theorem in the
ROC context.

Since the limit distribution of /(8,) is asymptotically pivotal, a simple approach
to construct a 1-a confidence interval for 8, = R(?)), is via

L={0:/(0)<c.},

where ¢y, is the 1-a quantile of the chi-squared distribution with one degree of
freedom. This approach will give a confidence interval for the ROC value R(#)), with
asymptotically correct coverage probability. That is, P(6) € 1;.o) = 1-a + o(1).

A topic of current research is to derive the coverage error of this pointwise
confidence interval, as well as for a confidence interval based on the normal
approximation. Our conjecture is that for the empirical likelihood method, this
coverage €rror is o(n”"*+m""?), while for the normal approximation this would be O(
n"+m™"?). The superiority of the smoothed empirical likelihood method over the
normal approximation is clearly demonstrated by the results of a simulation study, see
also Section 5.

4. Bootstrap confidence regions

In order to compare two diagnostic tests via their ROC curve, pointwise
confidence intervals are not optimal. Instead of developing asymptotic properties for
global curve estimation, which would be one way to construct a confidence region for
the ROC curve, a bootstrap algorithm will provide a confidence region for {R(¢): 0 < ¢
< 1}. In the context of empirical likelihood estimation for density functions, Hall and
Owen (1993) explain that very large sample sizes are needed to get accurate
confidence regions based on an infinite-parameter verion of Wilks’s theorem. In the
ROC context, if anything, this is not expected to be better. Therefore, a bootstrap
confidence region is constructed in such a way that there is equal pointwise coverage,
without loosing advantages of automated shape-determination by the empirical
likelihood method.

5. Results of a simulation study

A Monte Carlo study has been performed to compare the coverage accuracy of
confidence intervals obtained by the smoothed empirical likelihood method and of
those based on a normal approximation. We generated 10 000 pseudorandom samples
of various sizes from F|=N(1,1) and F>,=N(0,1). The two distribution functions G, and
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G, have been chosen so that the corresponding kernel functions are 15/16 (I-8/1{f < 1}.
Currently, bandwidths are chosen fixed throughout the simulations.

Table 1 shows simulated coverage probabilities and demonstrates that the
smoothed empirical likelihood method outperforms the normal approximation method
in all settings. For all the settings (except for the case #,=0.9), the simulated coverage
probabilities of the empirical likelihood method are all very close to the nominal level,
while there is a sizable discrepancy between the simulated coverage probability and
the nominal leve! in the normal approximation method, even for sample sizes as large
as 200. The relatively poor performance for the case 7,= 0.9 might be explained by the
fact that the receiver operator characteristic value R(0.9) is very close to 99%.
Therefore, neither method can be expected to work very well in this case, although the
empirical likelihood still outperforms the normal approximation method.

Method | t5=0.1 | %=0.3 | t,=0.5 | %,=0.7 | ,=0.9
n=m=50 Emp.Lik | 0.903 | 0.900 | 0.896 | 0.899 | 0.717
N.Approx | 0.844 | 0.858 | 0.868 | 0.849 | 0.569
n=m=100 | Emplik | 0.898 | 0.897 | 0.893 | 0.896 | 0.811
N.Approx | 0.855 | 0.868 | 0.859 | 0.866 | 0.787
n=m=200 | Emp.lik | 0.895 | 0.889 | 0.889 | 0.892 | 0.871
N.Approx | 0.854 | 0.856 | 0.863 | 0.863 | 0.795
n=50, m=100 | Emp.Lik | 0.880 | 0.878 | 0.875 | 0.878 | 0.670
N.Approx | 0.848 | 0.850 | 0.855 | 0.853 | 0.569
n=100, m=50 | Emp.Lik | 0.880 | 0.876 | 0.880 | 0.881 | 0.822

N.Approx | 0.832 | 0.846 | 0.856 | 0.823 | 0.762
Table 1. Simulated coverage accuracy, nominal level = 0.90.
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1. On the Density Ratio Model

The density ratio model is introduced by the multinomial logits model. Suppose
that y denotes a categorical random variable with m categories, and x' isa p—

dimensional vector of covariates. Then the multinomial logits model is given by (see
Fahrmeir & Tutz (2000))

exp(a; +x'B,)
Z:zlexp(oc,f +x'Bk),

Let =, = P[y:i] for i=1,...,m and suppose that there are m independent

¢)) Ply=ilx]=

i=1,...,m.

retrospective  samples of sizes n,,...,n

2" m

acquired from the population with

y=i, i=1,...,m, respectively. Denote the observed data by x,, j=1,...,n, i=],....m

and assume that the conditional distribution of x given y has density
g(x)=g(x|y=i)=dG,(x), i=1,..,m. A straightforward application of Bayes
theorem reveals that

P[y=i|x]f(x)

T,

i

g(xly=i)=
Then, the density ratio model is given by (Qin (1998), Fokianos et al. (2001))

) M:&’—exp(a: +x’Bi):exp((x, +x'B,), i=1,...,m—1
g(xly=m) m,

where a, =a; +log(n, /n,) for i=1,...,m~1. Clearly when B, =0 then o, =0. In

other words, all the m density functions are assumed unknown related however
through an exponential tilt—or distortion—which determines the difference between
them. Notice that model (2) is quite general and includes examples such as the
exponential and partial exponential families of distributions.

We study a generalization of (2) given by the following model

3) g (x)=w(x0,)g,(x)i=1...q

L
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where the densities g;(x),i=1,...,q are not specified and 0, is a finite dimensional

parameter with dimension equal to d,, i =1,...,q . We assume throughout that w is a
known positive function.

2. Inference

Consider m samples with corresponding densities satisfying equations (3). That
is, consider g=m—1 weight functions w(x,e,.), known up to a parameter, let

”‘Z n, and consider the non—parametric likelihood based on the pooled data

{x(.i,_/ =l,..,n,i= 1,...,m}

o oot [
(1111 1 >}

i=l j=I =l j=i

1

C)

with p, =dG, (xg./.) and 6 = (91',...,6[;)' , a vector of dimension d = Z?:ndi . The log-
likelihood is

m n;

) I=logL = ZZpU+ZZlogM)( %,0,)

i=l j=I =l j=1

Maximization of (5) is carried out by following a profiling procedure whereby
first we express each p, in terms of some finite dimensional parameters and then we

substitute them back into the likelihood to produce a parametric function. It turns out
that (5) becomes

© [(8,p) ZZlog{l+Zpk( w(x,.0,)- )}+ZZlogw( ,+8,)—nlogn,

i=l j=1 i=1 k=l

where p=(p,,....1, )' a vector of Lagrange multipliers. Put éz(é,’,...,é') and

q

v :(ﬁ],...,;lq )' for the maximum likelihood estimates of & and p respectively. In
addition let

5 1
Pim n1+z i w(x,56,)-1]

to obtain the maximum likelihood estimator of G,

7 Gy (x)= i > ﬁo.w(x!./.,é,)l(xij <x)
i=t k
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for /=1,...,m and [ the indicator function. It can be shown that

\/;(?;:ZJ—)N(O’W)

®

in distribution, as »— o0, with ( =(§,,...,Cq)' (n,/ﬁ,...,nq/n)’, under certain

conditions.
We turn now to the question of density estimation based by smoothing the

Il

increments of G,, i=1,...,m
3. Main Results

Set p,=n/n,,i=1,...,m and w(x,8,)=w,(x) for i=1,...,m. In particular,
p, =1 and w,(x)=1. In what follows, we consider only univariate measurements.
Smoothing the increments of G, , for all 7, amounts to the following estimators
m_Hy X —
©) 8(x) =32 X (x,) K ( p Jl—‘
n i=t j=I n

where 4, is a sequence of window widths such that #, -0 as n—>o and K isa
kernel function. It turns out that under some regularity conditions

~ 1 n 2 1 p W ( )gl (x 2
1. AMISE| g,(x)|=—=h'k; x)) dx+ L dx |K*(
[gl( ):] 4 n'v2 J‘(gl( )) I’lh zk kaWk j
2. The asymptotically optimal bandwidth-which is found by minimizing

AMISE [ 8, (x)] —~is equal to

I/5
hgz[ e (x)e(x), j (J& a)” (J(ere)) ae) " wie v

4=t P Wi (x)

3. Assigning 4, from the above expression, we obtain that the asymptotic
mean integrated square error is equal to

[ jp, ! W j ( J-KZ (t)dt)4/5 ( j(g,"(x))z dx)l/S kzz/sgl-zs/sn_z;/s_

Notice that the new den51ty estimator reduces the asymptotic mean integrated
square error (AMISE) when it is compared with that of of traditional density estimator
(see Wand & Jones (1995)). Indeed, recall that

(10) AMISE[ g, (x)] —h“ K (2l dx+——j1<

n[ n



VOLUME I

2° QUADRIMESTRE DE 2001

with g, (x)=1/nh, D" K( - ) It follows that AMISE[ g, (x)]< AMISE[Z,(x)].

Thus, the proposed density estimator has less asymptotic mean integrated square error.
Equality is obtained if n, =0 for i/, that is only the /’th sample is available.

To choose the smoothing parameter we take an empirical approach by setting

/s

11 };" _ &W_/ﬂx)_g”/@dx (J‘Kz (t)dt)I/S(I(g,"(x))z dx)—l/ﬁ kzz/scl—l/sn—l/s.

m

et Pe%e (x )
It is well known that we can either use an initial guess to get an estimate of
-
( j(g";'(x))z a’x) and then substitute back in (11) to obtain 4, or to iterate this

scheme further until convergence.
4 Applications

We illustrate the new methodology to real data consisting of results from an
experiment in visual perception using random dot sterograms. The subject observes
two images which appear to be composed entirely of random dots. However, they are
constructed so that a 3D image will be seen, if the images are viewed with a stereo
viewer, causing the separate images to fuse.

An experiment was performed to determine whether knowledge of the form of
the embedded image affected the time required for subjects to fuse the images. One
group of subjects (group NV) received either no information or just verbal information
about the shape of the embedded object. A second group (group VV) received both
verbal information and visual information (e.g., a drawing of the object). The
scientific question is whether there are differences between the mean time required to
fuse the images for the two groups. Previous analysis do indicate that there are
significant differences after log-transforming the data. We show that our approach
identifies differences between the mean times without transforming the data. In
addition we see show that the new semiparametric density estimator for the VV group
reduces the AMISE by almost a factor of two when compared with the traditional den-
sity estimator while yhe corresponding semiparametric density estimator for the NV
group reduces the AMISE by a factor of 1.5.
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1. Introduction

Modern technology allows for high-frequency sampling of statistical data. In
intensive care, e.g., the vital signs of critically ill patients are measured in short time
intervals. A crucial task is the automatic, fast and proper identification of patterns of
change in the observed time series.

Control charts suggested in statistical process control typically rely on the
stationarity of the model parameters and on the existence of a target value for the
observations. However, in intensive care the data generating processes are neither
stationary nor can a single target value be specified in advance (Hogel, 2000).
Moreover, monitoring schemes are usually designed to detect a single sudden change,
although in many cases the process deteriorates gradually or in several little steps
(Chang and Fricker, 1999). Such slow monotone trends do not only influence the
process mean, but they also have a large impact on the estimates of the model
parameters. Simulation studies show that the properties of the monitoring schemes
strongly depend on these estimates. Thus, there is also a loss in power versus sudden
changes if there are undetected trends in the time series.

In Section 2 we modify Brillinger's (1989) approach for trend detection so that
it is suitable for online monitoring. In Section 3 we present the results from a
simulation study and conclude with a discussion of some possible improvements.

2. Online Detection of Trends

Monitoring schemes for autocorrelated data are often based on autoregressive
models since these form a quite flexible model class and are rather easy to handle. We
assume local stationarity of the time series and move a time window of length n
through the series. The basic model for the observations belonging to the current time
window reads

Y=§8+E ,t=1..,n
E =¢E_+..+¢ E_ +U,

pt=p
That is, the observations at time t consists of a deterministic signal we are
interested in and additive random noise from an AR(p)-process with unknown
innovation variance and autoregressive coefficients. We assume that the parameters of
the AR(p)-model change slowly over time in comparison to the window width n
(compare Belitser, 2000).
For trend detection often a parametric form like

S, =a-t+b
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is assumed and it is tested whether the slope is significantly different from zero.
However, this means to specify a fixed form of the signal and in consequence non-
linear trends might not be detected this way. On the other hand, control charts such as
EWMA and CUSUM charts are often based on a weighted sum of the observations.

However, the power of these charts is usually best for sudden shifts of the
mean. Another approach to trend detection is to mirror the start and the end of the
series (i.e., of the current time window in our context) by comparing time delayed
means calculated from the first and last m observations, m<n/2 . This is equivalent to
using a weighted sum

ZC,Y, :_iyl ———e—— Y 4 —Y
1=1 m m

with weights summing up to zero. Values of such a weighted sum which are far away
from zero indicate a monotone change during the time interval considered.

We follow Abelson and Tukey (1963) and Brillinger (1989) who apply a mini-
max approach to get weights for which the worst-case discriminatory power for an
extremely unfavourable monotone trend is as high as possible. This results in

o~

and the corresponding worst case is a single step change. A monotone trend is
detected if the absolute value of the weighted sum is too large in comparison to the
variance

Var(ic,)’,j = i cey(t—s)
=1

§yrel
Hence, we need reliable estimates of the autocovariances
Y (O)aay (}’l - l)

or, equivalently, of the parameters of the AR(p)-model. Since a trend has a serious
impact on the usual sample autocovariances, we should try to reduce the influence of
trend patterns in a simple way. For this reason, Brillinger (1989) replaces the overall
mean by a running mean when analysing a long time series retrospectively. However,
this is not a good solution if only a small or moderate number of observations can be
used. Instead, we suggest to fit a parametric model as mentioned above using simple
least squares estimates in a first step. Then we estimate the autocovariances up to the
time lag p from the residuals using

1 1~h

52V —at=b)(¥,, ~at+ ) -b)

n—2

y(h) =

and estimate the parameters of the AR(p)-model thereafter via the Yule-Walker
equations. The denominator (n-2) helps to reduce the negative bias of the sample
autocovariances (the means are estimated using two parameters).

3. Simulations

Using large sample asymptotics, Brillinger (1989) suggests to compare the
standardized weighted sum to the standard Gaussian distribution. Simulations show



that this rule is too sensitive even in a retrospective application to a long time series
(Woodward et al., 1997). Moreover, in online monitoring we apply multiple testing
since we check at each time point whether a trend has occurred during the last n
observations. Moreover, n should not be chosen too large since stationarity is judged
to be only a local approximation. Thus, we want to find suitable critical values ¢ and
check the power of the procedure via some simulations.

Most monitoring schemes for autocorrelated data apply simple AR(1)-models.
We simulate 200 time series of length N=300 and with innovation variance set to one
for several autoregressive coefficients and several deterministic signals. Linear trends
of length 50 or 100 starting at time point t=100 with slopes a=0, 0.05, 0.10, 0.15, 0.20,
0.25, as well as sinus-shaped trends causing the same total change in level as the linear
trends with the same duration are considered. For the time window we choose n=60
observations corresponding to one hour of measurements observed in one minute
intervals.

A crucial point is the estimation of the model parameters. In our simulations, we
find the bias and the mean squared error MSE of all estimators to be small in case of
small or moderate autocorrelations. For very strong positive autocorrelations the
estimates become negatively biased and the MSE increases.

With respect to critical values, we consider c=5 to be a good choice if we want
to restrict the probability of a false alarm within 300 subsequent observations to less
than 5 %. We find this to be a conservative bound in case of small autocorrelations,
while in case of very strong positive autocorrelations we might need a somewhat
larger value. Application of normal theory for the asymptotic distribution would result
in a smaller value.

Trends which are not very slow can be detected reliably using c=5 if the
autocorrelations are small or moderate. For instance, the simulated power is larger
than 80 % for all autocorrelations considered if a linear trend with a slope of 10 %
occurs during 50 minutes. The detection of sinus-shaped trends is somewhat more
difficult. This might be caused by the smooth beginning of this trend form, which has
zero derivative at its endings.

The time needed for trend detection does not depend strongly on the slope, but
increases with the autocorrelations. On the average, between 30 and 45 observations
are needed to detect a trend with a slope of at least 10%. Strong positive correlations
result in monotone sequences in the time series just like deterministic trends.
Therefore, these mechanisms are hard to distinguish within short time series anyway
(Woodward and Gray, 1993).

4. Conclusion

We have proposed a procedure for online detection of monotone deterministic
trends in time series. Since reliable estimates of the autocovariances of the noise
process during trend periods are needed, we have used a simple variation of the
sample autocovariances which helps to improve the estimation of the variance of the
test statistic during trend periods. So far we can say that the results of our simulations
are encouraging.

The procedure was also applied to time series with several thousand
observations of the vital signs of a critically ill patient. The procedure identified
almost every trend pattern detected by an experienced senior physician.
Approximately 40 % additional trend patterns were detected by the procedure which
were not found to be important by the physician. These "false alarms’ were caused by
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a soft monotone change during the time window which came along with very small
random fluctuations resulting in a small variance of the test statistic. Therefore the
procedure was more sensitive to small systematic changes in the mean than the human
expert. Such application-dependent problems could be overcome by using a lower
limit for the variance based on existing knowledge or on an analysis of past data.

There are several possibilities for further improvements. Robust estimates of the
autocovariances can reduce the impact of outliers on the classifications, and small
sample corrections might help to overcome the negative bias of the estimators found
in case of large correlations.
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1. Introduction

Consider a situation where m competing risks are acting simultaneously in the
same environment. Suppose there are K independent groups of unit, and each unit is

exposed to m competing risks. Let 7,, be the failure time and §,, €{0,1,2,...,m} be
the cause of failure, i=1,2,...,n, and k£ =0,1,2,...,K (0 corresponds to censoring).
For each &, the pairs (T,”.,S ,“.), i=12,..,n,, are independent and identically
distributed. We assume noninformative censoring and we do not make any regarding

the dependence among the m risks.
Define the cumulative incidence function for the risk j in the group £ by

) Fu(0)=P[T, <18, = j],
which are assumed to be continuous with subdensities f,q( ). Also define the

causespecific hazard rate by /,(¢) = f"(( where S, (1) = [ >t]— 1-> 0F,q(t)

is an overall survival function of the group & .

The main purpose of this pager is to develop a test procedure for the hypothesis
Hy:oh (1)=hy,(t)=...=hg(1)=h,(t), ¥j=12,....m, where h(),j=12,..,m
are unspecified common cause-specific hazard rates.

The problem of testing equality of cause-specific hazard rates corresponding to
m dependent risks has been discussed in the literature (see Lam, 1338, Aly et al,
1994 and references therein). Gray (1988) gives a class of K -sample tests for
comparing the cumulative incidence functions of a particular type of failure out of
several competing risks among different groups. Lindkvist ef al. (1998) propose a
class of tests based on a two-dimesional vector statistic for testing equality of
cumulative cause-specific hazard rates corresponding to two risks between two
samples. Their approach can be easily applied to m risks.

The test is applied to the analysis of contraceptive failure data in intrauterine
device (IUD) collected in several countries.

2. Test Statistic and Asymptotic Distribution

Let n= Z::]”k . Define the counting process N, ()= ZZII[T,”. <t,8,=Jjl
Y ()= 1[T,=t] and M, (6)=N, (1) [Y,(s)dA, (s j=0,1,2,...,m
k=12,...,K. Then for 1ef0, T] ,(z) s are orthogonal square integrable
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martingales with respect to the filtration {.7-” N ’Y} which is generated by N, and Y,.

t

K
Define the overall counting process N_( ZN,V , Y (£)=>Y,(¢), and the

martingale M ( ZM . Note that <Mki’Mk)"> =0, for (k,j)=(k',/'), and

Mj>=6/_./.,_[:Yk, (s)

A K -sample test can be based on the scores for j=1,2,....m, k=1,2,..,K

P %—fiﬁw (){dA, ())-dA, (1)},

where K,:’, ( ) are suitably chosen locally bounded {.’EN ‘Y}-predictable processes.

dA, (1)/Y,(t), and dA ( (1)/Y.(r). When Kj,(¢)=8,K;; () then
2) 51mp11ﬁes to
3) Z,= [ K (){dA, (1)-dA, (1)),

which can be shown as a generalisation of the test proposed by Lindkvist ef al. (1998).
The martingale central limit theorem is applied to derive the asymptotic distribution of
Z (Andersen et al. 1993 ).

Theorem 1
Assume 7Y (s)—> y,(s) uniformly in probability, where y,(s) are

deterministic functions. Denote v sz . Then, under the assumption that
n"' Ky, (1) > Ky, () uniformly in probablllty, with each K, (-) bounded on [0,7] and

under the null hypothesis, as n — o0, n”"*Z converges in distribution to N, (0,Z),
where

min(t, T4) 6
(4) z:(i,k),(i',k') = .[, ( ) \]szy kl/ dA ( )

Vi (
A consistent estimator of Z(i’k)v(,,k,) is given by

_1 mi“(TNk') Skk’
- K 1)dN.
h J; [Y"(l—)Y"(i—) JZ Kif ku ( )

where 1 =min(‘tk, ) When K,

becomes block-diagonal, X =diagonal(D,,D,,...,D,} where D,(k,k')= Z i)
i=lL...m,k k'=1,..,K.

Under the alternative, as n—o, n 7Z converges in distribution to
N, .« (E’Z) , where

(r)=3, K,’(’,(t) the asymptotic covariance matrix

.E z klj dAk/ - i ’

To generate a class of tests of H,, we take the weight process of the form



6] Ko (0)=L ()Y (¢), i, j=1,2,...,m, k=1,2,..,K.

For the weight process of this type f:] Z,, =0 for each i. Hence in this case

rank of % is (K —1)rank(4), where 4 is the mxm matrix

i.j)= [ L (t)h, (1) ae

where n™'K; () tends to L} (), (¢) as n—> 0. In the follow-up we assume that A
has full rank m. Under the null hypothesis, the test statistic »'Z'Z™'Z then has
asymptotically chi-squared distribution with m(K - 1) degrees of freedom. Under the
alternative, the test statistic has asymptotically noncentral chi-squared distribution
with m(K —1) degrees of freedom with the noncentrality parameter p 7'y . It is

shown that the locally asymptotic efficient nonparametric test belongs to this class for
the alternatives of the type

(0=, )+, () 3, (0 ol a),

for k=1,2,....K and j=1,2,...,m, and a, =n"* throughout. The motivation for this
alternative comes from the Gumbel's distribution which is illustrated in the next
section. By applying the technique given on pages 615-624 of Andersen ef al. (1993)
it is shown that the nonparametric test is asymptotically equivalent to an efficient
parametric test.

When the matrices (y U(t))1>0 can be diagonalized by the same linear

trasformation simultaneously for all 7, the sequence of local alternatives can be
expressed as

hy (8)=h (1) +a; 9, ()y;()h, () +o(a)'), j=1.2,...m; k=1,2,...K
where ¢,; are constants and v ; (t) are fixed functions, j=1,2,...,m; k=1,2,... K.

An attractive process in our case is the type of process suggested by Harrington
and Fleming (1982). We will consider the weight process

©) L(n=[1-£,)]
where p is a fixed constant between 0 and 1 and I%J (¢) is an estimate of the common
incidence, function forrisk j, P[U <t,¢ = j] and is given by
n A dN(u)
7 F(t)=| S{u—)—L+—,
( ) J (t) (u ) Y(u)

where S (t—) is the left-hand limit of the Kaplan-Meier (1958) estimate of the
survival function of U .
Example 1

Simulation Study
We consider a m -variate Gumbel exponential distribution, with parameters o

and A =(A,...,A,), with the density, f(x,%,.....x,)=]] % exp( :”zlk,.x,)x

[1+aH (2exp )—1)]

We will consnder K =5groups and m =3 risks, and the true alight function
corresponding to the optimal test and also the weight function given in (6) with
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p =0.5. The level of significance used throughout is 0.05. The null hypothesis is
rejected if the test statistic is greater than 21.026. The parameters used in the
simulation are o = 0.5 throughout and A = (0.8,0.2,0.6) for the null hypothesis. The

censoring distribution is taken as exponential for each group with intensities (1, 0.6,
0.7, 0.8, 0.9), respectively. Samples of sizes (50, 60, 70, 80, 90) were generated for
five groups with 1000 repetitions. The empirical distributions were observed to be
quite close to the true distribution. The empirical level of significance using the
optimal weight function is 0.056 while it is 0.06 when the weight function (6) is used.

To check the performance of the test as well as to compare the two weight
functions, noncentrality parameters and empirical powers are computed when the
parameters are (0.8, 0.2, 0.6), (0.79, 0.19, 0.59), (0.789, 0.199, 0.599), (0.7, 0.1, 0.5),
and (0.69, 0.09, 0.49) for the five groups.

The empirical study showed that the Harrington and Fleming (1982) type of
weight function can be used in practice since it gives power which is reasonably close
to the power of the test when the optimal weight function is used.

Example 2

Application

The data are taken from a five year follow-up study of 1547 women from
Finland, Sweden and Hungary, on termination of IUD conducted by a pharmaceutical
company based in Finland. The summary of the data is given below:

Termination due to Finland Sweden Hungary
pregnancy 2 0 0
expulsion 31 28 9
amenorrhea 11 7 50
bleeding and pain 60 96 64
hormonal disturbances 46 80 12
censoring 398 430 223
total 548 641 358

The main interest was in testing the equality of the five cause-specific hazards
for the three countries. The weight functions used were the same as in (6) with
p =0,0.5,1. The values of the test statistic are 149.38, 149.52, and 149.63

respectively. These values are higher than the cut-off point, 18.3, of the chi-squared
distribution with 10 degrees of freedom. Hence the hypothesis of equality of
cause-specific hazards is rejected.
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We say a (wide sense homogenous and isotropic) random field is long range
dependent if its spectral density has a singularity at the origin, i.e. it has a zero or it
diverges to infinity at zero frequency. Random fields with long range dependence are
now known to arise in many cases of interest, for instance, in the astrophysical
literature, see Peebles (1990). Albeverio et al. (1994) and many subsequent authors
have studied the asymptotic behaviour of solutions for nonlinear differential equation
in three dimensions, as motivated by physical considerations, and found that long
range dependent behaviour typically arises under a great variety of circumstances.
Many other stochastic models can produce long range dependent behaviour in random
fields; for instance, fractional and non-fractional diffusion-wave equations (Anh et al.
(1999)), with applications including wave diffusions in porous media, nonlinear
acoustic shock waves and other types of irrotational flow. In all these cases the exact
form of the spectral density can be quite complicated or even not yet known, however
typically spectral singularities do arise around the origin.

In the time series case, statistical inference and its mathematical foundations in the
presence of long range dependence have now been investigated in great detail, under both
parametric and semiparametric conditions, see Giraitis and Surgaili (1990), Beran(1994),
Robinson(1995a,b), Giraitis and Taqqu(1999), and many others. On the other hand, for the
random field case statistical inference procedure have not been developed to the same
extent as for time series, the only references being provided by Heyde and Gay(1993), and
by Leonenko and Woyczynski(1999), who consider a fully parametric specification over
the whole frequency band. No effort has been devoted so far to allow for semiparametric
procedures, making assumptions only on an atbitrary small neighbourhood around zero
frequency. Nevertheless, data sets which are candidates for long range dependent
behaviour (like catalogs of galaxy redshifts in the astronomical context) are often
characterized by an extremely high number of observations; hence it can be
computationally very hard to implement fully parametric estimates, which are typically
not available in closed form and require lengthy iterations. More important, a full-band
model entails by necessity a number of assumptions and approximations whose validity
can be questioned, while many of them need not be necessary for the analysis of the
behaviour of the system at the largest scale; the presence of observational error, moreover,
can add a white noise additive component in the spectral density of the observables, so that
a full band model may be misspecified, whereas our narrow band specification may still
be valid.

It is also important to remark how most physical models are developed for
continuous parameter fields, whereas observations are usually available on a discretized
lattice; discretization procedures have a complicated nonlinear effect on the spectral
density, which is often difficult to pin down exactly, especially as data collection is in
many cases beyond the control of the statistician. The most common discretization
procedures, however, such as neighborhood smoothing or grid sampling, do not have
effects at zero frequency, except at most some rescaling in the constants, and this provides
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in our opinion one further reason to favour local-to-zero specifications. The behaviour of
the spectral density around the origin is often of considerable interest by itself; for
instance, for the asymptotic analysis of geometric functionals of random fields, see Ivanov
and Leonenko (1989); the slope of the spectral density at the origin can be used as the
benchmark to discriminate between alternative models, such as different inflationary
scenarios for the very early Universe.

The purpose of this paper is to develop a semiparametric procedure for statistical
inference on the long range dependence parameters, imposing only local-to-zero
conditions. Our basic idea is to extend to the random field case the Whittle semiparametric
procedure considered for long range dependent time series by Robinson (1995b). As many
semiparametric methods, Whittle estimates rely only on the information at the smallest .
frequencies, and therefore have asymptotic efficiency zero with respect to procedures
based on a correctly specified parametric model. In the presence of misspecification of the
high-frequency component, however, a parametric model will generally lead to
inconsistent estimates, whereas semiparametric procedures have robustness properties that
seem desirable. Moreover the loss of asymptotic efficiency seems acceptable in many
random fields contexts, where data sets candidate for long range dependent behaviour are
often characterized by an extremely high number of observations (e.g. the ongoing Sloan
Digital Survey on stellar distribution aims at mapping the position of more than one
million galaxies). Finally, from the computational point of view the procedure we
advocate seems extremely convenient, requiring minimization of a globally concave
univariate function, a task which can be easily accomplished by several well-known
optimization routines.

In this paper, we establish first some results of independent interest on the
asymptotic behaviour of the discrete Fourier transform of a homogenous and isotropic
vector field with long range dependence; this material extends to the random field case
analogous results by Robinson (1995a) and Velasco (2000), and we believe it may find
applications for other semiparametric inference procedures in the presence of spectral
singularities. We then focus more directly on statistical inference; in particular, we analyze
Whittle semiparametric estimates, for which we prove consistency and asymptotic
Gaussianity. The proofs are rather lengthy and collected separately.
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1. Introduction

The epistemological value of the theory of probability is revealed only by limit theorems.
Gnedenko and Kolmogorov [1954]

In the history of the Theory of Probability we can find names of great
mathematicians who were concerned with the limit behaviour of sums and extremes,
like Lévy, Khinchine, Gnedenko, Doeblin, Feller, Fréchet, Fisher, Tippet, Gumbel,
Weibull and Mejzler. In fact, it was the study of limit theorems which changed the
"Calculus of Probabilities" into “Probability Theory". In this work we present some
partial results related to random normalizations.

2. The Quotient Between the Sum and the Maximum

The development of the theory of maxima of independent random variables
(r.v.'s) was, in some way, parallel to the theory of sums of independent r.v.'s. Apart
this possible parallel, some authors have been tempted to compare them in a more
direct way using the quotient between M, = max,<;<, X; and S,= X<, <, X,, revealing,
in this way, the susceptibility of the sum being influenced by the maximum term.
Among these authors we can find, for example, Darling, O'Brien, Maller, Resnick,
Teugels and Bingham.

Let us consider {X;},.n a sequence of independent random variables, identically
distributed (i.i.d.) as a random variable X, F its distribution function and let w(F) be
the supremum of the support of X, i.e., ®(F) = sup{x: F(x) < 1}. Suppose that X > 0.
Bingham ef al., [1987] have put together some results concerning this subject:

e M,/ S, 0 in probability <> J:de(y) is of slow variation”;

e M,/S,— 1 in probability < 1 — F'is of slow variation;

e M,/S, has a non-degenerate limit distribution < F is attracted to a stable law
of index ae(0,1) < E(S,/M,) has a finite, grater than one limit;

e If X has a finite mean p then: (S,— nmu)/M, has a non-degenerate limit
distribution <> F is attracted to a stable law of index ae(l, 2) <
E((S,—np)/M,)— ¢ € (1,+) (and then a = (1 + ¢)/c).

. - . S g(ax
We say that a function g, defined for positive numbers, is of slow variation if  Iim (e)
X—>+0 g( X)

=1, Va>0.
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3. Random-Normalizations: Partial Results

I keep the subject before me and wait till the first dawnings open slowly, by little and little, into
a full and clear light.
Isaac Newton

The partial results here presented (the first dawnings) show a new way of
looking to classical normalizations (which means, linear normalizations); quoting
Resnick, [1986]:

Limit theorems are useless in statistical contexts if they depend on parameters
that must be computed from unknown distributions. A way of solving these problems is
to replace these parameters by functions of the observations.

Building also an extra parallel between sums and extremes, and inspired by
Logan et al. [1973] who have studied, for i.i.d. r.v.'s, the statistic

(10) ZK/(,Z:‘,IXIPTP,

and by Darling [1952] who has studied the limit case

e s
an 3 Jysix]

we have been studying the statistics

. \p
W#g&?ﬂ/ [ZW] and 1, (v )= e X, /e

Both variables have support contained in the interval {—1,1]. When X > 0,
W.(+0)=1, and the statistic is no longer of interest. Also if the support (supp) of the
variable is bounded, the weak limit of W, (+w0) is

X,.|,

sup suppX

-l = g
W,;_>+<l>om w, (+ 00) max“inf Suprl, |sup supr“

If the support of X is inferiorly unbounded and superiorly bounded then the
weak limit of W, (+o0) is also easily calculated.

Some exact and asymptotic properties of W, (+o0) and W,(p) will be now
presented.

Proposition 1 If X is absolutely continuous then

o Fyy(x)=n [ [F(xt)=F(e)]™ £ (1)t 14 (x) 4T (x).

o Ifw(F) > 0then P {Wn (+o0)=1]>0.

o If X is simmetric then P [Wn (+w0) = 1] = 1%,

Proof The proof can be found in Mendonga [1999].

Proposition 2 Let us suppose the support of X is contained in [0, +o0). If 1-F is
of slow variation then lim,,«Fw (x) = Fi(x), where F| is the d.f. of the degenerate r.v.
concentrated in the value 1. .



;J"/

REVISTA DE
ESTATISTICA
211¢

2° QUADRIMESNZ&DE-{“ZO(]’-T
o !

Proof Since the variables are non-negative we can write

X Z_
I - =

I<1Sn

Fy, ) (X )

(i

(where Y; = X/ and use Darling's [1952] results.
Once more, if we use Darling’s [1952] results, we can state that

Proposition 3 If X;> 0 and if Z:;OX ., properly normed, converges to a stable

distribution, with characteristic exponent 0 < o < 1, then

1
A B >(x)=1-G(;:]

where G is such that

o . == (l)
J: exp(ity)dG(y) = —a J"Ei(iftu_—_l)du‘

o ua+1
Still about W,(p), observe that, when max<;<, X; = X,~O <0,

X,
<z?a<i|p>~p<-nh© g (S
=1
( r]giicx) >3 (=D)|x,[ >3 2 (-0, [

which is an impossible event. We can then conclude that

Proposition 4 If xe[-1, —1/n'P), then P[W, (p) < x] = 0.

Further: having in mind Resnick's tail equivalence concept, and that Paretian
tails span all possible regular variation index, we have computed W, (+o0) for the
variable X with density function given by

F06) = Y2 BaoP (=) P ey () + Y5 BraP! ()P Mgy (1), @, B, B2>0.
X has Paretian tails, with regular variation index —; (right tail) and B, (left tail). In

the interval (—a, o) the integral f [F(xt) - F(t)]n_l F()dt isnull. For-1<x <0 we

n—1
(=]
2”
which converges to zero when n goes to infinity; when 0 < x < |

x i y 1-
@w()f%f%{lf[l) —%yﬁ} § dy+[ —_ ]

obtain

X

IfB] Bz— B then
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X — ——vy
Wn(+oo)( ) 2 2\ x 2 N
= x" +
1+ xP 2
. x"
which converges, when » goes to infinity, to R
X
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1. Introduction

When analyzing times of duration (e. g. survival times in clinical trials, failure
times in reliability studies or the length of spells of economic interest), a number of
problems related to “loss of information” (in a wide sense) typically emerge. The
presence of censored data is one of the most common features in this field. Right-
censoring is caused by the occurrence of a risk that precedes the end of the spell being
analyzed. Another phenomenon (very important in renewal processes) is that
provoked by length-biased sampling. Roughly speaking, the length-bias appears when
each duration time is sampled with a probability that is proportional to its length.

Let 7 be the duration of interest, and let /7 be the distribution function of T .
The length-biased distribution of F is

F'(ty=p""' ’J.uF(du)

where p is the mean duration time (assumed to exist). Under length-bias, one
observes a random sample (not from F but) from F". Put ¥ for a random variable
with distribution F*. The observable information under both random censoring and
length-bias is represented by a pair (Z,ES) where Z=min(Y,C) and & = I(Y <C),
C being a censoring variable independent of Y . The role of & is indicating if the

corresponding datum is censored (& =0) or not (& =1). The problem considered here
is that of the estimation of F (and related quantities) given an initial sample of

independent pairs (Z,,8,), i=1,...,n, with the same distribution as (Z ,0 )

Consistent estimation of F from censored data is an old goal in statistical
research, Kaplan and Meier (1958) introduced the nonparametric maximum likelihood
estimator of this curve. The so-called product-limit Kaplan-Meier estimate £ satisfies
F(t) > F(t) with probability one (provided that the censoring distribution is not too

heavy). Under length-bias what we get is F(y—>F "(#), and we have no longer

consistency. Nonparametric estimation under length-biased sampling mechanisms was
considered, among others, by Vardi (1982, 1985), Horvath (1985) and Jones (1991).
For extending their ideas under random censoring, consider the key relation

F(t)= ]u"F*(du)/oqu"F*(du).
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Then, substitute the product-limit F for F'. We come up with the length-
biased-corrected product-limit

F(r)= ju-‘ﬁ(du)/ ju—'ﬁ(du).
0 0
This is the natural extension of Vardi (1982)’s estimate under both length-bias

and rigth-censoring. Note that F shares some properties with F . For example, it
gives positive mass to the uncensored observations but not to the censored ones.
However, unlike the usual product-limit, F takes the value one at the maximum
uncensored time, irrespective of the status (censored-uncensored) of
Z(n) =maX,, Z,.

From a formal viewpoint, F(¢) is nothing but a quotient between two Kaplan-
Meier integrals as those analyzed in Stute and Wang (1993) and Stute (1995, 1996). In

Section 2 we present large sample results for F and related estimates. Section 3 gives
an illustration of the proposed techniques with real data. See de Ufia-Alvarez (2000)
for proofs and further details.

2. Main Result

~ We state our main result for the empirical parameter
7 =& fodF.... fo,dF)

where the functions g,¢,,...,¢, are chosen by the researcher. Special cases of v give
estimates for the distribution function F(z), the survival function S(¢)=1-F(¢), the
cumulative hazard function A(¢) = —In(1- F(¢)), the mean residual time function

1

"O=1T"F0

Jou- o),

and parameters such as the mean duration time and the variance of T . Put
y =g( I(p,dF,..., j(pra’F)

for the limit of y .
In regular situations, we obtain y —y with probability one and

Jn(y =y) > N(0,6%) in law, where the limit variance o2 is a complicated function
of g, the ¢ ’s, and the joint distribution of the pair (Z ,0 ) In practice, one will be

interested in consistently estimating the o’ parameter. The jackknife has been
analyzed to this purpose by Stute (1996) under random right-censoring. A similar
approach can be followed in our context, but details are not given here.

In proofs, the key fact about ¥ is that it can be expressed as a function of (r+1)

integrals with respect to the usual product-limit measure. Once this is noted, we
proceed by applying the strong law in Stute and Wang (1993) and by using the iid
representation in Stute (1995).

Length-biased sampling 1s closely related to the left-truncation phenomenon.
Indeed, length-biased data can be seen as arising from a left-truncated situation in
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which the truncation variable is uniformly distributed on an interval containing the
support of T . In general, the sampled distribution is of the form

F*@y=w" }w(u)F(du)

where w is a nonnegative weighting function (known to the researcher). See Vardi
(1985) for further motivation in the context of selection bias models. The
corresponding correction for estimating F becomes

F*() = rjw(u)*'ﬁ(du)/?w(u)-'ﬁ(du).

of course, one can establish for this empirical similar results to those obtained for F .
3. An example

As an illustration, we consider data concerning unemployment spells of 700
Galician women. These data, obtained froni the 1. N. E. (the Spanish Institute for
Statistics), were collected by means of repeated inquiries at the individuals’ homes
from 1987 to 1997. We included in the sample just those women being unemployed at
the first inquiry time, the resulting spells being thus length-biased. Moreover, because
of the design of the inquiries, each individual was followed during no more than 18
months, so there was a risk of right-censoring for the unemployment duration time.
Actually, 378 spells were censored at the end of the period of observation, giving a
censoring percentage of 64%.

Time (months) PLE CPLE
3 .9914 9121
6 .9700 7707
9 .9386 6481
12 .9029 .5487
15 8729 4843
18 .8269 4017
21 .7895 .3446
24 7732 .3225
27 .7475 .2929
30 7151 .2590
33 .6912 .2364
36 .6799 2266

Table 1. Ordinary product-limit estimate (PLE)'and length-bias-corrected
version (CPLE) for the survival function of female unemployment duration in
Galicia.

For comparison purposes, we show in Table 1 the survival function 1- F(¢)

estimated by means of both the ordinary and the length-bias-corrected product-limit
estimates. Note that the ordinary product-limit decreases uniformly, overestimating
the probability of being unemployed. On the other hand, the corrected version reveals
that the probability of leaving unemployment is relatively high at the beginning, then
decreasing quite rapidly. The usual Kaplan-Meier mean and median for these data are

6.97 and 6.5 years, respectively; the corresponding quantities for 7 are 2.56 and 1.25
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years. So the conclusions may be very misleading if the length-bias problem is not
taken into account.
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New England, Armidale NSW 2351, Australia,
Tel: +02-67735060,
Fax: +02-67735078,
Email: creading@metz.une.edu.au,
URL: http://www.beeri.org.il/SRTL/

a 17-19 August

5th ICSA International Conference, Co-sponsored by IMS, to be held in Hong

Kong.

Informagdes: IMS Program Chair: Howell Tong, Univ. of Hong Kong, Local
Arrangements Chair: Wai Keung Li, University of Hong Kong
Email: htong@hku.hk

hrntlwk@hkuce. hku.hk

URL: http://icsa.vlp.com/HK2001/

0 19-23 August
22nd Annual Conference of ISCB (The International Society for Clinical
Biostatistics) will be held in Stockholm, Sweden, August 19 - 23, 2001.
Information: Scientific Secretariat.
E-mail: Theresa. Westerstrom(@iscb.stockholm2001.org
URL: http://www.iscb.stockholm2001.org/.




O 21-25 August
ICANN 2001, International Conference on Artificial Neural Networks of the
European Network Society, to be held at the Vienna University of Technology,
Austria.
Informagdes: Conference Secretariat: ICANN 2001, Austrian Research Institute
for Artificial Intelligence, Schottengasse 3, A-1010 Vienna, Austria.
Email: icann@ai.univie.ac.at

o 22-29 August

International Statistical Institute, 53rd Biennial Session (includes meetings of
the Bernoulli Society, The International Association for Statistical Computing, The
International Association of Survey Statisticians, The International Association for
Official Statistics, The International Association for Statistical Education), Seoul,
Korea.
Informagdes: 1S1 Permanent Office, Prinses Beatrixlaan 428,

P.O. Box 950, 2270 AZ Voorburg, The Netherlands.

Tel.: +31-70-337-5737,

Fax: +31-70-386-0025;

E-mail: isi@cbs.nl

or visit the Session website at http://www.nso.go.kr/isi2001

a 30-31 August
IAOS Satellite Meeting on Statistics for Information Society, to be held in
Tokyo, Japan.
Informagdes: Akihito 1ITO, Japan Statistical Association, 2-4-6 Hyakunin-cho,
Shinjuku-ku, Tokyo 169-0073, Japan.
Tel: +81-3-5332-3151;
Fax: +81-3-5389-0691;
Email: jsa@jstat.or.jp or lto@jstat.or.jp

o 30 August-1 September
International Conference on Statistical Challenges in Environmental Health
Problems, to be held at the Soft Research Park, Fukuoka City, Japan.
Information: The Chairman, Organizing Committee, Takashi Yanagawa,
Graduate School of Mathemathics, Kyushu University, Fukuoka
812-8581, Japan.
E-mail: yanagawa@math kyushu-u.ac.jp

Q 30 August-1 September
ICNCB - International Conference on New Trends in Computational
Statistics with Biomedical Applications (ISI 2001 Satellite Meeting, co-
sponsored by IASC), to be held at the Osaka University Convention Center, Osaka,
Japan.
Informagdes: ICNCB Office, Division of Mathematical Science, Graduate School
of Engineering Science, Osaka University. 1-3 Machikaneyama-cho,
Toyonaka, Osaka 560-8531, Japan; Fax +81(6)6850-6496.
Email: [CNCB@)jscs.or.jp
URL: http://www.jscs.or.jp/ICNCB/
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1-4 September
The annual meeting of Japan Statistical Society will be held at Seinan Gakuin
University.
Informagdes: URL: http://sunyht2.ism.ac.jp

6-12 September
International Association for MATHEMATICAL GEOLOGY 6th Int'l
Conference Canciuin, Mexico.
Informagdes: Gina Ross, Kansas Geological Survey.
Email: aspiazu(@kgs.ukans.edu
URL: http://www kgs.ukans.edu/Conferences/IAMG

17-19 September
Methodology and Statistics, to be held in Ljubljana, Slovenia at the Faculty of
Social Science, University of Ljubljana, Kardeljeva pl. 5, Ljubljana.
Information: Anuska Ferligoj.
E-mail: anuska.ferligoj@uni-1j.si
URL: http://vlado.fmf uni-lj.si/trubar/preddvor/2001/.

20-22 September
Rasch Symposium, in honour of Professor Georg Rasch 100 years birthday, to be
held at the Copenhagen Business School, Copenhagen, Denmark.
Informagdes: Marianne Andersen
Email: ma.mes@cbs.dk
URL: http://www.cbs.dk/mews/200701 .shtml

24-25 September
Statistical methods in biopharmacy, 4th international meeting: "Integrating
issues of efficacy, safety and cost-effectiveness', to be held in Paris, France.
Informagdes: Jean Auclair, IRI Servier, 6 place des pléiades, 92415 Courbevoie
cedex, France. Fax: 33 1 55 72 68 27.
Email: sfds.2001@curie.net
URL.: http://www.sfds.asso.fr/groupes/congresbiophar/congres2001.htm

24-27 September
Statistical Week 2001, to be held in Dortmund, Germany.
Informacgdes: URL: http://g2 www dortmund.de/inhalt/statistik/statwoch/intro.htm

25-29 September
32nd European Mathematical Psychology Group Meeting, to be held in Lisbon,
Portugal. Includes a workshop on Teaching and Training Mathematical Psychology
in an Interdisciplinary and International Context. An Introductory Course on
"Mathematical Psychology and Data Analysis" will be held on September 25th.
Information: Prof. Dr. Helena Bacelar-Nicolau, Tel: +351 21 793 45 54; Fax:
+351 21 793 34 08.
E-mail: hbacelar@fc.ul.pt
or
empg2001 @fpce.ul.pt
URL: http://correig.ce.fe.ul.pt/~cladlead/EMPGO1.html.




Q 1-3 October

2nd International Symposium on PLS and Related Methods (PLS'01) to be

held at Capri Palace, Island of Capri (Naples, Italy).

Information: Dr. Vincenzo Esposito, Dipartimento di Matematica e Statistica,
Facolta di Economia, Universita "Federico 1I" di Napoli, via Cintia,
Monte Sant'Angelo. Tel. +39 081 675112, fax: + 39 081 675113;
E-mail: binci@unina.it
URL: www.dms.unina.it/PLS2001.html

a 29-31 October

Statistics as bases of creation the economic policy and the economic

development in the South-East Europe, to be held in Skopje, Republic of

Macedonia.

Information: Mr. Sasho Kjosev - Faculty of Economics, University " Sts. Cyril
and Methodius", Skopje, Republic of Macedonia or Mrs. Biljana
Apostolovska - State Statistical Office of the Republic of
Macedonia.

E-mail: skosev@eccf.ukim.edu.mk
or
biljanaa@stat.gov.mk

0 1-4 November

Euroworkshop on Statistical Modelling - Nonparametric Models, to be held in

Schloss Hoehenried, Bernried, near Munich, Germany.

Information: Géran Kauermann (coordinator of the project) University of
Glasgow, Dep of Statistics & Robertson Centre, Boyd Orr Building,
Glasgow G12 8QQ.
E-mail: goeran@stats.gla.ac.uk
URL: http://www.stat.uni-muenchen.de/euroworkshop.

0 4-7 November

I1X Annual Congress of the Portuguese Statistical Society to be held at the

Universidade dos Agores, Ponta Delgada, Portugal.

Information: Comissdo Organizadora Local do 1X Congresso da SPE, Dep.
Matemética, Universidade dos Acores, Apartado 1422 9501-801
Ponta Delgada, Portugal.
E-mail: ix_congresso_spe@alf.uac.pt
URL: http://www.ixcongressospe.uac.pt

0 12-16 November
VIII Latin-American Congress in Probability and Mathematical Statistics, to
be held at the University of Havana, Cuba.
Information: Gonzalo Perera (Chairman Program Committee), Pablo Olivares
(Chairman Local Organizing Committee).
E-mail: gperera@fing.edu.uy
or
clapem@matcom.uh.cu
URL: http://www.uh.cu/eventos/clapem/ehome.htm.
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Q 14-16 November

The Federal Committee on Statistical Methodology, which is composed of the

senior statisticians from several U.S. federal statistical agencies and is sponsored

by the U.S. Office of Management and Budget is planning a research conference in

Arlington, Virginia.

Information: The conference will feature papers and software demonstrations on
topics related to a broad range of government statistical research
interests.

URL: http://www.fcsm.gov/

O 21-22 November
9th Conference on National Accounting: the measurement of the new economy;
Paris, France. Simultaneous translation French-English.
Information: Michel Boéda (INSEE) - Simultaneous translation French-English
E-mail: michel .boeda@insee.fr
URL: http://www.insee.fr/fr/av_service/colloques/cnat_accueil.html
or
http://www.insee fr/en/av_service/colloques/cnat_accueil.html

a 7-9 December
International Conference on "Characterization Problems and Applications",
tentative Venue: Antalya, Turkey.
Information: Omer L. Gebizlioglu, Ankara, Turkey; N. Balakrishnan, McMaster
University, Canada; Ismihan Bayramov, Ankara, Turkey.
E-mail: Omer.L.Gebizlioglu@science.ankara.edu.tr
bala@mcmail.cis.mcmaster.ca
Ismihan.Bayramov(@science.ankara.edu.tr

Q 19-22 December

International Conference on Statistics, Combinatorics and Related Areas and

The Eighth International Conference of the Forum for Interdisciplinary

Mathematics, to be held at the University of Wollongong, Australia.

Information: Chandra M. Gulati, School of Mathematics and Applied Statistics,
University of Wollongong, Wollongong, NSW 2522, Australia.
Telephone:+61-2-4221-3836, fax:+61-2-4221-4845.

E-mail: chandra_gulati@uow.edu.au
or
cmg(@uow.edu.au
URL: http://www,uow.edu.au/informatics/maths/statconference.

0O 20-22 December
Statistical Analysis for Global Environment, to be held at the Siam
Intercontinental Hotel, Bangkok, Thailand.
Information: Dr.Supol Durongwatana.
E-mail: fcomsdu@phoenix.acc.chula.ac.th
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o 20-23 December
International Conference on History of Mathematical Sciences, to be held in
Delhi, India.
Information: Dr. Y. P. SABHARWAL, Department of Mathematics & Statistics,
Ramjas College, University of Delhi, Delhi 110 007, India; Tel :
(011)294 1119.
E-mail: ypsabharwal@yahoo.com
or
ichm2001rjc@yahoo.com

2002

O 15-18 January
First International ICSC Congress on Neuro-Fuzzy NF'2002 to be held at The
Capitolio de la Habana, Cuba.
Informacdes: INTERNATIONAL COMPUTER SCIENCE CONVENTIONS
Head Office: 5101C-50 Street, Wetaskiwin AB, T9A 1K1, Canada
(Phone: +1-780-352-1912 / Fax: +1-780-352-1913)
Email: operating@icsc.ab.ca
or
planning@jicsc.ab.ca
URL: http://www.icsc.ab.ca/NF2002 . htm
or
http://www.icsc.ab.ca/

a 16-18 January
Food-Industry and Statistics, to be held in Villeneuve d'Ascq (LILLE), France.
Bat. EUDIL TAAL - Cité Scientifique, F 59655.
Information: E-mail: agrostat2002@eudil.fr
URL: http://www.eudil fr/~agrostat.

o 4-8 February
ProbaStat 2002, the 4th International Conference on Mathematical Statistics,
to be held at Smolenice Castle, Smolenice, Slovak Republic.
Information: E-mail: probastat@savba.sk
URL: http://www.um.savba.sk/lab_15/probastat.html.

O 12-15 February
First International ICSC-NAISO Congress on Autonomous Intelligent
Systems ICAIS 2002 to be held at Deakin University, Geelong, Australia.
Information: E-mail: icais02@itstransnational.com
URL: http://www.icsc-naiso.org/conferences/icais2002/index.html
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15-21 March
ENAR/IMS Eastern Regional to be held in Washington, DC, USA.
Informacdes: Program Chair: Jiayang Sun, Case Western Reserve University
Local Arrangements Chair: Colin Wu, John Hopkins University
Contributed Papers Chair: Nidhan Choudhuri;
E-mail: jiayang@sun.STAT.cwru.edu
colin@mts.jhu.edu
nidhan@nidhan.cwru.edu
URL: http://sun.cwru.edu/ims

2-5 June

Annual Meeting of the Statistical Society of Canada, Hamilton, Ontario,

Canada.

Informagdes: Peter Macdonald, Department of Mathematics and Statistics,
McMaster University, 1280 Main Street West, Hamilton, Ontario, -
L8S 4K 1, Canada.
E-mail: pdmmac@mcmail.cis.mcmaster.ca

17-20 June

MMR 2002, Third International Conference on Mathematical Methods in

Reliability, to be held at the Norwegian University of Science and Technology,

Trondheim, Norway.

Informagdes: Professor Bo Lindqvist, Department of Mathematical Sciences,
Norwegian University of Science and Technology, N-7491
Trondheim, Norway. Tel.: +47-73 59 35 20 - Fax: +47-73 59 35 24.
E-mail: mmr2002@math.ntnu.no
URL: http://www.math.ntnu.no/mmr2002/

23-29 June

The 8th International Vilnius Conference on Probability Theory and

Mathematical Statistics, Vilnius, Lithuania.

Informagdes: Professor Vytautas Statulevicius, Institute of Mathematics and
Informatics, Akademijos str. 4, 2600 Vilnius, Lithuania.

E-mail: conf@ktl.mii.lt

2-5 July
MCQT'02 - First Madrid Conference on Queueing Theory, to be held at the
Department of Statistics and OR, Faculty of Mathematics, University Complutense
of Madrid, Spain.
Information: Jesus R. Artalejo.

E-mail: mc_qgt@mat.ucm.es

URL: http://www.mat.ucm.es/deptos/es/mcgt/conf html.
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7-12 July
The Sixth International Conference on Teaching Statistics (ICOTS6), to be
held in Durban, South Africa.
Information: Maria-Gabriella Ottaviani - IPC Chair; Brian Phillips - International
Organizer; , Dani Ben-Zvi - IPC Scientific Secretary.
E-mail: mariagabriella.ottaviani@uniromal .it;
bphillips@swin.edu.au;
dani.ben-zvi@weizmann.ac.il.
URL: http://icots.itikzn.co.za/.

15-19 July
Current Advances and Trends in Nonparametric Statistics, to be held on Crete,
Greece.
Informagdes: Michael G. Akritas and Dimitris N. Politis IMS Representative:
Michael G. Akritas,
E-mail: mga@stat.psu.edu
URL: hitp://www.stat.psu.edu/~npconf/

21-26 July
IBC 2002 - International Biometric Conference 2002, to be held at the
University of Freiburg, Germany.
Information; Chair: Robert Curnow; Chair Local Organizing Committee: Martin
Schumacher.
E-mail: r.n.curnow(@reading.ac.uk
ms@imbi.uni-freiburg.de
URL: http://www.ibc2002. uni-freiburg.de/.

22-24 July
26th Annual Conference of the Gesellschaft fiir Klassifikation (GfKlI), to be
held at the University of Mannheim, Germany.
Informagdes: local organizer Prof. Dr. Martin Schader.
URL: http://www.gfkl.de/gfkl2002

27 July — 1 August
IMS Annual Meeting/Fourth International Probability Symposium, to be held
in Banff, Canada.
Informagdes: IMS Program Chair Tom DiCiccio, Cornell, Symposium Chair: Tom
Kurtz, U. Wisconsin, IMS Local Chair: Subhash Lele, U. Alberta.
E-mail: tid9@cornell.edu
Kurtz@math.wisc.edu
slele@ualberta.ca

4-9 August
Fourth International Conference on Statistical Data Analysis based on the L,;-
Norm and Related Methods - to be held at the University of Neuchétel,
Switzerland.
Information: Prof. Yadolah Dodge, Conference Organizer Statistics Group, Case
Postale 1825, CH-2002 Neuchatel. Phone +41 32 718 13 80 Fax +41
32 718 13 81.
E-mail: Yadolah.Dodge@unine.ch
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11-15 August
Joint Statistical Meetings, New York, Hilton and Sheraton New York.
Sponsored by ASA, ENAR, WNAR, IMS, and SCC.
Informacgdes: ASA, 1429 Duke St., Alexandria, VA 22314-3415;
Tel. (703) 684-1221;
Email meetings(@amstat.org

16-18 August
Symposium on Stochastics and Applications (SSA) to be held at the National
University of Singapore.
Informagdes: E-mail: ssa@math.nus.edu.sg
URL: http://www.math.nus.edu.sg/ssa

19-23 August
24th European Meeting of Statisticians, Prague, Czech Republic.
Informagdes: Martin Janzura, Institute of Information Theory and Automation,
POB 18, 182 08 Praha 8, Czech Republic.
Tel: 420 2 6605 2572.
Fax: 420 2 688 4903.
Email: janzura(@utia.cas.cz

24-28 August
Compstat2002 to be held in Berlin, Germany.
E-mail: info@compstat2002.de, website http://www.compstat2002.de
Informacdes: E-mail: info@compstat2002.de
URL: http://www.compstat2002.de

25-28 August

International Conference on Improving Surveys (ICIS-2002), to be held at the

University of Copenhagen.

Information: International Conference Services, P.O. box 41, Strandvejen 171,
DK-2900 Helterup, Copenhagen, Denmark. Telephone: +45 3946
0500, Fax +45 3946 0515.
E-mail: ICIS2002@ics.dk

2-6 September
RSS 2002 Conference to be held at the University of Plymouth, Plymouth,
England.
Information: The 2002 Conference of the Royal Statistitical Society (4-6
September) will preceded by short courses (2-3 September).
E-mail: J.Stander@plymouth.ac.uk

13-17 November

International Conference on Questionnaire Development, Evaluation, and
Testing, probably to be held in the southeastern United States.

Information: URL: http://www.ipsm.umd.edu/




O 28-30 December
International Conference on "Ranking and Selection, Multiple Comparisons,
Reliability, and Their Applications". Tentative Venue: Hotel Savera, Chennai,
Tamilnadu, India.
Organizers: bala@mcmail.cis.mcmaster.ca;, NKannan@utsa.edu; H. N. Nagaraja,
Ohio State University, mailto:hnn@stat.ohio-state.edu
Information: N. Balakrishnan, McMaster University; N. Kannan, University of
Texas at San Antonio; H. N. Nagaraja, Ohio State University.
E-mail: bala@mcmail,cis.mcmaster.ca
NKannan@utsa.edu
mailto:hnn@stat.ohio-state.edu

2003

0 10-20 August

International Statistical Institute, S4th Biennial Session (includes meetings of
the Bernoulli Society, The Intern. Assoc. for Statistical Computing, The Intern.
Assoc. of Survey Statisticians, The Intern. Assoc. for Official Statistics and The
Interna. Assoc. for Statistical Education), to be held in Berlin, Germany.
Informagdes: IST Permanent Office, Prinses Beatrixlaan 428,

P.O. Box 950, 2270 AZ Voorburg, The Netherlands.

Tel.: +31-70-337-5737;

Fax: +31-70-386-0025;

E-mail: isi@cbs.nl

or visit the Session website at http://www.1si—2003.de
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FUNDAMENTO, OBJECTO E AMBITO DA REVISTA
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O INE, consciente de como uma cultura estatistica é essencial para a
compreensdo da maioria dos fenémenos do mundo actual, e da sua responsabilidade
na divulgacdo do conhecimento estatistico, fazendo-o chegar ao maior numero
possivel de leitores, tendo reconhecido a necessidade de dar um passo nesse sentido,
passou a editar quadrimestralmente a presente Revista de Estatistica destinada a
divulgar:

a) Numa perspectiva cientifica, artigos originais sobre temas especializados
da estatistica, tanto pura como aplicada, bem como sobre estudos e
analises nos dominios econdmico, social e demografico;

b) Informacdes sobre actividades e projectos importantes do Sistema
Estatistico Nacional;

c) Informagdes sobre ac¢des desenvolvidas pelo INE no ambito da
cooperacgio.

d) Informag¢des sobre congressos, semindrios, coloquios e conferéncias de
interesse estatistico ou afim;

Para tal, sdo adoptadas as seguintes formas de contribuigo para publicagdo na
Revista:

- Quanto aos artigos referidos em a), contribui¢des da iniciativa dos
proprios autores € por convite do Conselho Editorial, pertencentes ou néo
ao INE;

- Qﬁanto as informagdes referidas em b), ¢) e d), contribui¢des dos
departamentos do INE.

As contribuig¢des de artigos por iniciativa dos proprios autores serdo objecto
de avalia¢@o de mérito cientifico pelo Conselho Editorial, que decidira ou ndo pela sua
publicacdo.

Para a elaboragfio e envio das contribuicSes de artigos para publica¢io na
Revista sdo adoptadas as Normas de Apresentacdo de Originais que figuram na ultima
pagina. '

Os autores dos artigos publicados, a que se refere a alinea a), receberfio uma
contribuicdo financeira paga pelo INE, de montante a fixar por despacho da Direcgdo
mediante proposta do Director da Revista.

Os PONTOS DE VISTA EXPRESSOS PELOS AUTORES DOS ARTIGOS PUBLICADOS NA REVISTA

NAO REFLECTEM NECESSARIAMENTE A POSICAO OFICIAL DO INE,

.
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FOUNDATION, SUBJECT MATTER AND SCOPE OF THE REVIEW

INE is conscious of how statistical awareness is essential to the understanding
of the majority of phenomena in the present world and is aware of its responsibility to
disseminate statistical knowledge, making it available to the widest possible range of
readers. INE has recognised the need to take a step in that direction and will begin
publication of this Statistical Review three times yearly, designed to provide the
following:

a) Within a scientific perspective, original articles on specialised areas of
statistics, both pure and applied, as well as studies and analyses within
the sphere of economics, social issues and demographics;

b) Information on activities and projects of the National Statistical System,;

¢) Information on activities developed by INE within the scope of co-
operation;

d) Information on congresses, seminars and conferences of a statistical or
related nature;

The following approaches for contributing material for publication in the
review have been adopted:

- In relation to the articles referred to in section a), contributions are made
by the authors themselves and by invitation of the Editorial Committee,
whether they are employees of INE or not;

- In relation to the information referred to in section b), ¢) and d);
contributions are from departments of INE.

The Editorial Committee who has sole discretion in deciding whether or not
the material will be published will assess the scientific merit of contributions made on
the initiative of the authors themselves.

The preparation and delivery of material for publication in the Review are
subject to the Rules for Submitting Originals presented on the last page.

The authors of the published articles referred to in section a) will receive
pecuniary compensation from INE in an amount to be determined by resolution of the
Board on the recommendation of the Director of the Review.

THE VIEWPOINTS EXPRESSED BY THE AUTHORS OF THE ARTICLES PUBLISHED IN THE REVIEW

DO NOT NECESSARILY REFLECT THE OFFICIAL POSITION OF LLN.E.
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NORMAS DE APRESENTACAO DE ORIGINAIS

Nos termos do Regulamento da Revista de Estatistica, o Conselho Editorial
aprovou as seguintes Normas de Apresentaciio de Originais:

1. Os originais dos artigos serdo enviados ao Director da Revista pelos
respectivos autores, devendo ser escritos em porfugués e ndo terem sido
ainda totalmente publicados, ou estar em processo de edigdo em outra
publicagdo.

2. Poderdo também ser apresentados artigos escritos em inglés, cabendo ao
Director da Revista a decisdo sobre a sua aceitagdo.

3. Quanto a avaliacdo do mérito cientifico dos artigos:

a) Os artigos apresentados por iniciativa dos respectivos autores serdio
submetidos a avaliagdo do mérito cientifico pelo Conselho Editorial,
com garantia do anonimato tanto do autor como dos avaliadores;

b) Os autores receberdo a informagdo sobre o resultado da avaliagfio
num prazo maximo de trinta dias, com indica¢do, nos casos de
avaliagdo positiva, do nimero da Revista em que serdo publicados, e
nos casos de avaliagdo negativa com a devolugdo do original
apresentado.

4. Os artigos aceites para publicagdo na Revista de Estatistica serdo
igualmente divulgados no site do INE na Internet.

5. Os originais, com uma extensdo ndo superior a trinta paginas, serio
processados em Word for Windows, integralmente a preto e branco, com
indicagdo do(s) software(s) adicional(ais) eventualmente utilizado(s) na
produgdo do documento original, e entregues em suporte papel
acompanhado da respectiva disquette, ou enviados por E-mail para o
seguinte endereco: liliana.martins@ine.pt

6.Na apresentagdo dos originais, os autores respeitardo ainda as seguintes
normas:

6.1. Quanto a estrutura:

a) O texto deve ser processado em formato 4,, com utilizagdo do
tipo de letra Times New Roman 11, espacejamento at least 12, e
com as seguintes margens: fop: 4 cm, bottom: 3 cm, left: 2,5
cm, right: 5 cm, header: 1,25¢m, footer: 1,25¢m;

b) A primeira pagina contera exclusivamente o titulo do artigo,
bem como o nome, morada e telefone, fax e E-mail do autor,
com indicagdo das fungdes exercidas e da instituigio a que
pertence, devendo, no caso de varios autores, ser indicado a
quem devera ser dirigida a correspondéncia da Revista;

¢) A segunda pagina contera, em portugués e inglés, unicamente o
titulo € um resumo do artigo, com um maximo de 100 palavras,



seguido de um paragrafo com indicagdo de palavras-chave até
ao limite de 15;

d) Na terceira pagina comegara o texto do artigo, sendo as suas
eventuais sec¢des ou capitulos numeradas sequencialmente;

6.2. Quanto a referéncias bibliogrdficas:

a) Os autores eventualmente citados no texto do artigo serdo
indicados entre parénteses curvos pelo seu nome seguido da
data da respectiva publicagio e, se for caso disso, do nimero de
pagina (p. ex.: Malinvaud, 1989, 23),

b) As Referéncias Bibliograficas serdo listadas, por ordem
alfabética dos apelidos dos respectivos autores, imediatamente
a seguir ao final do texto, de acordo com a férmula seguinte:

GREENE, W. H., “Econometric Analysis”, Prentice-Hall, New
Jersey, 1993.

6.3. Quanto a revisdo de provas e publicacdo:

a) Uma vez aceite o artigo e antes da sua publicag@o, recebera o
autor provas para reviso, as quais serdo devolvidas ao Director
da Revista no prazo maximo de uma semana contado da data da
sua recepgao;

b) Serdo da responsabilidade dos respectivos autores as
consequéncias de eventuais modificagdes da versdo inicial
aceite, bem como de atrasos na revisiio das provas, que
impossibilitem a publicagdo no niimero da Revista previsto,
reservando-se o Director o direito de decidir a data da sua
publicacdo futura;

c¢) Uma vez publicado o artigo, o autor recebera vinte exemplares
da sua versdo impressa e um exemplar do respectivo namero da
Revista.

7. Para informagdes adicionais contactar o Secretariado de Redacgdo:

Eduarda Liliana Martins

Instituto Nacional de Estatistica

Av*. Anténio José de Almeida, n.° 5 - 9°.
1000-043 Lisboa - Portugal

o Tel: +351218426205
O Fax.: +35121 8426366

0O e-mail; liliana.martins@ine.pt
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RULES FOR SUBMITTING ORIGINALS

Within the terms of the Regulation of the Statistical Review, the Editorial
Committee has approved the following Rules for Submitting Originals:

1. The original articles will be sent to the Review Director by the respective
authors. They should be written in Portuguese, they should not have
already been published in their entirety nor should they be in the process
of being published in any other publication.

2. Articles may also be submitted in English to the Review’s Director who
will decide whether to accept them.

3. Inrelation to the evaluation of the scientific merit of the articles:

a) The Editorial Committee will assess the articles submitted on the
initiative of the authors on the basis of their scientific merit. The
identity of both the author and the Committee members will be
strictly confidential;

b) The authors will receive information regarding the results of the
evaluation of scientific merit within a maximum period of 30 days.
If the article is accepted, the Committee will indicate the issue
number of the Review in which the article will be published. If the
article is not accepted, the original will be returned to the author.

4. The articles accepted for publication in the Statistical Review will also be
made public on the Internet site of the INE.

5. The original articles having no more than thirty pages must be processed
in Word for Windows, completely at black and white, with the
information on the addicional(s) software(s) eventually used in the
production of the original document, and they will be delivered in hard
copy as well as on diskette, or sent by E-mail to: liliana.martins@ine.pt

6. With the presentation of the original articles, the authors must also
respect the following rules:

6.1 In relation to the structure:

a) The text shall be printed on A4 format paper utilising the font
Times New Roman size 11, spacing at least 12, and with the
margins: fop 4cm, bottom 3cm, left 2,5cm, right Scm, header
1,25cm, footer 1,25¢cm;

b) The first page shall contain only the title of the article as well as
the name, address and telephone, fax and E-mail number of the
author, indicating the position held and the institution that
he/she belongs to. In the case of various authors, it is necessary
to indicate the person to whom all correspondence received
should be forwarded;



¢) The second page shall contain in Portuguese and English only
the title and an abstract of the article with the maximum of 100
words followed by a paragraph indicating key words up to the
limit of 15;

d) The third page will begin the text of the article with its
respective sections or chapters sequentially numbered;

6.2 Regarding Bibliographical References:

a) Authors who are cited in the text of the article shall be indicated in
parentheses with their name followed by the date of the respective
publication and, if necessary, the page number (ex.: Malinvaud,
1989, 23); '

b) All bibliographical references will be listed in alphabetical order by
the surnames of the respective authors, immediately following the
end of the text, as in the following example:

GREENE, W. H., “Fconometric Analysis”, Prentice-Hall, New Jersey,
1993,

6.3 Regarding proof-reading and publication:

a) Once the article is accepted and prior to its publication, the
author will receive a copy for review. These copy will be
returned to the Director of the Review within a maximum-
period of one week from the date of its reception;

b) The consequences of subsequent changes to the accepted first
version are the responsibility of the respective authors as well
as any delays in proof-reading that make its publication in the
planned issue of the Review impossible. The Director reserves
the right to decide upon the date for future publication;

¢) Once the article is published, the author will receive twenty
copies of his/her printed version and a copy of the respective
issue of the Review.

7. For further information Kindly contact the Editorial Secretary:

Eduarda Liliana Martins

Instituto Nacional de Estatistica

Av®. Anténio José de Almeida, n®. 5 - 9°.
1000-043 Lisbon - Portugal

a Tel: +3511218426205
0 Fax.: +3511218426366

O e-mail: liliana.martins@ine.pt
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