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EDITORIAL

#IYWSDS — International Year of Women in Statistics and Data Science

In this REVSTAT issue, we will be continuing the occasional publication of invited papers

with the aim of diversifying the research topics of the its manuscripts, challenging internationally

recognized researchers in Statistical Science.

We began this REVSTAT editorial policy in number 5 of volume 18 with the invited paper

with discussion ‘Statistics in Times of Pandemics: the Role of Statistical and Epidemiological

Methods During the COVID-19 Emergency’ by Baltazar Nunes and collaborators (2020).

That issue was also a special issue in Celebration of WORLD STATISTICS DAY 20 October

2020. That was a year in which COVID-19 pandemic has become a current topic.

The second REVSTAT invited paper was published in number 1 of volume 19 entitled

‘Skewed Probit Regression – Identifiability, Contraction and Reformulation’ by Janet van Niek-

erk and Harvard Rue (2021). In addition to investigating possible skewness parameters and

the penalizing complexity priors of these, they highlighted that methodology is available in the

R-INLA package.

In this REVSTAT issue, the invited paper is ‘Calibration of the bulk and extremes of spa-

tial data’ by Maria Antónia Amaral-Turkman and collaborators (2021). They concentrated

on calibrating the bulk and the extremes of data, simultaneously, avoiding methods that rely

on the choice of a threshold. As Amaral-Turkman is a pioneer in the development of Bayesian

Statistics, this publication also aims to celebrate the International Year of Women in Statistics

and Data Science (#IYWSDS) from May 2020 through July 2021. The IYWSDS was launched

on 12 May 2020 with commemorating the 200th anniversary of Florence Nightingale’s birth.

July 13, 2021

Isabel Fraga Alves

Giovani Loiola da Silva
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Abstract:

• In an environmental framework, extreme values of certain spatio-temporal processes, for example
wind speeds, are the main cause of severe damage in property, such as electrical networks, transport
and agricultural infrastructures. Typically, as is the case of wind speeds, data are available at few
stations with many missing observations and consequently simulators are often used to augment
information. However, simulated data often mismatch observed data, particularly at tails, therefore
calibrating and bringing it in line with observed data may offer practitioners more reliable and richer
data sources. In this work we will concentrate on calibrating the bulk and the extremes of data,
simultaneously, avoiding methods that rely on the choice of a threshold. We propose and describe
in detail a specific conditional quantile matching calibration method and exemplify it with wind
speed data. We also briefly suggest how calibration should be extended specifically to data coming
from the tails of simulated and observed data, using asymptotic models and methods suggested by
extreme value theory.
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1. INTRODUCTION

Extreme values of certain spatio-temporal processes, such as wind speeds, are the main
cause of severe damage in property, from electricity distribution grid to transport and agri-
cultural infrastructures. Accurate assessment of causal relationships between environmental
processes and their effects on risk indicators, are highly important in risk analysis, which in
return depends on sound inferential methods as well as on good quality informative data.
Often, information on the relevant environmental processes comes from monitoring networks,
as well as from numerical-physical models (simulators) that typically solve a large set of
partial differential equations, capturing the essence of the physical process under study (see,
for example, Skamarock et al. 2008 [18], Cardoso et al. 2013 [6]). In general, monitoring
networks are formed by a sparse set of stations, whose instrumentation are vulnerable to
disruptions, resulting in data sets with many missing observations. On the other hand, sim-
ulated data from numerical simulators typically supply average yield of the process in grid
cells of pre-specified dimensions, often at high resolutions, spanning large spatial domains,
with no missing observations. However, simulated data typically mismatch and misaligned
observed data, therefore calibrating it and bringing it in line with observed data may supply
modellers with more reliable and richer sources of data. Data assimilation methods, namely
combining data from multiple sources, are well known in environmental studies, with data of-
ten being used to generate initial boundary conditions for the numerical simulators (Kalnay
2003 [11]). There is a very rich statistical literature on data assimilation and data fusion
with the objective of enriching the information for inference (Fuentes and Raftery 2005 [9],
Berrocal et al. 2012 [4], Zidek et al. 2012 [23], Berrocal et al. 2014 [5], McMillan et al. 2010
[12]). These statistical methods are often based on Bayesian hierarchical models for space-
time data (see Banerjee et al. 2004 [1]) and are constructed around the idea of relating the
monitoring station data and the simulated data using spatial linear models with spatially
varying coefficients (see Berrocal, 2019 [3]). Since these relations involve data measured at
different spatial resolutions, the models are often called downscaler models (see Berrocal et

al. 2012 [4]). The principal objective of these downscaler models is to relate observations
measured at different space resolutions using spatial linear models.

The motivation behind this present work has its roots in a consulting work done for a
major electricity producer and distributor. The electricity grid constantly faces disruptions
due to damages in the distribution system, with heavy economic losses. These damages and
consequent disruptions occur due to a combination of many factors such as topography and
precipitation, however extreme winds and storms are the main cause of such damages. Risk
maps that indicate likely places of costly disruptions in electric grids are important decision
support tools for administering the power grid and are particularly useful in deciding if costly
corrective actions should be taken to improve structures. It is natural that these risk maps
should be based primarily on observed wind speeds among other factors and it was decided
that daily maximum wind speeds should be used as proxy information. Hence, such risk
maps can be interpreted as vulnerability maps of electricity grid to extreme wind speeds,
expressed in terms of probability. However generating such maps depends on reliable wind
data at fairly high spatial and temporal resolutions.

The data set available for this particular study corresponds to simulated wind speeds
from a simulator (The WRF model, version 3.1.1) at a regular grid of 81ksq grid cell size,
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obtained at 10 minutes interval from 2006–2013; however only daily maximum wind speeds
will be used. Observed daily maximum wind speeds are also available during the same period
of time, from 117 stations in Portugal mainland, but missing observations reach to 90% in
some stations. Only around one third of the stations have less than 30% missing observations.
There is an additional challenge: although simulated and observed data match in the bulk of
the distribution, they quite often mismatch at extreme values. Therefore, adequate methods
of data fusion and calibration can be used to combine these two different sources of data,
providing information which is more reliable from a spatial point of view and producing more
accurate probability maps showing the spatial distribution of damage risks. Since electricity
grid damages are ultimately caused by extreme wind speeds, the aim should be to develop
statistical methods for data fusion and calibration that can extrapolate beyond the range of
observed data into the tails of a distribution in line with extreme value theory.

We propose and describe, in detail, a specific conditional quantile matching calibration
method for the bulk and the extreme observations of the data, based on models proposed by
Naveau et al., 2016 [14]. The outline of the paper is as follows: In Section 2, we report a new
approach for calibration through a conditional quantile matching calibration method (Pereira
et al., 2019 [16]), using an extended generalized Pareto distribution (Papastathopoulos and
Tawn 2013 [15], Naveau et al. 2016 [14]), adequate for calibrating simultaneously the bulk
and the tails of the distribution. In Section 3, we built a Bayesian hierarchical model to
implement this calibration strategy for spatio-temporal data. In Section 4, this method will
be exemplified using a wind speed data. Finally, further discussion and conclusions are given
in Section 5.

2. CALIBRATION METHODS FOR BULK AND TAILS

We denote by Y (s, t) and X(s, t), respectively the observed and simulated wind speeds
at location s ∈ R2 and time t. To simplify notation, often we will use Y and X for observed
and simulated wind speeds when data are used without any space-time reference. Typically
X are simulated over a regular grid, say B, often represented by points sB which correspond
to the centroid of the grid cells, whereas Y are observed in stations located at different spatial
points s.

For the time being, if we ignore totally space-time variations and dependence struc-
tures, calibration can be seen as a simple scaling making use of marginal distributions fitted
corresponding to X and Y (CDF transform method, Michelangeli et al. 2009 [13]), as we
explain below.

Suppose we have a set of n observed yi and simulated xi, i = 1, ..., n data. Let FY and
FX be, respectively, the distribution functions of Y and X. Then the new calibrated (scaled)
data x∗i is defined as

(2.1) x∗i = F−1
Y (FX(xi)), i = 1, ..., n.

Since

P (X∗ ≤ z) = P (F−1
Y (FX(X) ≤ z) = P (U ≤ FY (z)) = FY (z), with U ∼ U(0, 1),
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calibrated data have the same distribution as the observed data. Note that if FX = FY then
x∗i = xi. Figure 1 depicts the result of applying this calibration method when Y follows a
Student distribution with 3 degrees of freedom, and X follows a standard normal distribution.
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Figure 1: Illustration of the quantile matching approach.

This calibration method depends on the marginal distributions of the random vari-
ables involved Y and X and hence it does not take into consideration the expected strong
dependence between the two sets of data. Thus, an ideal calibration should involve the joint
distribution of Y and X defined in some way. One possibility is the use of a conditional quan-
tile matching approach, which will be described in Section 2.2. Further, in the same section,
we also introduce an extension to cover space-time non-homogeneity by scaling (calibrating)
the data from

(2.2) x∗(s, t) = F−1
Y (s,t)(FX(s,t)(x(s, t)),

assuming marginal distributions of Y (s, t) and X(s, t) for every s and t. This calibration
method will take into consideration the strong space-time dependence structures expected
in the data and consequently these distributions will be estimated by fitting them to data
and considering the parameters as smooth functions of spatially and temporarily varying
covariates and space-time latent processes as in Section 4. Notice that, in this case, x∗(s, t)
as defined in (2.2) will depend on unknown parameters and hence calibrated data have to be
estimated.

Pereira et al. (2019) [16] develop a covariate-adjusted version of the quantile matching-
based approach as in (2.1) where the distributions of simulated and real data change along a
covariate. At the same time they suggest a regression method that simultaneously models the
bulk and the (right) tail of the distributions involved, using the extended generalized Pareto
distribution (EGPD) (Naveau et al., 2016 [14]) as a model for both the simulated and observed
data. In their approach, Pereira et al. (2019) [16] do not take into consideration any strong
spatio-temporal variations and dependence structures that may exist both in the simulated
as well as in the observed data. In what follows, we propose an extension of this conditional
quantile matching calibration for the bulk and tails, taking into consideration spatio-temporal
variations and dependence structures, thus extending their results significantly.
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de Carvalho et al. 2020 [7] also work on covariate adjusted version of the extended
generalized Pareto distribution (EGPD) (Naveau et al., 2016 [14]) for the conditional bulk
and conditional tail of a possibly heavy-tailed response. However, their objective, contrary
to ours, is not calibration, but to learn the effect of covariates on an extreme value setting
via a Lasso-type specification.

Under fairly general conditions, according to the asymptotic theory of extremes, the
generalized Pareto distribution (GPD) appears as a natural model for the right tail of a
distribution, by focusing on the excesses over a high but fixed threshold. Here, the choice
of this threshold plays a very important role in inference, ignoring the part of the data that
lie below this threshold. See, for example, Beirland et al. (2004) [2]. The EGPD modelling
strategy suggested by Naveau et al (2016) [14] avoids this selection problem, as we will see
in next section.

2.1. Naveau et al. (2016) EGPD models

Naveau et al. (2016) [14] suggest an extension of generalized Pareto model tailored
for both the bulk and tails, and — contrarily to most methods for extremes — does not
require a threshold to be selected. The objective of this extension is to generate a new class
of distributions with GPD type tails consistent with extreme value theory, but also flexible
enough to model efficiently the main bulk of the observed data without complicated threshold
selection procedures.

Let Y be a positive random variable with cumulative distribution function defined as:

FY (y | θ) = G

(
H(y | ξ, σ)

)
,

where H is the cumulative distribution function of a generalized Pareto distribution (GPD)
and G is a function obeying some general assumptions, so that a Pareto-type tail is ensured
and the bulk is driven by the carrier G. (see Naveau et al. 2016 [14] and de Carvalho et al.

2020 [7]), that is

H(y | ξ, σ) =


1−

(
1 +

ξ

σ
y

)−1/ξ

+

, ξ 6= 0.

1− exp
(
− y

σ

)
, ξ = 0 .

with a+ = max(a, 0), σ > 0, and y > 0 if ξ ≥ 0 and y < −σ
ξ if ξ < 0. The parameter σ is a

dispersion parameter while ξ is a shape parameter controlling the rate of decay of the right
tail of a distribution (e.g. de Zea Bermudez and Kotz [8]).

Naveau et al. [14] consider four forms of G(u) resulting in four different classes of
distributions. Although the theory below can be easily extended to any of the forms of the
G function, in what follows we use one of the forms, namely, G(u) = uκ, the canonical form
of the EGPD (de Carvalho et al. 2020 [7]), where κ is a parameter controlling the shape of
the lower tail. It is clear that smaller the κ more the distribution is concentrated near zero.
The EGPD will have then three parameters, and we will refer to it as a EGPD(κ, ξ, σ).
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2.2. Spatio-temporal conditional quantile matching calibration for the bulk and
tails

Let us assume that both random variables X and Y are space-time dependent and we
want to calibrate X based on Y . The calibrated data are given as in (2.2). Now assume
further that both random variables are distributed as a canonical EGPD(κ, ξ, σ) where the
parameters are indexed by the correspondent random variables. In order to better accommo-
date for the situation ξ < 0 we make a transformation δ = −σ

ξ . Hence, for ξx 6= 0

(2.3) FX(s,t)(x(s, t) | δx(s, t), ξx, κx) =

(
1−

(
1− 1

δx(s, t)
x(s, t)

)−1/ξx

+

)κx

,

for x > 0 if ξx > 0 and x < δx if ξx < 0.

Assuming as well ξy 6= 0

(2.4) FY (s,t)(y(s, t) | δy(s, t), ξy, κy) =

(
1−

(
1− 1

δy(s, t)
y(s, t)

)−1/ξy

+

)κy

,

for y > 0 if ξy > 0 and y < δy if ξy < 0.

Although it is assumed that these random variables are conditional independent, a de-
pendence structure is introduced through the transformed space-time dependent parameters
δx, δy by modelling them as a function of a common latent spatio-temporal process, in a
Bayesian hierarchical modelling framework. Here, we are mainly interested in modelling the
right tail as function of space and time. de Carvalho et al. 2020 [7], consider a Bayesian
hierachical modelling of the EGPD for the case ξ > 0, where both bulk and tail are covariate
adjusted.

As an exemplification of this modelling strategy, in the next section, we will built a
Bayesian hierarchical model for the wind speed data.

3. BAYESIAN HIERARCHICAL MODEL FOR WIND SPEED DATA

A preliminary data analysis of the wind speed data used in this study, shows that
observed and simulated data are consistent with the case ξ < 0 and hence, the distributions
for X and Y will have an end-point characterized by the respective parameter δ.

Let T be length of the time period under study, N the number of stations with complete
observed data during that period and Ns the total number of stations (N < Ns).

The observed data Y(s,t) = {Y (si, tj), i = 1, ..., N ; j = 1, ..., T}, are assumed to follow a
distribution as in (2.4), with parameters κy, ξy and δy(i, j), such that δy(i, j) ∼ Exp(λy(i, j)),
δy(i, j) > max(y), i.e., follows a shifted exponential distribution, with

(3.1) log(λy(i, j)) = βy + W (si) + Z(tj),
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where W ∼ MV N(0, τW ΣW ) follows a Multivariate Gaussian process, defined on the space,
as in Thomas et al. (2014) [21], with τW a precision parameter and the matrix ΣW with
diagonal elements equal to 1 and off-diagonal elements, Σi` = f(di`;α), where

f(di`;α) = 2/π ∗
{

cos−1(di`/α)− [(di`/α)(1− (d2
i`/α2))]1/2

}
, di` < α,

is a function of di`, the centroids’ distance of every two stations si and s`, and α a parameter
representing the radius of the ‘disc’ centred at each s. The parameter α controls the rate of
decline of correlation with distance.

For the temporal random process {Z(tj)} we assume a random walk process of order 1,
Z ∼ MV N(0, τZΣZ), where τZ is a precision parameter and ΣZ is a matrix with a structure
reflecting the fact that any two increments zi − zi−1 are independent (Rue and Held, 2005
[17]).

For the simulated data X(s, t) = {X(si, tj), i = 1, ..., Ns; j = 1, ..., T} we assume a
distribution as in (2.3) with Ns total number of stations, where the model for δx(i, j) ∼
Exp(λx(i, j)), δx(i, j) > max(x), shares the same latent processes W and Z as the model for
the observed data (3.1), i.e.,

log(λx(ij)) = βx + W (si) + Z(tj).

Let θ be a vector containing all model parameters including the latent Gaussian mod-
els W and Z. Assuming conditional independence, the likelihood L (θ | y(s, t),x(s, t)) is a
product of individual terms Lij (θ | y(si, tj)) and L`j (θ | x(s`, tj)).

To complete the Bayesian hierarchical model we consider the following prior specifica-
tion for the parameters and hyperparameters of the models not yet specified:

βy, βx i.i.d. N(0, 100),

κy, κx i.i.d. Ga(0.05, 0.05),

ξy, ξx i.i.d. U(−0.5, 0),(3.2)

τW , τZ i.i.d. Ga(1, 0.1),

α ∼ U(0.1, 0.9).

Further, all these parameters are assumed to be a priori independent and hence the prior
distribution h(θ) is the product of the individual priors. In Subsection 4.1 an explanation is
given for the choice of these priors.

The posterior distribution

h (θ | y(s, t),x(s, t)) ∝ L (θ | y(s, t),x(s, t))h(θ),

is analytically intractable and hence one has to resort to the use of computational methods,
such as MCMC methods.

Now, let FX (x(si, tj) | κx, ξx, δx(i, j)) = pij , for i = 1, ..., Ns and j = 1, ..., T . Then,
since, for any p ∈ (0, 1) the inverse function of FY is

δy

[
1−

(
1− p1/κy

)−ξy
]

,
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the calibrated values defined in (2.2), as a function of the model parameters, are given by

(3.3) x∗(si, tj | θij) = δy(si, tj)
[
1−

(
1− p

1/κy

ij

)−ξy
]

,

where θij = (κx, ξx, δx(i, j), κy, ξy, δy(i, j)).

Hence, following Bayesian methodology, calibrated data are estimated as the mean of
the calibrated function, defined in (3.3), with respect to the posterior distribution h(θ | x,y),
that is

x∗(si, tj) =
∫

δy(si, tj)
[
1−

(
1− p

1/κy

ij

)−ξy
]

h(θ | x,y)dθ.

In what follows we will call this posterior mean as the calibrated data.

Computation of calibrated data is achieved through MCMC methods, by simulating a
sample of size M from the posterior distribution and approximating the integral as

x∗(si, tj) ≈
1
M

M∑
k=1

δy(si, tj)(k)

[
1−

(
1− (p(k)

ij )1/κ
(k)
y

)−ξ
(k)
y

]
,

where δy(si, tj)(k),−p
(k)
ij , κ

(k)
y , ξ

(k)
y are simulated values at the kth iterate after convergence is

achieved. A sample of size M from the posterior distribution of the calibrated function given
by

δy(si, tj)(k)

[
1−

(
1− (p(k)

ij )1/κ
(k)
y

)−ξ
(k)
y

]
, k = 1, ...,M

will allow the computation of any relevant summary statistics, such as, γ% credible intervals.

4. APPLICATION TO WIND SPEED DATA

We used observed and simulated wind speed data from 01/01/2013 to 28/02/2013,
so T = 59. There are N = 51 stations where we have both observed and simulated daily
maximum wind speeds. Additionally we have extra 66 stations with simulated values for the
maximum daily wind speeds, so that Ns = 117. In Figure 2 we depict the median of observed
and simulated wind speeds for the 51 stations together with the 2.5% and 97.5% empirical
quantiles (referred to on the figure as the 95% IQR).

The model was implemented in R2OpenBUGS (Sturtz et al. 2005 [19]). In Table 1 we
show the summary statistics for the marginal posterior distributions of the parameters of the
model, based on a sample of size 40000, after a burn-in period of 20000 iterates. Convergence
was assessed for the parameters of the model specified in Section 4.1.

We observe that the posteriormean ofκy has amuch smaller value than the posteriormean
of κx which is consistent with the fact that, in general, simulated data are shifted to the right in
relation to the observeddata, indicating thepossible existence of somebias in the simulateddata.
The posterior mean of the precision (inverse of the variance) parameters for the space model
(τW ) and for the temporal model (τZ) suggest that time dependence is stronger than space
dependence. The posterior mean for βy is slightly smaller than the posterior mean for βx.
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Figure 2: Median of observed and simulated wind speeds for the 51 stations,
and the 95% IQR wind speeds by station (dashed lines).

Table 1: Summary statistics for the marginal posterior distributions.

Parameter Mean
Standard 2.5%

Median
97.5%

deviation quantile quantile

α 0.6691 0.1007 −0.4668 −0.5028 −0.8564
βy −1.1552 0.1702 −1.4760 −1.4250 −0.8063
βx −0.9274 0.1614 −1.2300 −1.1830 −0.5957
κy −5.2951 0.1976 −4.9020 −4.9740 −5.7020
κx 18.7384 0.7467 17.2900 17.5100 20.3000
τW −3.5699 0.7274 −2.3280 −2.4840 −5.1520
τZ −0.4240 0.1081 −0.2457 −0.2678 −0.6675
ξy −0.0703 0.0018 −0.0739 −0.0675 −0.0670
ξx −0.0806 0.0014 −0.0834 −0.0782 −0.0777
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Figure 3: Boxplot of the posterior means of σy(i, j) (left) and σx(i, j) (right).
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This naturally contributes for higher values for σy(i, j) relatively to σx(i, j) and with greater
dispersion, as it can be seen in Figure 3 where we show daily boxplots of the posterior means
of the parameters σ(i, j),∀j for both models. In that figure it is marked two dates, 19 of
January, a day where it was observed a storm with heavy winds (storm GONG, maximum
observed wind 29.6m/s), particularly in regions close to the littoral, and 14th of February,
a very mild day all over the country (Valentine’s day; maximum observed wind 8.20m/s).
The variation observed along the days is consistent with the fact that on windy days the
maximum wind speed along the stations varies much more than on mild days. Also the
temporal dependence is clear in these pictures.

These two days were studied, in particular, for exemplification of the conditional quan-
tile calibration method proposed. For the purpose of exemplification of the results we repre-
sent in Figures 4 and 5, on the left, a kernel density estimation (considering all the stations)
for the observed and simulated maximum wind speed on that day, together with the mean
of the posterior distribution of the calibrated data as defined in (3.3). On the right side,
we represent the observed and simulated maximum wind speed on that day for each station,
together with the calibrated data with the corresponding 95% credible interval.
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Figure 4: Kernel density estimation (left), observed and simulated maximum wind speed
for each station, together with the mean of the posterior distribution for the
calibrated data and 95% credible interval, for a storm day.

0 2 4 6 8 10

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0

.3
0

14/02/2013

wind speed

l

Observed
Simulated
Calibrated

0 20 40 60 80 100 120

0
2

4
6

8
1
0

1
2

1
4

14/02/2013

stations

w
in

d
 s

p
e
e
d

Observed
Simulated
Calibrated
Cali. IC
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for each station, together with the mean of the posterior distribution for the
calibrated data and 95% credible interval, for a mild day.
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We observe that, on a storm day (Figure 4) the observed winds have longer tails than
simulated winds. The calibration method was able to capture both tails of the distribution
for the observed data, although it shifted the bulk of the distribution to the left. Notice
that the 95% credible intervals are very large. This was to be expected due to the great
variability of the simulated values from the posterior distribution of the shape parameter, as
it can be observed in Figure 3. Regarding a mild windy day (Figure 5), the distribution of
the simulated data is shifted to the right relatively to the distribution of the observed data
with longer tails, as it was observed in a preliminary study. This bias is corrected with the
calibration method. The 95% credible intervals are, in general, small.

In Figures 6 and 7 there is a spatial representation of the observed, simulated and
calibrated values for each of these two days.

Figure 6: Storm day: observed, simulated and calibrated maximum wind speeds.

Figure 7: Mild day: observed, simulated and calibrated maximum wind speeds.
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4.1. Choice of prior specification and a sensitivity study

Here a justification is given on the particular choice of priors used in this study. Apart
from the parameters α and ξ, and in the absence of adequate prior information, we considered
relatively vague priors for the other parameters involved, as described in (3.2).

A preliminary data analysis of the wind speed data showed that observed and simulated
data were consistent with the case ξ < 0. Without further prior information on ξ, we con-
sidered a uniform prior distribution with support between -0.5 and 0, since it is known from
the extreme value theory that estimators with good properties for ξ exist when ξ > −0.5.

In order to set a prior for the parameter α, that controls the rate of decline of correlation
with distance, we follow the suggestion by Thomas et al., 2014 [21]. Accordingly, in the
absence of prior information, “a sensible ‘default’ choice is to consider an upper prior bound
equal to a small multiple of the maximum distance in the study region” and the lower prior
bound should be larger than the minimum distance between observations. Coordinates of the
117 stations were given in decimal degrees and transformed into km to compute distances.

Table 2: Summary statistics for the marginal posterior distributions.

Upper
Parameter Mean

Standard 2.5%
Median

97.5%
bound deviation quantile quantile

0.5 α 0.4552 0.0403 0.3522 0.3733 0.4988
0.9 α 0.6691 0.1007 0.4668 0.5028 0.8564
1.2 α 0.6744 0.1075 0.4677 0.5020 0.8821

0.5 βy −1.1510 0.1505 −1.4390 −1.3970 −0.8641
0.9 βy −1.1552 0.1702 −1.4760 −1.4250 −0.8063
1.2 βy −1.1356 0.1514 −1.4250 −1.3820 −0.8353

0.5 βx −0.9170 0.1381 −1.1820 −1.1400 −0.6549
0.9 βx −0.9274 0.1614 −1.2300 −1.1830 −0.5957
1.2 βx −0.9014 0.1412 −1.1590 −1.1240 −0.6171

0.5 κy 5.3136 0.1926 4.9500 5.0080 5.6970
0.9 κy 5.2951 0.1976 4.9020 4.9740 5.7020
1.2 κy 5.3056 0.1890 4.9390 5.0050 5.7110

0.5 κx 18.7734 0.8037 17.2000 17.4800 20.3100
0.9 κx 18.7384 0.7467 17.2900 17.5100 20.3000
1.2 κx 18.7919 0.7302 17.4500 17.6200 20.2500

0.5 τW 4.1859 0.7078 2.9510 3.1180 5.7120
0.9 τW 3.5699 0.7274 2.3280 2.4840 5.1520
1.2 τW 3.5600 0.7378 2.2620 2.4460 5.1570

0.5 τZ 0.4244 0.1034 0.2519 0.2729 0.6535
0.9 τZ 0.4240 0.1081 0.2457 0.2678 0.6675
1.2 τZ 0.4101 0.0981 0.2454 0.2665 0.6256

0.5 ξy −0.0702 0.0018 −0.0738 −0.0673 −0.0668
0.9 ξy −0.0703 0.0018 −0.0739 −0.0675 −0.0670
1.2 ξy −0.0702 0.0017 −0.0736 −0.0674 −0.0670

0.5 ξx −0.0805 0.0016 −0.0836 −0.0778 −0.0774
0.9 ξx −0.0806 0.0014 −0.0834 −0.0782 −0.0777
1.2 ξx −0.0804 0.0014 −0.0831 −0.0781 −0.0776
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In order to avoid large numbers, we consider 100km as unit to compute distances. The
maximum Euclidean distance among the 117 stations was computed as 5.65 and the minimum
0.01. Hence we set a uniform prior between 0.1 and 0.9. However we performed a sensitivity
study considering as upper bound 0.5, 0.9 and 1.2, keeping the other priors unchanged.
Summary results are displayed in Table 2 and in Figure 8.
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Figure 8: Boxplots of the posterior distribution of the parameters for
different values for the upper limit of the prior for α.
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As it can be seen, posterior distribution of α is sensitive to the its prior. The upper
bound 0.5 seems not to be adequate since it is clear that there is a concentration of mass near
the upper bound. However, when the upper bound is 0.9 or 1.2, the influence of the prior for
α on its posterior is much less evident, particularly on the bulk of the posterior distribution.
Influence of the prior on α on the other parameters is almost negligible. Basically there is only
some influence on the posterior distribution of the parameter τW , although this influence is
softened while comparing the prior with upper bound 0.9 and 1.2. More important it is that
there is no influence of the prior for α regarding the calibrated data (posterior distribution
of F−1

Y (FX(x(si, tj))) at si, i = 1, ..., Ns and time tj , j = 1, ..., T ).

5. DISCUSSION AND FURTHER EXTENSIONS

In this article we proposed a hierarchical Bayesian approach to implement a conditional
quantile matching calibration (CQCM) using a space-time extended generalized Pareto dis-
tribution for both the observed and simulated data.

The performance of the CQCM method was exemplified with two specific days, a storm
day and a mild day. In both cases the calibrated data matched well the observed data on the
tails, although on the storm day it did not capture well the bulk of the distribution. Also the
95% credible intervals were quite wide for the storm day, which may be an indication that
appropriate methods to deal with extreme data should instead be considered to accommodate
these rare situations.

Ideally this method should be extended to the grid level, since the simulator produces
data at a fine grid level and this is much more interesting if the objective is the construction
of a risk map. However this extension is not trivial and some assumptions regarding the
model structure have to be assumed.

Damages in electricity grid are basically governed by extreme winds and primarily
simulated and observed data coming from the right tail differ. Hence adequate calibration
methods must be specifically adapted to extreme observations coming from the right tails
and methods and models to be used in calibration should ideally be compatible with extreme
value theory. A range of approaches for characterising the extremal behaviour of spatial
process have been suggested and a brief comparison of these methods can be found in Tawn
et al. (2018) [20]. Downscaling method described by Towe et al. (2017) [22] — based on the
conditional extremes process — is more suitable, with adequate modifications, to calibrate
extreme simulated data based on observed wind speeds. Work on this approach is under
progress. Alternatively, calibration methods based on bivariate max stable processes (Gen-
ton et al., 2015 [10]) can be devised, although this would require substantial computational
complications.
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1. INTRODUCTION

Suppose we have two normal populations with a common mean ‘µ’ and possibly different
variances σ2

1 and σ2
2. More specifically, let X˜ = (X1, X2, ..., Xm) and Y˜ = (Y1, Y2, ..., Yn) be

independent random samples taken from two normal populations N(µ, σ2
1) and N(µ, σ2

2)
respectively. The problem is to estimate the common mean ‘µ’ under the assumption that
the variances follow the ordering σ2

1 ≤ σ2
2. In order to evaluate the performance of an estimator

the loss functions

L1(d, µ) =
(
d− µ

σ1

)2

,(1.1)

L2(d, µ) = |d− µ|,(1.2)

and

L3(d, µ) = (d− µ)2,(1.3)

are typically used, where d is an estimator for estimating ‘µ’ and α˜ = (µ, σ2
1, σ

2
2); σ

2
1 ≤ σ2

2.

Furthermore the risk of an estimator d is defined by

R(d, µ) = Eα˜{Li(d, µ)}; i = 1, 2, 3.

The problem of estimating the common mean of two or more normal populations,
without considering the order restriction on the variances, is quite popular and has a long
history in the literature of statistical inference. In fact, the origin of the problem has been
in the recovery of inter-block information in the study of balanced incomplete block designs
problem (see Yates [23]). Moreover, the problem has received considerable attention by
several pioneer researchers in the last few decades due to its practical applications as well as
the theoretical challenges involved in it. This well known problem arises in situations, where
two or more measuring devices in a laboratory are used to measure certain quantity, several
independent agencies are employed to test the effectiveness of certain new drugs produced
by a developer, two or more different methods are used to evaluate certain characteristic
etc.. Under these circumstances, if it is assumed that the samples drawn follow normal
distributions, then the task boils down to draw inference on the common mean when the
variances are unknown and unequal. We refer to some excellent papers by Chang and Pal
[4], Lin and Lee [12] and Kelleher [10] for applications as well as examples of such nature.
Probably, Graybill and Deal [8] were the first to consider this well-known common mean
problem under normality assumption, without taking into account the order restriction on
the variances. They proposed a combined estimator by taking convex combination of two
sample means with weights as the functions of sample variances. Their combined estimator
performs better than the individual sample means in terms of mean squared error when the
sample sizes are at least 11. Since then a lot of attention has been paid in this direction
by several researchers. In fact, the main goal has been to obtain either some competitors
to Graybill-Deal estimator or some alternative estimators which may perform better than
both the sample means. Also few attempts have been made to prove the admissibility or
inadmissibility of the Graybill-Deal estimator. For a detailed literature review and recent
updates on estimating the common mean of two or more normal populations without taking
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into account the order restriction on the variances, we refer to Khatri and Shah [11], Brown
and Cohen [3], Cohen and Sackrowitz [6], Moore and Krishnamoorthy [14], Pal and Sinha
[16], Pal et al. [15], Tripathy and Kumar [20, 21] and the references cited therein.

On the other hand, relatively less attention has been paid in estimating the common
mean ‘µ’ when it is known a priori, that the variances follow certain simple ordering, say,
σ2

1 ≤ σ2
2. As an application of the common mean estimation under two ordered variances one

can cite the example of evaluating the octane level of a particular grade of gasoline by the
state inspectors in the United States. Usually the inspectors evaluating the octane level of
gasoline sold at a gasoline station take two types of samples. Multiple samples of gasoline are
taken on spot and their octane levels are quickly evaluated by a hand held device which is less
precise and hence have high variance. Another batch of gasoline samples is taken and sent to
state labs for a detailed, time consuming analysis of the octane level which is more accurate
and has a smaller variance. If the spot analysis shows the mean octane level within a certain
margin of the declared octane level then the inspector gives the seller a pass. Otherwise, the
results from the lab tests are combined with the spot tests to determine the mean octane level.
Disciplinary actions against the seller can be taken only if the combined estimate of the mean
octane level falls below the declared level by a substantial margin. Probably Elfessi and Pal
[7] were the first to consider this model with some justification and proposed an estimator
that performs better than the Graybill-Deal estimator. In fact, their proposed estimator
performs better than the Graybill-Deal estimator in terms of stochastic domination as well
as universal domination. Later on, their results have been extended to the case of k(≥ 2)
normal populations by Misra and van der Meulen [13]. Chang et al. [5] also considered the
estimation of a common mean under order restricted variances. They proposed a broad class
of estimators that includes estimator proposed by Elfessi and Pal [7]. In fact, their proposed
estimators stochastically dominate the estimators which do not obey the order restriction on
the variances. However, for practical applications purpose, it is essential to have the specific
estimators. Moreover, it is also necessary to know the amount of risk reduction after using
the prior information regarding the ordering of the variances. Also we note that, the problem
of estimation of a common standard deviation of several normal populations when the means
are known to follow a simple ordering has been considered by Tripathy et al. [22] from a
decision theoretic point of view.

In view of the above, we have proposed certain alternative estimators for the common
mean when it is known a priori that the variances are ordered. These new estimators, which
utilize the information about variance ordering, are shown to dominate their unrestricted
counterparts (proposed by Moore and Krishnamoorthy [14], Khatri and Shah [11], Brown
and Cohen [3], Tripathy and Kumar [20]) stochastically, universally and in terms of Pitman
nearness criterion. Moreover we have obtained a plug-in type restricted MLE which beats
the unrestricted MLE with respect to a squared error loss function which has been shown
numerically. In addition to these, we derive a sufficient condition for improving equivariant
estimators using orbit-by-orbit improvement technique of Brewster and Zidek [2]. It is also
interesting to see the performance of MLE with respect to other estimators (including the
existing one proposed by Elfessi and Pal [7]), under order restriction on the variances, which
is lacking in the literature. We also observe that a detailed and in-depth study to compare
the performances of all the existing estimators for the common mean under order restricted
variances is lacking in the literature. Therefore, we intend to study the performances of all the
estimators, - both proposed as well as the existing ones, through a comprehensive simulation
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study which may fill the knowledge gap and provide useful information to the researchers
from an application point of view.

The rest of the work is organized as follows. In Section 2, certain basic results have
been discussed and a new plug-in type restricted MLE for the common mean µ has been
proposed. In Section 3, some alternative estimators for the common mean µ have been con-
structed under order restriction on the variances. It is shown that the proposed estimators
dominate their old counterparts proposed by Moore and Krishnamoorthy [14], Khatri and
Shah [11], Brown and Cohen [3], Tripathy and Kumar [20] in terms of stochastic domination
as well as universal domination. Moreover, in Section 4, we have proved that these alterna-
tive estimators also dominate their respective unrestricted counterparts in terms of Pitman
measure of closeness criterion (see Pitman [18]). Sufficient conditions for improving the es-
timators which are invariant under affine transformations have been proved in Section 5,
and consequently improved estimators have been derived. Interestingly, these improved es-
timators turned out to be the same as obtained in Section 2. We note that a theoretical
comparison of all these proposed estimators seems difficult, and hence a simulation study
has been carried out in order to compare numerically the risk functions of all the proposed
estimators in Section 6. Moreover, the percentage of risk improvements of all the improved
estimators upon their unrestricted counterparts have been noted with respect to all the three
loss functions (1.1)–(1.3), which are quite significant. The percentage of relative risk improve-
ments of all the proposed estimators have been obtained with respect to the Graybill-Deal
estimator (treated as a benchmark) and recommendations have been made there. Finally we
conclude our remarks with some examples to compute the estimates in Section 7.

2. SOME BASIC RESULTS

In this section, we discuss the statistical model and propose some alternative estimators
for the common mean µ, when it is known a priori that the variances follow the simple
ordering, that is, σ2

1 ≤ σ2
2.

LetX˜ = (X1, X2, ..., Xm) and Y˜ = (Y1, Y2, ..., Yn) be independent random samples taken
from two normal populations with a common mean µ and possibly different variances σ2

1 and
σ2

2 respectively. Let N(µ, σ2
i ) be denote the normal population with mean µ and variance

σ2
i ; i = 1, 2. The target is to derive certain estimators for µ, when it is known a priori that,

the variances are ordered, that is, σ2
1 ≤ σ2

2 or equivalently σ1 ≤ σ2. We note, that a minimal
sufficient statistics (not complete) for this model exists and is given by (X̄, Ȳ , S2

1 , S
2
2) where

X̄ =
1
m

m∑
i=1

Xi, Ȳ =
1
n

n∑
j=1

Yj , S
2
1 =

m∑
i=1

(Xi − X̄)2, S2
2 =

n∑
j=1

(Yj − Ȳ )2.(2.1)

We further note that, X̄ ∼ N(µ, σ2
1/m), Ȳ ∼ N(µ, σ2

2/n), S2
1/σ

2
1 ∼ χ2

m−1, and S2
2/σ

2
2 ∼ χ2

n−1.

When there is no order restrictions on the variances, a number of estimators have been
proposed by several researchers in the recent past. Let us consider the following well known
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estimators for the common mean µ when there is no order restriction on the variances:

dGD =
m(m− 1)S2

2X̄ + n(n− 1)S2
1 Ȳ

m(m− 1)S2
2 + n(n− 1)S2

1

(Graybill and Deal [8]),

dKS =
m(m− 3)S2

2X̄ + n(n− 3)S2
1 Ȳ

m(m− 3)S2
2 + n(n− 3)S2

1

(Khatri and Shah [11]),

dMK =
X̄

√
m(m− 1)S2 + Ȳ

√
n(n− 1)S1√

m(m− 1)S2 +
√
n(n− 1)S1

(Moore and Krishnamoorthy [14]),

dTK =
X̄
√
mcnS2 + Ȳ

√
ncmS1√

mcnS2 +
√
ncmS1

(Tripathy and Kumar [20]),

dBC1 = X̄ +
{ (Ȳ − X̄)b1S2

1/m(m− 1)
S2

1/m(m− 1) + S2
2/(n(n+ 2)) + (Ȳ − X̄)2/(n+ 2)

}
dBC2 = X̄ + (Ȳ − X̄)

{ b2n(n− 1)S2
1

n(n− 1)S2
1 +m(m− 1)S2

2

}
(Brown and Cohen [3]),

dGM =
mX̄ + nȲ

m+ n
(grand sample mean),

where cm = Γ(m−1
2 )/(

√
2Γ(m2 )), cn = Γ(n−1

2 )/(
√

2Γ(n2 )), 0 < b1 < bmax(m,n), 0 < b2 <

bmax(m,n− 3), and bmax(m,n) = 2(n+2)/nE(max(1/V, 1/V 2)). Here V is a random variable
having F -distribution with (n+ 2) and (m− 1) degrees of freedom.

Finally we consider the MLE of µ whose closed form does not exist (see Pal et al. [15]).
The MLE of µ can be obtained numerically by solving the following system of three equations
in three unknowns µ, σ2

1, and σ2
2:

µ =
m
σ2
1
x̄+ n

σ2
2
ȳ

m
σ2
1

+ n
σ2
2

,(2.2)

σ2
1 =

s21
m

+
( nσ2

1

nσ2
1 +mσ2

2

)2
(x̄− ȳ)2,(2.3)

σ2
2 =

s22
n

+
( mσ2

2

nσ2
1 +mσ2

2

)2
(x̄− ȳ)2.(2.4)

Here (x̄, ȳ, s21, s
2
2) denotes the observed value of (X̄, Ȳ , S2

1 , S
2
2). Let the solution of the above

system of equations be µ̂ML, σ̂
2
1ML and σ̂2

2ML. These are the MLEs of µ, σ2
1 and σ2

2 respectively,
when there is no order restriction on the variances.

Next, we discuss some results on estimating common mean when it is known a priori
that the variances follow the simple ordering σ2

1 ≤ σ2
2. Let β = (n(n− 1)S2

1)/(m(m− 1)S2
2 +

n(n− 1)S2
1). Under order restriction on the variances, Elfessi and Pal [7] proposed a new

estimator, call it d̂EP which is given by

d̂EP =

 (1− β)X̄ + βȲ , if S2
1

m−1 ≤
S2

2
n−1

β∗X̄ + (1− β∗)Ȳ , if S2
1

m−1 >
S2

2
n−1 ,

where

β∗ =

 β, if m = n

m

m+ n
, if m 6= n.
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In the above definition of d̂EP for the case m = n, when β∗ = β, we mean β as well as the
conditions must be simplified for m = n.

It is well known that the estimator d̂EP dominates dGD stochastically as well as univer-
sally when σ2

1 ≤ σ2
2. Further Misra and van der Meulen [13] extended these dominance results

to the case of k(≥ 2) normal populations and also proved that the estimator d̂EP performs
better than dGD in terms of Pitman measure of closeness criterion. The MLE of µ has been
obtained by solving the system of equations numerically as shown above (see equations (2.2)
to (2.4))). When the variances are ordered, using the isotonic version of the MLEs of σ2

i , we
obtain plug-in type restricted MLEs (numerically) of σ2

1 and σ2
2 respectively as

σ̂2
1R =


σ̂2

1ML, if σ̂2
1ML ≤ σ̂2

2ML

1
2
(σ̂2

1ML + σ̂2
2ML), if σ̂2

1ML > σ̂2
2ML,

and

σ̂2
2R =


σ̂2

2ML, if σ̂2
1ML ≤ σ̂2

2ML

1
2
(σ̂2

1ML + σ̂2
2ML), if σ̂2

1ML > σ̂2
2ML

(see Barlow et al. [1]). Substituting these estimators in (2.2), we get a plug-in type restricted
MLE, (call it dRM ) for µ as

dRM =
mσ̂2

2RX̄ + nσ̂2
1RȲ

mσ̂2
2R + nσ̂2

1R

.

Further using the grand sample mean of the two populations, one gets another plug-in type
restricted MLE of µ, call it d̂RM , and is given by

d̂RM =


µ̂ML, if σ̂2

1ML ≤ σ̂2
2ML

mX̄ + nȲ

m+ n
, if σ̂2

1ML > σ̂2
2ML.

Through a simulation study, Tripathy and Kumar [20] concluded that the estimators
dMK and dTK compete with each other and perform better than dGD when the variances
are not far away from each other. Authors also mentioned that for small values of the ratios
of the variances, the estimator dKS compete with dGD. Hence, it is quite evident that one
needs to find alternative estimators for µ which may compete with d̂EP when σ2

1 ≤ σ2
2 or

equivalently σ1 ≤ σ2. In the next sections to follow (Sections 3 and 4), we propose some new
estimators which dominate their respective unrestricted counterparts stochastically as well
as universally and may compete with d̂EP in terms of risks. Now onwards for convenient we
will denote d̂EP as d̂GD.

Remark 2.1. One can construct another plug-in type estimator for µ by replacing
the estimators σ̂2

1R and σ̂2
2R in dRM by σ̂2

1R = min(σ̂2
1ML, (mσ̂

2
1ML + nσ̂2

2ML)/(m+ n)) and
σ̂2

2R = max(σ̂2
2ML, (mσ̂

2
1ML+nσ̂2

2ML)/(m+n)) respectively when m 6= n. It has been revealed
from our numerical study (Section 6) that it acts as a competitor of dRM .

Remark 2.2. The estimators dRM and d̂RM are seen to perform equally good, which
has been checked from our simulation study in Section 6. Hence we include only d̂RM in our
numerical comparison in Section 6.
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3. STOCHASTIC DOMINATION UNDER ORDER RESTRICTION
ON THE VARIANCES

In this section we propose some alternative estimators for the common mean µ under
order restriction on the variances that is when it is known a priori that σ2

1 ≤ σ2
2 or equivalently

σ1 ≤ σ2. Further it will be shown that each of these alternative estimators dominate their
unrestricted counterparts proposed by Moore and Krishnamoorthy [14], Tripathy and Kumar
[20], Khatri and Shah [11] and Brown and Cohen [3] stochastically under order restriction on
the variances.

To start with, let us define

β1 =

√
n(n− 1)S1√

m(m− 1)S2 +
√
n(n− 1)S1

,

β2 =
√
ncmS1√

mcnS2 +
√
ncmS1

,

β3 =
n(n− 3)S2

1

m(m− 3)S2
2 + n(n− 3)S2

1

,

β4 =
b2S

2
1

S2
1 + S2

2

.

We propose the following estimators for the common mean µ, when the variances known to
follow the simple ordering σ2

1 ≤ σ2
2:

d̂MK =


(1− β1)X̄ + β1Ȳ , if

√
n−1S1√
m−1S2

≤
√

n
m ,

β∗1X̄ + (1− β∗1)Ȳ , if
√
n−1S1√
m−1S2

>
√

n
m ,

d̂TK =


(1− β2)X̄ + β2Ȳ , if S1

S2
≤

√
n
m
cn
cm
,

β∗2X̄ + (1− β∗2)Ȳ , if S1
S2
>

√
n
m
cn
cm
,

d̂KS =


(1− β3)X̄ + β3Ȳ , if S2

1

S2
2
≤ m−3

n−3 ,

β∗3X̄ + (1− β∗3)Ȳ , if S2
1

S2
2
> m−3

n−3 ,

where for i = 1, 2, 3 we denote

β∗i =

 βi, if m = n,

m

m+ n
, if m 6= n.

Finally, we propose an estimator for the case of equal sample sizes as

d̂BC2 =


(1− β4)X̄ + β4Ȳ , if S2

2

S2
1
≥ (2b2 − 1),

β4X̄ + (1− β4)Ȳ , if S2
2

S2
1
< (2b2 − 1).
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In the above definitions of the estimators d̂MK , d̂TK , d̂KS for the case m = n, when β∗i = βi;
i = 1, 2, 3, we mean that both βi and the corresponding conditions must be simplified by
putting m = n.

To proceed further we need the following two definitions which will be used in developing
the section. Let d1 and d2 be any two estimators of the unknown parameter say θ.

Definition 3.1. The estimator d1 is said to dominate another estimator d2 stochasti-
cally if Pθ[(d2 − µ)2 ≤ c] ≤ Pθ[(d1 − µ)2 ≤ c], ∀ c > 0.

Definition 3.2. Let the loss function L(d, θ) in estimating θ by d be a non-decreasing
function of the error |d− θ|. An estimator d1 is said to dominate another estimator d2 uni-
versally if EL(|d1 − θ|) ≤ EL(|d2 − θ|), over the parameter space for all L(.) non-decreasing.
Further it was shown by Hwang [9] that d1 dominates d2 universally if and only if d1 dominates
d2 stochastically.

Next, we prove the following results for estimating the common mean µ, under order
restriction on the variances, which are immediate.

Theorem 3.1. Let the loss function L(.) be a non-decreasing function of the error

|d− µ|. Further assume that the variances are known to follow the ordering σ2
1 ≤ σ2

2. Then

for estimating the common mean µ we have the following dominance results.

(i) The estimator d̂MK dominates dMK stochastically and hence universally.

(ii) The estimator d̂TK dominates dTK stochastically and hence universally.

(iii) The estimator d̂KS dominates dKS stochastically and hence universally.

(iv) The estimator d̂BC2 dominates dBC2 stochastically and hence universally.

Proof: Please see Appendix.

4. PITMAN MEASURE OF CLOSENESS

In this section, we prove that the new proposed estimators d̂MK , d̂TK , d̂KS , and d̂BC2,

perform better than their old counterparts in terms of Pitman measure of closeness criterion
when it is known a priori that the variances follow the ordering σ2

1 ≤ σ2
2 or equivalently

σ1 ≤ σ2. To prove the main results of this section, we need the following results. Let δ1 and
δ2 be any two estimators of a real parametric function say ψ(θ). Pitman [18] proposed a
measure of relative closeness to the parametric function ψ(θ) for comparing two estimators
in the following fashions.

Definition 4.1. The estimator δ1 should be preferred to δ2 if for every θ, PMCθ(δ1, δ2)
= Pθ(|δ1 − ψ(θ)| < |δ2 − ψ(θ)||δ1 6= δ2) ≥ 1

2 , and with strict inequality for some θ.
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The following lemma will be useful for proving the main results of this section, which
was proposed by Peddada and Khatree [17].

Lemma 4.1. Suppose the random vector (X,Y ) has a bivariate normal distribution

with E(X) = E(Y ) = 0 and E(X2) < E(Y 2). Then P (|X| < |Y |) > 1
2 .

Let α˜ = (µ, σ2
1, σ

2
2) and ΩR = {α˜ = (µ, σ2

1, σ
2
2) : −∞ < µ < ∞, 0 < σ2

1 ≤ σ2
2 < ∞}.

We prove the following theorem.

Theorem 4.1. For estimating the common mean µ of two normal populations, when

σ2
1 ≤ σ2

2, we have the following dominance results:

(i) PMC(d̂MK , dMK) > 1
2 , ∀ α˜ ∈ ΩR.

(ii) PMC(d̂TK , dTK) > 1
2 , ∀ α˜ ∈ ΩR.

(iii) PMC(d̂KS , dKS) > 1
2 , ∀ α˜ ∈ ΩR.

(iv) PMC(d̂BC2, dBC2) > 1
2 , ∀ α˜ ∈ ΩR.

Proof: The proof of the theorem is easy after using the Lemma 4.1, and hence has
been omitted.

In the next section we will introduce the concept of invariance to our problem and prove
some inadmissibility results in the classes of equivariant estimators for the common mean.

5. INADMISSIBILITY RESULTS UNDER ORDER RESTRICTION
ON THE VARIANCES

In this section we introduce the concept of invariance to the problem and derive some
inadmissibility results for both affine and location equivariant estimators under order restric-
tion on the variances. As a consequence, estimators dominating some of the existing well
known estimators for the common mean have been derived, under order restriction on the
variances.

5.1. Affine Class

Let us introduce the concept of invariance to our problem. More specifically, consider
the affine group of transformations, GA = {ga,b : ga,b(x) = ax+ b, a > 0, b ∈ R}. Under the
transformation ga,b, Xi→ aXi+b; i = 1, 2, ...,m, Yj → aYj+b; j = 1, 2, ..., n and consequently
the sufficient statistics X̄ → aX̄ + b, Ȳ → aȲ + b, S2

i → a2S2
i , µ→ aµ+ b, σ2

i → a2σ2
i and

the family of distributions remains invariant. The problem remains invariant if we choose the
loss function as (1.1). The form of an affine equivariant estimator for estimating µ, based on
the sufficient statistic (X̄, Ȳ , S2

1 , S
2
2) is obtained as

dΨ = X̄ + S1Ψ(T˜),(5.1)

where T˜ = (T1, T2), T1 = (Ȳ − X̄)/S1, T2 = S2
2/S

2
1 and Ψ is any real valued function.
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Let us define a new function Ψ0 for the affine equivariant estimator dΨ as

Ψ0(t˜) =



n

n+m
min(t1, 0), if Ψ(t˜) < n

n+m min(t1, 0),

Ψ(t˜), if n
n+m min(t1, 0) ≤ Ψ(t˜) ≤ n

n+m max(t1, 0),

n

n+m
max(t1, 0), if Ψ(t˜) > n

n+m max(t1, 0).

(5.2)

The following theorem gives a sufficient condition for improving estimators in the class of
affine equivariant estimators of the form (5.1), under order restriction on the variances.

Theorem 5.1. Let dΨ be an affine equivariant estimator of the form (5.1) for estimat-

ing the common mean µ and the loss function be the affine invariant loss (1.1). The estimator

dΨ is inadmissible and is improved by dΨ0 if P (Ψ(T˜) 6= Ψ0(T˜)) > 0, for some choices of the

parameters α˜; σ1 ≤ σ2.

Proof: Please see Appendix.

Next we will apply Theorem 5.1, to obtain some improved estimators for the common
mean µ, under the assumption that σ2

1 ≤ σ2
2. It is easy to observe that all the estimators dis-

cussed in Section 2, for the common mean µ without taking into account the order restriction
on the variances, fall into the class dΨ = X̄ + S1Ψ(T˜). We apply Theorem 5.1 to get their
corresponding improved estimators under the assumption that σ2

1 ≤ σ2
2. Let us first consider

the estimator dGD = X̄+S1Ψ(T˜), where Ψ(T˜) = (n(n−1)T1)/(m(m−1)T2 +n(n−1)). Note
that Ψ(t˜) > (n/(m+n))max(0, t1), when S2

1/(m− 1) > S2
2/(n− 1). Hence the estimator dGD

is inadmissible and is improved by the estimator

daGD =


m(m− 1)S2

2X̄ + n(n− 1)S2
1 Ȳ

m(m− 1)S2
2 + n(n− 1)S2

1

, if S2
1

m−1 ≤
S2

2
n−1

mX̄ + nȲ

m+ n
, if S2

1
m−1 >

S2
2

n−1 ,

under order restriction on the variances.

Similarly one can get the estimators which improve upon dKS , dMK , dTK , dBC1, and
dBC2 respectively as

daKS =


m(m− 3)S2

2X̄ + n(n− 3)S2
1 Ȳ

m(m− 3)S2
2 + n(n− 3)S2

1

, if S2
1

m−3 ≤
S2

2
n−3

mX̄ + nȲ

m+ n
, if S2

1
m−3 >

S2
2

n−3 ,

daMK =



√
m(m− 1)S2X̄ +

√
n(n− 1)S1Ȳ√

m(m− 1)S2 +
√
n(n− 1)S1

, if S1√
m−1

≤ S2√
n−1

,

mX̄ + nȲ

m+ n
, if S1√

m−1
> S2√

n−1
,
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daTK =



√
mcnS2X̄ +

√
ncmS1Ȳ√

mcnS2 +
√
ncmS1

, if S1
S2
≤

√
n
m
cn
cm
,

mX̄ + nȲ

m+ n
, if S1

S2
≤

√
n
m
cn
cm
,

daBC1 =


dBC1, if S2

2

S2
1

+ n( Ȳ−X̄S1
)2 > n+2

m(m−1) [b1(m+ n)− n]

mX̄ + nȲ

m+ n
, if S2

2

S2
1

+ n( Ȳ−X̄S1
)2 ≤ n+2

m(m−1) [b1(m+ n)− n],

and

daBC2 =


dBC2, if m(m−1)S2

2

n(n−1)S2
1
≥ b2(1 + m

n )− 1

mX̄ + nȲ

m+ n
, if m(m−1)S2

2

n(n−1)S2
1
< b2(1 + m

n )− 1.

Remark 5.1. It is interesting to note that, for the case of unequal sample sizes, that is
for m 6= n, the estimators daGD = d̂GD, d

a
KS = d̂KS , d

a
MK = d̂MK , d

a
TK = d̂TK , d

a
BC2 = d̂BC2.

However for equal sample sizes, application of the Theorem 5.1 produces different estimators.

Remark 5.2. We note that, though the MLE of µ can not be obtained in a closed form,
however from (2.2) it is easy to write µ̂ML = X̄ + S1ΨML(T˜), where ΨML(T˜) = T1nσ̂

2
1ML/

(mσ̂2
2ML + nσ̂2

1ML), and σ̂2
1ML, σ̂

2
2ML are to be found by solving (2.3) and (2.4). Though

ΨML(T˜) does not have a closed form, for a given dataset(sample values), we can find the
value of ΨML(t˜). Therefor, we can find ΨML

0 (t˜) by using (5.2). Hence we can apply Theorem
5.1 and find the value of the improved estimator daML = X̄ + S1ΨML

0 (t˜) which does not have
a closed form. It has been observed in our simulation study that the improved version of the
MLE appears to have the identical risk as the estimator dRM .

5.2. Location Class

A larger class of estimators than the class considered above is the class of location
equivariant estimators. Let GL = {gc : gc(x) = x+ c,−∞ < c <∞} be the location group of
transformations. Under the transformation gc, we observe that, X̄ → X̄+c, Ȳ → Ȳ +c, S2

1 →
S2

2 , S2
2 → S2

2 , and the parameters µ→ µ+ c, σ1 → σ1. The family of probability distributions
is invariant and consequently the estimation problem is also invariant under the loss (1.1).
Based on the minimal sufficient statistics (X̄, Ȳ , S2

1 , S
2
2) the form of a location equivariant

estimator for estimating the common mean µ is thus obtained as

dψ = X̄ + ψ(U˜ ),(5.3)
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where U˜ = (T, S2
1 , S

2
2), T = Ȳ − X̄, and ψ is a real valued function. Let us define a function

ψ0 for the location equivariant estimator dψ as

ψ0(t˜) =



n

n+m
min{t, 0}, if ψ(u˜) < n

m+n min{t, 0},

ψ(u˜), if n
n+m min{t, 0} ≤ ψ(u˜) ≤ n

n+m max{t, 0},

n

n+m
max{t, 0}, if ψ(u˜) > n

n+m max{t, 0}.

(5.4)

The following theorem gives a sufficient condition for improving location equivariant estima-
tors under the condition that the variances follow the ordering σ2

1 ≤ σ2
2.

Theorem 5.2. Let dψ be a location equivariant estimator for estimating the common

mean µ and the loss function be (1.1). Let the function ψ0(u˜) be as defined in (5.6). The

estimator dψ is inadmissible and is improved by dψ0 if Pα˜(ψ(U˜ ) 6= ψ0(U˜ )) > 0 for some choices

of the parameters α˜ = (µ, σ2
1, σ

2
2); σ

2
1 ≤ σ2

2.

Proof: The proof is similar to the proof of the Theorem 5.1, and hence has been
omitted for brevity.

Remark 5.3. We also observe that all the estimators proposed in Section 2, including
the MLE (whose closed form does not exist) belong to the class dψ(U˜ ) = X̄ +ψ(U˜ ). Hence as
an application of Theorem 5.2, produces improved estimators. Further we note that, though
location class produces larger class of estimators, the sufficient conditions in Theorem 5.2, does
not help to obtain different improved estimators than those obtained by applying Theorem
5.1, under order restriction on the variances. In fact, the sufficient conditions in Theorem 5.1
and 5.2 for improving equivariant estimators produces the same improved estimators under
order restricted variances.

Remark 5.4. The performances of all the improved estimators which has been pro-
posed in Section 2 as well as in this section by applying Theorem 5.1, will be evaluated in
Section 6, using the affine invariant loss function L1. Further the percentage of risk improve-
ments upon their respective old counterparts has been noted.

Remark 5.5. We note that the estimator dGM , also belongs to the classes given in
(5.1) and (5.5). However, the conditions in Theorem 5.1 and Theorem 5.2 for improving it,
do not satisfy. Hence the estimator dGM could not be improved by applying either Theorem
5.1 or Theorem 5.2, under the condition that the variances are ordered that is, σ2

1 ≤ σ2
2.

6. A SIMULATION STUDY

It should be noted that, in Section 2 we have constructed the plug-in type restricted
MLE d̂RM for the common mean µ, taking into account the order restriction on the variances.
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Moreover, in Sections 3 and 4 we have also constructed some alternative estimators such as
d̂MK , d̂TK , d̂KS , and d̂BC2 and proved that each of these estimators dominate their old
unrestricted counterparts in terms of stochastic domination as well as Pitman measure of
closeness criterion. Furthermore in Section 5, we have proposed some improved estimators
namely daGD, d

a
KS , d

a
MK , d

a
TK , d

a
BC1, d

a
BC2 by an application of Theorem 5.1 and 5.2. In

addition to all these estimators, we have also considered the improved estimator d̂GD proposed
by Elfessi and Pal [7]. In order to know the performances of all these improved estimators,
one needs to compare the risk functions. We observe that an analytical comparison of all
these estimators seems quite impossible, hence in this section we compare the risk functions
of all the improved estimators numerically through Monte-Carlo simulation method. For
this purpose we have generated 20, 000 random samples of sizes m and n respectively from
N(µ, σ2

1) and N(µ, σ2
2), with the condition that σ2

1 ≤ σ2
2. The accuracy of the simulation has

been checked and the error has been checked which is seen up to 10−3. To proceed further,
we define the percentage of risk improvements of all the improved estimators upon each of
their unrestricted counterparts as follows:

P1 =
(

1− R(d̂GD, µ)
R(dGD, µ)

)
× 100, P2 =

(
1− R(d̂KS , µ)

R(dKS , µ)

)
× 100,

P3 =
(

1− R(d̂MK , µ)
R(dMK , µ)

)
× 100, P4 =

(
1− R(d̂TK , µ)

R(dTK , µ)

)
× 100,

P5 =
(

1−
R(daGD, µ)
R(dGD, µ)

)
× 100, P6 =

(
1−

R(daKS , µ)
R(dKS , µ)

)
× 100,

P7 =
(

1−
R(daMK , µ)
R(dMK , µ)

)
× 100, P8 =

(
1−

R(daTK , µ)
R(dTK , µ)

)
× 100,

P9 =
(

1− R(d̂RM , µ)
R(dML, µ)

)
× 100.

In order to compare the performances of all the improved estimators among themselves
we use the affine loss function (1.1). It is better to compare the risk functions of all the
improved estimators with respect to a benchmark estimator which can be the Graybill-Deal
(see Graybill and Deal [8]) estimator. We define the percentage of relative risk performances
of all the improved estimators with respect to the benchmark estimator dGD as follows:

R1 =
(

1− R(d̂GD, µ)
R(dGD, µ)

)
× 100, R2 =

(
1− R(d̂KS , µ)

R(dGD, µ)

)
× 100,

R3 =
(

1− R(d̂MK , µ)
R(dGD, µ)

)
× 100, R4 =

(
1− R(d̂TK , µ)

R(dGD, µ)

)
× 100,

R5 =
(

1−
R(daGD, µ)
R(dGD, µ)

)
× 100, R6 =

(
1−

R(daMK , µ)
R(dGD, µ)

)
× 100,

R7 =
(

1−
R(daBC1, µ)
R(dGD, µ)

)
× 100, R8 =

(
1−

R(daBC2, µ)
R(dGD, µ)

)
× 100,

R9 =
(

1− R(d̂RM , µ)
R(dGD, µ)

)
× 100.
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It is easy to observe that the risks of all the estimators are functions of τ with respect
to the loss function L1 as given in (1.1), where we denote τ = σ2

1/σ
2
2, 0 < τ ≤ 1. We note

that, when the sample sizes are unequal (that is when m 6= n) d̂GD = daGD, d̂KS = daKS ,

d̂MK = daMK , and d̂TK = daTK . Further we notice that for equal sample sizes (that is when
m = n) d̂GD = d̂KS and d̂MK = ˆTK. In our simulation study we have chosen b1 = 1

2bmax(m,n)
and b2 = 1

2bmax(m,n−3), where the values of bmax(m,n) have been taken from the table given
in Brown and Cohen [3]. Moreover we observe that for b2 = 1, the estimator dBC2 = dGD
also when b2 = 0, it reduces to X̄. The percentage of risk improvements of daBC1, d

a
BC2 and

d̂BC2 upon their unrestricted counterparts are seen to be very marginal and hence have
not been tabulated. The simulation study has been carried out for various combinations
of sample sizes while the parameter τ ∈ (0, 1]. For illustration purpose we have presented
the percentage of risk improvements as well as the percentage of relative risk improvements
of all the estimators for some choices of sample sizes in Tables 1–7. In Tables 1 and 2 we
have presented the percentage of risk improvements of all the improved estimators upon
their unrestricted counterparts for equal and unequal sample sizes respectively with respect
to the loss function (1.1). Particularly, in Table 1, the percentage of risk improvements of
all the improved estimators have been presented for the sample sizes (5, 5), (12, 12), (20, 20)
and (30, 30). The first and the seventh column represent the values of τ and the rest of the
columns represent the percentage of risk improvements of each of the improved estimators.
The table consists of several cells. In each cell, corresponding to one choice of τ, there
correspond four values of percentage of risk values for the sample sizes (5, 5), (12, 12), (20, 20)
and (30, 30). Table 2, is divided into two parts, specifically the first half (column second to
sixth) represents the percentage of risk performances for all the estimators with sample sizes
(5, 10), and (12, 20). The second part (column seventh to eleventh) represents the percentage
of risk improvements for the sample sizes (10, 5) and (20, 12). In this table the first column
also represents the values of τ and the columns second onwards represent the percentage of
risk improvements of all the estimators upon their unrestricted counterparts. In this table
each cell contains two values of percentage of risk improvements. These two values correspond
to one value of τ. In a very similar fashion the percentage of risk improvements of all the
estimators have been presented in Tables 3 to 5 for equal and unequal sample sizes with
respect to the loss functions (1.2) and (1.3).

The percentage of relative risk improvements of all the improved estimators with respect
to the benchmark estimator dGD (denoted as Ri; i = 1, 2, 7) have been presented in Tables
6 and 7 for equal and unequal sample sizes respectively. Specifically, in Table 6 we have
presented the percentage of relative risk performances of all the improved estimators for the
sample sizes (5, 5), (12, 12) and (20, 20). The Table 6 consists of eight columns and each
column have several cells. Corresponding to each value of τ there correspond three values
of percentage of relative risks. These three values correspond to three sample sizes (5, 5),
(12, 12) and (20, 20) respectively. In a very similar way we have presented the percentage of
relative risk improvements of all the improved estimators for the unequal sample sizes (5, 10),
(12, 20), (10, 5) and (20, 12) in Table 7. Moreover, we have also plotted the risk values of
all the improved estimators with respect to the loss function (1.1), against the choices of τ
in Figure 1. Specifically, Figure 1 (a)–(b) presents the graph for equal sample sizes whereas
Figure 1 (c)–(f) presents for unequal sample sizes. We note that the estimators d̂GD, d̂KS ,
d̂MK , d̂TK , d̂RM , d

a
GD, d

a
MK , d

a
BC1, d

a
BC2 have been denoted by GDI, KSI, MKI, TKI, RML,

GDA, MKA, BC1A and BC2A respectively in Figure 1 (a)–(f).
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Table 1: Percentage of risk improvements of all the proposed estimators using the loss L1

for the sample sizes (m,n) = (5, 5), (12, 12), (20, 20), (30, 30).

τ ↓ P1 P5 P3 P6 P9 τ ↓ P1 P5 P3 P6 P9

1.93 1.17 0.72 0.41 17.78 9.76 8.91 5.93 4.43 11.82

0.05
0.00 0.00 0.00 0.00 1.63

0.55
3.85 2.77 2.06 1.27 3.53

0.00 0.00 0.00 0.00 0.00 1.42 0.94 0.73 0.42 1.04
0.00 0.00 0.00 0.00 0.00 0.43 0.29 0.22 0.13 0.31

5.66 3.53 2.56 1.46 13.90 8.93 9.13 5.42 4.42 11.77

0.10
0.00 0.00 0.00 0.00 0.31

0.60
3.95 2.92 2.11 1.33 3.55

0.00 0.00 0.00 0.00 0.00 1.50 1.09 0.77 0.48 1.23
0.00 0.00 0.00 0.00 0.00 0.83 0.53 0.42 0.24 0.57

6.52 4.19 3.19 1.87 11.42 8.46 9.08 5.14 4.34 11.39

0.15
0.16 0.09 0.07 0.04 0.46

0.65
3.32 2.92 1.79 1.26 3.61

0.00 0.00 0.00 0.00 0.00 1.77 1.38 0.92 0.59 1.55
0.00 0.00 0.00 0.00 0.00 1.01 0.70 0.52 0.31 0.75

7.88 5.24 4.09 2.44 10.55 7.43 9.14 4.62 4.32 11.39

0.20
0.51 0.30 0.23 0.13 0.67

0.70
4.07 3.59 2.23 1.57 4.32

0.02 0.01 0.01 0.01 0.01 2.12 1.70 1.10 0.73 1.92
0.00 0.00 0.00 0.00 0.00 1.30 0.93 0.67 0.41 0.99

8.30 5.65 4.49 2.73 10.63 6.29 9.04 3.80 4.14 11.61

0.25
0.49 0.30 0.23 0.13 0.47

0.75
3.22 3.41 1.76 1.41 4.22

0.06 0.04 0.03 0.02 0.04 2.09 1.88 1.10 0.78 2.11
0.01 0.00 0.00 0.00 0.00 1.04 0.98 0.53 0.39 1.05

9.23 6.50 5.14 3.18 10.28 6.64 9.82 4.14 4.55 11.69

0.30
0.88 0.53 0.43 0.24 0.80

0.80
2.96 3.81 1.61 1.49 4.80

0.15 0.09 0.07 0.04 0.11 2.30 2.27 1.22 0.92 2.57
0.07 0.04 0.03 0.02 0.04 1.51 1.31 0.78 0.54 1.4

10.02 7.35 5.70 3.63 11.26 3.39 8.52 2.11 3.65 10.86

0.35
1.57 0.99 0.79 0.45 1.48

0.85
2.86 4.15 1.61 1.61 5.05

0.26 0.15 0.13 0.07 0.19 2.21 2.57 1.17 0.99 2.92
0.05 0.03 0.02 0.01 0.03 1.67 1.67 0.87 0.66 1.81

9.70 7.42 5.60 3.68 11.00 3.38 9.01 2.07 3.80 11.72

0.40
2.11 1.35 1.07 0.62 1.81

0.90
1.47 3.65 0.80 1.26 4.67

0.52 0.32 0.26 0.14 0.37 1.35 2.31 0.72 0.81 2.64
0.04 0.02 0.02 0.01 0.02 1.25 1.66 0.65 0.60 1.79

10.91 8.78 6.49 4.41 12.00 1.82 8.51 1.19 3.53 10.70

0.45
2.35 1.53 1.22 0.70 1.99

0.95
0.81 3.62 0.47 1.20 4.48

0.55 0.36 0.27 0.16 0.41 1.27 2.60 0.69 0.89 2.94
0.19 0.11 0.09 0.05 0.12 0.05 1.32 0.02 0.36 1.46

10.17 8.62 6.02 4.25 11.23 0.68 7.72 0.49 2.83 9.87

0.50
3.47 2.36 1.82 1.08 3.06

1.00
0.55 3.34 0.31 0.93 4.21

1.11 0.73 0.56 0.33 0.85 0.21 2.23 0.11 0.59 2.55
0.32 0.21 0.16 0.09 0.23 0.78 2.09 0.42 0.67 2.29
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Table 2: Percentage of risk improvements of all the proposed estimators using the loss L1

for unequal sample sizes.

τ ↓
(m, n) = (5, 10), (12, 20) (m, n) = (10, 5), (20, 12)

P1 P2 P3 P4 P9 P1 P2 P3 P4 P9

0.05
0.00 0.01 0.00 0.00 0.02 2.18 0.89 2.19 1.98 43.23
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86

0.10
0.12 0.47 0.00 0.00 0.26 4.21 1.94 4.54 4.12 39.23
0.00 0.00 0.00 0.00 0.05 0.02 0.00 0.10 0.09 0.83

0.15
0.18 0.92 0.01 0.01 0.68 5.79 2.89 6.20 5.65 32.09
0.00 0.01 0.00 0.00 0.03 0.02 0.01 0.19 0.18 0.73

0.20
0.61 1.80 0.06 0.07 1.26 6.32 3.12 7.25 6.60 26.89
0.01 0.03 0.00 0.00 0.05 0.25 0.18 0.53 0.50 0.34

0.25
0.72 2.34 0.06 0.07 1.45 7.70 3.77 8.79 8.05 25.31
0.04 0.07 0.00 0.00 0.11 0.43 0.30 1.06 1.00 0.80

0.30
1.06 3.18 0.08 0.10 2.17 8.27 4.10 9.36 8.56 19.80
0.12 0.19 0.00 0.00 0.22 0.56 0.40 1.35 1.27 0.44

0.35
1.47 4.01 0.09 0.11 2.59 9.66 4.86 10.33 9.50 20.65
0.22 0.34 0.00 0.00 0.41 1.01 0.76 2.03 1.93 0.97

0.40
1.74 4.60 0.13 0.16 2.83 10.28 5.06 11.21 10.32 19.58
0.39 0.58 0.01 0.01 0.72 1.34 0.99 2.65 2.52 1.37

0.45
2.06 5.09 0.18 0.22 3.41 10.6 5.31 11.32 10.44 17.64
0.55 0.81 0.01 0.02 0.98 1.77 1.30 3.30 3.15 1.51

0.50
2.56 6.05 0.21 0.26 4.08 11.26 5.93 11.62 10.75 17.39
0.77 1.12 0.03 0.03 1.15 1.91 1.41 3.41 3.26 1.61

0.55
2.66 6.18 0.25 0.31 4.02 11.91 6.15 11.91 11.04 18.19
1.08 1.53 0.05 0.06 1.66 2.31 1.71 3.82 3.65 1.97

0.60
2.69 6.22 0.25 0.30 4.07 11.77 6.11 11.73 10.88 17.98
1.26 1.75 0.04 0.05 1.84 2.39 1.78 3.91 3.74 2.12

0.65
2.98 6.52 0.31 0.37 4.49 12.84 6.70 12.26 11.39 17.61
1.36 1.88 0.06 0.07 2.01 3.24 2.49 4.56 4.38 2.95

0.70
2.86 6.28 0.31 0.36 4.21 12.64 6.65 11.67 10.83 16.90
1.78 2.35 0.11 0.13 2.62 3.55 2.72 4.79 4.61 3.25

0.75
3.21 6.75 0.30 0.36 4.72 12.37 6.56 11.15 10.37 16.05
1.93 2.53 0.12 0.13 2.66 3.41 2.63 4.37 4.20 3.27

0.80
3.75 7.44 0.46 0.54 5.39 12.47 6.46 11.25 10.45 15.33
2.06 2.73 0.10 0.10 2.79 3.97 3.10 4.58 4.42 3.80

0.85
3.31 6.95 0.32 0.38 4.81 11.99 6.54 9.93 9.23 15.25
2.43 3.09 0.18 0.19 3.30 4.00 3.10 4.51 4.34 3.83

0.90
3.41 6.87 0.39 0.45 4.89 11.40 5.77 9.40 8.70 14.64
2.33 2.96 0.18 0.19 3.26 4.16 3.21 4.46 4.29 4.01

0.95
3.33 6.78 0.29 0.35 4.96 11.83 6.45 9.25 8.58 14.60
2.26 2.86 0.15 0.16 3.02 3.95 3.05 3.90 3.76 3.91

1.00
2.99 6.27 0.24 0.28 4.32 11.40 6.12 8.47 7.85 13.82
1.94 2.50 0.07 0.08 2.83 4.09 3.23 3.52 3.38 4.09
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Table 3: Percentage of risk improvements of all the proposed estimators
using the loss L2 and L3 loss.

(m, n) ↓ (σ2
1 , σ2

2) ↓
L2 − Loss L3 − Loss

P1 P5 P3 P6 P9 P1 P5 P3 P6 P9

(0.05, 0.10) 4.62 3.96 2.81 1.99 5.37 10.73 9.21 6.55 4.69 11.72
(0.05, 0.30) 2.27 1.33 1.20 0.65 3.28 6.48 4.25 3.23 1.91 11.12
(0.05, 0.50) 1.26 0.70 0.63 0.33 3.06 3.94 2.41 1.72 0.97 13.05
(0.05, 0.70) 0.77 0.42 0.36 0.19 3.54 3.59 2.22 1.48 0.83 16.24
(0.05, 1.00) 0.61 0.32 0.27 0.14 3.27 2.79 1.75 1.07 0.61 19.27

(1.00, 1.10) 1.19 4.25 0.76 1.78 5.45 1.99 8.39 1.21 3.43 10.50
(1.00, 1.50) 3.71 4.17 2.27 1.96 5.45 8.26 9.29 5.10 4.45 11.27

(5, 5) (1.00, 2.00) 4.53 3.81 2.74 1.89 5.15 10.33 8.67 6.21 4.37 11.48
(1.00, 2.50) 4.71 3.43 2.76 1.74 4.91 9.80 7.52 5.66 3.72 10.99
(1.00, 3.00) 4.31 2.91 2.48 1.48 4.35 9.40 6.78 5.28 3.34 10.71

(2.00, 2.10) 0.21 3.94 0.18 1.43 5.03 1.61 8.57 0.98 3.49 10.69
(2.00, 2.30) 1.43 4.41 0.92 1.86 5.64 3.37 8.83 2.06 3.75 11.11
(2.00, 2.50) 3.16 4.87 2.06 2.25 6.19 6.11 9.37 3.86 4.33 12.05
(2.00, 2.70) 3.06 4.37 1.87 1.99 5.64 6.34 8.90 3.96 4.13 11.08
(2.00, 3.00) 4.26 4.39 2.67 2.14 5.74 8.38 9.18 5.21 4.46 11.75

(0.05, 0.10) 1.56 1.04 0.84 0.49 1.24 2.61 1.90 1.37 0.85 2.49
(0.05, 0.30) 0.04 0.02 0.02 0.01 0.09 0.17 0.09 0.07 0.04 0.26
(0.05, 0.50) 0.01 0.00 0.00 0.00 0.04 0.01 0.00 0.00 0.00 0.48
(0.05, 0.70) 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.29
(0.05, 1.00) 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.38

(1.00, 1.10) 1.39 2.19 0.83 0.88 2.65 0.98 3.51 0.53 1.16 4.47
(1.00, 1.50) 1.99 1.68 1.12 0.76 2.01 3.94 3.35 2.13 1.47 4.21

(12, 12) (1.00, 2.00) 1.41 0.98 0.78 0.46 1.19 2.77 1.98 1.46 0.89 2.59
(1.00, 2.50) 0.89 0.59 0.46 0.27 0.75 1.73 1.16 0.88 0.52 1.50
(1.00, 3.00) 0.61 0.36 0.31 0.17 0.47 1.35 0.82 0.67 0.37 1.18

(2.00, 2.10) 0.26 1.84 0.15 0.57 2.31 1.37 3.98 0.76 1.37 4.99
(2.00, 2.30) 0.92 1.80 0.46 0.63 2.22 1.80 3.61 1.00 1.31 4.45
(2.00, 2.50) 1.18 1.74 0.64 0.66 2.13 3.37 4.06 1.86 1.64 4.95
(2.00, 2.70) 2.08 1.93 1.15 0.83 2.33 4.04 3.90 2.21 1.66 4.77
(2.00, 3.00) 1.85 1.55 1.00 0.69 1.87 3.78 3.30 2.04 1.43 4.16

(0.05, 0.10) 0.56 0.34 0.29 0.16 0.38 1.12 0.72 0.57 0.33 0.81
(0.05, 0.30) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.01
(0.05, 0.50) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.05, 0.70) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.05, 1.00) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(1.00, 1.10) 0.34 1.00 0.20 0.34 1.14 1.23 2.37 0.65 0.81 2.74
(1.00, 1.50) 0.95 0.72 0.48 0.31 0.81 1.97 1.51 1.03 0.65 1.67

(20, 20) (1.00, 2.00) 0.62 0.37 0.33 0.18 0.41 1.10 0.69 0.56 0.32 0.79
(1.00, 2.50) 0.21 0.12 0.10 0.05 0.14 0.42 0.25 0.21 0.11 0.28
(1.00, 3.00) 0.12 0.06 0.06 0.03 0.07 0.28 0.16 0.14 0.07 0.20

(2.00, 2.10) 0.23 1.14 0.15 0.37 1.30 0.40 2.21 0.21 0.67 2.59
(2.00, 2.30) 0.95 1.22 0.47 0.44 1.40 1.52 2.21 0.80 0.80 2.52
(2.00, 2.50) 1.09 1.11 0.59 0.46 1.23 2.01 2.05 1.06 0.81 2.29
(2.00, 2.70) 1.03 0.92 0.53 0.37 1.03 2.45 2.07 1.29 0.88 2.31
(2.00, 3.00) 0.80 0.65 0.41 0.27 0.74 1.79 1.39 0.93 0.60 1.55
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Table 4: Percentage of risk improvements of all the proposed estimators
using the loss L2 and L3.

(m, n) ↓ (σ2
1 , σ2

2) ↓
L2 − Loss L3 − Loss

P1 P2 P3 P4 P9 P1 P2 P3 P4 P9

(0.05, 0.10) 1.27 2.84 0.12 0.14 1.87 2.46 5.73 0.18 0.22 3.86
(0.05, 0.30) 0.11 0.42 0.01 0.01 0.25 0.29 1.10 0.02 0.02 0.72
(0.05, 0.50) 0.03 0.13 0.00 0.00 0.08 0.10 0.39 0.01 0.01 0.28
(0.05, 0.70) 0.01 0.06 0.00 0.00 0.04 0.04 0.15 0.00 0.00 0.08
(0.05, 1.00) 0.00 0.02 0.00 0.00 0.01 0.00 0.04 0.00 0.00 0.05

(1.00, 1.10) 1.44 2.97 0.13 0.15 2.15 3.52 6.91 0.38 0.45 4.94
(1.00, 1.50) 1.59 3.45 0.17 0.20 2.37 3.21 6.94 0.32 0.39 4.86

(5, 10) (1.00, 2.00) 1.21 2.89 0.09 0.11 1.92 2.56 6.03 0.21 0.26 4.17
(1.00, 2.50) 0.81 2.21 0.06 0.07 1.42 1.92 4.95 0.15 0.19 3.29
(1.00, 3.00) 0.59 1.71 0.04 0.05 1.04 1.22 3.55 0.08 0.10 2.43

(2.00, 2.10) 1.73 3.37 0.21 0.24 2.52 3.00 6.39 0.20 0.25 4.43
(2.00, 2.30) 1.75 3.56 0.17 0.20 2.52 3.50 7.07 0.36 0.42 4.90
(2.00, 2.50) 1.67 3.47 0.17 0.20 2.47 3.36 7.03 0.32 0.39 5.13
(2.00, 2.70) 1.62 3.50 0.15 0.18 2.46 3.20 6.96 0.32 0.38 4.73
(2.00, 3.00) 1.68 3.60 0.18 0.21 2.51 3.15 6.83 0.32 0.38 4.98

(0.05, 0.10) 0.45 0.64 0.02 0.03 0.68 0.77 1.13 0.01 0.01 1.24
(0.05, 0.30) 0.00 0.01 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.02
(0.05, 0.50) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.05, 0.70) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.05, 1.00) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(1.00, 1.10) 0.96 1.26 0.04 0.04 1.32 2.28 2.93 0.16 0.17 3.24
(1.00, 1.50) 0.77 1.05 0.03 0.04 1.10 1.66 2.25 0.10 0.10 2.36

(12,20) (1.00, 2.00) 0.37 0.53 0.01 0.02 0.56 0.74 1.05 0.03 0.03 1.12
(1.00, 2.50) 0.18 0.27 0.00 0.00 0.28 0.35 0.53 0.00 0.01 0.61
(1.00, 3.00) 0.08 0.13 0.00 0.00 0.17 0.17 0.29 0.00 0.00 0.34

(2.00, 2.10) 1.14 1.45 0.07 0.07 1.51 2.13 2.69 0.16 0.17 2.86
(2.00, 2.30) 1.19 1.52 0.08 0.08 1.60 2.42 3.08 0.21 0.22 3.21
(2.00, 2.50) 0.88 1.18 0.05 0.05 1.20 1.78 2.37 0.12 0.13 2.58
(2.00, 2.70) 0.82 1.08 0.06 0.06 1.14 2.06 2.69 0.16 0.17 2.88
(2.00, 3.00) 0.76 1.01 0.05 0.05 1.06 1.59 2.12 0.10 0.11 2.27
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Table 5: Percentage of risk improvements of all the proposed estimators
using the loss L2 and L3.

(m, n) ↓ (σ2
1 , σ2

2) ↓
L2 − Loss L3 − Loss

P1 P2 P3 P4 P9 P1 P2 P3 P4 P9

(0.05, 0.10) 4.70 2.27 5.51 5.07 6.73 10.89 5.43 11.52 10.63 17.75
(0.05, 0.30) 1.79 0.81 2.49 2.24 6.69 5.34 2.37 6.24 5.64 28.01
(0.05, 0.50) 1.08 0.53 1.40 1.26 7.27 3.51 1.53 3.80 3.43 31.23
(0.05, 0.70) 0.71 0.30 0.96 0.86 7.45 3.48 1.58 3.29 2.99 40.10
(0.05, 1.00) 0.43 0.21 0.60 0.54 6.71 1.83 0.63 1.97 1.77 43.66

(1.00, 1.10) 5.78 3.04 4.89 4.51 7.06 12.93 7.12 10.35 9.65 16.21
(1.00, 1.50) 5.57 2.92 5.52 5.10 7.09 12.55 6.61 11.90 11.04 16.55

(10, 5) (1.00, 2.00) 4.88 2.44 5.66 5.21 6.60 11.60 5.89 12.07 11.16 19.34
(1.00, 2.50) 4.30 2.07 5.24 4.80 7.21 10.41 5.32 11.19 10.31 19.67
(1.00, 3.00) 3.42 1.58 4.52 4.11 6.99 9.87 5.14 10.47 9.67 20.79

(2.00, 2.10) 6.24 3.44 5.05 4.69 7.48 11.78 6.31 9.13 8.44 15.06
(2.00, 2.30) 6.06 3.21 5.19 4.83 7.05 12.13 6.47 10.05 9.32 15.78
(2.00, 2.50) 6.11 3.30 5.59 5.19 7.23 12.55 6.60 10.90 10.13 15.61
(2.00, 2.70) 6.13 3.24 5.82 5.41 7.43 13.47 7.47 11.94 11.14 16.27
(2.00, 3.00) 5.94 3.16 5.96 5.52 7.40 12.78 6.70 12.05 11.19 17.28

(0.05, 0.10) 0.88 0.64 1.71 1.63 0.74 1.91 1.42 3.46 3.29 1.71
(0.05, 0.30) 0.03 0.02 0.10 0.10 0.11 0.03 0.22 0.20 0.00 1.16
(0.05, 0.50) 0.00 0.00 0.02 0.02 0.06 0.00 0.00 0.03 0.03 2.40
(0.05, 0.70) 0.00 0.00 0.00 0.00 0.04 0.01 0.00 0.02 0.02 1.01
(0.05, 1.00) 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 1.66

(1.00, 1.10) 2.08 1.64 2.19 2.12 2.04 4.26 3.38 4.20 4.06 4.16
(1.00, 1.50) 1.71 1.31 2.47 2.38 1.55 3.02 2.30 4.33 4.16 2.72

(20,12) (1.00, 2.00) 0.91 0.68 1.73 1.65 0.74 2.03 1.51 3.62 3.46 1.75
(1.00, 2.50) 0.53 0.39 1.18 1.12 0.43 1.27 0.93 2.61 2.48 1.13
(1.00, 3.00) 0.34 0.24 0.83 0.78 0.28 0.64 0.43 1.67 1.58 0.50

(2.00, 2.10) 1.71 1.26 1.72 1.65 1.65 3.90 3.06 3.70 3.56 3.89
(2.00, 2.30) 1.80 1.40 1.98 1.91 1.74 3.83 2.97 4.11 3.96 3.83
(2.00, 2.50) 1.80 1.40 2.20 2.12 1.66 3.52 2.69 4.35 4.18 3.27
(2.00, 2.70) 1.74 1.33 2.38 2.29 1.62 3.63 2.80 4.68 4.51 3.47
(2.00, 3.00) 1.64 1.25 2.39 2.30 1.45 3.53 2.73 4.80 4.62 3.34
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Table 6: Percentage of relative risk improvements of all the proposed estimators
using the loss L1 for equal sample sizes.

τ ↓
(m, n) = (5, 5), (12, 12), (20, 20)

R1 R5 R3 R6 R7 R8 R9

1.93 1.17 −38.84 −39.28 13.40 12.32 −18.31
0.05 0.00 0.00 −44.28 −44.28 1.63 1.52 −0.52

0.00 0.00 −41.76 −41.76 0.31 0.29 0.26

6.52 4.19 −5.86 −7.31 11.43 7.96 −0.74
0.15 0.16 0.09 −17.8 −17.84 2.18 1.85 0.76

0.00 0.00 −19.5 −19.5 0.80 0.65 0.55

8.30 5.65 4.14 2.37 6.41 0.82 2.75
0.25 0.49 0.30 −6.49 −6.60 −0.05 −0.59 0.26

0.06 0.04 −8.94 −8.96 0.00 −0.12 0.15

10.02 7.35 10.34 8.37 −0.03 −8.24 4.55
0.35 1.57 0.99 −1.19 −1.54 −0.14 −0.64 0.46

0.26 0.15 −3.54 −3.59 −1.15 −1.15 0.07

10.91 8.78 13.07 11.15 −3.63 −13.69 6.22
0.45 2.35 1.53 2.36 1.85 −3.04 −3.62 0.75

0.55 0.36 −0.72 −0.83 −2.12 −1.98 0.06

9.76 8.91 14.54 13.18 −8.86 −20.58 6.29
0.55 3.85 2.77 5.09 4.32 −4.05 −4.93 1.80

1.42 0.94 1.64 1.34 −2.43 −2.08 0.53

8.46 9.08 14.31 13.59 −13.9 −27.3 6.72
0.65 3.32 2.92 6.02 5.51 −7.72 −8.41 1.77

1.77 1.38 2.88 2.56 −3.81 −3.38 0.92

6.29 9.04 13.72 14.02 −21.68 −37.8 6.07
0.75 3.22 3.41 6.31 5.98 −9.55 −9.94 2.31

2.09 1.88 3.85 3.53 −5.45 −4.59 1.40

3.39 8.52 12.52 13.89 −26.94 −44.56 5.66
0.85 2.86 4.15 6.75 6.76 −11.21 −11.56 3.07

2.21 2.57 4.70 4.53 −6.40 −5.48 2.09

1.82 8.51 12.45 14.52 −31.13 −50.45 5.42
0.95 0.81 3.62 6.04 6.73 −15.23 −15.35 2.32

1.27 2.60 4.20 4.40 −8.28 −7.02 2.20

0.68 7.72 10.26 13.22 −35.40 −55.92 4.94
1.00 0.55 3.34 4.97 6.14 −17.04 −16.80 2.14

0.21 2.23 3.34 4.02 −8.87 −7.50 1.83
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Table 7: Percentage of relative risk improvements of all the proposed estimators
using the loss L1 for unequal sample sizes.

τ ↓
(m, n) = (5, 10), (12, 20), (10, 5), (20, 12)

R1 R2 R3 R4 R7 R8 R9

0.00 −8.4 −23.32 −25.50 3.46 3.08 −1.69

0.05
0.00 −0.53 −30.31 −31.00 0.79 0.67 0.54

2.18 6.68 −63.88 −59.61 10.25 9.64 −4.87
0.00 0.34 −57.97 −56.84 1.18 0.97 0.68

0.18 −6.53 −0.40 −1.37 0.01 −0.93 −2.03

0.15
0.00 −0.71 −8.10 −8.45 0.13 0.00 −0.13

5.79 9.87 −22.3 −20.38 13.2 11.27 5.33
0.02 0.57 −30.61 −29.93 1.57 1.27 1.01

0.72 −2.63 5.58 5.09 −6.48 −7.87 −2.44

0.25
0.04 −0.43 −0.79 −0.99 −2.23 −2.29 −0.66

7.70 10.26 −6.39 −5.35 11.3 7.81 8.14
0.43 0.98 −17.05 −16.61 1.79 1.42 1.25

1.47 1.49 8.63 8.48 −13.83 −15.54 −1.73

0.35
0.22 0.01 2.81 2.70 −4.38 −4.29 −0.84

9.66 10.74 2.29 2.88 9.38 4.71 9.32
1.01 1.36 −8.73 −8.46 0.84 0.29 1.45

2.06 3.77 9.03 9.09 −22.4 −24.25 −1.3

0.45
0.55 0.59 4.21 4.15 −6.82 −6.24 −0.50

10.6 10.59 7.92 8.23 7.92 1.97 10.32
1.77 2.04 −3.95 −3.77 1.31 0.78 1.98

2.66 5.76 9.55 9.74 −27.42 −29.41 −0.41

0.55
1.08 1.52 5.02 5.02 −10.3 −9.21 0.26

11.91 11.00 11.17 11.35 6.33 −0.93 11.03
2.31 2.24 0.27 0.35 −0.60 −1.21 1.99

2.98 6.84 9.14 9.47 −35.76 −37.23 −0.34

0.65
1.36 1.97 4.65 4.69 −13.33 −12.04 0.67

12.84 11.37 13.59 13.68 4.43 −3.84 11.46
3.24 3.00 3.15 3.20 −1.05 −1.75 2.65

3.21 7.98 8.47 8.93 −43.11 −44.95 −0.14

0.75
1.93 2.67 4.58 4.65 −15.73 −13.78 1.42

12.37 10.08 14.27 14.29 0.59 −9.52 10.97
3.41 3.00 4.61 4.63 −2.65 −3.39 2.65

3.31 8.48 7.91 8.45 −51.29 −52.66 −0.84

0.85
2.43 3.20 3.95 4.04 −17.53 −15.15 2.18

11.99 9.02 14.76 14.74 −3.30 −14.75 10.02
4.00 3.47 5.95 5.94 −3.31 −3.93 3.14

3.33 9.10 7.54 8.17 −56.73 −58.04 −0.47

0.95
2.26 3.14 3.25 3.38 −21.16 −18.37 2.10

11.83 8.84 14.60 14.56 −4.47 −16.63 10.04
3.95 3.31 6.44 6.42 −4.8 −5.49 2.92

2.99 9.03 6.59 7.28 −62.71 −63.43 −1.96

1.00
1.94 2.84 2.52 2.65 −24.06 −21.01 1.91

11.4 8.07 14.64 14.59 −5.9 −19.2 9.47
4.09 3.55 5.81 5.81 −4.87 −5.47 3.18
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Figure 1: (a)–(f) Comparison of risk values of several estimators for common mean µ
using the loss L1 for sample sizes (5, 5), (12, 12), (5, 10), (10, 5), (12, 20) and
(20, 12) respectively.
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The following observations have been made during our simulation study as well as from
the tables, which we discuss separately for equal and unequal sample sizes.

Case I: m = n.

1. The percentage of risk improvements as well as the risk values of all the new es-
timators upon their respective unrestricted counterparts decreases as the sample
sizes increase for fixed values of the parameter, with respect to the loss functions
L1, L2 and L3.

2. Let the loss function be L1. The percentage of risk improvement of d̂GD (see P1)
is seen maximum up to 12%. The percentage of risk improvement of daGD (see P5)
is seen maximum up to 10%. The percentage of risk improvement of d̂MK (see P3)
is seen maximum up to 7%. The percentage of risk improvement of daMK (see P6)
is seen maximum up to 6%, where the percentage of risk improvement of d̂RM (see
P9) is seen maximum up to 20%.

3. Let the loss function be L2. The maximum percentage of risk improvement of d̂GD,
daGD, d̂MK , d

a
MK , and d̂RM upon their respective unrestricted counterparts are seen

near to 6%, 5%, 4%, 3% and 7% respectively. The maximum percentage of risk
improvement is seen in the case of d̂RM for small sample sizes and when σ2

1 and σ2
2

are close to each other.

4. Let the loss function be L3. The maximum percentage of risk improvement of d̂GD,
daGD, d̂MK , d

a
MK , and d̂RM upon their respective unrestricted counterparts are

seen respectively as 11%, 10%, 7%, 5% and 20%. The maximum percentage of risk
improvement of each of the estimators has been noticed for small sample sizes and
when the variances are close to each other.

5. Here we note that, the percentage of risk improvements of all the new estimators
upon their respective unrestricted counterparts are approximated values only which
have been obtained numerically and hence it may vary with sample sizes.

6. The above numerical results (2)–(4) validates the theoretical findings in Sections 3,
4, and 5.

7. The risk values of all the estimators such as d̂GD, daGD, d̂MK , d
a
MK , d

a
BC1, d

a
BC2,

and d̂RM , decrease as the sample sizes increase. Further for fixed sample sizes, as
the values of τ varies from 0 to 1, the risk values of all the estimators decrease. It
has been noticed that, for small values of τ (say 0 < τ < 0.25), the percentage of
relative risk improvement of daBC1 is maximum and seen up to 15%. For the values
of τ near to 1, (say for the range 0.50 < τ < 1) the estimators d̂MK and daMK have
almost same percentage of relative risk improvements. For moderate values of τ
(say 0.50 < τ < 0.75), the estimators d̂MK and daMK perform equally well, however
as the sample sizes increases from moderate to large, the performance of these two
estimators decrease and compete well with d̂GD. In fact, the dominance regions of
d̂MK and daMK upon d̂GD decrease. It has also been noticed that the estimators
d̂GD, d̂MK , and daBC1 compete with daGD, d

a
MK and daBC2 respectively.
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Case II: m 6= n.

1. The percentage of risk improvements of all the improved estimators decrease as the
sample sizes increase for fixed values of σ2

1 and σ2
2 with respect to the loss functions

L1, L2 and L3.

2. Let us first consider the loss function L1. The percentage of risk improvement
of d̂GD upon dGD (denoted as P1) is seen maximum up to 16%, the maximum
percentage of risk improvement of d̂KS upon dKS (denoted as P2) is seen near
to 8%. The maximum percentage of risk improvement of d̂MK and d̂TK over their
corresponding unrestricted counterparts are seen near to 14% and 13% respectively.
The maximum percentage of risk improvement of d̂RM upon dML is seen up to 15%.
We also note that, these maximum risk improvements have been noticed when
m > n for all the estimators.

3. Let us consider the loss function L2. The maximum percentage of risk improvement
of d̂GD upon dGD is seen up to 7%. The maximum percentage of risk improvement of
d̂KS over dKS is seen near to 4%. The maximum percentage of risk improvement of
d̂MK upon dMK is seen near to 7%. The maximum percentage of risk improvement
of d̂TK upon dTK is seen near to 7%. The maximum percentage of risk improvement
of d̂RM upon dML is seen near to 13%.

4. Consider the loss function L3. The maximum percentage of risk improvement of d̂GD
upon dGD is seen up to 13%. The maximum percentage of risk improvement of d̂KS
upon dKS is seen near to 8%. The maximum percentage of risk improvement of d̂MK

upon dMK is seen near to 13%. The maximum percentage of risk improvement of
d̂TK upon dTK is seen near to 13%. The maximum percentage of risk improvement
of d̂RM upon dML is seen near to 36%.

5. Here we note that, the percentage of risk improvements of all the improved estima-
tors upon their respective unrestricted counterparts are approximated values only
which have been obtained numerically and hence it may vary with sample sizes,
however the trends remain the same.

6. The above numerical results (2)−−(4) also validates the theoretical findings in
Sections 3, 4, and 5.

7. The risk values of all the estimators, such as d̂GD, d̂KS , d̂MK , d̂TK , d
a
BC1, d

a
BC2,

and d̂RM , decrease as the sample sizes increase. It has been noticed that for small
values of τ (say 0 < τ < 0.15), the percentage of relative risk improvements of daBC1

and daBC2 are maximum and seen up to 12%. For the values of τ near to 1, (say
0.75 < τ < 1) the estimator d̂KS (for m < n) and d̂MK , d̂TK (when m > n) has
maximum percentage of relative risk improvements. For moderate values of τ, the
estimators d̂MK and d̂TK perform equally well, however as the sample sizes increase
from moderate to large the performance of these two estimators decrease and in
this case the estimators d̂GD and d̂KS perform better.
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From the above discussions and also from our simulation study the following conclusions
can be drawn regarding the use of the proposed estimators in practice:

1. Let us consider that the sample sizes are equal, that is m = n. When the variance
of the first population is much smaller compare to the second, we recommend to
use daBC1. When the variance of both the populations are close to each other, we
recommend to use either d̂MK or daMK , as they compete with each other. In other
cases, that is neither the variances differ too much nor close to each other, the
estimators d̂MK and daMK can be used for small sample sizes (say m,n ≤ 10), and
d̂MK or d̂GD for moderate to large sample sizes.

2. Consider that the sample sizes are unequal, that is m 6= n. When the variance of
the first population is much smaller than the second, we recommend to use either
the estimator daBC1 or daBC2. When the variances of both the populations are close
to each other, the estimators d̂KS or d̂TK (for m < n) and d̂TK or d̂MK (for m > n)
can be recommended for use. However for moderate ranges of τ, the estimators
d̂MK or d̂TK (for m < n) and the estimators d̂KS , d̂GD, d̂RM or d̂TK (for m > n)
can be preferred as they all perform equally well.
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7. CONCLUDING REMARKS AND EXAMPLES

In this paper, we have re-investigated the problem of estimating common mean of two
normal populations when the variances are known to follow the ordering σ2

1 ≤ σ2
2. It should

be noted that, Elfessi and Pal [7] considered this model and obtained an estimator which
dominates the well known Graybill-Deal (see Graybill and Deal [8]) estimator in terms of
stochastic domination as well as Pitman measure of closeness criterion. We have proposed
some new estimators for the common mean under order restricted variances which beat their
unrestricted counterparts (previously proposed by Khatri and Saha [11], Moore and Krish-
namoorthy [14], Tripathy and Kumar [20], Brown and Cohen [3]) stochastically, universally
and in terms of Pitman measure of closeness criterion and compete well with the estimator
proposed by Elfessi and Pal [7]. Moreover, we have obtained a plug-in type restricted MLE
which beats the unrestricted MLE with respect to a squared error loss function. In addition
to these, we have derived a sufficient condition for improving equivariant estimators using
orbit-by-orbit improvement technique of Brewster and Zidek [2]. To the best of our knowl-
edge, the performance of the MLE of the common mean has not been discussed under order
restricted variances in the literature which was also lacking and we have tried to answer up
to some extent. We have carried out a detailed and in-depth simulation study in order to
compare the performances of both proposed as well as existing estimators with that of the
plug-in type restricted MLE which was lacking in the literature. Under order restriction on
the variances we have recommended estimators that can be used in practice. We hope that
the current study may fill the knowledge gap and provide useful information to the researchers
from an application point of view.

Example 7.1. (Simulated Data): The following two data sets each of size 10 from
normal distributions have been generated using the software R, with a common mean µ = 25
and with the condition that σ2

1 ≤ σ2
2. Data Set A: 24.28, 25.94, 25.76, 29.14, 28.39, 23.51,

23.43, 22.60, 22.29, 28.26. Data Set B: 24.61, 23.70, 26.25, 29.11, 26.13, 23.52, 25.57, 22.34,
26.19, 23.04. The sufficient statistics can be computed as x̄ = 25.36, ȳ = 25.04, s21 = 57.69,
s22 = 36.46. Based on the summery data it is seen that s21 > s22. This is a case where the
improved estimators can be obtained. The various estimators are computed as dGD =
25.17, d̂GD = 25.24, daGD = 25.20, dKS = 25.17, d̂KS = 25.24, daKS = 25.20, dMK = 25.18,
d̂MK = 25.22, daMK = 25.20, dTK = 25.18, d̂TK = 25.22, daTK = 25.20, dBC1 = 25.25, daBC1 =
25.25, dBC2 = 25.18, d̂BC2 = 25.20, daBC2 = 25.23, dML = 25.17, d̂RM = 25.20, daML = 25.20.
Depending upon the variance ratios, the improved estimators can be used.

Example 7.2. Rohatgi and Saleh [19], (p.515) discussed one example regarding the
mean life time (in hours) of light bulbs. Suppose a random sample of 9 bulbs has sample mean
1309 hours with standard deviation of 420 hours. A second sample of 16 bulbs chosen from a
different batch has sample mean 1205 hours and standard deviation 390 hours. A two sample
t-test fails to reject the hypothesis that the means are equal. Suppose it is known a priori that
the variance of first sample is smaller than the second one. This is a situation where our model
will be useful. On the basis of these samples, we havem = 9, n = 16, x̄ = 1309, ȳ = 1205, s1 =
(
√
m− 1)420, s2 = (

√
n− 1)390. The various estimators for the common mean are obtained

as dGD = 1269.27, d̂GD = 1271.24, dKS = 1267.44, d̂KS = 1271.24, dMK = 1274.22, d̂MK =
1274.22, dTK = 1274.01, d̂TK = 1274.01, dBC1 = 1284.37, daBC1 = 1284.37, dBC2 = 1287.32,
daBC2 = 1287.32, dML = 1269.87, d̂RM = 1271.24, and daML = 1271.24. In this situation we
recommend to use either of the estimators d̂GD, d̂KS , or daML.
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A. APPENDIX

Proof of Theorem 3.1: (i) First we prove the dominance result for equal sample
sizes that is m = n. Consider the estimator d̂MK which is given by

d̂MK =
{

(1− β1)X̄ + β1Ȳ , if S1 ≤ S2,
β1X̄ + (1− β1)Ȳ , if S1 > S2.

Our target is to show that,

P [(d̂MK − µ)2 ≤ c] ≤ P [(dMK − µ)2 ≤ c], ∀ c > 0.(A.1)

Which is equivalent to show that

P [(dMK − µ)2 ≤ c|S1 > S2] ≤ P [(d̂MK − µ)2 ≤ c|S1 > S2], ∀ c > 0.

Denoting X∗
1 = (1− β1)X̄ + β1Ȳ and X∗

2 = β1X̄ + (1− β1)Ȳ , we observe that X∗
1 − µ ∼

N(0, σ2), X∗
2 − µ ∼ N(0, σ2

∗), where σ2 = (1− β1)2
σ2
1
m + β2

1
σ2
2
m and σ2

∗ = β2
1
σ2
1
m + (1− β1)2

σ2
2
m .

Thus incorporating all these information the above inequality reduces to,

Φ
(√c
σ

)
≤ Φ

(√c
σ∗

)
, ∀ c > 0 and S1 > S2,(A.2)

where Φ(.) is the cumulative distribution function of a standard normal random variable.

The inequality (A.2) is equivalent to show that, σ2 > σ2
∗, when S1 > S2. This is true

as, σ2 − σ2
∗ > 0 when σ2

1 ≤ σ2
2 and S1 > S2. This proves the case of equal sample sizes.

Next we prove the result for the case of unequal sample sizes that is m 6= n. Denoting
V1 =

√
m
m−1S1 and V2 =

√
n
n−1S2, the estimator d̂MK can be written as,

d̂MK =
{
dMK , if V1 ≤ V2
mX̄+nȲ
m+n , if V1 > V2.

Proceeding as before, one needs to show that,

P [(dMK − µ)2 ≤ c|V1 > V2] ≤ P [(d̂MK − µ)2 ≤ c|V1 > V2], ∀ c > 0.

Which is further equivalent to show that

Φ
(√c
ν

)
≤ Φ

(√c
ν∗

)
, ∀ c > 0,

where ν2 = (m−1)s22σ
2
1+(n−1)s21σ

2
2

(
√
m(m−1)s2+

√
n(n−1)s1)2

and ν2
∗ = mσ2

1+nσ2
2

(m+n)2
. This is further equivalent to show

that ν2 > ν2
∗ , ∀ c > 0 when V1 > V2.

This is equivalent to show that,

σ2
1 + σ2

2λ
2

(
√
m+

√
nλ)2

>
mσ2

1 + nσ2
2

(m+ n)2
, ∀ c > 0, σ1 ≤ σ2,

where λ =
√
n−1S1√
m−1S2

. Let h(λ) = σ2
1+σ2

2λ
2

(
√
m+

√
nλ)2

. To show that h(λ) > h(
√

n
m), for λ >

√
n
m . We

observe that dh
dλ ≤ 0, if λ ≤

√
n
m
σ2
1

σ2
2
≤

√
n
m , as σ2

1/σ
2
2 ≤ 1. Further dh

dλ > 0, when λ >
√

n
m .

Hence h(λ) is increasing in the interval [
√

n
m ,∞). Universal domination follows from Defini-

tion 3.2. This proves (i). The proofs of (ii)–(iv) are very much similar to the proof of (i) and
hence have been omitted. This completes the proof of the Theorem 3.1.
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Proof of Theorem 5.1: The theorem can be proved by using a well known technique
for improving equivariant estimators proposed by Brewster and Zidek [2]. To proceed, let us
consider the conditional risk function of dΨ given T˜ = t˜ :

R(α˜, dΨ|t˜) =
1
σ2

1

E{(X̄ + S1Ψ(T˜)− µ)2|T˜ = t˜}.
The above risk function is convex in Ψ(t˜) and attains minimum at

Ψ(t˜, α˜) =
E{(µ− X̄)S1|T˜ = t˜}

E{S2
1 |T˜ = t˜} .(A.3)

To evaluate the conditional expectations involved in the above expression, we use the following
transformations. Let us define V1 = (

√
m(X̄ − µ))/σ1, V2 = (

√
m(Ȳ − µ))/σ1, W1 = S2

1/σ
2
1

and W2 = S2
2/σ

2
2. With these substitution the expression for Ψ(t˜, α˜) then reduces to,

Ψ(t˜, α˜) = −
E(V1W

1
2
1 |T˜ = t˜)√

mE(W1|T˜ = t˜) .(A.4)

These conditional expectations have been evaluated in [20] and are given by,

E(W1|T˜ = t˜) =
m+ n− 1

λ
,

and

E(V1W
1
2
1 |T˜ = t˜) = −n

√
m(m+ n− 1)t1
(n+mρ)λ

,

where

λ =
mnt21
n+mρ

+
t2
ρ

+ 1, ρ =
σ2

2

σ2
1

≥ 1.

Substituting these expressions in (A.4), we get the minimimizing choice of Ψ(t˜, α˜) as

Ψ̂(t˜, ρ) =
nt1

n+mρ
.

In order to derive the inadmissibility condition of the theorem, we need the supremum and
infimum values of Ψ̂(t˜, ρ) with respect to ρ ∈ [1,∞) for fixed values of T˜ = t˜. We consider the
following two cases to obtain the supremum and infimum of Ψ̂(t˜, ρ):

Case-I: Let t1 ≥ 0. Now the function Ψ̂(t˜, ρ) is decreasing with respect to ρ ∈ [1,∞).
Hence we obtain

inf
ρ≥1

Ψ̂(t˜, ρ) = lim
ρ→∞

Ψ̂(t˜, ρ) = 0 and sup
ρ≥1

Ψ̂(t˜, ρ) = lim
ρ→1

Ψ̂(t˜, ρ) =
nt1

n+m
.

Case-II: Let t1 < 0. The function Ψ̂(t˜, ρ) is an increasing function of ρ. So for this case
we obtain

inf
ρ≥1

Ψ̂(t˜, ρ) = lim
ρ→1

Ψ̂(t˜, ρ) =
nt1

n+m
and sup

ρ≥1
Ψ̂(t˜, ρ) = lim

ρ→∞
Ψ̂(t˜, ρ) = 0.

Combining the Case-I and Case-II, it is easy to define the function Ψ0(t˜) as given
in (5.2). Utilizing the function Ψ0(t˜) and as an application of Theorem 3.1 (in Brewster
and Zidek [2]), we get R(dΨ0 , α˜) ≤ R(dΨ, α˜), when σ1 ≤ σ2. This completes the proof of the
theorem.
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A Sample Program Code of the Simulation Study

As suggested by an anonymous reviewer, below we present a sample program code of
the simulation study for equal sample sizes.

library(MASS)

library(nleqslv)

M=20000

n1=30

n2=30

b=1.5434/2.0

c=1.5045/2.0

sd2=1.0

mu=0.0

cm=gamma((n1-1)/2)/(sqrt(2)*gamma(n1/2))

cn=gamma((n2-1)/2)/(sqrt(2)*gamma(n2/2))

for(sd1 in seq(0.05,1.0,0.05))

{x1=matrix(0,n1,M)

x2=matrix(0,n2,M)

m1=array(0,M)

m2=array(0,M)

s1=array(0,M)

s2=array(0,M)

d=array(0,M)

a1=array(0,M)

a2=array(0,M)

a3=array(0,M)

a4=array(0,M)

a5=array(0,M)

a6=array(0,M)

a7=array(0,M)

a8=array(0,M)

a9=array(0,M)

a10=array(0,M)

a11=array(0,M)

a12=array(0,M)

a13=array(0,M)

a14=array(0,M)

a15=array(0,M)

a16=array(0,M)

b1=array(0,M)

b2=array(0,M)

b3=array(0,M)

b4=array(0,M)

b5=array(0,M)

b6=array(0,M)

b7=array(0,M)

b8=array(0,M)

b9=array(0,M)

b10=array(0,M)

b11=array(0,M)

b12=array(0,M)

b13=array(0,M)

b14=array(0,M)

b15=array(0,M)

b16=array(0,M)

c1=array(0,M)

c2=array(0,M)

c3=array(0,M)

c4=array(0,M)

c5=array(0,M)

c6=array(0,M)
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c7=array(0,M)

c8=array(0,M)

c9=array(0,M)

c10=array(0,M)

c11=array(0,M)

c12=array(0,M)

c13=array(0,M)

c14=array(0,M)

c15=array(0,M)

c16=array(0,M)

c17=array(0,M)

c18=array(0,M)

c19=array(0,M)

c20=array(0,M)

e1=array(0,M)

e2=array(0,M)

GD=array(0,M)

GDI=array(0,M)

GDA=array(0,M)

PsiGD=array(0,M)

Psi1=array(0,M)

Psi2=array(0,M)

PsiKS=array(0,M)

PsiMK=array(0,M)

PsiTK=array(0,M)

KS=array(0,M)

KSI=array(0,M)

KSA=array(0,M)

MK=array(0,M)

MKI=array(0,M)

MKA=array(0,M)

TK=array(0,M)

TKI=array(0,M)

TKA=array(0,M)

ML=array(0,M)

T1=array(0,M)

T2=array(0,M)

T3=array(0,M)

T4=array(0,M)

V1R=array(0,M)

V2R=array(0,M)

MLR=array(0,M)

PsiBC1=array(0,M)

BC1A=array(0,M)

BC1=array(0,M)

BC2=array(0,M)

PsiBC2=array(0,M)

BC2A=array(0,M)

g1=array(0,M)

g2=array(0,M)

g3=array(0,M)

g4=array(0,M)

RML=array(0,M)

beta1=array(0,M)

beta2=array(0,M)

beta3=array(0,M)

beta4=array(0,M)

beta5=array(0,M)

BC2I=array(0,M)

PsiML=array(0,M)

t1=array(0,M)

MLA=array(0,M)

for(j in 1:M)
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{x1[, j] = rnorm(n1,mean = mu, sd = sqrt(sd1))

x2[, j] = rnorm(n2,mean = mu, sd = sqrt(sd2))

m1[j] = mean(x1[, j])

m2[j] = mean(x2[, j])

d[j] = m2[j]−m1[j]

s1[j] = sum((x1[, j]−m1[j])2)

s2[j] = sum((x2[, j]−m2[j])2)

t1[j] = d[j]/sqrt(s1[j])

beta1[j] = (n2 ∗ (n2− 1) ∗ s1[j])/((n2 ∗ (n2− 1) ∗ s1[j]) + (n1 ∗ (n1− 1) ∗ s2[j]))
a1[j] = ((1− beta1[j]) ∗m1[j]) + (beta1[j] ∗m2[j])

GD[j] = ((a1[j]−mu)/sqrt(sd1))2

a2[j] = s1[j]/(n1− 1)

a3[j] = s2[j]/(n2− 1)

if(a2[j] <= a3[j])

{a4[j] = a1[j]}
else{a4[j] = (beta1[j] ∗m1[j]) + ((1− beta1[j]) ∗m2[j])}
GDI[j] = ((a4[j]−mu)/sqrt(sd1))2

a5[j] = (n2 ∗ (n2− 1)) ∗ (d[j]/sqrt(s1[j]))

a6[j] = (n1 ∗ (n1− 1) ∗ (s2[j]/s1[j])) + (n2 ∗ (n2− 1))

PsiGD[j] = a5[j]/a6[j]

Psi1[j] = (n2/(n1 + n2)) ∗min((d[j]/sqrt(s1[j])), 0)

Psi2[j] = (n2/(n1 + n2)) ∗max((d[j]/sqrt(s1[j])), 0)

if(PsiGD[j] < Psi1[j])

{a7[j] = Psi1[j]}
elseif(PsiGD[j] > Psi2[j])

{a7[j] = Psi2[j]}
else{a7[j] = PsiGD[j]}
a8[j] = m1[j] + (sqrt(s1[j]) ∗ a7[j]) GDA[j] = ((a8[j]−mu)/sqrt(sd1))2

beta2[j] = (n2 ∗ (n2− 3) ∗ s1[j])/((n2 ∗ (n2− 3) ∗ s1[j]) + (n1 ∗ (n1− 3) ∗ s2[j]))
a9[j] = (beta2[j] ∗m2[j]) + ((1− beta2[j]) ∗m1[j])

KS[j] = ((a9[j]−mu)/sqrt(sd1))2

a10[j] = s1[j]/(n1− 3)

a11[j] = s2[j]/(n2− 3)

if(a10[j] <= a11[j])

{a12[j] = a9[j]}
else{a12[j] = (beta2[j] ∗m1[j]) + ((1− beta2[j]) ∗m2[j])}
KSI[j] = ((a12[j]−mu)/sqrt(sd1))2

a13[j] = (n2 ∗ (n2− 3)) ∗ (d[j]/sqrt(s1[j]))

a14[j] = (n1 ∗ (n1− 3) ∗ (s2[j]/s1[j])) + (n2 ∗ (n2− 3))

PsiKS[j] = a13[j]/a14[j]

if(PsiKS[j] < Psi1[j])

{a15[j] = Psi1[j]}
elseif(PsiKS[j] > Psi2[j])

{a15[j] = Psi2[j]}
else{a15[j] = PsiKS[j]}
a16[j] = m1[j] + (sqrt(s1[j]) ∗ a15[j])

KSA[j] = ((a16[j]−mu)/sqrt(sd1))2

beta3[j] = sqrt(n2 ∗ (n2− 1) ∗ s1[j])/(sqrt(n2 ∗ (n2− 1) ∗ s1[j]) + sqrt(n1 ∗ (n1− 1) ∗ s2[j]))
b1[j] = ((1− beta3[j]) ∗m1[j]) + (beta3[j] ∗m2[j])

MK[j] = ((b1[j]−mu)/sqrt(sd1))2

b2[j] = sqrt(n1/(n1− 1)) ∗ sqrt(s1[j])

b3[j] = sqrt(n2/(n2− 1)) ∗ sqrt(s2[j])

if(b2[j] <= b3[j])

{b4[j] = b1[j]}
else{b4[j] = (beta3[j] ∗m1[j]) + ((1− beta3[j]) ∗m2[j])}
MKI[j] = ((b4[j]−mu)/sqrt(sd1))2

b5[j] = sqrt(n2 ∗ (n2− 1)) ∗ (d[j]/sqrt(s1[j]))

b6[j] = (sqrt(n1 ∗ (n1− 1)) ∗ sqrt(s2[j]/s1[j])) + (sqrt(n2 ∗ (n2− 1)))

PsiMK[j] = b5[j]/b6[j]

if(PsiMK[j] < Psi1[j])

{b7[j] = Psi1[j]}
elseif(PsiMK[j] > Psi2[j])

{b7[j] = Psi2[j]}
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else{b7[j] = PsiMK[j]}
b8[j] = m1[j] + (sqrt(s1[j]) ∗ b7[j])

MKA[j] = ((b8[j]−mu)/sqrt(sd1))2

beta4[j] = (sqrt(n2 ∗ s1[j]) ∗ cm)/((sqrt(n2 ∗ s1[j]) ∗ cm) + (sqrt(n1 ∗ s2[j]) ∗ cn))

b9[j] = ((1− beta4[j]) ∗m1[j]) + (beta4[j] ∗m2[j])

TK[j] = ((b9[j]−mu)/sqrt(sd1))2

b10[j] = cm ∗ sqrt(s1[j]) ∗ sqrt(n1)

b11[j] = cn ∗ sqrt(s2[j]) ∗ sqrt(n2)

if(b10[j] <= b11[j])

{b12[j] = b9[j]}
else{b12[j] = (beta4[j] ∗m1[j]) + ((1− beta4[j]) ∗m2[j])}
TKI[j] = ((b12[j]−mu)/sqrt(sd1))2

b13[j] = sqrt(n2) ∗ cm ∗ (d[j]/sqrt(s1[j]))

b14[j] = (sqrt(n1) ∗ cn ∗ sqrt(s2[j]/s1[j])) + (sqrt(n2) ∗ cm)

PsiTK[j] = b13[j]/b14[j]

if(PsiTK[j] < Psi1[j])

{b15[j] = Psi1[j]}
elseif(PsiTK[j] > Psi2[j])

{b15[j] = Psi2[j]}
else{b15[j] = PsiTK[j]}
b16[j] = m1[j] + (sqrt(s1[j]) ∗ b15[j])

TKA[j] = ((b16[j]−mu)/sqrt(sd1))2

c1[j] = (d[j] ∗ b ∗ s1[j])/(n1 ∗ (n1− 1))

c2[j] = (s1[j]/(n1 ∗ (n1− 1))) + (s2[j]/(n2 ∗ (n2 + 2))) + ((d[j] ∗ d[j])/(n2 + 2))

c3[j] = c1[j]/c2[j]

c4[j] = m1[j] + c3[j]

BC1[j] = ((c4[j]−mu)/sqrt(sd1))2

c5[j] = (d[j] ∗ b)/(n1 ∗ (n1− 1) ∗ sqrt(s1[j]))

c6[j] = 1/(n1 ∗ (n1− 1))

c7[j] = s2[j]/(s1[j] ∗ n2 ∗ (n2 + 2))

c8[j] = ((d[j]/sqrt(s1[j]))2)/(n2 + 2)

PsiBC1[j] = c5[j]/(c6[j] + c7[j] + c8[j])

c9[j] = m1[j] + (sqrt(s1[j]) ∗ PsiBC1[j])

if(PsiBC1[j] < Psi1[j])

{c10[j] = Psi1[j]}
elseif(PsiBC1[j] > Psi2[j])

{c10[j] = Psi2[j]}
else{c10[j] = PsiBC1[j]}
c11[j] = m1[j] + (sqrt(s1[j]) ∗ c10[j])

BC1A[j] = ((c11[j]−mu)/sqrt(sd1))2

c12[j] = d[j] ∗ c ∗ s1[j] ∗ (n2 ∗ (n2− 1))

c13[j] = (n2 ∗ (n2− 1) ∗ s1[j]) + (n1 ∗ (n1− 1) ∗ s2[j])
c14[j] = c12[j]/c13[j]

c15[j] = m1[j] + c14[j]

BC2[j] = ((c15[j]−mu)/sqrt(sd1))2

c16[j] = (d[j]/sqrt(s1[j])) ∗ c ∗ n2 ∗ (n2− 1)

c17[j] = (n2 ∗ (n2− 1)) + (n1 ∗ (n1− 1) ∗ (s2[j]/s1[j]))

PsiBC2[j] = c16[j]/c17[j]

if(PsiBC2[j] < Psi1[j])

{c18[j] = Psi1[j]}
elseif(PsiBC2[j] > Psi2[j])

{c18[j] = Psi2[j]}
else{c18[j] = PsiBC2[j]}
c19[j] = m1[j] + (sqrt(s1[j]) ∗ c18[j])

BC2A[j] = ((c19[j]−mu)/sqrt(sd1))2

beta5[j] = (c ∗ n2 ∗ (n2− 1) ∗ s1[j])/((n2 ∗ (n2− 1) ∗ s1[j]) + (n1 ∗ (n1− 1) ∗ s2[j]))
if((2 ∗ c) <= (1 + (s2[j]/s1[j])))

{c20[j] = ((1− beta5[j]) ∗m1[j]) + (beta5[j] ∗m2[j])}
else{c20[j] = (beta5[j] ∗m1[j]) + ((1− beta5[j]) ∗m2[j])}
BC2I[j] = ((c20[j]−mu)/sqrt(sd1))2

fnewton < −function(x)

{y < −numeric(3)

d11 = n2 ∗ x[1] ∗ d[j]
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d22 = n1 ∗ d[j] ∗ x[2]

d33 = (n2 ∗ x[1]) + (n1 ∗ x[2])

d44 = (n1 ∗m1[j]/x[1]) + (n2 ∗m2[j]/x[2])

d55 = (n1/x[1]) + (n2/x[2])

y[1] < −x[1]− (s1[j]/n1)− (d11/d33)2

y[2] < −x[2]− (s2[j]/n2)− (d22/d33)2

y[3] < −x[3]− (d44/d55)

y}
xstart < −c(s1[j]/(n1− 1), s2[j]/(n2− 1),m1[j])

T1[j] = nleqslv(xstart, fnewton, control = list(btol = 0.0001),method = ”Newton”)x[1]

T2[j] = nleqslv(xstart, fnewton, control = list(btol = 0.0001),method = ”Newton”)x[2]

T3[j] = nleqslv(xstart, fnewton, control = list(btol = 0.0001),method = ”Newton”)x[3]

ML[j] = ((T3[j]−mu)/sqrt(sd1))2

V 1R[j] = min(T1[j], ((n1 ∗ T1[j]) + (n2 ∗ T2[j]))/(n1 + n2))

V 2R[j] = max(T2[j], ((n1 ∗ T1[j]) + (n2 ∗ T2[j]))/(n1 + n2))

g1[j] = (n1 ∗ V 2R[j] ∗m1[j]) + (n2 ∗ V 1R[j] ∗m2[j])

g2[j] = (n1 ∗ V 2R[j]) + (n2 ∗ V 1R[j])

g3[j] = g1[j]/g2[j]

MLR[j] = ((g3[j]−mu)/sqrt(sd1))2

if(T1[j] <= T2[j])

{g4[j] = T3[j]}
else{g4[j] = ((n1 ∗m1[j]) + (n2 ∗m2[j]))/(n1 + n2)}
RML[j] = ((g4[j]−mu)/sqrt(sd1))2

PsiML[j] = (n2 ∗ T1[j] ∗ t1[j])/((n1 ∗ T2[j]) + (n2 ∗ T1[j]))

if(PsiML[j] < Psi1[j])

{e1[j] = Psi1[j]}
elseif(PsiML[j] > Psi2[j])

{e1[j] = Psi2[j]}
else{e1[j] = PsiML[j]}
e2[j] = m1[j] + (sqrt(s1[j]) ∗ e1[j])

MLA[j] = ((e2[j]−mu)/sqrt(sd1))2

} tau = sd1/sd2

R1 = sum(GD)/M

R2 = sum(GDI)/M

R3 = sum(GDA)/M

R4 = sum(KS)/M

R5=sum(KSI)/M

R6=sum(KSA)/M

R7=sum(MK)/M

R8=sum(MKI)/M

R9=sum(MKA)/M

R10=sum(TK)/M

R11=sum(TKI)/M

R12=sum(TKA)/M

R13=sum(BC1)/M

R14=sum(BC1A)/M

R15=sum(BC2)/M

R16=sum(BC2A)/M

R222=sum(BC2I)/M

R17=sum(ML)/M

R18=sum(MLR)/M

R19=sum(RML)/M

R20=sum(MLA)/M

P1=round(((R1-R2)/R1)*100,2)

P2=round(((R1-R3)/R1)*100,2)

P3=round(((R4-R5)/R4)*100,2)

P4=round(((R4-R6)/R4)*100,2)

P5=round(((R7-R8)/R7)*100,2)

P6=round(((R7-R9)/R7)*100,2)

P7=round(((R10-R11)/R10)*100,2)

P8=round(((R10-R12)/R10)*100,2)

P9=round(((R13-R14)/R13)*100,2)

P10=round(((R15-R16)/R15)*100,2)
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P11=round(((R17-R18)/R17)*100,2)

P12=round(((R17-R19)/R17)*100,2)

P13=round(((R15-R222)/R15)*100,2)

P14=round(((R17-R20)/R17)*100,2)

PR1=round(((R1-R2)/R1)*100,2)

PR2=round(((R1-R3)/R1)*100,2)

PR3=round(((R1-R8)/R1)*100,2)

PR4=round(((R1-R9)/R1)*100,2)

PR5=round(((R1-R14)/R1)*100,2)

PR6=round(((R1-R16)/R1)*100,2)

PR7=round(((R1-R222)/R1)*100,2)

PR8=round(((R1-R19)/R1)*100,2)

PR9=round(((R1-R20)/R1)*100,2)

}}
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1. INTRODUCTION

In a wide variety of areas, such as in the study of heavy rainfall, low birth weight,
and high-risk finance, the tail behavior of the distribution of the target variable is of interest
rather than the average or median. In these cases, we often investigate the upper or lower
quantile of the data. However, the estimation of the tail quantile is difficult because of data
sparsity. Therefore, the development of the mathematical properties of the tail quantile
would be welcome. The theoretical performance of the tail behavior of the distribution
function is provided by extreme value theory (EVT). The fundamental properties of EVT were
surveyed by Coles (2001) [10], Beirlant et al. (2004a) [3], and de Haan and Ferreira (2006) [13].
On the other hand, the performance of the estimator is often guaranteed by a large sample
or asymptotic theory in statistics. Thus, the mathematical properties of the estimator of the
tail quantile are analyzed using a hybrid of EVT and asymptotic theory. In many cases, it is
important to research the target variable along with the information of other variable. Then
we should analyze the data in the literature of regression. In this paper, we consider the
estimation of the extremal conditional quantile of the response Y given X = x.

Many researchers have developed the extremal conditional quantile estimation. Beirlant
and Goegebeur (2004) [2] developed a Pareto distribution approach. Gardes et al. (2010)
[20] and Gardes and Girard (2010) [19] studied the nearest-neighbor estimation. Daouia
et al. (2011, 2013) [12, 11], El Methni et al. (2014) [18], and Girard and Louhichi (2015)
[21] investigated the extremal quantile of the nonparametric estimator of the conditional
distribution function of Y given X = x. The local-moment-type methods were studied by
Goegebeur et al. (2017) [22]. Durrieu et al. (2015) [15] have developed the weighted quasi-log-
likelihood method. On the other hand, quantile regression, which was pioneered by Koenker
and Bassett (1978) [31], is a typical approach used to investigate the conditional quantile.
For the center quantile, several authors have developed quantile regression methods. These
fundamental developments have been summarized by Koenker (2005) [29]. However, much
less work has been done on quantile regression for the extremal quantile. Chernozhukov (2005)
[6], Chernozhukov and Fernández-val (2011) [7], Wang et al. (2012) [44], and He et al. (2016)
[24] studied extremal quantile regression, but they focused only on linear models. For the tail
quantile, the linear structure assumption is strong and its assumption is violated in several
cases. Therefore, a nonparametric approach should be used in extremal quantile regression in
such situations. Beirlant et al. (2004b) [4] studied extremal nonparametric quantile regression,
but the theoretical property was not investigated. In this paper, we develop nonparametric
quantile regression for the extremal quantile and mathematical properties.

Before we describe our study, we review extremal quantile regression with linear models
in more detail. For extremal quantile regression, the quantile level τ approaches 0 or 1 as
the sample size n increases. This paper treats only the upper quantile and, hence, τ → 1 as
n →∞. Thus, there are two important types of the order of τ : the intermediate order quantile
and the extreme order quantile. The former means that τ → 1 and n(1− τ) →∞ as n →∞,
whereas in the latter τ → 1 and n(1−τ) → c ∈ [0,∞) as n →∞. If τ is fixed, it is the so-called
center quantile. According to Chernozhukov (2005) [6] and Chernozhukov and Fernández-val
(2011) [7], the quantile regression estimator with linear models has asymptotic normality for
the intermediate order quantile but it converges to a non-degenerated distribution (not nor-
mal) for the extreme order quantile. Thus, the extreme order quantile is difficult to handle.
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Wang et al. (2012) [44] provided a nice approach to obtain the extreme order quantile es-
timator by extrapolation from the intermediate order quantile estimator. As a result, this
extrapolated estimator has asymptotic normality. It seems that above results should be
extended to the nonparametric quantile regression for many applications.

In this paper, we first construct the ordinary nonparametric estimator for the inter-
mediate order quantile. We then use the B-spline method with `2 penalty. This approach
was originally considered by O’Sullivan (1986) [37] and Eilers and Marx (1996) [16] in mean
regression. Pratesi et al. (2009) [39], Reiss and Huang (2012) [40], and Yoshida (2013) [46]
used the quantile regression for only the center quantile. We show the asymptotic bias and
variance as well as the asymptotic normality of the penalized spline estimator. Next, the
extrapolated estimator is obtained for the extreme order quantile. Similar to the approach
of Wang et al. (2012) [44], we use the Weissman-type extrapolation method (see Weissman
1978 [45]). The asymptotic normality and the optimal rate of convergence of the extreme
order quantile estimator are shown. To the best of our knowledge, this is the first time that
the rate of convergence of the nonparametric estimator is revealed in the extremal quantile
regression.

This paper is organized as follows. In Section 2, we coordinate the conditions of the
true conditional quantile by EVT in nonparametric extremal quantile regression. Section 3
presents the nonparametric estimator and its asymptotic property for both intermediate and
extreme order quantiles. In Section 4 the Monte Carlo simulation is conducted to confirm
the performance of the proposed estimator. Section 5 addresses the application to Beijing’s
PM2.5 pollution data. The conclusions and future research are described in Section 6. In
Appendices A and B, the computational aspects of the penalized spline estimator and the
proofs of the mathematical results that appear in this paper are presented. Throughout the
paper and without loss of generality, we focus on the conditional high quantile because a low
quantile of the response can be viewed as a high quantile of the inverted sign of the response.

2. CONDITIONAL EXTREMAL QUANTILES

2.1. Extreme value theory

Let {(Xi, Yi); i = 1, ..., n} be the independent copies of a random pair (X, Y ) ∈ R×R.
We assume that the support of X is bounded on [a, b], where −∞ < a < b < ∞. The con-
ditional distribution function of Y given X = x is denoted by FY (y|x) = P (Y ≤ y|X = x).
Then the conditional 100τ% quantile of Y given X = x is

qY (τ |x) ≡ F−1
Y (τ |x) = inf{t, FY (t|x) ≥ τ}.

The main purpose of this study is to estimate qY (τ |x) for a high quantile level τ ' 1. The
tail behavior of the distribution or quantile function can be characterized by EVT. To an-
alyze the conditional high quantile of Y given X = x, we introduce the EVT conditions of
FY (·|x) and qY (·|x). Define F (y) and q(τ) as the marginal distribution function and 100τ%
quantile of Y . Throughout the paper, we assume that F and F (·|x) belong to the maximum
domain of attraction of an extreme value distribution Gγ , denoted by F, FY (·|x) ∈ D(Gγ).
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The distribution function Q belongs to the maximum domain of attraction, which means that
for the random sample Z1, ..., Zn from Q, there exists a constant αn > 0 and βn ∈ R such
that for 1 + γz ≥ 0,

P

(
max1≤i≤n Zi − bn

an
≤ z

)
→ Gγ(z) = exp[−(1 + γz)−1/γ ]

as n →∞. Here, γ ∈ R is the extreme value index (EVI). The EVI is very important since
this generally controls the tail behavior of the distribution function. For Q ∈ D(Gγ), if γ = 0
or γ < 0, Q has a light tail or short tail. When γ > 0, Q has a heavy tail. This paper only
discusses the heavy-tail case and, hence, we assume that γ > 0 from now on. The maximum
domain of attraction is a very weak condition. For example, uniform, beta, Gaussian, t,
Pareto, Cauchy, and many other distributions belong to the maximum domain of attraction
with appropriately specified γ ∈ R. The details of the maximum domain of attraction and
EVI are given in fundamental books such as that by de Haan and Ferreira (2006) [13].

We now state the conditions to connect the tail behavior of F and F (·|x). For this,
we need an additional definition. Let RV (a) = {A ∈ R+ → R+|A(mt)/A(t) → ma as t →∞,
m > 0} be the set of regularly varying functions, where R+ = (0,∞). When A ∈ RV (0),
A is the so-called slowly varying function.

Conditions A

A1. There exists L ∈ RV (0) such that the distribution function F satisfies 1−F (y) =
y−1/γL(y){1 + o(1)} as y →∞.

A2. We have q0(τ) = ∂q(t)/∂t|t=1−τ regularly varying at 0 with index −γ − 1. That
is, for x > 0,

lim
τ→0

q0(xτ)
q0(τ)

= x−γ−1.

A3. There exists an auxiliary function f(x) such that V ≡ Y − f(x) has the distribu-
tion function FV (y|x) satisfying, as y →∞,

1− FV (y|x) = H(x){1− F (y)}(1 + o(1)),

where H(x) > 0 is a positive, continuous, and bounded function on [a, b] and has
E[H(X)] = 1.

A4. For qV (·|x) = F−1
V (·|x), ∂qV (τ |x)/∂τ = ∂q(1− (1− τ)/H(x))/∂τ{1 + o(1)} uni-

formly in x ∈ [a, b] as τ → 1.

Conditions A may not hold if either F or F (·|x) is not included in D(Gγ). In other
words, if F, F (·|x) ∈ D(Gγ), Conditions A are natural. Condition A1 is the formal notation
of a Pareto-type tail (see Chernozhukov and Fernández-val 2011 [7]). The equivalent to
condition A1 is

q(τ) = (1− τ)−γL̄(1/(1− τ)){1 + o(1)} as τ → 1(2.1)

with L̄ ∈ RV (0). Therefore, if the distribution F is continuous and ∂L̄(1/(1− τ))/∂τ → 0
as τ → 1, condition A2 holds from condition A1. Actually, q0(τ) = ∂q(t)/∂t|t=1−τ =
γτ−γ−1L̄(1/τ) + τ−γ∂L̄(1/(1− t))/∂t|t=1−τ = γτ−γ−1L̄(1/τ){1 + o(1)} as τ → 0. Therefore,
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we have ∂q(t)/∂t|t=1−τ = γτ−γ−1L̄(1/τ){1 + o(1)}. Thus, condition A2 is weak. From A3,
it is easy to show that qV (τ |x) = H(x)γq(τ)(1 + o(1)) as τ → 1. Furthermore, since τ =
FY (qY (τ |x)|x) = P (Y< qY (τ |x)|x) = P (Y −f(x) < qY (τ |x)−f(x)|x) = FV (qY (τ |x)−f(x)|x),
we obtain qV (τ |x) = qY (τ |x)− f(x). Consequently, we have

qY (τ |x) = f(x) + h(x)q(τ){1 + o(1)} as τ → 1,(2.2)

where h(x) = H(x)γ . Chernozhukov (2005) [6], Chernozhukov and Fernández-val (2011) [7]
and Wang et al. (2012) [44] also provided this type of condition in multiple linear models.
That is, they further assumed that f(x) = xT β and h(x) = xT c for x = (x1, ···, xp), where β

and c are unknown p-dimensional parameter vectors. Thus, A3 is the nonparametric model
version of the above previous studies. Einmahl et al. (2016) [17] also considered the similar
model to the survival function for more simple situation where time is the covariate. Condition
A4 guarantees the existence of a conditional quantile density function (the derivative of the
quantile function). Furthermore, the conditional quantile density function also behaves like
a Pareto-type function by condition A4. Assumption A3 is strengthened by condition A4.

Remark 1. Let U(t) = q(1 − 1/t) = inf{z|F (z) ≥ 1 − 1/t} and let UV (t|x) =
qV (1− 1/t|x). In several articles (see, for example, de Haan and Ferreira 2006 [13]), the
conditions of EVT are applied to U(t) and UV (t|x) as t →∞. Since q(τ) = U(1/(1− τ)),
the condition (2.1) is similar to U(t) = tγL(t){1 + o(1)} with t = 1/(1− τ). Condition A4
can also be expressed as ∂UV (t|x)/∂t = ∂U(tH(x))/∂t with t = 1/(1− τ). Thus, we can re-
consider the EVT conditions for quantiles by using U and UV . In particular, the use of U is
appropriate when using the second-order condition of EVT (see Section 3.2).

2.2. B-spline model

The conditional quantile qY (τ |x) can be written as

qY (τ |x) = argmina E[ρτ (Y − a)|X = x],(2.3)

where ρτ (u) = u(τ − I(u < 0)) is Koenker’s check function (Koenker 2005 [29]) and I is the
indicator function. The estimator of qY is often obtained along with an empirical version
of (2.3). To estimate qY (τ |x), we use the B-spline regression method as the nonparametric
technique in this paper. Let {Bk(x) : k = 1, ...,K + p} be the pth degree of the B-spline basis
with knots a = κ0 < κ1 < ... < κK = b. In addition, other sets of 2p knots are defined as
κ−p = ... = κ−1 = a and κK+1 = ... = κK+p = b. We then define the B-spline model as

s(x) =
K+p∑
k=1

Bk(x)bk = B(x)T b,

where B(x) = (B1(x), ..., BK+p(x))T and b = (b1, ..., bK+p)T is an unknown parameter vector.
We now describe the relationship between the B-spline model and EVT discussed in the pre-
vious section. Let Wm[a, b] = {g|g(k) is continuous, k = 0, 1, ...,m− 1 and

∫ b
a {g

(m)(x)}2dx <

∞} be the mth-order Sobolev space. From Barrow and Smith (1978) [1], for any func-
tion g ∈ Wm([a, b]), there exists bg ∈ RK+p such that g(x)−B(x)T bg = K−dg(d)(x)O(1) as
K →∞, where d = min{m, p + 1}. For simplicity, we assume that m ≤ p + 1, that is d = m.
Actually, (p, m) = (3, 2) is the standard condition of B-spline smoothing.
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For τ ∈ (0, 1), let

b0(τ) = argminb∈RK+p E[ρτ (Y − s(x))|X = x]

and let s0(τ |x) = B(x)T b0(τ). We then found that qY (τ |x) = s0(τ |x) + K−m{∂mqY (τ |x)/
∂xm}O(1) for qY (·|x) ∈ Wm[a, b]. If h ∈ Wm[a, b], Conditions A and (2.2) yield that
{∂mqY (τ |x)/∂xm} = h(m)(x)q(τ)(1 + o(1)) = O((1− τ)−γ) and, hence, s0(τ |x)− qY (τ |x) =
O(K−m(1− τ)−γ) as τ → 1 and K →∞, which indicates that the condition B4 below is
required.

If f and h defined in (2.2) belong to Wm[a, b], there exists bf , bh ∈ RK+p such that
f(x)−B(x)T bf = O(K−m) and h(x)−B(x)T bh = O(K−m). We then obtain b0(τ) = bf +
q(τ)bh + O(K−mq(τ)) as τ → 1 and K →∞. Therefore, (2.1) and condition A4 indicate
that ∂s0(τ |x)/∂τ ∼ B(x)T bh∂q(τ)/∂τ is satisfied since bf and bh are not dependent on τ .
Thus, the B-spline model also holds (2.2) and condition A4 and, hence, the tail behavior of
the B-spline model can be studied by using Conditions A. The following conditions are the
fundamental assumptions for B-spline regression.

Conditions B

B1. For some constant ν > 0, E[|Y |2+ν |X = x] < ∞.

B2. The functions f and h in (2.2) are included in Wm[a, b].

B3. We have max1≤j≤K{κj+1 − κj} = O(K−1).

B4. For some α ∈ (0, 1), the number of knots K = O(nα).

B5. As τ → 1 and K →∞, Km(1− τ)γ →∞.

Condition B1 is needed to that the estimator satisfies the Lyapunov condition of central
limit theorem. When condition B2 holds, the B-spline model can approximate to qY (τ |x).
Conditions B3 and B4 are standard conditions for B-spline models. Together with condition B2,
the B-spline model and EVT are connected for high quantile level. Condition B5 guarantees
that the model bias between the conditional quantile and B-spline model converges to 0.

3. PENALIZED B-SPLINE ESTIMATOR FOR EXTREMAL QUANTILES

In this section, we define the nonparametric B-spline estimator and develop the asymp-
totic result. Then, we consider two scenario of extremal quantile rate: (i) intermediate order
quantiles that τ → 1 and (1− τ)n →∞ as n →∞ and (ii) extreme order quantiles that τ → 1
and (1− τ)n → c ∈ [0,∞) as n →∞. We denote the intermediate order quantile level by τI

and the extreme order quantile level by τE , respectively. That is, as n →∞, τI , τE → 1,
n(1− τI) →∞, n(1− τE) → c ∈ [0,∞), and (1− τI)/(1− τE) →∞.
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3.1. Estimation of intermediate order quantiles

The ordinary B-spline quantile estimator for τ ∈ (0, 1) is defined based on minimizing∑n
i=1 ρτ (Yi − s(xi)). However, it is known that the ordinary estimator tends to have a wig-

gly curve caused by data sparsity. To avoid this, we introduce the penalization method to
control the behavior of the estimator. Although various types of penalties have been devel-
oped to prevent overfitting, we will use O’Sullivan’s (1986) [37] penalty. For τ ∈ (0, 1), the
penalized spline estimator b̃(τ) = (b̃1(τ), ..., b̃K+p(τ))T of vector b(τ) = (b1(τ), ..., bK+p(τ))T

is constructed by minimizing

n∑
i=1

ρτ (Yi − s(xi)) + λ

∫ b

a
{s(m)(x)}2dx,(3.1)

where λ > 0 is the smoothing parameter. Using b̃(τ), for the intermediate order quantile level
τI , we define

q̃Y (τI |x) = B(x)T b̃(τI).

We study the asymptotic theory for the penalized spline estimator q̃Y (τI |x). Then,
the conditions of the number of knots and the smoothing parameter included in q̃Y (τI |x)
are very important. The penalty

∫ b
a {s

(m)(x)}2dx can be written as bT DT
mRDmb, where the

(K + p)-matrix R has elements Rij =
∫ b
a Bi(x)Bj(x)dx and the (K + p−m)× (K + p) matrix

Dm satisfies b(m) = Dmb, where b(m) = (b(m)
1 , ..., b

(b)
K+p−m)T , and for m = 1, 2, ...,

b
(1)
j = p

bj − bj−1

κj+p − κj
, b

(m)
j = (p + 1−m)

b
(m−1)
j − b

(m−1)
j−1

κj+p+1−m − κj
.

From now on, we use the symbols Dm and R. Let G(h) be the (K + p)-matrix with elements
Gij =

∫ b
a h(x)Bi(x)Bj(x)dx and

Λ(h) = Λ(h, n, τI) = γ−1G(h−γ) +
λq(τI)

(1− τI)n
DT

mRDm.

Let G = G(1) be G(h) with h(x) ≡ 1. Define

K(m, τI) = K

(
λq(τI)

n(1− τI)

)1/2m

,

which controls the asymptotic scenario branch discussed in Remark 1 below.

Conditions C

C1. We have K(m, τI) ≥ 1.

C2. We have K{λq(τI)/n(1− τI)}1/2m →∞ as n →∞.

C3. We have λ = o(q(τI)−1{n(1− τI)/q(τI)}2) as n →∞.

Condition C concerns with the asymptotic property of the penalized spline estimator.
C1 is detailed in Remark 2. C2 allows us to use the large K. If C3 fails, the asymptotic bias of
the penalized spline estimator cannot be vanished. We now show the asymptotic distribution
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of q̃(τI |x). First, we derive the two types of bias, model bias and shrinkage bias. Roughly
speaking, the model bias is the bias between the B-spline model and the true function, and
the shrinkage bias is the difference between the expectation of the penalized estimator and
the unpenalized estimator. According to Section 2,2, the model bias is ba(τI |x) = s0(τI |x)−
qY (τI |x) = O(K−mq(τ)). This model bias becomes the negligible order from condition C2.
That is, the bias is dominated by the shrinkage bias. Define

bλ(τ |x) =
λq(τ)

(1− τ)n
B(x)T Λ(H−γ)−1DT

mRDmb0(τ),

v2(τ |x) =
q(τ)2

(1− τ)n
B(x)T Λ(H−γ)−1GΛ(H−γ)−1B(x).

As a result, bλ(τI |x) is the asymptotic shrinkage bias and v(τI |x) is the asymptotic variance
of q̃Y (τI |x). The following theorem shows the asymptotic order of the asymptotic bias and
variance of the intermediate order quantile estimator.

Theorem 3.1. Under Conditions A–C, as n →∞,

bλ(τI |x) = O

(
q(τ)

(
λq(τI)

(1− τI)n

)1/2
)

, v2(τI |x) = O

(
q(τI)2

(1− τI)n

(
λq(τI)

(1− τI)n

)−1/2m
)

.

From condition C3 and Theorem 3.1, we see that the shrinkage bias and variance
converge to 0 as n →∞. Using the central limit theorem, Lyapunov’s condition, and a
Cramér–Wold device, the asymptotic normality of the estimator q̃Y (τI |x) can be shown.

Theorem 3.2. Suppose that Conditions A–C hold. As n →∞, bλ(τ |x) and v2(τ |x)
are the asymptotic bias and variance of q̃Y (τ |x) and(

v(τI |x)
qY (τY |x)

)−1{ q̃Y (τI |x)
qY (τY |x)

− 1− bλ(τI |x)
qY (τY |x)

}
D−→ N(0, 1).

Furthermore, under λ = O(q(τI)2{(1− τI)n}1/(2m+1)), the optimal rate of convergence of the

mean integrated squared error (MISE) of q̃Y (τI |x)/qY (τI |x) is

E

[{
q̃Y (τI |x)
qY (τI |x)

− 1
}2
]

= O({(1− τI)n}−2m/(2m+1)).

Theorems 3.1 and 3.2 yield that the trade-off between bias and variance is controlled
by λ. Thus, this indicates that the careful choice of K is not important in the penalized
spline methods. According to Yoshida (2013) [46], for the center quantile level τ , the MISE
of the penalized spline quantile estimator has the order O(n−2m/(2m+1)). Thus, the rate of
convergence of the MISE of the penalized spline estimator for the intermediate quantile level
is slower than that for the center quantile level. This result is not surprising in the context
of the difficulties of the estimation for the tail quantile.

When B(x) = x and λ = 0, the estimator is reduced to the ordinary quantile regression
with the linear model. In the linear regression, the model bias is 0 and, hence, the bias term
vanishes. On the other hand, since G = E[XXT ] and Λ(H−γ)−1 = γ−1E[H(X)−γXXT ]−1,
the asymptotic variance becomes

v2(τI |x) =
q(τI)2

(1− τI)n
γ2xT E[H(X)−γXXT ]−1E[XXT ]E[H(X)−γXXT ]−1x,
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which is similar in form to the asymptotic variance of the linear estimator of Lemma 3 of
Wang et al. (2012) [44]. Then, the rate of convergence of the MISE of the linear estimator
is E[{q̃Y (τI |x)/qY (τ |x)− 1}2] = O({(1− τI)n}−1). Thus, it can be considered that Theorem
3.2 is the generalization of the asymptotic result of the linear-type parametric estimator.

Remark 2. Claeskens et al. (2009) [9] have studied the asymptotic properties of the
penalized spline mean estimator in two scenarios: roughly speaking, case (a) small K scenario
and case (b) large K scenario. In case (a), the asymptotic behavior of penalized splines is
similar to that of regression splines, which have the unpenalized estimator (λ ≡ 0). Case (b)
results in the penalized splines nearing the smoothing splines. We briefly describe the
asymptotic scenario branch along with the result of Claeskens et al. (2009) [9]. The pe-
nalized spline mean estimator is obtained as f̂(x) = B(x)T (ZT Z + (λ/n)DT

mRDm)−1ZT y,
where Z = (B(x1), ...,B(xn))T is the design matrix and y = (y1, ..., yn). Then, the two
asymptotic scenarios are divided by the asymptotic order of the maximum eigenvalue of
(ZT Z + (λ/n)DT

mRDm)−1, which is obtained as K(m)2m

K(m) = K

(
λ

n

)1/2m

(1 + o(1)).

If K(m) < 1 for a sufficiently large n, K, and λ, we achieve case (a). When K(m) > 1 for
a sufficiently large n, K, and λ, we achieve case (b). Although Claeskens et al. (2009) [9]
focused only on mean regression, these two scenarios can also be discussed with respect to
quantile regression. The asymptotic scenario branch discussed in this section is dependent
on the asymptotic order of Λ(h)−1. Similar to Claeskens et al. (2009) [9], the order of the
maximum eigenvalue of Λ(h)−1 can be obtained as K(m, τI)2m, which corresponds to K(m)
in mean regression. Consequently, condition C1 indicates that the large K scenario should
be studied. We finally note why we focus on the large K scenario. Ruppert (2002) [41]
recommended that one should first set the knots with a large K to obtain the overfitted
estimator and control λ to achieve smoothness and fitness. Therefore, the large K scenario
matches the concept of Ruppert (2002) [41] and this motivates us to consider the large K

scenario.

3.2. Estimation of extreme order quantiles

For the extreme order quantile, the estimator q̃Y (τE |x) discussed in the previous section
would not have asymptotic normality (Chernozhukov and Fernández-val 2011 [7]). In this
paper, we try to approximate the extreme conditional quantile from intermediate quantile.
According to Weissman (1978) [45], the following holds:

qY (τE |x) ≈
(

1− τI

1− τE

)γ

qY (τI |x).

From this, using the estimator of the intermediate order quantile q̃Y (τ |x), we define the
extrapolated estimator of the extreme order quantile. To achieve this, we need to estimate
the EVI γ.

Let τ1 > ... > τk be the sequence of quantile levels, where τj = 1− ([nη] + j)/(n + 1),
η ∈ (0, 1) and [a] is the integer part of a. Then, since (1− τj)n = n([nη] + j)/(n + 1) →∞ as
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n →∞, all τj are intermediate order quantiles. Using this sequence, we define the Hill-types
estimator of γ as

γ̂(x) =
1

k − 1

k−1∑
j=1

log
(

q̃Y (τj |x)
q̃Y (τk|x)

)
.

In this paper, we assume that the tail behavior of FY (·|x) and F (·) are equivalent (see
Condition A1). Therefore, it is somewhat unnatural that the estimator of γ varies with x.
Nevertheless, we define the extrapolated estimator with γ̂(x) and investigate the mathemati-
cal property. For x ∈ [a, b], using γ̂(x), we define the estimator of the extreme order quantile
as

q̂Y (τE |x) =
(

1− τI

1− τE

)γ̂(x)

q̃Y (τI |x).

We next consider the EVI estimator along with condition A1. Define the common index
(pooled) estimator

γ̂C =
1
n

n∑
i=1

γ̂(xi)

and the extrapolated estimator with common index estimator γ̂C as

q̂C
Y (τE |x) =

(
1− τI

1− τE

)γ̂C

q̃Y (τI |x).

To investigate the asymptotic distribution of q̂Y (τE |x) and q̂C
Y (τE |x), we impose the

second-order condition in Conditions A:

A5. The function U(t) = F−1(1−1/t) satisfies the second-order condition with (γ, ρ,A).
That is, there exist ρ < 0 and A(t) ∈ RV (ρ) such that as t →∞,

A(t)−1

{
U(tz)
U(t)

− zγ

}
→ (zγ)(zρ − 1)

ρ
.

Furthermore, A(t) = γdtρ with d 6= 0.

A3′. There exist δ > 0 and positive, continuous and bounded function H1(x) such
that as y →∞,

1− FV (y|x) = H(x){1− F (y)}+ H1(x)(1− F (y))1+δ(1 + o(1))

Condition A5 is the standard second-order condition of EVT and is detailed in de Haan
and Ferreira (2006) [13]. Condition A3′ provides the second order of tail behavior of F (y).
From conditions A5 and A3′, we see that UY (·|x) also satisfy the second-order condition with
(γ, ρ∗ = min{ρ,−δ}, A∗(·|x)) and A∗(t|x) = γd∗(x)tρ

∗
with d∗(x) 6= 0, which were proven in

Lemma 2 of Wang et al. (2012) [44]. Using this, we show the asymptotic property of the
Hill-type estimator of the EVI in the following.
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Theorem 3.3. Suppose that the smoothing parameter included in q̃(τI |x)
satisfies λ = O(q(τI)2{(1− τI)n}1/(2m+1)). Furthermore, suppose that k →∞, k/n → 0,

nη log(k)/km/(2m+1) → 0 and km/(2m+1)(n/k)max{−γ,−δ,ρ} → 0 as n →∞. Under Conditions

A–C, as n →∞,

γ̂(x)− γ − b(k|x)
v(k|x)

D−→ N(0, 1),

and

γ̂C − γ − E[b(k|X)]
E[v(k|X)]

D−→ N(0, 1),

where b(k|x) and v(k|x) are defined in (B.4) of Appendix B and have an asymptotic order

O(k−m/(2m+1)). Furthermore,

E[{γ̂(x)− γ}2] = O
(
k−2m/(2m+1)

)
and

E[
{
γ̂C − γ

}2
] = O

(
k−2m/(2m+1)

)
.

Using Theorem 3.3, we obtain the asymptotic normality of the ratio of q̂Y (τE |x) and
q̂C
Y (τE |x).

Theorem 3.4. Suppose that the same conditions as Theorem 3.3. Furthermore,

assume that k−m/(2m+1) log{(1− τI)/(1− τE)} → 0 as k, n →∞, τI , τE → 1. As n →∞,

τE → 1 and n(1− τE) → c ∈ [0,∞),

q̂Y (τE |x)
qY (τE |x) − 1− bias(τE |x)

s(τE |x)
D−→ N(0, 1)

and

q̂C
Y (τE |x)

qY (τE |x) − 1− biasC(τE |x)

sC(τE |x)
D−→ N(0, 1)

where bias(τE |x), s(τE |x), biasC(τE |x) and sC(τE |x) are defined in (B.5), (B.6), (B.7) and

(B.8) of Proof of Theorem 3.4 on Appendix B. Furthermore,

E

[{
q̂Y (τE |x)
qY (τE |x)

− 1
}2
]

= O

(
max

{
k−

2m
2m+1 log2

(
1− τI

1− τE

)
, {(1− τI)n}−

2m
2m+1

})
.

and

E

[{
q̂C
Y (τE |x)

qY (τE |x)
− 1
}2
]

= O

(
max

{
k−

2m
2m+1 log2

(
1− τI

1− τE

)
, {(1− τI)n}−

2m
2m+1

})
.

For the asymptotic order inTheorem3.4, the termO(k−2m/(2m+1) log2{(1−τI)/(1−τE)})
is derived from γ̂(x) and the another term is derived from q̃Y (τI |x). If we use τI = τ1 =
(n − [nη])/(n + 1) or τI = O(τ1), we have (1 − τI)n = O([nη]) = o(k) since [nη]/k → 0.
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That is, the asymptotic inference of q̂Y (τE |x) is dominated by that of q̃Y (τI |x) and hence,
the rate of convergence of the estimator is

E

[{
q̂Y (τE |x)
qY (τE |x)

− 1
}2
]

= O
(
{(1− τI)n}−

2m
2m+1

)
.

One may have sense of discomfort with this result since the extreme order quantile estimator
and the intermediate order quantile estimator has same rate of convergence. Indeed, the
leading terms of q̃Y (τI |x) and q̂Y (τE |x) are similar. However, the convergence speed of the
subsequent term of q̂Y (τE |x) is obviously slower than that of q̃Y (τI |x) because of the influ-
ence of γ̂(x). Therefore, for the application with a finite sample, the behavior of q̃Y (τI |x)
would be more stable than q̂Y (τE |x) . On the other hand, when τI = τk or τI = O(τk), which
leads to n(1− τI) = O(k), is adopted, q̂Y (τE |x) is heavily affected by γ̂(x) but not by q̃Y (τI |x).
Actually, since n(1 − τE) → c ∈ [0,∞) and log({1 − τI}/{1 − τE}) = log({n(1 − τI)}/
{n(1− τE)}) = O(log[k/{n(1− τE)}]), we have

E

[{
q̂Y (τE |x)
qY (τE |x)

− 1
}2
]

= O

(
max

{
k−

2m
2m+1 log2

(
k

n(1− τE)

)
, k−

2m
2m+1

})
= O

(
k−

2m
2m+1 log2

(
k

n(1− τE)

))
.

For the common index quantile estimator q̂C
Y (τE |x) with τI = O(τk), the asymptotic

order of q̂C
Y (τE |x)/qY (τE |x) are dominated by the term of γ̂C , and this do not vary with x.

This result is quite unnatural in the quantile regression although O(log2(k/{n(1− τE)})),
which is the difference between the asymptotic inference of γ̂C and q̃Y (τI |x), is quite small.
Therefore, if the common index quantile estimator is mainly used, we may have to choose the
baseline quantile τI so that τI > τk. Thus, the balance of τI and k controls the asymptotic
behavior of q̂Y (τE |x). The same is true of q̂C

Y (τE |x).

Wang et al. (2012) [44] obtained the extrapolated estimator in the linear model with
τI = τk. From their result, the rate of convergence of the MISE of the linear estimator is
E[{q̂Y (τE |x)/qY (τE |x)− 1}2] = O(k−1 log2({1− τI}/{1− τE})). That is, the difference in the
rate of convergence between the parametric estimator and the nonparametric estimator is k−1

and k−2m/(2m+1), which could be intuitively derived from the classical works on parametric
and nonparametric regression.

Remark 3. The intermediate order quantile and the extreme order quantile are sep-
arated mathematically by the rate of the quantile level. However, in data analysis, the dis-
tinction between these two rates should be drawn for fixed n. Define ξ = ξ(τ, n) = (1− τ)n.
Using ξ, Chernozhukov and Fernández-val (2011) [7] suggested the following rule of thumb.
For the quantile level τ , if ξ < 30, it is the extreme order inference, that is, τ = τE and we
should use q̂Y (τ |x). When ξ ≥ 30, it is sufficient to use the intermediate order quantile es-
timator q̃Y (τ |x). If the predictor is the continuous, this threshold is ξ = 15–20. However,
they noted that the above rule is conservative. In this paper, we treat τ1 = n−[nη ]

n+1 as the in-
termediate order quantile. For example, when n = 200, τ = 0.925 leads to ξ = 15. Then, we
have η ≈ 0.5. For n = 1000, τ = 0.985 and η = 0.4 correspond to (1− τ1)n ≈ (1− τ)n = 15.
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On the other hand, Wang et al. (2012) [44] suggested to use η = 0.1. In their rule, we have
ξ(τ1, n) = 3 for n < 1025. Thus, it seems that the rule of Chernozhukov and Fernández-val
(2011) [7] is more conservative rather than that of Wang et al. (2012) [44]. In our experience,
the rule of Wang et al. (2012) [44] worked well for n ≤ 1000. Therefore, in the simulation
study of the next section, we also use η = 0.1. However, the determination of the split of the
intermediate order and the extreme order is still a difficult problem and further study would
be welcomed.

4. SIMULATION

The practical performance of the proposed estimator is confirmed by Monte Carlo
simulation. Define the true regression model as

Yi = f(Xi) + σ(Xi)εi(Xi), i = 1, ..., n,(4.1)

where

f(x) =
√

x(1− x) sin

(
2π(1 + 2−7/5)

x + 2−7/5

)
and σ(x) = 10−1(1 + x). The predictor Xi is independently generated from the standard
uniform distribution. This setting was introduced by Daouia et al. (2013) [11]. We consider
two types of error distribution: (a) εi(Xi) = εi ∼ t5 and (b) εi(Xi) ∼ ts(x), where

s(x) = [ν(x)] + 1, ν(x) = [{1.1− 0.5 exp[−64(x− 0.5)2]}{0.1 + sin(πx)}]−1.

The error type (b) is also used by Daouia et al. (2013) [11]. For the tν distribution, the EVI
is γ = 1/ν and hence, γ = 0.2 and γ(x) = 1/s(x) for (a) and (b), respectively For both cases,
the EVI is larger than 0, which indicates that the distribution of Yi has a heavy tail. In (4.1),
the conditional τth quantile of Y given X = x is qY (τ |x) = f(x) + σ(x)qε(τ |x), where qε(τ |x)
is the τth quantile of εi(x). For the case (a), qε(τ |x) = q(τ) is the τth quantile of t5 and is
not dependent on x. Thus, the model (4.1) with (a) is the location-scale shifted model and
is of the form of (2.2). In the case of (b), γ(x) = 1/2 for x ∈ [0.12, 0.88] and γ(x) ∈ (0, 1/3)
otherwise. That is, the model (4.1) with (b) has high EVI at the center and low (but larger
than 0) EVI at the boundary. The conditional quantile with (b) fail due to Conditions A.
However, it is important to confirm the performance of the estimator under (b).

We construct the intermediate order quantile estimator q̃Y (τ |x), the Hill-type estimator
γ̂(x), γ̂C , and the extreme order quantile estimator q̂Y (τ |x) and q̂C

Y (τ |x). For the intermediate
order quantile estimator, we use the number of knots K = 40 and the smoothing parameter
selected via generalized approximated cross-validation (Yuan 2006 [47]). To obtain γ̂, γ̂C , q̂Y

and q̂C
Y , we need to determine τj = 1− [nη ]+j

n+1 (j = 1, ..., k). In this simulation, η is chosen
so that (1− τ1)n = ξ = 3 and k = [7.5n1/3]. Such η and k are selected from a pilot study.
Wang et al. (2012) [44] used η = 0.1 and k = [4.5n1/3] in the linear regression. Thus, our k

is somewhat larger than that of Wang et al. (2012) [44].

For the estimator f̂(x) of the true function f(x), the Mean Integrated Squared Error
(MISE):

MISE(f̂) =
∫ 1

0
E[{f̂(x)− f(x)}2]dx
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is used as the accuracy measure of the estimator. We calculate the estimated MISE of q̃Y (τ |x),
q̂Y (τ |x) and q̂C

Y (τ |x) over 400 replications. The estimators q̃Y (τ |x), q̂Y (τ |x) and q̂C
Y (τ |x)

are denoted by PSE-I, PSE-E and PSE-Ep. As the competitors, we consider the functional
nonparametric estimator (Gardes et al. 2010 [20]) and the kernel smoothing estimator (Daouia
et al. 2013 [11]). The estimators q̂1(τ, x) and q̂2(τ, x) defined in Gardes et al. (2010) [20] are
denoted by FNS-I and FNS-E, respectively. Furthermore, the estimators q̂n(τ |x) and q̃RP

n (τ |x)
defined by Daouia et al. (2013) [11] are labeled by KSE-I and KSE-E in this section. Thus,
FNS-I, FNS-E, KSE-I and KSE-E are also demonstrated in simulation.

We report the simulation results for the case (a). Figure 1 shows the true conditional
quantiles and the intermediate order quantile estimators for one dataset with n = 200, 600
and 1000. For τ = 0.8, 0.85 and 0.9, the estimator behaved well, but for τ ≥ 0.95, there was a
significant difference between the true function and the intermediate order quantile estimator.
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Figure 1: True conditional quantiles for τ = 0.8, 0.85, 0.9, 0.95, 0.99 and 0.995,
and these intermediate order quantile estimators for one dataset.

In Figure 2, the MISEs of the estimators for τ ∈ [0.5, 0.995] are illustrated. We can observe
that the proposed estimator behaves better than the competitors. From Figure 2 (d), we can
find that the estimator behaves well as n increases. This indicates that the estimator has
a consistency property. However, as τ increases, the performance of the estimator becomes
drastically decreases. Therefore, for τ ≈ 1, it is difficult to predict the conditional quantile
using the intermediate order quantile estimator.
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Figure 2: MISE of the intermediate order quantile estimators for τ ∈ [0.5, 0.995].
In (a), (b) and (c), the solid line is PSE-I. The dashed line and dot-
dashed lines are KSE-I and FNS-I, respectively. In (d), the solid, dashed
and dot-dashed lines are PSE for n = 200, n = 600 and n = 1000.

We next show the performance of the EVI estimator. Figure 3 shows the behavior
of γ̂C over k for one dataset and the distribution of γ̂C using k = [7.5n1/3] by Monte Carlo
simulation. From the results, we see that the suggested k = [7.5n1/3] is good choice. When
n = 1000, the behavior of γ̂C is stable from (c) and (d).

Figure 4 shows the extreme order quantile estimators PSE-E and PSE-Ep for one
dataset and the MISE of the extreme order quantile estimators for τ ∈ [0.95, 0.999]. From
(a–c), we can observe that the estimator behaves well. We can see that the behavior of the
PSE-Ep is stable than the PSE-E. This is not a surprising result since the estimator of EVI
included in PSE-Ep is not dependent on x unlike PSE-E. It can be recognized from Figure
4 (d–f) that the proposed estimator has better behavior than the competitors although the
differences are not large. Furthermore, the performance of the PSE-Ep was superior to that
of PSE-E. We think that this is a result of the stability of γ̂C . It can be recognized from
Figure 5 that the extrapolated estimator has consistency.
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Figure 3: (a–c) The sample path of the common index estimator of EVI with k for one dataset.
The dataset is similar to Figure 1 for each n. The dashed line is k = [7.5n1/3] and γ = 0.2.
(d) Box plot of γ̂C with k = [7.5n1/3] from 400 replications.
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Figure 4: (a–c) The true conditional quantiles (solid) and the extreme order quantile
estimator PSE-E (dot-dashed) and PSE-Ep (dashed) for τ = 0.995 for one
dataset. The dataset is similar to that given in Figure 1 for each n.
(d–f) MISE of the estimators for τ ∈ [0.95, 0.999]. The solid, dashed, dotted
and dot-dashed lines are PSE-E, PSE-Ep, FNS-E and KSE-E, respectively.
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Figure 5: (a) and (b) are the MISE of the PSE-E and the PSE-Ep, respectively.
The results are similar to Figure 4 (d–f). For both panels, solid, dashed
and dot-dashed lines are for n = 200, 600 and 1000, respectively.
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From now on, we describe the simulation results for the model (b). Figure 6 shows the
true conditional quantiles and the intermediate order quantile estimators for τ ∈ [0.8, 0.995]
for one dataset. It appears that for τ ∈ [0.8, 0.9], the estimator can capture the true condi-
tional quantile even for n = 200. However, for τ ≥ 0.95, the estimator has a wiggly curve.
In Figure 7, the results of MISE of the intermediate order quantile estimators for each n are
illustrated. We found that the proposed estimator performs well for τ ∈ [0.5, 0.95). However,
the MISE drastically grows as τ increases. The behaviors of PSE-E and PSE-Ep for one
dataset are described in Figure 8 (a–c). It can be seen from Figures 6 and 8 (a–c) that the
PSE-E and PSE-Ep performed better than PSE-I. Figure 8 (d)–(f) shows the MISE of the
extreme order quantile estimators. It can be confirmed that the performance of PSE-E is
slightly better than that of PSE-Ep. We see that the proposed estimators have better be-
havior than the competitors. Figure 9, the consistency of the PSE-E and the PSE-Ep can be
observed in numerically. Although the performance of the proposed estimator is drastically
superior to that of Daouia et al. (2013) [11], this simulation result indicates that our method
is one of useful tools to the problem of extremal quantile regression.
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Figure 6: True conditional quantiles for τ = 0.8, 0.85, 0.9, 0.95, 0.99, 0.995 and these
intermediate order quantile estimators for one dataset with model (b).
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Figure 7: MISE of the intermediate order quantile estimators for τ ∈ [0.5, 0.995].
The description is similar to Figure 2.
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Figure 8: (a–c) The true conditional quantiles the extreme order quantile estimators for τ = 0.995
for one dataset with model (b). The dataset is similar to that given in Figure 6 for each n.
(d–f) MISE of the estimators for τ ∈ [0.95, 0.999]. The description is similar to Figure 4.

0.95 0.96 0.97 0.98 0.99 1.00

0
.0

0
.5

1
.0

1
.5

quantile level

M
IS

E

(a) MISE, PSE-E

0.95 0.96 0.97 0.98 0.99 1.00

0
.0

0
.5

1
.0

1
.5

quantile level

M
IS

E

(b) MISE, PSE-Ep

Figure 9: (a) and (b) are the MISE of the PSE-E and the PSE-Ep, respectively.
The description is similar to Figure 5.
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5. DATA EXAMPLE

In this section, we apply the proposed methods to Beijing’s PM2.5 Pollution data. The
data is available from the website of the UCI Machine Learning Repository and Liang et

al. (2015) [34] provided several analyses for this data. One of fundamental purposes of this
data is to analyze the relationship between PM2.5 concentration and other meteorological
variables. Our particular interest here is the prediction of high conditional quantiles of Y ,
PM2.5 concentration (µg/m3), with the predictor x, temperature (degrees Celsius). We can
observe from the scatter plot of y and x (see Figure 10) that this relationship is not linear
for the upper quantile. Therefore, the nonparametric approach is suitable for this data. We
demonstrate the analysis for each year from 2011 to 2014. We then omit the missing data and
hence the sample size is n = 8032, 8295, 8678, and 8661 in 2011, 2012, 2013, and 2014. We
construct the extreme order quantile estimator for τ = 0.999. The quantile level τ = 0.999
indicates that about only eight events occur each year.
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Figure 10: The proposed extreme order quantile estimator for τ = 0.999 for years from 2011 to 2014.
The solid line is q̂C

Y (0.999|x) and the dashed line is q̂Y (0.999|x) for each panel.
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Figure 10 shows the extreme order quantile estimators for τ = 0.999. It seems that the
tail behavior is stable in 2011 and 2012. In 2013 and 2014, the estimator of the conditional
quantile at x ∈ [0, 10] has a large value compared with those in 2011 and 2012. Thus, in
the cold season of 2013 and 2014, the risk of PM2.5 of pollution was increased. We can
observe that q̂Y (0.999|x) and q̂C

Y (0.999|x) are quite similar. This indicates that the estimator
of EVI γ̂(x) hardly changes with x. We report the EVI estimator used for constructing the
extrapolated estimator q̂Y and q̂pool

Y . To obtain the estimator of EVI, we utilized η = 0.4
as τ1 = n− [nη]/(n + 1) so that about τ1 = 0.995. Then, EVI is estimated by using the
intermediate order quantiles estimators for τ ∈ (0.978, 0.995). This choice leads to ξ = n(1−
τ1) ≈ 37 and, hence, this is a very conservative situation in the study of Chernozhukov and
Fernández-val (2011) [7]. Furthermore, we then adopted to use k so that the sample path
of the pooled EVI estimator is stable in each year. Figure 11 shows the sample path of γ̂C

and selected k. As a result, γ̂ = 0.220, 0.226, 0.260, and 0.231 in 2011, 2012, 2013, and 2014.
Thus, the pooled EVI estimators are the same in 2011, 2012, and 2014, and it is only slightly
larger in 2013.

0 50 100 150 200

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

k

E
V

I

(a) 2011

0 50 100 150 200

0.
15

0.
20

0.
25

0.
30

0.
35

k

E
V

I

(b) 2012

0 50 100 150 200

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

k

E
V

I

(c) 2013

0 50 100 150 200

0.
10

0.
15

0.
20

0.
25

0.
30

k

E
V

I

(d) 2014

Figure 11: The sample path of EVI estimates γ̂C with k for each year.
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Figure 12 illustrates γ̂(x) with selected k for each year. We can observe that γ̂(x) has
a narrow curve with x in 2011, 2012, and 2014. On the other hand, in 2013, γ̂(x) at the
boundary is rather larger than at the center. Indeed, it can be seen from Figure 10 that the
extreme point can be observed at x < 0 in 2013.
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Figure 12: The EVI estimates γ̂(x) with selected k versus x for each year.
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6. CONCLUSION

We have developed the nonparametric extremal quantile regression methods for heavy-
tailed data. To show the mathematical property of the proposed estimator, we have used the
hybrid techniques of asymptotic theory for the nonparametric regression and EVT for the
tail behavior of the conditional distribution. We then considered two quantile rates: (i) the
intermediate order quantile that (1− τ)n →∞ as n →∞; and (ii) the extreme order quantile
that (1− τ)n → ξ < ∞. For the intermediate order quantile, the penalized spline estimator
and its asymptotic normality have been developed. On the other hand, for the extremal order
quantile, we have studied the Weissman-type extrapolated estimator using the intermediate
order quantile estimator and its asymptotic normality. For the both intermediate and extreme
order quantile, we show the asymptotic normality and the optimal rate of convergence of the
proposed estimator. In particular, we found that the convergence speed of the estimator for
extremal quantile is slower than that for center quantile. This result would be intuitively
correct.

We now discuss some future directions of study. First, for technical reasons, we assumed
that the tail behavior of the conditional distribution of Y given X = x is equivalent across
the predictor x (see Conditions A1). Since the estimation of the tail behavior is difficult due
to data sparsity, this assumption is helpful in data analysis. However, if this assumption is
violated, additional research is needed to explicate the performance of the estimator.

Second, in this paper, we focused on the spline smoothing with `2 penalty. On the other
hand, Koenker et al. (1994) [32] and Koenker (2011) [30] studied the smoothing spline with the
`1-type penalty. That is, the penalty is defined as

∫ b
a |s

(m)(x)|dx instead of
∫ b
a {s

(m)(x)}2dx.
It is known that the estimator with `1 penalty has local adaptiveness. Therefore, for some
cases, the performance of the estimator with `1 penalty would be better than that with `2

penalty. Recently, the `1-type penalty has been rapidly developed in mean regression (Kim
et al. 2009 [27]; Tibshirani 2014 [43]; Sadhanala and Tibshirani 2017 [42]). Although it is
difficult to show the asymptotic distribution of an `1 penalized estimator, the developments
of the `1 penalized smoothing to the extremal quantile regression is an interesting problem.

Finally, we can consider extending the proposed method to the multidimensional case.
In particular, it is important to use the additive models (Hastie and Tibshirani 1990 [23])
that for x = (x1, ..., xd) ∈ Rd, the true function is can be decomposed as

f(x) = f1(x1) + ... + fd(xd),

where each fj is the univariate function. The additive model is known to enables us to avoid
the problem of dimensionality. The nonparametric additive quantile regression (for center
quantile) was studied by Lu and Yu (2004) [35], Horowitz and Lee (2005) [26], Cheng et al.

(2011) [8], Koenker (2011) [30], Lee et al. (2010) [33] and references therein. However, the
extremal inference of the additive quantile regression has not yet been studied until now. It
seems that the developments of the extremal quantile regression with the additive model is
an important issue.
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A. APPENDIX – Computation of the intermediate order quantile estimator

We describe here the approximation algorithm to solve (3.1). Nychka et al. (1995) [36]
and Reiss and Huang (2012) [40] proposed the penalized iteratively reweighted least squares
algorithm. We use here the modified version of Nychka et al. (1995) [36]. Nychka et al. (1995)
[36] proposed the following optimization:

b̃ = argmin
b

{
n∑

i=1

ρτ,α(yi −B(xi)T b) + λbT DT
mRDmb

}
,(A.1)

where

ρτ,α(u) =


ρτ (u), |u| > α,
τu2/α, 0 ≤ u ≤ α,

(1− τ)u2/α, −α ≤ u ≤ 0

Obviously, the loss function ρτ,α(u) tends to ρτ as α → 0. However, for the tail quantile
(τ ≈ 0, 1), the above algorithm will not converge in our implementation. Therefore, we suggest
using the slightly modified version of (A.1). The idea is similar to the proximal gradient
method and it is very simple. The modified algorithm is defined as given the tth iteration
estimate b̃

(t)
,

b̃
(t+1)

= argmin
b

{
n∑

i=1

ρτ,αt(yi −B(xi)T b) + λbT DT
mRDmb + ηt||b− b̃

(t)||2
}

,(A.2)

where at and ηt are the step sizes. For at, it is sufficient to use some sequence {αt} satisfying
αt → 0 as t →∞. On the other hand, the choice of ηt is more important than at. If ηt is large,
b(t+1) ≈ b(t) and hence the speed of convergence is very fast. When ηt is small, on the other
hand, there is almost no difference between (A.2) and (A.1), that is, the algorithm does not
converge in many cases. In Sections 4 and 5, we used αt = 0.1× 2−t and ηt+1 = 1.2ηt(η0 = 1).
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B. APPENDIX – Proof of theorems

LetZ be the n×(K+p) design matrix having elements Bj(xi), Gn= n−1ZT diag[H(xi)−γ ]Z
and let Λn = Gn +(λq(τ)/((1−τ)n))DT

mRDm. For any matrix A = (aij)ij , we denote ||A||∞ =
maxi,j |aij |. We first state the technical lemmas to prove theorems in this paper.

Lemma B.1. Suppose thatK(m,τ)≥1. UnderConditionsA–C, the following statements

holds: ||G(1)||∞ = O(K−1), ||G(H−γ)||∞ = O(K−1), ||Λ−1
n ||∞ = O(K(1 + K(m, τ)2m)−1),

||Λ(H−γ)−1||∞ = O(K(1 + K(m, τ)2m)−1), maxi,j{|{G−1
n − G(H−γ)−1}ij |} = o(K) and

maxi,j{|{Λ−1
n − Λ(H−γ)−1}ij |} = o(K(1 + K(m, τ)2m)−1).

Lemma B.2. Suppose that K(m, τ) ≥ 1. Under Assumptions 2–3, for any K + p

square matrix A satisfying ||A||∞ = O(na) for a ∈ R, ||G(H−γ)A||∞ = O(naK−1) and

||Λ(H−γ)−1A||∞ = O(naK(1 + K(m, τ)2m)−1).

Lemma B.1 is proved by Lemma 6.3 and 6.4 of Zhou et al. (1998) [48] and Lemma A1
and A2 of Claeskens et al. (2009) [9]. Lemma B.2 says that the order of product of matrices
is dependent only on the order of element of these matrices although the each element of
GA and Λ(h)−1A is infinite sum as n →∞. The proof of Lemma B.2 can also be shown by
Lemma A1 of Claeskens et al. (2009) [9]. Therefore, we only describe the outline here.

Proof of Lemma B.2: For any continuous and bounded function h, the matrix G(h)
is the band matrix from property of B-splines and hence ||GA||∞ = O(naK−1) is obvious.
Next, Λ(h)−1 is the inverse of the band matrix. From Demko (1977) [14], there exists c > 0
and r ∈ (0, 1) such that |{Λ(h)−1}ij | < cr|i−j|K(1 + K(m, τ)2m)−1. Thus, straightforward
calculation yields that the infinite sum of each element of Λ(h)−1A is bounded by order of
Λ(h)−1 and the absolute of the maximum of element of A.

Proof of Theorem 3.1: Define h(x) = H(x)−γ . We write τ ≡ τI and hence τ → 1
and (1− τ)n →∞ as n →∞. By the fundamental property of B-spline basis, s

(m)
0 (τ |x) =

dms0(τ |x)/dxm can be written as s
(m)
0 (τ |x) = B[p−m](x)T Dmb0(τ), where B[p−m](x) is the

vector having element {B[p−m]
1 (x), ..., B[p−m]

K+p−m(x)} and B
[p−m]
k (x)’s are (p−m)th degree

B-spline bases. Therefore, the shrinkage bias can be expressed as

bλ(τ |x) =
λq(τ)

(1− τ)n
B(x)T Λ(H−γ)−1DT

m

∫ b

a
B[p−m](x)s(m)

0 (τ |x)dx.

From Conditions A–B, we have s0(τ |x) = qY (τ |x)(1+o(1)) = h(x)q(τ)(1+o(1)) and s
(m)
0 (τ |x)

= h(m)(x)q(τ)(1 + o(1)) as τ → 1. Since h is bounded function, we get supx∈[a,b] |s
(m)
0 (τ |x)| =

O(q(τ)). From the property of B-spline basis, we also obtain
∫ b
a Bk(x)ds = O(K−1). Thus,

each element of
∫ b
a B[p−m](x)s(m)

0 (τ |x)dx has the order O(K−1q(τ)) Furthermore, the result
of Cardot (2000) [5] provides ||Dm||∞ = O(Km). Therefore, Lemmas B.1, B.2 and the fact
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that K(m, τ)m/(1 + K(m, τ)2m) < 1/2 yield that

bλ(τ |x) = O

(
q(τ)

λq(τ)Km

(1− τ)n
(1 + K(m, τ)2m)−1

)
= O

(
q(τ)

(
λq(τ)

(1− τ)n

)1/2 K(m, τ)m

1 + K(m, τ)2m

)

≤ O

(
q(τ)

(
λq(τ)

(1− τ)n

)1/2
)

.

Next, we show the asymptotic order of v(x|τ). Since ||G||∞ = O(K−1), from Lemmas B.1–
B.2, we have

v(τ |x) = O

(
Kq(τ)2

(1− τ)n
{1 + K(m, τ)2m}−2

)
= O

(
q(τ)

(1− τ)n

(
λq(τ)

(1− τ)n

)−1/2m

K(m, τ){1 + K(m, τ)2m}

)

≤ O

(
q(τ)

(1− τ)n

(
λq(τ)

(1− τ)n

)−1/2m
)

,

which completes the proof.

Proof of Theorem 3.2: We write τ ≡ τI and hence τ → 1 and (1 − τ)n →∞
as n →∞. Let Ui = Yi −B(x)T b0(τ), an =

√
(1− τ)n/q(τ) and

Qn(δ|τ) =
an√

n(1− τ)

n∑
i=1

{
ρτ (Ui −B(xi)T δ/an)− ρτ (Ui)

}
+

anλ

2
√

n(1− τ)
(b0(τ) + δ/an)T DT

mRDm(b0(τ) + δ/an).

Then the minimizer of Qn is obtained as

δ̃ = an(b̃(τ)− b0(τ)).

Using Knight’s identity (Knight, 1998 [28]), we have

ρτ (u− v)− ρτ (u) = −v(τ − I(u < 0)) +
∫ v

0
{I(u ≤ s)− I(u ≤ 0)}ds

and writing

Qn(δ|τ) = Wn(τ)T δ + Gn(δ|τ) +
anλ

2
√

(1− τ)n
(b0(τ) + δ/an)T DT

mRDm(b0(τ) + δ/an),

where

Wn(τ) ≡ −1√
(1− τ)n

n∑
i=1

(τ − I(Yi < B(xi)T b0))B(xi),

Gn(δ|τ) ≡
n∑

i=1

∫ B(x)T δ/an

0
I(Ui ≤ s)− I(Ui ≤ 0)ds.
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Since τ = P (Y < qY (τ |x)|X = x) = P (Y < B(x)T b0(τ)|X = x) + o(K−m) and
E[I(Y < B(x)T b0(τ))] = P (Y < qY (τ |x)|X = x) + o(K−m(1− τ)−γ), we obtain E[Wn(τ)] =
o(1). The variance of Wn(τ) can be evaluated as

V [Wn(τ)T δ] =
τ(1− τ)
1− τ

δT

(
1
n

ZT Z

)
δ

P−→ δT Gδ

as n →∞ and τ → 1. Lyapnov’s condition for the central limit theorem and Cramèr-Wold
device yield that Wn(τ) is asymptotically distributed as W , which is the normal with mean
0 and variance G.

Next, we show that as n →∞ and τ → 1,

Gn(δ|τ) P−→ 1
2
γ−1δT G(H−γ)δ.(B.1)

Before that, we provide some differential results. Let fY (y) and fY (y|x) be the marginal
density of Y and conditional density of Y given X = x, respectively. From A3, fY (y|x) =
fV (y|x)(1+o(1)) = H(x)fY (y)(1+o(1)) as y →∞. In addition, since 1 = ∂FV (qV (τ |x)|x)/∂τ

= fV (qV (τ |x)|x)∂qV (τ |x)/∂τ , we have fV (qV (τ |x)|x) = {∂qV (τ |x)/∂τ}−1. Meanwhile, A4
and q((1−τ)/H(x)) = {(1−τ)/H(x)}−γL(H(x)/(1−τ))(1+o(1)) yield that ∂q((1−τ)/H(x))/
/∂τ = γ(1− τ)−γ−1H(x)γL(H(x)/(1− τ))(1 + o(1)). Consequently, as τ → 1,

fY (qY (τ |x)|x) = γ−1H(x)−γ(1− τ)γ+1L(H(x)/(1− τ))−1(1 + o(1)).

Furthermore, by L ∈ RV (0), q(τ)fY (qY (τ |x)|x)/{1− τ} = γ−1H(x)−γ(1 + o(1)).

We return to show (B.1). Since

Gn(δ|τ) =
1√

(1− τ)n

n∑
i=1

(∫ δT B(xi)

0
I(Ui ≤ s/an)− I(Ui ≤ 0)ds

)
,

we obtain

E[Gn(δ|τ)] =
1√

(1− τ)n

n∑
i=1

E

[∫ δT B(xi)

0
I(Ui ≤ s/an)− I(Ui ≤ 0)ds

]

=
1√

(1− τ)n

n∑
i=1

[∫ δT B(xi)

0
FY (qY (τ |xi) + s/an|xi)− FY (qY (τ |xi)|xi)ds

]

=
n∑

i=1

∫ δT B(xi)

0

fY (qY (τ |xi))
an

√
(1− τ)n

sds(1 + o(1))

=
1
n

n∑
i=1

∫ δT B(xi)

0

q(τ)fY (qY (τ |xi))
(1− τ)

sds(1 + o(1))

= 2−1γ−1δT

(
1
n

n∑
i=1

H(xi)−γB(xi)B(xi)T

)
δ.

From the simple but tedious calculation, V [Gn(δ|τ)] = o(1) can be evaluated. These results
yield that

E[Gn(δ|τ)] P−→ 1
2
γ−1δT G(H−γ)δ.
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Thus, Qn(δ|τ) is asymptotically equivalent to

Q0(δ|τ) =

(
W T +

λ

an

√
(1− τ)n

b0(τ)T DT
mRDm

)
δ

+
1
2
δT

(
γ−1G(H−γ) +

λ

2an

√
(1− τ)n

DT
mRDm

)
δ.

By the convexity lemma (see Pollard 1991 [38] and Knight 1998 [28]), the minimizer of Qn

and Q0 are asymptotically equivalent and hence we have

δ̃ =

(
γ−1G(H−γ) +

λ

2an

√
(1− τ)n

DT
mRDm

)−1(
W− λ√

an(1− τ)n
DT

mRDmb0(τ)

)
+ oP (1).

Since q̃Y (τ |x)− s0(τ |x) = B(x)T (b̃(τ)− b0(τ)), we obtain from an =
√

(1− τ)n/q(τ) that√
(1− τ)n
q(τ)

(q̃Y (τ |x)− s0(τ |x)) =

= B(x)T

(
γ−1G(H−γ) +

λq(τ)
2(1− τ)n

DT
mRDm

)−1

W

− λ√
(1− τ)n

B(x)T

(
γ−1G(H−γ) +

λq(τ)
2(1− τ)n

DT
mRDm

)−1

DT
mRDmb0(τ)

+ oP (1).(B.2)

The second term of right hand side of (B.2) is the shrinkage bias. Consequently, as n →∞,√
(1− τ)n
q(τ)

q̃Y (τ |x)− qY (τ |x)− bλ(τ |x)√
B(x)T Λ(H−γ)−1GΛ(H−γ)−1B(x)

D−→ N(0, 1).

Finally, we obtain

E[{q̂Y (τ |x)− qY (τ |x)}2] = bλ(τ |x)2 + v(τ |x)

= O

(
q(τ)2

λq(τ)
(1− τ)n

)
+ O

(
q(τ)2

(1− τ)n

(
λq(τ)

(1− τ)n

)−1/2m
)

.(B.3)

We now derive the optimal rate of convergence of MISE of q̃Y (τ |x). For the constant C1 > 0,
C2 > 0, the solution of

C1q(τ)λ− C2

(
q(τ)

(1− τ)n

)−1/2m

λ−1/2m = 0

is λ = Cq(τI)−1{n(1− τI)}1/(2m+1) for C > 0. By applying this λ in (B.3), we obtain

E

[{
q̂Y (τ |x)
qY (τ |x)

− 1
}2
]

= O({(1− τ)n}−2m/(2m+1)),

which completes the proof.
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To improve the outlook, we now describe about the asymptotic bias and variance of
γ̂(x) before prove Theorem 3.3. Define

(B.4) b(k|x) =
1

k − 1

k−1∑
j=1

bλ(τj |x)
qY (τj |x)

− bλ(τk|x)
qY (τk|x)

, v(k|x) =
1

k − 1

k−1∑
j=1

ν(τj |x)
qY (τj |x)

− ν(τk|x)
qY (τk|x)

,

where

ν(τ |x) =
q(τ)√

(1− τ)n
G1/2Λ(H−γ)−1B(x).

As the result, b(k|x) and
√

v(k|x)T v(k|x) are the asymptotic bias and standard deviation of
γ̂(x). We here get the asymptotic order of b(k|x) and v(k|x) from easy calculation.

Since bλ(τj |x)/qY (τj |x) = O({(1− τj)n}−m/(2m+1)) and each element of ν(τj |x) has
O({(1− τj)n}−m/(2m+1)), we have

b(k|x) = O

 1
k − 1

k−1∑
j=1

{(1− τj)n}−
m

2m+1 − {(1− τk)n}−
m

2m+1


and

v(k|x) = O

 1
k − 1

k−1∑
j=1

{(1− τj)n}−
m

2m+1 − {(1− τk)n}−
m

2m+1

 .

We then have from [nη]/k → 0(n, k →∞) that

1
k

k∑
j=1

{(1− τj)n}−
m

2m+1 =
1
k

k∑
j=1

{
[nη] + j

n + 1
n

}− m
2m+1

= k−
m

2m+1
1
k

k∑
j=1

{
[nη] + j

k + 1

}− m
2m+1

= k−
m

2m+1

∫ 1

0
u−

m
2m+1 du(1 + o(1))

=
2m + 1

m
k−

m
2m+1 (1 + o(1))

and

{(1− τk)n}−
m

2m+1 =
{

[nη] + k

n + 1
n

}− m
2m+1

= k−
m

2m+1 (1 + o(1)).

This indicates that b(k|x) = O(k−
m

2m+1 ) and v(k|x) = O(k−
m

2m+1 ).
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Proof of Theorem 3.3: Theorem 3.1 indicates that q̃Y (τk|x)− qY (τk|x) = oP (1) as
n →∞. Therefore, the proposed estimator can be calculated as for x ∈ R,

γ̂(x) =
1

k − 1

k−1∑
j=1

log
q̂Y (τj |x)
q̂Y (τk|x)

=
1

k − 1

k−1∑
j=1

log
qY (τj |x)

{
1 + q̂Y (τj |x)−qY (τj |x)

qY (τj |x)

}
qY (τk|x)

{
1 + q̂Y (τk|x)−qY (τk|x)

qY (τk|x)

}
=

1
k − 1

k−1∑
j=1

log
qY (τj |x)
qY (τk|x)

+
1

k − 1

k−1∑
j=1

log

{
1 + q̂Y (τj |x)−qY (τj |x)

qY (τj |x)

}
{

1 + q̂Y (τk|x)−qY (τk|x)
qY (τk|x)

}
=

1
k − 1

k−1∑
j=1

log
qY (τj |x)
qY (τk|x)

+
1

k − 1

k−1∑
j=1

log
{

1 +
q̂Y (τj |x)− qY (τj |x)

qY (τj |x)

}

− 1
k − 1

k−1∑
j=1

log
{

1 +
q̂Y (τk|x)− qY (τk|x)

qY (τk|x)

}

=
1

k − 1

k−1∑
j=1

log
qY (τj |x)
qY (τk|x)

+
1

k − 1

k−1∑
j=1

{
q̂Y (τj |x)− qY (τj |x)

qY (τj |x)
− q̂Y (τk|x)− qY (τk|x)

qY (τk|x)

}
(1 + oP (1))

≡ D1n + D2n.

We then note that D1n is not random variable. Similar to the proof of Theorem 2.3 of Wang
et al. (2012) [44], we have as k →∞,

D1n = γ + O(k−1/2) = γ + o(k−m/(2m+1))

for m ≥ 1. Next, we consider D2n. Under the conditions for Theorem 3.3, using the result of
Theorems 3.1–3.2 and the property of B-spline basis, we have

q̃Y (τj |x)− qY (τj |x)
qY (τj |x)

=
bλ(τj |x) + ν(τj |x)T W

qY (τj |x)
(1 + oP (1)),

where W ∼ NK+p(0, I). Therefore, D2n can be evaluated as

D2n = {b(k|x) + v(k|x)T W }(1 + oP (1))

That is,
γ̂(x) = γ + b(k|x) + v(k|x)T W + o(k−m/(2m+1)),

where b(k|x) = O(k−m/(2m+1)) and v(k|x) = O(k−m/(2m+1)). Consequently, we get

γ̂(x)− γ − b(k|x)√
v(k|x)T v(k|x)

D−→ N(0, 1)

and E[{γ̂(x)− γ}2] = O(k−2m/(2m+1)). For the common index version γ̂C , similar to above,
the straightforward calculation yields that

γ̂C =
1
n

n∑
i=1

γ̂(xi) = γ + E[b(k|X)] + E[v(k|X)]T W + o(k−m/(2m+1)).

This completes the proof.
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Proof of Theorem 3.4: First, the second order condition for UY (1/(1− τ)|x) =
qY (τ |x) yields that

qY (τI |x)
qY (τE |x)

=
(

UY (1/(1− τE)|x)
UY (1/(1− τI)|x)

)−1

=
(

1− τI

1− τE

)−γ

{1 + o(k−m/(2m+1))}.

Furthermore, the result of Theorem 3.3 indicates that(
1− τI

1− τE

)γ̂(x)−γ

= exp
[
(γ̂(x)− γ) log

(
1− τI

1− τE

)]
= 1 + (γ̂(x)− γ) log

(
1− τI

1− τE

)
(1 + oP (1))

= 1 + {b(k|x) + v(k|x)T W } log
(

1− τI

1− τE

)
(1 + oP (1)).

Meanwhile, we obtain

q̂Y (τI |x)
qY (τI |x)

= 1 +
bλ(τI |x)
qY (τI |x)

+
ν(τI |x)T

qY (τI |x)
W + oP (k−m/(2m+1)),

where W is that given in the proof of Theorem 3.3. Using above, we have

q̂Y (τE |x)
qY (τE |x)

=
(

1− τI

1− τE

)γ̂(x) q̂Y (τI |x)
qY (τE |x)

=
(

1− τI

1− τE

)γ̂(x) q̂Y (τI |x)
qY (τI |x)

qY (τI |x)
qY (τE |x)

=
(

1− τI

1− τE

)γ̂(x) q̂Y (τI |x)
qY (τI |x)

(1 + o(k−m/(2m+1)))

=
{

1 + (b(k|x) + v(k|x)T )W ) log
(

1− τI

1− τE

)
(1 + oP (1))

}
×
[
1 +

{
bλ(τI |x)
qY (τI |x)

+
ν(τI |x)T

qY (τI |x)
W

}
(1 + oP (1))

]
(1 + o(k−m/(2m+1)))

= 1 +
{

log
(

1− τI

1− τE

)
v(k|x) +

ν(τI |x)
qY (τI |x)

}T

W

+b(k|x) log
(

1− τI

1− τE

)
+

bλ(τI |x)
qY (τI |x)

+o

(
k−m/(2m+1) log

(
1− τI

1− τE

))
+ oP ({n(1− τI)}−m/(2m+1)).

Consequently, we obtain

q̂Y (τE |x)
qY (τE |x) − 1− bias(τE |x)

s(τE |x)
D−→ N(0, 1),

where

bias(τE |x) = b(k|x) log
(

1− τI

1− τE

)
+

bλ(τI |x)
qY (τI |x)

(B.5)

and

s(τE |x) =
∣∣∣∣∣∣∣∣log

(
1− τI

1− τE

)
v(k|x) + qY (τI |x)−1ν(τI |x)

∣∣∣∣∣∣∣∣ .(B.6)
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Here, for a vector a, ||a|| means the `2-norm of a. Furthermore, we get

E

[{
q̂Y (τE |x)
qY (τE |x)

− 1
}2
]

= O

(
max

{
k−

2m
2m+1 log2

(
1− τI

1− τE

)
, {(1− τI)n}−

2m
2m+1

})
.

Similarly, for the common index estimator q̂C
Y (τE |x), we have

q̂C
Y (τE |x)

qY (τE |x)
= 1 + E[b(k|X)] log

(
1− τI

1− τE

)
+

bλ(τI |x)
qY (τI |x)

+
{

E[v(k|X)] log
(

1− τI

1− τE

)
+

ν(τI |x)
qY (τI |x)

}T

W

+ oP

(
k−m/(2m+1) log

(
1− τI

1− τE

))
+ oP ({(1− τI)n}−m/(2m+1)).

Accordingly,
q̂C
Y (τE |x)

qY (τE |x) − 1− biasC(x)

sC(τE |x)
D−→ N(0, 1),

where

biasC(τE |x) = E[b(k|X)] log
(

1− τI

1− τE

)
+

bλ(τI |x)
qY (τI |x)

(B.7)

and

sC(τE |x) =
∣∣∣∣∣∣∣∣E[v(k|X)] log

(
1− τI

1− τE

)
+

ν(τI |x)
qY (τI |x)

∣∣∣∣∣∣∣∣ .(B.8)

Finally, we obtain the optimal rate of convergence of MISE of the common index estimator
as

E

[{
q̂C
Y (τE |x)

qY (τE |x)
− 1
}2
]

= O

(
max

{
k−

2m
2m+1 log2

(
1− τI

1− τE

)
, {(1− τI)n}−

2m
2m+1

})
.
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mauricio.huerta.a@gmail.com

Camilo Lillo
– Center of Experience and Services (CES), Universidad Adolfo Ibáñez, Santiago, Chile

camilo.lillof@gmail.com

Alejandra Tapia
– Facultad de Ciencias Básicas, Universidad Católica del Maule, Chile
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1. INTRODUCTION

In sample surveys, it is of interest to obtain estimates for some parameters of the
population from which the data are collected (Lumley and Scott, 2017 [31]). These estimates
can be obtained not only for the target population, but also for sub-populations usually
named small areas or domains. The small area estimation is a statistical technique used to
estimate parameters in small sub-populations (Rao, 2003 [39]; Avila et al., 2020 [3]), which
may consist of geographical areas or socio-demographic groups, as a country, region, county,
municipality or neighborhood.

Due to the high acceptance in relation to small area estimation, several models have
been derived, used and analyzed. A summary of design-based small area estimation method-
ologies is presented in the book of Särndal et al. (2003) [46], whereas reviews of model-based
small area estimation methodologies are provided in Ghosh and Rao (1994) [21], Rao (2003)
[39], Datta (2009) [12], Lehtonen and Veijanen (2009) [25] and, more recently, in Coelho and
Casimiro (2008) [9], Coelho and Pereira (2011) [10], Pereira and Coelho (2012) [36], Avila et

al. (2020) [3] and Rueda et al. (2019) [43].

For small area estimation, the area model was first proposed by Fay and Herriot (1979)
[19]. The Fay–Herriot (FH) model is considered as a generalization of the model formulated
by Carter and Rolph (1974) [7], incorporating auxiliary variables (covariates). The FH model
proposes an adaptation to the Carter-Rolph and James-Stein estimators, which was applied to
income estimates in small areas during the population and housing census of the United States
in 1970. The FH model assumes normality and incorporates linear regression in the context
of heterogeneity of variances, so that it can be considered as a mixed model. To estimate the
components of variance, different methods have been considered. Fay and Herriot (1979) [19]
used weighted residual square sums and the moment method. Prasad and Rao (1990) [37]
proposed an ordinary least square estimator. Datta and Lahiri (2000) [13] used the maximum
likelihood (ML) and restricted maximum likelihood (REML) estimators.

When estimating means of small areas based on sampling design, there are desirable
properties, such as unbiasedness and consistency, at country and region levels, but at lower
levels (for example municipalities), the consistency property of the estimator is not fulfilled
(Rao, 2003 [39]). Small area estimation is often based on the FH model, which allows for
results in a more reliable way in order to produce statistics at lower levels than countries or
regions. The FH model has good properties at low geographic levels when combining survey
data with data from other sources, such as administrative or census records. In particular,
the Chilean government has used the FH model since 2010 to estimate small areas (Casas-
Cordero et al., 2016 [8]). However, one of the drawbacks of the FH model is the assumption
of normality for the response variable and random effect, because often this assumption
is not fulfilled, due to asymmetry in the data distribution (Berg and Chandra, 2014 [5]).
A solution to solve the problem of asymmetrical patterns present in the data is working
with their log-transformations. However, data analyses performed under a wrong transfor-
mation reduces the power of the study (Huang and Qu, 2006 [22]; Dreassi et al., 2014 [15]).
Therefore, the research question is whether there is a gain in modifying the distributional
assumption in terms of the accuracy of the estimator for producing statistics at a small area
level or not.
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Small-area estimation in non-normal models has been studied by few authors, even
though this was postulated by Rao (2003) [39, Chap. 9] as an open problem. Fabrizi and
Trivisano (2010) [18] extended the FH model assuming that the random effects follow power
exponential distributions. Berg and Chandra (2014) [5] presented an empirical Bayes (EB)
estimator for small area estimation based on a log-normal model and Fabrizi et al. (2016)
[17] used the beta model for small area estimation.

The Birnbaum–Saunders (BS) distribution is asymmetrical and it has good properties
(Ferreira et al., 2012 [20]; Santos-Neto et al., 2014 [44]; Bourguignon et al., 2017 [6]). Sta-
tistical modeling based on the BS distribution has received much attention because of its
relationship with the normal distribution and other properties. Rieck and Nedelman (1991)
[41] were the pioneers in deriving BS regression models, whereas Villegas et al. (2011) [47]
extended this regression model considering mixed effects and using an EB estimator to pre-
dict the random effects. Leiva et al. (2014) [29] and Santos-Neto et al. (2016) [45] focused
on a reparameterized BS (RBS) distribution to model the response with no transformations
following the idea of generalized linear models (McCullagh and Nelder, 1989 [32]). This mod-
eling approach was based on fixed effects and no studies were reported using random effects.
One of the parameters of the RBS distribution is its mean, such as the normal distribution,
but in an asymmetric framework. In addition, the variance of the RBS distribution is a
function of its mean, such as the gamma distribution. In Balakrishnan and Kundu (2019)
[4] and Leiva et al. (2019) [27], detailed information is reviewed for these models. However,
to the best of our knowledge, no area models for small area estimation based on BS, gamma
and log-normal distributions have been reported in the literature.

In small area estimation, an alternative solution to solve the problem of asymmetric
data is considering generalized linear models and, in particular, the RBS distribution (Leiva et

al., 2014 [29]). This solution provides some advantages over the log-transformation solution.
First, the mean is modeled directly, making inference straightforward and avoiding the need of
re-transformations back to the original scale. Second, this solution enables us to go beyond
exponential family and allows some flexibility through the choice of a link function (for
example, logarithmic, inverse or logit) and a distribution for the response through its mean-
variance relationship. Moreover, the use of the the RBS distribution permits us to capture the
essence of the small area estimation problem based on sample means and variances obtained
from the areas, because it is possible to express its precision parameter as a function of these
area means and variances, such as in the normal case; see Santos-Neto et al. (2014) [44] and
Subsection 2.2 for more details about this important aspect. Therefore, the RBS distribution
seems to be a good alternative to the FH type models for small area estimation.

The main objective of this work is to estimate the mean of small areas based on an
RBS area model. The specific objectives are: (i) to establish an algorithm for estimating
parameters from an RBS area model; (ii) to propose a residual for this model, allowing the
examination of the model assumptions; and (iii) to illustrate the proposed methodology with
survey data and to compare its results to the standard FH model. This methodology is
implemented in the R software (www.r-project.org and R Core Team, 2016 [38]).

The paper is organized as follows. In Section 2, we present a background about the
standard FH structure and a modeling approach based on the RBS distribution. Section 3
proposes the new RBS area model and its corresponding estimation, inference and residual
analysis for its diagnostic. In Section 4, the methodology is illustrated with unpublished
Chilean survey data, comparing it to a standard methodology. Section 5 gives our conclusions
about this research.

www.r-project.org
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2. BACKGROUND

In this section, we provide some preliminaries aspects related to the standard FH model
and RBS regression.

2.1. The Fay–Herriot model

Fay and Herriot (1979) [19] proposed their model to improve the accuracy of the es-
timator Yi = θ̂i based on the sampling design (direct estimator) used to infer on the true
small area mean θi, for i = 1, ...,m, where m is the number of areas. The FH model has a
hierarchical structure consisting of the following two levels:

(2.1)
Level 1. Sampling model: Yi|θi

IND∼ N(θi, ψi), for i = 1, ...,m,

Level 2. Linking model: θi
IND∼ N(x>i β, σ

2), for i = 1, ...,m,

where “IND” denotes “independent”, ψi corresponds to the variance of the sampling error,
xi = (1, x1i, ..., x(p−1)i) are the values of p− 1 covariates for the area i, β = (β0, β1, ..., βp−1)>

is a vector of unknown regression parameters, and σ2 is the unknown variance of the area
random effect, both to be estimated. Note that Level 1 describes the variability of the direct
estimator θ̂i of θi attributed to the sampling, whereas Level 2 links θi to the vector of p− 1
known area covariates (Jiang and Lahiri, 2006 [23]; Li and Lahiri, 2010 [30]). Mixing the
components of both models at Levels 1 and 2, we get the linear mixed model

(2.2) Yi|θi = x>i β + bi + εi, εi
IND∼ N(0, ψi), i = 1, ...,m,

where bi
IID∼ N(0, σ2) are independent and identically distributed (IID) area random effects

with unknown σ2 to be estimated from the data, whereas εi
IND∼ N(0, ψi) are the sampling

errors with known variances ψi. Furthermore, it is assumed that bi and εi are independent
random variables.

We want to estimate/predict the small area mean θi = x>i β + bi, for i = 1, ...,m, and
to obtain an uncertainty measurement related to this estimation/prediction. Considering the
model defined in (2.2), the best predictor (BP) of θi (Rao and Molina, 2015 [40]), which
minimizes the mean squared error, may be formulated as a weighted average of the direct es-
timator θ̂i and the regression-synthetic estimator x>i β (Rao and Molina, 2015 [40]), expressed
as

(2.3) θ̂ BP
i = (1−Bi)θ̂i +Bi x

>
i β, i = 1, ...,m,

with the weight 0 < Bi < 1 defined as Bi = ψi/(σ2 + ψi). Observe that (1−Bi) is function
of the variance ratio σ2/ψi and measures the uncertainty when θi is estimated in relation to
the total variance σ2 + ψi (Rao and Molina, 2015 [40]). In addition, the parameter σ2 is a
homogeneity measure of the areas after accounting for the values xi of covariates. If σ2 is
known, β may be approximated using the standard weighted least square estimator β̃ (Mert,
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2015 [33]). Hence, by replacing it in (2.3), we obtain the best linear unbiased prediction
(BLUP) of θi (Rao and Molina, 2015 [40]) by

(2.4) θ̂ BLUP
i = (1−Bi)θ̂i +Bi x

>
i β̃, i = 1, ...,m,

where

(2.5) β̃ =

m∑
i=1

xiθ̂i/(σ2 + ψi)

m∑
i=1

xix
>
i /(σ2 + ψi)

.

The BLUP of θi defined by (2.4) depends on σ2 through of β̃, which is unknown in practice.
From (2.4), we get the empirical best linear unbiased predictor (EBLUP) of θi as

(2.6) θ̂ EBLUP
i = (1− B̂i)θ̂i + B̂i x

>
i β̃,

where B̂i is the estimate of Bi = ψi/(σ2 + ψi) when σ2 is replaced by an estimator σ̂ 2, and
β̃ is given in (2.5). Note that the model defined in (2.2) may be rewritten as matrix by

(2.7) Y = Xβ + Imb+ ε,

where Y = (Y1, ..., Ym)>, with Yi = θ̂i, for i = 1, ...,m, X = (x1, ..., xm)> is of full rank, Im is
the m×m identity matrix, β is given below (2.1), b = (b1, ..., bm)> and ε = (ε1, ..., εm)>. Fur-
thermore, b and ε are independently distributed with b ∼ Nm(0m×1,G), ε ∼ Nm(0m×1,R),
where 0m×1 is m× 1 vector of zeros, G = σ2Im and R is a diagonal matrix defined as
R = diag{ψ1, ..., ψm}. The model defined in (2.7) is a particular case of a linear mixed
model with its variance-covariance matrix assuming the form V = G + R (Datta et al., 2005
[14]).

Observe that the EBLUP given in (2.6) depends on σ̂ 2, with several methods being
proposed in the literature for doing this estimation (Fay and Herriot, 1979 [19]; Prasad and
Rao, 1990 [37]). The ML method has been widely used in small area estimation (Jiang and
Lahiri, 2006 [23]; Rao and Molina, 2015 [40]), with Datta and Lahiri (2000) [13] using it in
the context of the FH model. In this case, the log-likelihood function takes the form

(2.8) `(σ2, β; y) = c− 1
2

log(|V |)− 1
2
(y −Xβ)>V −1(y −Xβ),

where c is a constant that is independent of σ2 and y is the observed value of Y . By taking
derivatives of (2.8) with respect to β and σ2, we obtain

∂`(σ2, β; y)
∂β

= X>V −1y −X>V −1Xβ,(2.9)

∂`(σ2, β; y)
∂σ2

=
1
2
(y −Xβ)>V −2(y −Xβ)− 1

2
tr(V −1),(2.10)

where tr(A) is the trace of the matrix A. Thus, equating (2.9) and (2.10) to zero, and solving
them simultaneously with respect to σ2 and β, we generate the corresponding ML estimators.
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2.2. Birnbaum–Saunders statistical modeling

The BS distribution can be parameterized in terms of its mean µ and precision δ from
its original parameterization by α =

√
2/δ and β = δ µ/(δ + 1) (Leiva, 2016 [26]). Thus, we

have δ = 2/α2 and µ = β (1 + α2/2), where δ > 0 and µ > 0 (Santos-Neto et al., 2016 [45]).
Hence, if Y ∼ RBS(µ, δ), its probability density function (PDF) is given by

(2.11) f(y;µ, δ) =
exp (δ/2)

√
δ + 1

4
√
πµ y3/2

(
y +

δµ

δ + 1

)
exp

(
−δ

4

(
(δ + 1)y
δµ

+
δµ

(δ + 1)y

))
, y > 0.

The RBS PDF defined in (2.11) has diverse shapes as µ changes, when δ is fixed, and similarly
as δ changes when µ is fixed. Note that the µ controls the scale of the RBS distribution but
it is also its mean, which may be proved because b Y ∼ RBS(bµ, δ), with b > 0. Notice that
the parameter δ controls the shape of the RBS distribution, making it more platykurtic as δ
increases. In addition, the RBS variance decreases when δ increases, converging to 5.0, as δ
approaches zero, doing it to be a precision parameter, as mentioned. For more details about
the graphical plots and shape analysis of the RBS distribution, see Leiva et al. (2014) [29],
Balakrishnan and Kundu (2019) [4] and Leiva et al. (2019) [27].

Note that the random variables Y and Z with RBS and standard normal distributions,
respectively, are related by

Y =
δ µ

δ + 1

 Z√
2 δ

+

√(
Z√
2 δ

)2

+ 1

2

,(2.12)

Z =

√
δ

2

(√
(δ + 1)Y

µ δ
−

√
µ δ

(δ + 1)Y

)
.

Thus, from (2.12), the cumulative distribution function (CDF) and the quantile function
(QF) of Y ∼ RBS(µ, δ) are defined respectively as

F (y;µ, δ) = Φ

(√
δ

2

(√
(δ + 1) y
µ δ

−

√
µ δ

(δ + 1) y

))
, y > 0,(2.13)

y(q;µ, δ) = F−1(q) =
δ µ

δ + 1

 z(q)√
2 δ

+

√(
z(q)√

2 δ

)2

+ 1

2

, 0 < q < 1,

where Φ and z are the standard normal CDF and QF, respectively, whereas F−1 is the inverse
function of the RBS CDF. The mean and variance of Y ∼ RBS(µ, δ) are given by E[Y ] = µ

and Var[Y ] = ψ = µ2(2δ + 5)/(δ + 1)2, respectively. Note the similarity of the variances of
the RBS and gamma distributions, which allows the RBS distribution to model data analo-
gously as in generalized linear models (Leiva et al., 2014 [29]). Note also that, as mentioned,
the RBS distribution has the mean as one of its parameters, which is an advantage on the
gamma distribution. Note that, in small area estimation, one has available the sample mean
and variance of each area, which is a natural aspect under normality. However, in the case of
the RBS distribution, it is characterized by the mean (as in the normal case) but also by a
precision parameter δ, which is different from the variance of the normal case. Santos-Neto
et al. (2014) [44] proposed a moment estimator of δ through

(2.14) δ̂ =
Y − S2 +

√
Y

4 + 3Y 2
S2

S2
,
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where Y and S2 represent the mean and sample variance of the random variable Y , respec-
tively. Thus, (2.14) allows us to see the problem under the RBS perspective such as the
normal framework.

Rieck and Nedelman (1991) [41] defined that if Y ∼ BS(α, β), then Z = log(Y ) follows
a logarithmic BS distribution with shape parameter α and location parameter γ = log(β) ∈
R. In this regression model, the original response must be transformed to a logarithmic
scale. Thus, although in this scale the mean γ = log(β) is modeled, in the natural scale
β = exp(γ) is modeled, which in the BS case corresponds to the median. Leiva et al. (2014)
[29] introduced a new approach for BS modeling, generalizing the existing works on the topic.
In the estimation process, they considered Y1, ..., Ym as independent RBS(µi, δ) distributed
random variables, for i = 1, ...,m. Then, the authors defined a statistical model based on the
systematic component µi = g−1(x>i β), where g−1 is the inverse function of the link function
g, β is a vector of unknown parameters to be estimated, and xi represents the values of
the covariates. For the vector of parameters (β>, δ)>, simplifying the notation according to
`(β, δ; y) = `(β, δ), `i(µi, δ; yi) = `i(µi, δ), and by using this same simplified notation from
now on, the log-likelihood function of the model is given by `(β, δ) =

∑m
i=1 `i(µi, δ), where

`i(µi, δ) =
δ

2
− log(16π)

2
− 1

2
log
(

(δ + 1)y3
i µi

(δyi + yi + δµi)2

)
− yi(δ + 1)

4µi
− δ2µi

4(δ + 1)yi
.

The score functions with first derivatives of βl, for l = 0, 1..., p−1, and δ are respectively given
by ˙̀

βl
= ∂`(β, δ)/∂βl and ˙̀

δ = ∂`(β, δ)/∂δ. Thus, the score vector is ˙̀
β,δ = ( ˙̀>

β ,
˙̀
δ)>; see

details in Leiva et al. (2014) [29]. To estimate the model parameters by the ML method, the
equation ˙̀

β,δ = 0p×1 must be solved. However, no closed-form expressions for these estimates
are available. Then, an iterative approach is needed, such as the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm; see details in Nocedal and Wright (1999) [35]. This iterative
approach is used for solving unconstrained non-linear optimization problems, belonging to
the class of quasi-Newton methods.

3. THE NEW STATISTICAL MODEL

In this section, we propose a methodology based on the FH model and the RBS re-
gression model. The methodology considers the formulation of the new RBS area model, the
estimation algorithm and inference for the population mean, as well as a residual analysis for
model diagnostics. The standard FH model defined in (2.1) assumes normality for random
effects and errors. In this case, the EB estimator and the EBLUP coincide. Note that the
distribution of the direct domain mean estimator comes from the survey design, which from
design-based theory is known to be approximately normal (for large enough samples). The
normal approximation is not necessarily good in small areas with very small sample sizes.
We consider the RBS distribution to model small area mean, whereas the random effect
distribution is also assumed RBS for computational and theoretical convenience. When non-
normality is assumed in the response or in the random effects, Rao (2003) [39] proposed to
use the EB estimator.
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3.1. Formulation

Such as in the standard model defined in (2.1), the proposed model consists of the two
following levels:

(3.1)
Level 1. Sampling model: Yi|θi

IND∼ RBS(θi, δi), for i = 1, ...,m,

Level 2. Linking model: θi
IND∼ RBS(g−1(x>i β), κ), for i = 1, ...,m,

where θi is the mean of the area i, g−1 is the inverse of the link function g, β and xi are as
defined in (2.1), whereas κ is the unknown precision parameter of the area random effect to
be estimated. Note that δi depends on known variances ψi of the area i which are related
according to the results proposed by Santos-Neto et al. (2014) [44], from where the empirical
relationship is given in (2.14). Therefore, from this relationship, we have

(3.2) δi =
θi − ψi +

√
θ4
i + 3θ2

i ψi

ψi
, i = 1, ...,m.

Thus, from (3.2), we put the model proposed in (3.1) in a small area framework.

The proposed BS area models have properties that are unavailable in the models of
this type existing in the literature. Specifically, the BS area models considered in this work
allow us to describe the mean of the data in their original scale, unlike the existing models,
which employ a logarithmic transformation of the data, provoking a possible reduction of
the power of the study and difficulties of interpretation. In addition, these BS area models
can be formulated in a similar form as the normal area models, permitting us to capture the
essence of the small area estimation problem based on sample means and variances obtained
from the areas.

3.2. EB estimation and quadrature methods

We consider the EB approach to estimate the small area mean. First, by considering
the PDF given in (2.11), we obtain the marginal PDF from the conditional (sampling model)
and prior (linking model) distributions. Second, we estimate the parameters β and κ based on
the corresponding marginal likelihood function. Third, we obtain the posterior distribution
by plugging it in the estimated value of λ = (β>, κ)>. Fourth, we find the EB estimator of
the conditional expectation of a small area mean given the observed data with respect to the
RBS area model. In order to calculate this expected value, we use the posterior distribution
presented in (3.13). The EB approach described above is detailed in Algorithm 1.
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Algorithm 1 – Empirical Bayes approach |
1: Establish the conditional PDF of Yi given θi, denoted by f(yi|θi), for i = 1, ...,m.

2: Indicate the prior distribution π(θi;λ), for i = 1, ...,m.

3: Obtain the marginal PDF

m(yi;λ) =
∫

Rθi

f(yi|θi)π(θi;λ) dθi, i = 1, ...,m,

recalling that Rθi
is the parameter space of θi.

4: Estimate the model parameter λ by maximizing the marginal likelihood function

L(λ) =
m∏

i=1

∫
Rθi

f(yi|θi)π(θi;λ) dθi.

5: Calculate the posterior distribution

π(θi|yi; λ̂) =
f(yi|θi)π(θi; λ̂)∫

Rθi
f(yi|θi)π(θi; λ̂) dθi

, i = 1, ...,m,

to make inferences about θi, where λ̂ is an estimator of λ.

6: Determine the EB estimator of θi using

θ̃EB
i = E(θi|yi; λ̂) =

∫
Rθi

θif(yi|θi)π(θi; λ̂) dθi∫
Rθi

f(yi|θi)π(θi; λ̂) dθi

, i = 1, ...,m.

The conditional PDF (sampling model), for i = 1, ...,m, is given by

(3.3) f(yi|θi) =
exp (δi/2)

√
δi + 1

4
√
πθi y

3/2
i

(
yi +

δiθi

δi + 1

)
exp

(
−δi

4

(
yi(δi + 1)
δiθi

+
δiθi

yi(δi + 1)

))
,

whereas the prior distribution, for i = 1, ...,m, is defined as
(3.4)

π(θi;λ) =
exp (κ/2)

√
κ+ 1

4
√
π g−1(x>i β) θ3/2

i

(
θi +

κg−1(x>i β)
κ+ 1

)
exp

(
−κ

4

(
θi(κ+ 1)
κg−1(x>i β)

+
κg−1(x>i β)
θi(κ+ 1)

))
.

Based on (3.3) and (3.4), the marginal PDF is obtained as

(3.5) m(yi;λ) =
∫ ∞

0
f(yi|θi)π(θi;λ) dθi, i = 1, ...,m.

In order to calculate the integral given in (3.5), a Gaussian quadrature can be used. A
quadrature rule is an approximation of the definite integral of a function, usually stated
as a weighted sum of values at specified points within the domain of integration, which is
conventionally taken as [−1, 1]. Thus, this rule may be stated as

(3.6)
∫ 1

−1
f(u) du =

n∑
j=1

wjf(uj).
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Observe that the Gaussian quadrature given in (3.6) only produces good results if the func-
tion f is well approximated by a polynomial function within the range [−1, 1]. Then, the
integration problem presented in (3.5) can be expressed in a more general way by introducing
a positive weight function ω into the integrand, and allowing an interval other than [−1, 1].
In this way, the problem reduces to calculating

(3.7)
∫ b

a
ω(u) f(u) du,

for some choices of a, b and ω. Note that if a = −1, b = 1 and ω(u) = 1, the integral given
in (3.7) is the same as that given in (3.6). Some particular cases of the Gaussian quadrature
are presented in Table 1.

Table 1: Intervals and forms for ω(u) of some Gaussian quadratures
corresponding to the indicated orthogonal polynomial.

Interval ω(u) Orthogonal polynomial

[−1, 1] 1 Legendre

(−1, 1) (1− u)α(1 + u)β , α, β > −1 Jacobi

(−1, 1) 1/
√

1− u2 Chebyshev

[0,∞) exp(−u) Laguerre

(−∞,∞) exp(−u2) Hermite

Note that the Gauss–Laguerre (GL) quadrature is an extension of the Gaussian quadra-
ture method over the interval [0,∞) to approximate the integral obtained in (3.5) (Abramowitz
and Stegun, 1972 [1]). Therefore, we approximate the marginal PDF presented in (3.5) by
the GL quadrature by means of

(3.8) m(yi;β, κ) =
n∑

j=1

wjf(yi|θij)π(θij ;λ) exp(θij), i = 1, ...,m,

where n is the number of quadrature points, m is the number of areas, θij is the jth root of
the Laguerre polynomial in the area i given by

Ln(θij) =
n∑

r=0

(
n

r

)
(−1)r

r!
θr
ij ,

and the weight wj is given by

wj =
θij

(n+ 1)2(Ln+1(θij))2
, i = 1, ...,m, j = 1, ..., n.
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3.3. ML estimation and Fisher information

Once the marginal PDF presented in (3.5) is approximated by the GL quadrature,
we can approximate the corresponding likelihood function to estimate the parameters of the
model defined in (3.1) with the ML method. Recalling that λ = (β>, κ)>, the marginal
likelihood function is given by

L(λ) =
m∏

i=1

m(yi;λ).

Therefore, the corresponding log-likelihood function approximated by the GL quadrature is
given by

(3.9) `(λ) =
m∑

i=1

log

 n∑
j=1

wjf(yi|θij)π(θij ;λ) exp(θij)

 .

The respective score vector, obtained by differentiating (3.9) with respect to λ, is established
as

˙̀(λ) =
∂`(λ)
∂λ

= (˙̀β(λ)>, ˙̀
κ(λ))>.

The ML estimates of β and κ, β̂ and κ̂ namely, respectively, are the solution to the system of
equations given by ˙̀

β(λ) = 0p×1 and ˙̀
κ(λ) = 0. Since the corresponding ML estimates cannot

be expressed in a closed form, we compute them by maximizing the log-likelihood function
defined in (3.9) numerically with the BFGS algorithm. As starting values, the estimates
obtained under an RBS regression model can be considered.

The second derivatives of `(λ) defined in (3.9), with respect to β and κ, are expressed
as

∂2`(λ)
∂βl∂βk

,
∂2`(λ)
∂βl∂κ

,
∂2`(λ)
∂κ2

, l = 0, 1, ..., p− 1.

Consequently, the corresponding Hessian matrix is given by

῭(λ) =


∂2`(λ)
∂β∂β>

∂2`(λ)
∂β∂κ

∂2`(λ)
∂κ∂β>

∂2`(λ)
∂κ2

 .

In addition, the expected Fisher information matrix is obtained as

(3.10) K(λ) = −E[῭(λ)].
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3.4. Inference

Regularity conditions (see Cox and Hinkley, 1974 [11]) must be fulfilled for an RBS
area model if its parameters are within the parameter space. Then, the ML estimator λ̂
is consistent and follows an asymptotic joint distribution, which is normal with asymptotic
mean λ, and an asymptotic variance-covariance matrix Σ(λ). Thus, as m→∞ and recalling
that λ = (β>, κ)>, we have

(3.11)
√
n (λ̂− λ) D→ Np+1(0(p+1)×1,Σ(λ)),

where D→ denotes convergence in distribution. Note that if J(λ) = limn→∞(1/n)K(λ) exists
and is non-singular, with K(λ) being the expected Fisher information matrix given in (3.10),
then Σ(λ) = J(λ)−1. The diagonal elements of K(λ)−1, k−1

ll (λ) namely, may be used for
approximating the corresponding asymptotic standard errors (SEs), that is, by using

(3.12) SE[λ̂l] =
√
k−1

ll (λ), l = 1, ..., p+ 1.

Note that K̂(λ)−1 = K(λ̂)−1 is a consistent estimator of Σ(λ) and then the associated asymp-
totic SEs given in (3.12) may be estimated as ŜE[λ̂l] = (k−1

ll (λ̂))1/2, for l = 1, ..., p+1. Asymp-
totic inference on parameters can be conducted using (3.11) and (3.12).

3.5. Estimating the small area mean and bootstrapping

To estimate a small area mean, we use the posterior PDF evaluated at the ML estimates
given by

(3.13) π(θi|yi; β̂, κ̂) =
f(yi|θi)π(θi; β̂, κ̂)

m(yi; β̂, κ̂)
, i = 1, ...,m,

where m(yi; β̂, κ̂) is presented in (3.8), and β̂, κ̂ are the corresponding ML estimates. There-
fore, the EB estimator for the mean of an RBS area model, based on the GL quadrature, is
given by

(3.14) θ̃EB
i = E(θi|yi; β̂, κ̂) =

∑n
j=1wjθijf(yi|θij)π(θij ; β̂, κ̂) exp(θij)∑n

j=1wjf(yi|θij)π(θij ; β̂, κ̂) exp(θij)
, i = 1, ...,m.

Suppose that we have a random sample from an unknown distribution function F , and we
want to make statistical inference about a parameter θi, for i = 1, ...,m. Bootstrapping is
a non-parametric approach which relies upon the assumption that the current sample is
representative of the population, and therefore, the empirical CDF F̂ is a non-parametric
estimate of the population CDF F . From the sample, the statistic of interest, θ̃EB

i namely,
can be calculated as an empirical estimate of the true parameter. To measure the accuracy
of the estimator, a bootstrapped SE, defined as

SE(θ̃EB
i ) =

√
Var(θ̃EB

i ), i = 1, ...,m,

can be calculated; see Algorithm 2.
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Algorithm 2 – Bootstrap standard error |
1: Collect a random sample of size m with replacement (bootstrap sample) from a matrix of

data with m rows corresponding to the areas and three columns related to the response
Yi = θ̂i, which is based on the sampling design used to estimate the true small area mean
θi, the variance of the sampling error ψi, and the covariates xi, for i = 1, ...,m.

2: Fit an RBS area model with the bootstrap sample of Step 1 and compute the statistic of
interest θ̃EB

i , for i = 1, ...,m.

3: Repeat Steps 1–2 a large number of times (for example, B = 10, 000) and compute B
bootstrap values of θ̃EB

i , which forms its empirical sampling distribution.

4: Calculate the sample standard deviation (SD) of the B bootstrap values of θ̃EB
i , which

allows us to obtain the bootstrap SE of θ̃EB
i , for i = 1, ...,m.

3.6. Model selection

Models are often compared using selection measures as the log-likelihood function or
Akaike information (AIC) and Bayesian information (BIC) criteria. Note that AIC and BIC
are defined as

(3.15) AIC = −2`(λ̂) + 2(p+ 1), BIC = −2`(λ̂) + (p+ 1) log(m),

where ` is the corresponding log-likelihood function given in (3.9), p+ 1 is the number of
parameters and m the number of areas. AIC and BIC correspond to the log-likelihood
function plus a component penalizing such a function, as the model has more parameters
making it more complex. A model with a smaller AIC or BIC is better than another competing
model (Ferreira et al., 2012 [20]).

3.7. Diagnostic analysis

Residuals are frequently used to validate the assumptions of statistical models and
may also be employed as tools for model selection. Based on Nobre and da Motta-Singer
(2007) [34], we define a conditional residual which follows a standard normal distribution
and accommodates the extra source of variability present in linear mixed models as r(C)

i =
yi − θ̃EB

i , where θ̃EB
i is given in (3.14) and yi is an observed value of Yi. We consider the

randomized quantile (RQ) residual proposed by Dunn and Smyth (1996) [16], which is useful
for asymmetric distributions. We use an index plot of the conditional RQ residual to verify
homoscedasticity, whereas the distributional assumption is analyzed by simulated envelopes
(Atkinson, 1985 [2]). For the RBS area model proposed in this work, the conditional RQ
residual is defined as

(3.16) r
RQ(C)
i = φ−1(F (yi; θ̃EB

i , κ̂)) i = 1, ...,m,

where F is the RBS CDF defined in (2.13). As F is continuous, then F (Yi) is uniformly
distributed on the unit interval. In order to verify the normality of the conditional RQ residual
based on the RBS area model, we utilize a theoretical quantile versus empirical quantiles
(QQ) plot with simulated envelopes proposed by Atkinson (1985) [2]; see Algorithm 3.
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Algorithm 3 – Goodness of fit to any distribution based on QQ plots with simulated envelopes.|
1: Collect data y1, ..., ym.

2: Obtain the empirical quantiles yi:m as observed order statistics for i = 1, ...,m from
y1, ..., ym.

3: Estimate the parameters of the model by λ̂ with y1, ..., ym.

4: Compute wi:m = (i− 0.5)/m, for i = 1, ...,m.

5: Calculate the theoretical quantiles ti:m = F−1(wi:m), where F−1 is the inverse function
of the CDF F .

6: Draw the QQ plot with points yi:m versus ti:m, for i = 1, ...,m.

7: Specify an α level for the simulated envelopes.

8: Generate s samples of size m from a distribution with CDF F and estimated parameters
λ̂.

9: Construct envelopes with limits given by li = yi:m(α/2) and ui = y1:m(1− α/2) for i =
1, ...,m.

10: Establish that the assumed distribution is adequate if all the points are inside of the
envelope, otherwise it is not adequate.

4. SURVEY DATA ANALYSYS

In this section, we provide an illustrative example with a Chilean survey data set
for analysis of service quality. Also, we compare the results obtained with the proposed
methodology to a standard methodology based on the normal distribution.
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Figure 1: structure of Chilean industries and sectors used to calculate the
CBCI in 2017.

4.2. Exploratory data analysis

Table 3 provides a descriptive summary of the CBCI in the different municipalities of
the Chilean Metropolitan region, which includes y, median (MD), SD, coefficients of variation
(CV) of skewness (CS) and of kurtosis (CK), as well as the minimum (y(1)) and maximum
(y(m)) values. Figure 2 presents the histogram, adjusted box-plot and standard box-plot of the
CBCI, as well as the scatter-plot between CBCI and UQLI. Figure 3 displays the map of the
municipalities (with their abbreviations detailed in Table 3) located in the Chilean Metropolitan
region with their corresponding CBCI colored in gray according to an intensity related to the
value of this index.

Based on Figure 2 and Table 3, we conduct an exploratory data analysis (EDA). First, from
Figure 2 (left and center), note that the CBCI follows a positive skew (asymmetric) distribution
(CS > 0). We use an adjusted boxplot for asymmetric data (see Rousseeuw et al., 2016), from
which we conclude that there are no atypical data. In addition, Figure 2 (right) presents a linear
or logarithmic relationship between CBCI and UQLI. Furthermore, a non-constant variance is
detected by this scatter-plot. Supported by this EDA, the RBS area model proposed in this work
seems to be a good candidate to describe the data set under study.

4.3. Modeling, estimation and inference

Based on the EDA above performed, we use the RBS area model defined in (3.1), with i =
1, . . . , 34. In addition, δi can be obtained from (3.2) as δi = (yi − ψi + (y4

i + 3y2
iψi)

1/2)/ψi,
for i = 1, . . . , 34, where ψi is the known variance of the municipality i. RBS area models with

Figure 1: Structure of Chilean industries and sectors used to calculate the CBCI in 2017.
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4.1. The data set

The data set under analysis was collected between January-2017 and November-2017
in 34 of 52 municipalities located at the Metropolitan region of Chile. In this data set,
the response is the Chilean business confidence index (CBCI). This index is built from a
sample survey which measures the confidence of customers towards the service provided by
diverse companies. The CBCI is calculated by the Center of Experiences and Services (CES)
of the Adolfo Ibáñez University (UAI), CES-UAI in short; see http://www.ces-uai.cl and
more details of the CBCI in Leiva et al. (2018) [28]. Figure 1 shows the industrial sectors
that allow us to estimate the CBCI. In this study, we consider as covariate the urban life
quality index (ULQI) which allows us to model the CBCI. This covariate is obtained from
the Institute of Urban and Territorial Studies of the Pontifical Catholic University of Chile
(http://fadeu.uc.cl). The data set used in this illustration is presented in Table 2.

Table 2: CBCI (with variance and size sample) and UQLI values for the
indicated municipality.

Municipality ID Yi|θi ψi ni xi

1. Pedro Aguirre Cerda (PC) 30.11 83.93 382 26.45
2. Conchaĺı (CO) 30.32 81.32 508 30.74
3. Quinta Normal (QN) 31.17 82.77 401 30.18
4. Lo Espejo (LE) 31.49 82.69 416 24.11
5. Cerro Navia (CN) 31.80 82.34 522 26.98
6. La Granja (LG) 32.23 78.28 453 33.98
7. Renca (RN) 32.63 83.67 472 36.42
8. Independencia (IN) 34.41 80.64 529 30.05
9. Estación Central (EC) 34.81 81.91 497 33.41
10. Lo Prado (LP) 34.81 83.05 451 30.09
11. San Ramón (SR) 35.63 84.88 394 35.53
12. Quilicura (QU) 37.13 83.31 505 39.70
13. El Bosque (EB) 37.25 80.58 502 28.10
14. Pudahuel (PU) 37.28 80.74 566 36.27
15. Puente Alto (PA) 37.87 79.54 676 36.92
16. Huechuraba (HU) 38.46 78.78 559 37.26
17. La Pintana (LA) 38.99 79.32 477 24.29
18. San Joaqúın (SJ) 39.18 79.05 462 38.29
19. La Cisterna (LC) 39.23 80.12 418 32.89
20. Recoleta (RE) 40.00 79.11 520 32.36
21. Cerrillos (CE) 42.25 79.10 426 32.65
22. San Miguel (SM) 42.66 78.59 511 43.42
23. Maipú (MP) 43.50 78.39 1016 46.43
24. San Bernardo (SB) 43.91 76.56 608 28.93
25. Santiago (SA) 44.00 78.14 759 40.55
26. Peñalolen (PE) 48.54 75.99 789 38.83
27. La Florida (LF) 49.22 74.69 963 38.95
28. Macul (MA) 49.50 79.59 605 47.87
29. La Reina (LR) 51.82 74.49 716 52.45

30. Ñuñoa (NU) 52.14 73.89 980 54.27
31. Lo Barnechea (LB) 56.08 73.62 658 57.67
32. Vitacura (VI) 65.60 72.21 643 57.93
33. Providencia (PR) 71.10 68.81 928 59.96
34. Las Condes (LN) 73.60 72.58 1099 63.61

http://www.ces-uai.cl
http://fadeu.uc.cl
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4.2. Exploratory data analysis

Table 3 provides a descriptive summary of the CBCI in the different municipalities of
the Chilean Metropolitan region, which includes y, median (MD), SD, coefficients of variation
(CV) of skewness (CS) and of kurtosis (CK), as well as the minimum (y(1)) and maximum
(y(m)) values. Figure 2 presents the histogram, adjusted box-plot and standard box-plot of
the CBCI, as well as the scatter-plot between CBCI and UQLI. Figure 3 displays the map
of the municipalities (with their abbreviations detailed in Table 3) located in the Chilean
Metropolitan region with their corresponding CBCI colored in gray according to an intensity
related to the value of this index.

Table 3: Descriptive statistics for the CBCI in municipalities of the
Chilean Metropolitan region.

y(1) MD y y(m) SD CV CS CK

30.11 39.09 42.32 73.6 11.12 26.27 1.36 4.33

Based on Figure 2 and Table 3, we conduct an exploratory data analysis (EDA). First,
from Figure 2 (left and center), note that the CBCI follows a positive skew (asymmetric)
distribution (CS > 0). We use an adjusted boxplot for asymmetric data (see Rousseeuw et

al., 2016 [42]), from which we conclude that there are no atypical data. In addition, Figure 2
(right) presents a linear or logarithmic relationship between CBCI and UQLI. Furthermore,
a non-constant variance is detected by this scatter-plot. Supported by this EDA, the RBS
area model proposed in this work seems to be a good candidate to describe the data set under
study.

CBCI

fr
e
q
u
e
n
c
y

30 40 50 60 70

0
2

4
6

8
1

0

adjusted standard

3
0

4
0

5
0

6
0

7
0

C
B

C
I

3
0

4
0

5
0

6
0

7
0

30 40 50 60

3
0

4
0

5
0

6
0

7
0

UQLI

C
B

C
I

Figure 2: Histogram (left) and box-plot (center) of CBCI,
and scatterplot between CBCI and UQLI (right).
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Figure 3: Map with CBCI of the indicated municipalities
located at the Chilean Metropolitan region.

4.3. Modeling, estimation and inference

Based on the EDA above performed, we use the RBS area model defined in (3.1), with
i = 1, ..., 34. In addition, δi can be obtained from (3.2) as δi = (yi − ψi + (y4

i + 3y2
i ψi)1/2)/ψi,

for i = 1, ..., 34, where ψi is the known variance of the municipality i. RBS area models with
identity and logarithmic link functions, in short log-RBS, defined in (3.1) are compared to
FH models with these same link functions. We use naive model selection tools such as
AIC and BIC given in (3.15). Based on the values of AIC and BIC reported in Table 4,
note that the RBS area model with logarithmic link function is the best one among the
competing models to fit Chilean survey data. Once the RBS area model with logarithmic
link function is selected, we estimate its parameters and the SE of the EB estimator using
bootstrapping, denoted by ŜE(θ̃EB

i ) = (V̂ar(θ̃EB
i ))1/2; see Algorithm 2. Table 5 presents the

values for the response variables (Yi|θi), EB estimates (θ̃EB
i ), estimated SE (ŜE(θ̃EB

i )) and
lower limit (LL) and upper limit (UP) of the 95% bootstrap confidence interval for θ̃EB

i .

Table 4: AIC and BIC values for the listed model and link
by municipality ID with CBCI-UQLI data.

Criteria RBS-log RBS-identity Normal-log Normal-identity

`(bλ) −119.807 −129.750 −130.250 −129.750
AIC 247.614 253.601 264.501 267.501
BIC 250.194 256.188 265.079 270.081
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The ML estimates of the parameters β0, β1 and κ of the model given in (3.1) using a
logarithmic link function, with the estimated SEs in parenthesis, are: β̂0 = 4.027(0.237),
β̂1 = 0.063(0.006) and κ̂ = 163.505(6.401). From this information, note that all coefficients
are significant at 5% based on the normal approximation of the distribution of the ML esti-
mators.

Table 5: Estimates, SEs and 95% confidence intervals for the area small mean
based on the RBS area model with logarithm link function using
CBCI and UQLI data.

ID eθEB
i

cSE(eθEB
i ) LL UL ID eθEB

i
cSE(eθEB

i ) LL UL

PC 30.59 1.26 28.11 33.06 SJ 39.16 1.19 36.81 41.50
CO 31.38 2.39 26.68 36.08 LC 38.94 0.99 36.99 40.88
QN 32.05 1.90 28.32 35.77 RE 39.46 1.42 36.66 42.25
LE 31.68 0.86 29.99 33.36 CE 41.50 2.18 37.22 45.77
CN 32.17 0.89 30.41 33.92 SM 43.03 1.49 40.09 45.96
LG 33.17 2.64 27.98 38.35 MP 43.32 2.20 39.00 47.63
RN 33.77 3.28 27.32 40.21 SB 43.34 3.85 35.78 50.89
IN 34.74 0.74 33.27 36.20 SA 43.85 0.58 42.70 44.99
EC 35.44 1.40 32.68 38.19 PE 48.68 2.62 43.54 53.81
LP 35.09 0.64 33.83 36.34 LF 48.68 2.77 43.24 54.11
SR 36.21 1.71 32.85 39.56 MA 48.68 0.77 47.15 50.20
QU 37.13 2.48 32.26 41.99 LR 52.50 1.25 50.04 54.95
EB 36.42 1.62 33.24 39.59 NU 52.49 1.71 49.13 55.84
PU 37.00 1.27 34.49 39.50 LB 56.37 1.63 53.16 59.57
PA 37.28 1.26 34.80 39.75 VI 65.71 2.16 61.45 69.96
HU 37.80 1.13 35.57 40.02 PR 71.44 3.17 65.22 77.65
LA 37.59 3.25 31.22 43.96 LN 73.87 2.85 68.27 79.47

4.4. Diagnostics and model checking

Based on Figure 4, we evaluate the assumptions of the RBS area model with logarithm
link function by an analysis of the conditional QR residual defined in (3.16) based on Chilean
service quality data. This figure shows on the left an index plot of the conditional RQ residual
by municipality, whereas on the right, a QQ plot with simulated envelopes for this residual is
sketched. Note that outliers are not detected in these figures. In addition, since in the RBS
model the variance is a function of its mean, the RBS area model manages well the problem
of non-constant variance detected in the EDA. Also, note that the simulated envelopes for
the conditional RQ residual verify the distributional assumption for the RBS area model and
the absence of outlying observations. Therefore, based on this residual analysis and such as
conjectured in our EDA, the RBS area model with logarithm link function is an excellent
formulation for describing the Chilean service quality data analyzed in this study.
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Figure 4: Index plot (left) of the conditional RQ residual and QQ plot
with simulated envelopes (right) with CBCI-UQLI data.

5. CONCLUSIONS

The Birnbaum–Saunders area models proposed in this article have properties that are
unavailable in the models of this type existing in the literature. Some of these properties
are quite needed for describing small areas problems. Specifically, the Birnbaum–Saunders
area models considered in this work allow us to describe the mean of the data in their origi-
nal scale, unlike the existing models, which employ a logarithmic transformation of the data
with the consequent problems. In addition, these Birnbaum–Saunders area models can be
formulated in a similar form as the normal area models, permitting capturing the essence of
the small area estimation problem based on sample means and variances obtained from the
areas. Furthermore, the Birnbaum–Saunders area models considered in this study assume
a link function, which enables for different structures present in the data. The proposed
methodology allowed us to find the estimator of the small area mean based on the empirical
Bayes estimator using Gaussian quadrature methods. We also considered a residual to eval-
uate the model assumptions and atypical data. Finally, we performed a statistical modeling
for small area estimation with unpublished Chilean survey data by using the new approach
proposed in the article, which have shown the applicability and scope of our proposal.
The methodology introduced in this article has been implemented in the R software.

ACKNOWLEDGMENTS

The authors thank the editors and reviewers for their constructive comments on
an earlier version of this manuscript. This work was supported partially by FONDECYT,
grant number 1200525 (V. Leiva, M. Huerta) and fellowship “Becas-Conicyt” (M. Rodŕıguez)
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1. INTRODUCTION

Burr [4] introduced a family of continuous distributions that includes twelve types of
cumulative distribution functions with different shapes. Since then, Burr XII distribution has
attracted attention in many different fields [15, 20, 2, 22, 21, 16, 10]. The Burr distribution
has relationship with several distributions and some of them are summarized by Rodriguez
[23] and Tadikamalla [26]. Because of it is flexility for modeling data, several generalizations
of the Burr XII distribution have been introduced in literature. One of these generalizations
is based on the Marshall–Olkin transformation which further improves the flexibility of the
Burr XII distribution. Marshall and Olkin [19] introduced a method of obtaining a family
of distributions with an additional parameter α. Let F (x) and F̄ (x) = 1− F (x) be the
cumulative distribution function (cdf) and the survival function of the baseline distribution,
respectively. Then, a Marshall–Olkin (MO) extended distribution can be defined with the
following survival function

(1.1) F̄α(x) =
αF̄ (x)

1− ᾱF̄ (x)
where α > 0 is an additional parameter and ᾱ = 1− α. When α = 1, we get the baseline
distribution. Using the transformation given in (1.1) several generalized distributions are
defined in the literature. One of these generalizations is the Marshall–Olkin extended Burr
type XII (MOEBXII) distribution introduced by Al-Saiari et al. [3].

Several researchers have considered parameter estimation of the Burr XII distribution.
For instance, Wingo [30, 31] has considered estimating the parameters of the Burr XII distri-
bution using the ML estimation method. Malinowska et al. [17] have provided the minimum
variance linear unbiased estimators (MVLUE), the best linear invariant estimators (BLIE)
and the ML estimators based on n-selected generalized order statistics for the parameters of
the Burr XII distribution. Shao [24] has given a complete investigation on the behaviors of
the ML estimates based on uncensored and right-censored data. Wang and Cheng [29] have
used a robust regression method to estimate the parameters of the Burr XII distribution.
Dogru and Arslan [6, 7] have proposed estimators based on the M estimation and the optimal
B-robust (OBR) estimation methods to estimate the parameters of Burr XII distribution.
However, concerning the MOEBXII distribution a small number of researchers have been
considered to estimate the parameters of the MOEBXII distribution in the literature. For
example, Al-Saiari et al. [3] have used the ML and Bayes estimation methods to estimate the
parameters of the MOEBXII distribution. Since ML estimators may be spoiled when there
are outliers in the data, robust estimation methods can be used to estimate the parameters of
MOEBXII distribution. Recently, Guney and Arslan [9] and Ozdemir et al. have explored the
robust estimation methods to estimate the parameters of MOEBXII distribution if robustness
is a concern. The aim of this paper is twofold. First, alternative to the robust estimation
methods used in the paper by Guney and Arslan [9] and Ozdemir et al., we propose to use the
OBR estimation method to estimate the parameters of the MOEBXII distribution. By doing
this, we gain robustness against to the outliers in the data. The second aim of this study
is to use the MOEBXII distribution to model the pharmacokinetics data using the robust
estimators which has not been tried before.

Note that, the pharmacokinetics properties of the drug are among the most important
drug characteristics for optimal treatment after the selection of the appropriate drug in the
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treatment of a disease. The most appropriate daily dose to achieve the effective plasma level
is determined by these features. Among these properties one of the most important phar-
macokinetics property is plasma drug concentration. The maximum concentration (Cmax)
and the time taken to reach the maximum concentration (Tmax) are also important variables
for the pharmacokinetics studies. These variables can be easily estimated by using the right
distribution. However, to obtain the reliable estimates of Cmax and Tmax, trustfully modeling
of the plasma drug concentration is necessary (For more details see [1]).

The remainder of the paper is organized as follows. In Section 2, we briefly recall the
MOEBXII distribution. In Section 3, we first summarize the ML, LS and robust M esti-
mation methods, and then we give the OBR estimators for the parameters of the MOEBXII
distribution. Section 4 and Section 5 are dedicated to the simulation study and a real data
from pharmacokinetics study to compare the performance of the OBR estimation method
with the ML, LS and robust M estimation methods. Finally, conclusions and discussions are
given in Section 6.

2. MARSHALL–OLKIN EXTENDED BURR XII DISTRIBUTION

The probability density function (pdf) and the cdf of Burr XII distribution are

(2.1) f(x; c, k) = ck
x(c−1)

(1 + xc)k+1
, x ≥ 0,

(2.2) F (x; c, k) = 1− 1

(1 + xc)k
, x ≥ 0

where c and k > 0 are the shape parameters. Substituting the cdf of the Burr XII distri-
bution given in (2.2) into the transformation equation given in (1.1) the Marshall–Olkin
Extended Burr XII distribution (MOEBXII(α, c, k)) is obtained with the following pdf and
cdf, respectively

(2.3) f(x;α, c, k) = αck
x(c−1) (1 + xc)−(k+1)[

1− (1− α) (1 + xc)−k
]2 , x ≥ 0,

(2.4) F (x;α, c, k) =
1− (1 + xc)−k

1− (1− α) (1 + xc)−k
, x ≥ 0

where α, c and k > 0 are the shape parameters [3]. When α = 1 the Burr XII distribution
is recovered with two parameters c and k. The MOEBXII distribution contains distributions
with different shapes for the different values of the parameters. For example we get, bell-
shaped, right-skewed or L-shaped distributions when we set different values for α, c and k.
This makes crucial advantage of flexibility for this distribution to fit data sets with several
different shapes. One can see [3] for further details about the MOEBXII distribution.



424 Y. Güney, Ş. Özdemir, Y. Tuaç and O. Arslan

3. PARAMETER ESTIMATION

In this section, the ML, LS, robust M and the OBR estimation methods to estimate
the parameters of the MOEBXII distribution.

3.1. Maximum Likelihood Estimation

Let x = (x1, x2, ..., xn) be a random sample of size n from the MOEBXII(α, c, k) dis-
tribution with the unknown parameters α, c and k. The log-likelihood function is

l(α, c, k) = n log(αck) + (c− 1)
n∑

i=1

log xi − (k + 1)
n∑

i=1

log(1 + xc
i )(3.1)

− 2
n∑

i=1

log(1− (1− α) (1 + xc
i )
−k).

Taking the derivatives of this function with respect to α, c and k, we get the following score
functions:

(3.2) sα =
n

α
− 2

n∑
i=1

(1 + xc
i )
−k

1− (1− α) (1 + xc
i )
−k

,

(3.3)

sc =
n

c
+

n∑
i=1

log xi − (k + 1)
n∑

i=1

xc
i log(xi)
1 + xc

i

− 2k(1− α)
n∑

i=1

(1 + xc
i )
−(k+1)xc

i log(xi)
1− (1− α)(1 + xc

i )−k
,

(3.4) sk =
n

k
−

n∑
i=1

log(1 + xc
i )− 2(1− α)

n∑
i=1

(1 + xc
i )
−k log(1 + xc

i )
1− (1− α)(1 + xc

i )−k
.

The ML estimators of the parameters can be obtained by setting the score functions to zero
and solving them simultaneously with respect to α, c and k. Since the likelihood equations
(sα = 0, sc = 0, sk = 0) cannot be solved analytically, we need to use some numeric methods
to obtain the estimates of the parameters.

3.2. Least Squares Estimation

LS estimation method was used to estimate the parameters of the Burr distribution [13]
and the MOEBXII distribution [9]. The LS estimation method to estimate the parameters of
the MOEBXII distribution can be summarized as follows. It is basically based on minimizing
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the following function:

(3.5)

S(α, c, k) =
n∑

i=1

(
F̂ (xi)− F (xi)

)2

=
n∑

i=1

(
F̂ (xi)−

1− (1 + xc
i )
−k

1− (1− α)(1 + xc
i )−k

)2

.

Since the cdf of the MOEBXII distribution is a non-linear function, the minimization of
equation (3.5) is not easy to obtain. To handle this problem, log

(
1

1−F (x)

)
transformation

can be used.

Let y(i) = log
(

1

1− bF(x(i))

)
and u(i) = log

(
1

1−F(x(i))

)
with

(3.6) F̂
(
x(i)

)
=

i− 0.5
n

, i = 1, 2, ..., n.

Here x(i) denotes the i. order statistics of the sample from the MOEBXII distribution. Thus,
the LS estimates of the parameters can be obtained by minimizing the following objective
function:

(3.7) S(α, c, k) =
n∑

i=1

(
y(i) − u(i)

)2
.

To obtain the LS estimates, the following equations should be solved with respect to α, c

and k:

(3.8)
n∑

i=1

(
y(i) − u(i)

) 1−
(
1 + xc

(i)

)−k

α

[
1− (1− α)

(
1 + xc

(i)

)−k
] = 0,

(3.9)
n∑

i=1

(
y(i) − u(i)

) kxc
(i) log

(
x(i)

)
(
1 + xc

(i)

)[
1− (1− α)

(
1 + xc

(i)

)−k
] = 0,

(3.10)
n∑

i=1

(
y(i) − u(i)

) log
(
1 + xc

(i)

)
[
1− (1− α)

(
1 + xc

(i)

)−k
] = 0.

3.3. M Estimation

Guney and Arslan [9] have been proposed to estimate the parameters of the MOEBXII
distribution using M estimation method ([14]). The method is based on minimizing the
following objective function with respect to the parameters of interest:

(3.11) Q(α, c, k) =
n∑

i=1

ρ (yi − ui) .
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Here ρ is more resistant than the square function in LS method to the outliers in data set. It
is also non-negative, symmetric function and ρ(0) = 0. In this study, we consider the Tukey’s
ρ function given as

(3.12) ρ(x) =

{
1− (1− (x/b)2)3 , |x| ≤ b,

1 , |x| > b,

(3.13) ρ′(x) = Ψ(x) =

{
x(1− (x/b)2)2 , |x| ≤ b,

0 , |x| > b,

with the robustness tunning constant b (see Maronna et al., [18], pp. 29). Here the tuning
constant b determines if an observation is an outlier or not. Tukey’s biweight function trun-
cates the residuals that are larger than b. Therefore, small values of b imply higher robustness
while large values of b provide higher efficiency. In literature the suggested choice of b is 4.685
to achieve 95% asymptotic efficiency at the standard normal distribution [18].

Since ρ is differentiable, M estimates can be obtained by solving the following non-linear
equations based on the derivatives of objective function (3.11):

(3.14) log α̂ =

∑n
i=1 ωi (yi − k log (1 + xc

i )− log hi)
(

1−(1+xc
i)
−k

αhi

)
∑n

i=1 ωi

(
1−(1+xc

i)
−k

αhi

) ,

(3.15) k̂ =

∑n
i=1 ωi (yi + log (α)− log hi)

log(1+xc
i )

hi∑n
i=1 ωi

(log(1+xc
i ))

2

hi

,

(3.16)
n∑

i=1

ωi (yi − ui)
xc

i log (xi)
(
1− (1 + xc

i )
−k
)

(1 + xc
i )−khi

= 0,

where hi = 1− (1− α) (1 + xc
i )
−k and the weights are

(3.17) ωi =

(
1−

(
yi − ui

b

)2
)2

I(|yi − ui| ≤ b) .

3.4. Optimal B-Robust Estimation

The class of the OBR estimators was defined by Hampel et al. [11]. The OBR estimation
method is a robust alternative modification of M estimation method with bounded influence
function. It is also the most efficient one in the class of robust M-estimators. In literature,
Victoria-Feser [27] and Victoria-Feser and Ronchetti [28] introduced the OBR estimation
method to estimate the parameters of the Pareto and the gamma distributions. Dogru and
Arslan [7] introduced the OBR estimation method for the Burr XII distribution. Dogru
and Arslan [8] also proposed robust estimators by using the OBR estimation method for the
parameters of the generalized half-normal distribution.
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According to Hampel et al. [11], there are two ways of defining the optimal B-robust
estimation. The first one is the minimax approach defined by Huber [14]. The second one is
called the infinitesimal approach introduced by Hampel et al. [11]. In this paper, we will use
the second approach that aims to find M-estimators with bounded influence function (IF)
and minimum asymptotic variance.

IF can be defined as follows. For a sample of n observations, x = (x1, x2, ..., xn), the
empirical distribution function Fn(x) is

(3.18) Fn(x) =
1
n

n∑
i=1

δxi(x)

where δxi denotes a point mass in x. For a parametric model {Fθ : θ ∈ Θ ⊂ Rp}, estima-
tor of θ; Tn can be represented as a statistical functional of the empirical distribution, i.e.
Tn(x1, x2, ..., xn) = Tn(Fn). In our case θ = (α, c, k). Then, the IF of Tn is given by

(3.19) IF (x, Tn, Fθ) = lim
ε→0

Tn((1− ε)Fθ + εδx)− Tn(Fθ)
ε

.

The IF describes the relative influence of individual observations toward the value of an
estimate [11]. When the IF is unbounded, an outlier can have an overriding influence on the
estimate. The IF of the ML estimator is

(3.20) IF = J(θ)−1s(x, θ)

where J(θ) is the Fisher information matrix and s(x, θ) = ∂
∂θ log f(x, θ) is the vector of score

functions. It is clear that the IF of the ML estimator will not be bounded if the score function
is not bounded.

Concerning the score functions for the MOEBXII distribution given in (3.2)–(3.4), one
can easily observe that the score function for α is bounded but the score functions for c and k

are unbounded functions of x as in the Burr XII distribution. That is, we have lim
x→∞

sc = −∞
and lim

x→∞
sk = −∞. These unboundedness of score functions for the parameter c and k can

also be easily observed in Figure 1.

Figure 1: Plots of the score functions with (α, c, k) = (30, 2, 1).
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If α, c and k are estimated by using the ML and LS estimation methods, these estimators
may suffer from possible outliers. Therefore, instead of using the ML and LS methods we
will propose to use the OBR estimation method in the presence of outliers.

Consider the following standardized OBR estimating equation

(3.21)
n∑

i=1

Ψb(A(θ)(s(θ, xi)− a(θ))) =
n∑

i=1

W (θ, xi, cB)(s(θ, xi)− a(θ)) = 0

where

(3.22) W (θ, xi, cB) = min
(

1,
cB

‖A(θ)(s(θ, xi)− a(θ))‖

)
,

Ψb is the derivative of ρb, is cB ≥
√

dim(θ) is a tuning parameter, ‖ · ‖ denoted the Euclidean
norm, s(·) is the score function, A(θ) is a dim(θ)× dim(θ) scaling matrix and a(θ) is a dim(θ)
centering vector determined by

(3.23) E
[
Ψb(x)Ψb(x)T

]
=
[
A(θ)T A(θ)

]−1
,

(3.24) E [Ψb(s(θ, x)− a(θ))] = 0.

The OBR estimates for the parameter θ will be the solution of this equation. The OBR
estimator keeps a level of efficiency close to the ML estimator because of the score function.
The constant cB, robustness constant, is typically fixed by setting the amount of efficiency
loss and a bound on the IF. For higher values of cB the estimator gains efficiency, but lose
robustness and vice versa. If the bound on the IF is removed, i.e, choose cB = ∞ the OBR
estimation method reduces to the ML estimation method. To compute the OBR estimates
of the parameters, we follow an algorithm proposed by Victoria-Feser and Ronchetti [28].

OBRE Algorithm:

1. Fix the precision threshold η and the initial value for θ(0) (we can take the ML
estimates as the initial values).

Take initial values a = 0, and A =
([

J−1
]T)1/2

where

J =
∫

s(θ, x)s(θ, x)T dFθ(x)(3.25)

is the Fisher Information Matrix.

2. Solve the following equations with respect to a and A

AT A = M−1
2(3.26)

a =
∫

W (θ, x, cB)s(θ, x)dFθ(x)∫
W (θ, x, cB)dFθ(x)

(3.27)

where

Mk =
∫

W (θ, x, cB)k [s(θ, x)− a(θ)] [s(θ, x)− a(θ)]T dFθ(x),

k = 1, 2.
(3.28)



OBR Estimation for the MOEBXII Distribution 429

The current values of θ, a and A are used as initial values to solve the given
equations.

3. Now compute M1 and

∆θ = M−1
1

(
1
n

n∑
i=1

W (θ, xi, cB)k [s(θ, xi)− a(θ)]

)
.(3.29)

4. If ‖∆θ‖ > ν then θ → θ + ∆θ and return to step 2, otherwise terminate the algo-
rithm.

Victoria-Feser and Ronchetti [27] mentioned that: “The algorithm is convergent pro-
vided the starting point is near to the solution” in their study. Therefore, we used different
initial points for the first step of the algorithm. Then we observed that there are no significant
differences between the estimates according to the different initial points. In this study, the
ML estimates are used as an initial points.

4. SIMULATION STUDY

A Monte Carlo simulation study was conducted based on various scenarios for the num-
ber of observations and outliers to examine the performance of the estimation methods; the
ML, LS, robust M estimation with Tukey and the OBR estimation methods. The superiority
of the estimates was assessed by using the performance measures, bias and Root-mean-square
error (RMSE) defined as

(4.1) Bias
(
θ̂
)

=
1
N

N∑
i=1

(
θ̂i − θ

)
,

(4.2) RMSE
(
θ̂
)

=

√√√√ 1
N

N∑
i=1

(
θ̂i − θ

)2
.

We generated N = 100 replications from the MOEBXII distribution with the sample
sizes n = 25, n = 50 and n = 100. We consider the following parameter values (α, c, k) =
(3, 1, 1), (3, 1, 2), (3, 2, 1), (3, 2, 2), (3, 3, 3), (5, 1, 1), (5, 1, 2), (5, 2, 1) and (5, 2, 2). (One can
find the details for generating data set from the MOEBXII distribution in [9]). In this study,
the outliers are generated by multiplying the largest observations in the data by 5.

To obtain the M estimations in the simulation study, we determine the tuning constant
b = 4.685 for Tukey’s ρ function. For the OBR estimation method, robustness parameter cB

and precision threshold ν were taken as 3 and 10−6 respectively.

The simulation results in all cases are summarized in Tables 1–8. In these tables, the
bias and RMSE values calculated by using the equations (4.1)–(4.2) are reported for the ML,
LS, M estimation with Tukey’s ρ function and the OBR methods.
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Tables 1–3 present the results from the case without outlier. From these tables, we can
observe that the OBR estimation method has superiority in terms of bias and RMSE in all
simulation scenarios for small sample sizes. For moderate sample size we can still observe
the better performance of the OBR estimators in most of the cases. However, when sample
size increases, the superiority of the ML estimation method in terms of RMSE can be easily
observed form Table 3, which is an expected performance of the ML estimation method.

Table 1: The bias and RMSE (Parenthesis) for n = 25.

Parameter α ML LS M (Tukey) OBR

(3,1,1) 0.1081 (0.2221) −0.4797 (0.6033) −0.0864 (0.0623) −0.0845 (0.0464)
(3,1,2) 0.0118 (0.2294) 0.3000 (0.3205) −0.0938 (0.1003) 0.0069 (0.0165)
(3,2,1) 0.1761 (0.2195) −0.0871 (0.4903) −0.0431 (0.2034) −0.0011 (0.0032)
(3,2,2) 0.1778 (0.2142) 0.1685 (0.2696) 0.1198 (0.1808) 0.0100 (0.0036)
(3,3,3) 0.0525 (0.1987) 0.1937 (0.1947) −0.0778 (0.1537) 0.0101 (0.0039)
(5,1,1) 0.0328 (0.2173) −0.0641 (0.6265) −0.0990 (0.2846) −0.0495 (0.1965)
(5,1,2) −0.0668 (0.1981) −0.4701 (0.1622) −0.4683 (0.5792) −0.0102 (0.1415)
(5,2,1) −0.0606 (0.2083) −0.4757 (0.5291) 0.0095 (0.1544) 0.0088 (0.0039)
(5,2,2) −0.0269 (0.2111) −0.0653 (0.7695) −0.4989 (0.6140) 0.0087 (0.0193)

Parameter c ML LS M (Tukey) OBR

(3,1,1) 0.1229 (0.1026) 0.3267 (0.2359) 0.3239 (0.2059) 0.0690 (0.0841)
(3,1,2) 0.1073 (0.0555) 0.2684 (0.1663) 0.2711 (0.1606) −0.0005 (0.0150)
(3,2,1) 0.1180 (0.1370) 0.4928 (0.4435) 0.4513 (0.3848) −0.0012 (0.0039)
(3,2,2) 0.0801 (0.1123) 0.3417 (0.3475) 0.3760 (0.3220) −0.0011 (0.0001)
(3,3,3) 0.0198 (0.1421) 0.3733 (0.4870) 0.3993 (0.4264) −0.0034 (0.0003)
(5,1,1) 0.0645 (0.0888) 0.3310 (0.3067) 0.4119 (0.3607) 0.1541 (0.0271)
(5,1,2) 0.0947 (0.0531) 0.3728 (0.2557) 0.2709 (0.1452) 0.0010 (0.0007)
(5,2,1) 0.0333 (0.1558) 0.2107 (0.5419) 0.1893 (0.3722) −0.0028 (0.0002)
(5,2,2) 0.1550 (0.1154) 0.1436 (0.5794) 0.4771 (0.3996) −0.0016 (0.0004)

Parameter k ML LS M (Tukey) OBR

(3,1,1) −0.0403 (0.0739) 0.4731 (0.3267) −0.1742 (0.1155) −0.0320 (0.0635)
(3,1,2) −0.0305 (0.1011) −0.3271 (0.4601) −0.1788 (0.1281) 0.0026 (0.0020)
(3,2,1) −0.0068 (0.0497) 0.2188 (0.3604) −0.1080 (0.1292) 0.0006 (0.0023)
(3,2,2) 0.0312 (0.0941) −0.2834 (0.3071) −0.2902 (0.2239) 0.0025 (0.0037)
(3,3,3) −0.0025 (0.1321) −0.1886 (0.2640) −0.0999 (0.2113) 0.0045 (0.0709)
(5,1,1) −0.2456 (0.1743) −0.3374 (0.4375) −0.3855 (0.3544) 0.0067 (0.0570)
(5,1,2) −0.0290 (0.0966) −0.9483 (0.9097) −0.9361 (0.8912) −0.0017 (0.0078)
(5,2,1) 0.0013 (0.0479) −0.5580 (0.3312) −0.5309 (0.2920) 0.0018 (0.0012)
(5,2,2) −0.0521 (0.0893) −0.0616 (0.1308) −0.0527 (0.1543) 0.0020 (0.0009)

It is obvious from Table 1 that the OBR estimation method has the best performance
in terms of RMSE for all parameters for the small sample size (n = 25). The biases of the
OBR estimates are lower than that of other methods for most of the values of the parameters.
Table 2 shows that the OBR and the ML estimation methods are compatible according to
the RMSE values under the assumption of moderate sample sizes (n = 50). According to
the results given in Table 3, as the sample size increases, the ML estimation method seems
superior to the other methods in terms of RMSE in most of the cases as expected.
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Table 2: The bias and RMSE (Parenthesis) for n = 50.

Parameter α ML LS M (Tukey) OBR

(3,1,1) 0.0988 (0.2140) −0.3154 (0.1141) −0.0477 (0.0240) −0.0127 (0.0047)
(3,1,2) −0.0183 (0.2215) −0.3803 (0.1631) −0.1934 (0.0724) −0.0066 (0.0628)
(3,2,1) 0.0435 (0.0188) −0.2936 (0.1646) −0.0262 (0.0495) −0.0442 (0.0950)
(3,2,2) −0.0083 (0.2069) 0.0970 (0.1246) −0.1616 (0.0687) 0.0156 (0.0666)
(3,3,3) −0.0537 (0.0210) −0.0713 (0.1523) −0.0840 (0.0774) 0.1114 (0.3523)
(5,1,1) −0.0260 (0.2289) −0.4694 (0.2311) −0.4008 (0.2362) −0.0178 (0.0745)
(5,1,2) −0.0579 (0.2139) −0.1342 (0.2093) −0.4957 (0.2457) −0.0263 (0.0214)
(5,2,1) −0.0264 (0.2139) 0.0147 (0.2217) −0.4142 (0.2188) −0.0259 (0.0013)
(5,2,2) −0.0481 (0.1915) 0.0584 (0.2048) −0.4999 (0.2500) −0.0331 (0.0727)

Parameter c ML LS M (Tukey) OBR

(3,1,1) 0.0466 (0.0479) 0.2047 (0.0652) 0.1930 (0.0645) 0.0015 (0.0184)
(3,1,2) 0.0267 (0.0423) 0.1867 (0.0529) 0.1461 (0.0529) 0.0011 (0.0096)
(3,2,1) 0.0477 (0.0710) 0.3217 (0.1453) 0.2983 (0.1346) 0.0054 (0.0512)
(3,2,2) 0.0501 (0.0359) 0.3102 (0.1353) 0.2588 (0.1226) −0.0024 (0.0021)
(3,3,3) 0.0307 (0.0582) 0.3692 (0.1865) 0.3227 (0.1811) −0.0287 (0.0215)
(5,1,1) 0.0505 (0.0342) 0.1857 (0.0528) 0.2200 (0.0804) 0.0016 (0.0469)
(5,1,2) 0.0227 (0.0146) 0.1026 (0.0547) 0.3426 (0.1504) 0.0012 (0.0648)
(5,2,1) 0.0592 (0.0816) 0.1588 (0.1661) 0.3253 (0.1614) 0.0043 (0.0387)
(5,2,2) 0.0613 (0.0893) 0.1208 (0.0954) 0.4289 (0.2160) 0.0024 (0.0342)

Parameter k ML LS M (Tukey) OBR

(3,1,1) −0.0218 (0.0198) −0.0982 (0.0281) −0.2219 (0.0605) −0.0026 (0.0179)
(3,1,2) 0.0469 (0.0505) 0.1787 (0.0472) −0.1068 (0.0315) −0.0021 (0.0059)
(3,2,1) 0.0032 (0.0659) −0.0263 (0.0565) −0.0805 (0.0558) −0.0049 (0.0613)
(3,2,2) 0.0104 (0.0461) −0.2862 (0.1539) −0.1492 (0.0642) 0.0069 (0.0086)
(3,3,3) −0.0239 (0.0933) −0.1003 (0.1198) −0.2754 (0.1172) 0.0456 (0.0650)
(5,1,1) −0.0299 (0.0239) −0.4980 (0.2481) −0.4967 (0.2468) −0.0023 (0.0012)
(5,1,2) −0.0134 (0.0330) −0.0235 (0.0946) −0.4470 (0.2499) −0.0049 (0.0771)
(5,2,1) −0.0006 (0.0210) 0.0010 (0.0487) −0.4959 (0.2462) −0.0033 (0.0246)
(5,2,2) −0.0033 (0.0242) 0.0197 (0.0909) −0.4989 (0.2489) −0.0051 (0.0279)
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Table 3: The bias and RMSE (Parenthesis) for n = 100.

Parameter α ML LS M (Tukey) OBR

(3,1,1) 0.0097 (0.0355) −0.2899 (0.1072) −0.0607 (0.0397) −0.1376 (0.2175)
(3,1,2) −0.0191 (0.0368) −0.3663 (0.1805) −0.2242 (0.0980) 0.0879 (0.2121)
(3,2,1) 0.0325 (0.0347) −0.3331 (0.1830) −0.0721 (0.0711) 0.0540 (0.1974)
(3,2,2) 0.0249 (0.0365) 0.0373 (0.1226) −0.1339 (0.0878) −0.0457 (0.2264)
(3,3,3) −0.0006 (0.0328) −0.1143 (0.1465) −0.1815 (0.1187) −0.0452 (0.2125)
(5,1,1) −0.0487 (0.0357) −0.4458 (0.2158) −0.3646 (0.2165) −0.0300 (0.2173)
(5,1,2) −0.0168 (0.0349) −0.1446 (0.1883) −0.4709 (0.2435) −0.0504 (0.2126)
(5,2,1) 0.0293 (0.0354) 0.0118 (0.2107) −0.3618 (0.2227) 0.0597 (0.2211)
(5,2,2) 0.0137 (0.0368) −0.0741 (0.2187) −0.4960 (0.2468) 0.0701 (0.1997)

Parameter c ML LS M (Tukey) OBR

(3,1,1) 0.0315 (0.0164) 0.2066 (0.0980) 0.2044 (0.0986) 0.0557 (0.0492)
(3,1,2) 0.0254 (0.0134) 0.1471 (0.0566) 0.1561 (0.0598) 0.0115 (0.0177)
(3,2,1) −0.0001 (0.0282) 0.2233 (0.1595) 0.2116 (0.1534) 0.0666 (0.1013)
(3,2,2) 0.0034 (0.0203) 0.3162 (0.1652) 0.3160 (0.1594) 0.1252 (0.0733)
(3,3,3) 0.0232 (0.0288) 0.3041 (0.1628) 0.2714 (0.1573) 0.1005 (0.1030)
(5,1,1) 0.2304 (0.0941) 0.1675 (0.0636) 0.0613 (0.0446) 0.0152 (0.0211)
(5,1,2) 0.0318 (0.0154) 0.0833 (0.0476) 0.3125 (0.1322) 0.0323 (0.0344)
(5,2,1) 0.3095 (0.1688) 0.0565 (0.1553) 0.0231 (0.0306) 0.1173 (0.1171)
(5,2,2) 0.0069 (0.0290) 0.0375 (0.0949) 0.3916 (0.1986) 0.0320 (0.0849)

Parameter k ML LS M (Tukey) OBR

(3,1,1) 0.0071 (0.0218) −0.0794 (0.0507) −0.2181 (0.0733) −0.0462 (0.0118)
(3,1,2) −0.0088 (0.0514) 0.1005 (0.0536) −0.1030 (0.0447) −0.0233 (0.0287)
(3,2,1) 0.0049 (0.0128) 0.0109 (0.0759) −0.1993 (0.0722) −0.0009 (0.0382)
(3,2,2) −0.2288 (0.0843) −0.2906 (0.1341) −0.0071 (0.0223) −0.0313 (0.0732)
(3,3,3) −0.0237 (0.0302) −0.1285 (0.1235) −0.1397 (0.1128) −0.0007 (0.0958)
(5,1,1) 0.0130 (0.0226) −0.4924 (0.2428) −0.4952 (0.2455) −0.0218 (0.0363)
(5,1,2) −0.0045 (0.0230) −0.0171 (0.1301) −0.4933 (0.2456) −0.0490 (0.0512)
(5,2,1) 0.0153 (0.0106) 0.0231 (0.0478) −0.4908 (0.2415) −0.0143 (0.0306)
(5,2,2) 0.0152 (0.0215) −0.0074 (0.0779) −0.4995 (0.2495) 0.0207 (0.0566)

We recreated the simulation for the same scenarios with outliers and the results are
summarized in Tables 4–7. We generate one outlier to see the performance of the estimators
in case there is an outlier in the data, for all the sample sizes. Further, to see the behavior
of the estimators under the condition that there are more than one outlier, we conduct an
additional simulation which we use four outliers in sample size 50. It is already mentioned
that the four outliers are generated by multiplying the four largest observation with 5.

Table 4 shows the simulation results for the sample size n = 25 with one outlier. We
observe that outlier induces a large influence on the bias and RMSE of the ML and the LS
estimators whereas it has a smaller impact on the robust estimators. If the M and the OBR
estimation methods are compared with each other, the OBR estimation method is superior
to the M estimation method in terms of the RMSE.

Table 5 shows the simulation results with one outlier with the sample size 50. When the
data include outlier, the ML and the LS estimators are drastically worsen which is reflected
to the higher RMSE and biases. However, the M and the OBR estimators still have better
performance.
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Table 4: The bias and RMSE (Parenthesis) for n = 25 with one outlier.

Parameter α ML LS M (Tukey) OBR

(3,1,1) 0.5260 (0.7583) 0.3937 (0.6005) 0.0648 (0.0974) 0.0675 (0.0334)
(3,1,2) 0.7677 (1.0733) −0.2801 (0.9506) 0.2737 (0.3186) 0.1322 (0.1359)
(3,2,1) 0.6696 (0.8518) 0.7122 (0.5237) 0.0598 (0.0664) 0.0693 (0.0384)
(3,2,2) 0.9541 (0.9890) −0.3073 (0.2022) 0.2807 (0.5148) 0.1792 (0.1211)
(3,3,3) 0.3557 (0.1608) 0.8745 (0.8261) 0.1740 (0.2903) 0.0327 (0.0782)
(5,1,1) 0.7769 (0.8408) 0.6287 (0.5721) 0.3778 (0.2233) 0.1630 (0.0783)
(5,1,2) 0.8666 (0.9375) 0.7299 (0.7325) 0.4934 (0.2456) 0.0133 (0.0215)
(5,2,1) 0.6980 (0.9422) 0.5848 (0.5159) 0.3630 (0.2123) −0.0127 (0.0257)
(5,2,2) 0.9814 (0.9669) 0.8705 (0.8508) 0.4707 (0.7286) 0.2630 (0.2471)

Parameter c ML LS M (Tukey) OBR

(3,1,1) −0.2184 (0.1522) −0.3247 (0.2277) −0.2399 (0.1012) −0.0170 (0.0016)
(3,1,2) −0.1275 (0.0787) −0.3053 (0.2022) −0.2481 (0.1208) −0.0298 (0.0158)
(3,2,1) −0.2308 (0.3010) −0.4433 (0.4108) −0.2805 (0.1529) −0.0303 (0.0039)
(3,2,2) 0.0665 (0.1365) −0.2382 (0.2869) −0.1332 (0.1106) −0.0491 (0.0328)
(3,3,3) 0.4780 (0.3820) −0.2563 (0.3921) −0.4035 (0.3110) −0.1655 (0.1587)
(5,1,1) −0.2185 (0.2043) −0.4727 (0.3573) −0.2399 (0.1081) −0.0214 (0.0015)
(5,1,2) −0.0734 (0.1097) −0.3024 (0.1942) −0.3290 (0.1483) 0.0227 (0.0528)
(5,2,1) −0.2499 (0.4091) −0.5456 (0.5562) −0.1779 (0.1339) −0.0251 (0.0810)
(5,2,2) −0.0615 (0.2139) −0.5764 (0.5222) −0.3317 (0.1961) −0.0728 (0.0270)

Parameter k ML LS M (Tukey) OBR

(3,1,1) 0.2541 (0.1131) −0.3756 (0.3442) 0.3033 (0.1241) 0.0213 (0.0048)
(3,1,2) 0.4746 (0.3717) 0.4407 (0.5491) 0.2398 (0.1200) 0.0637 (0.0899)
(3,2,1) 0.2620 (0.1153) −0.5760 (0.4492) 0.2638 (0.1155) 0.0170 (0.0019)
(3,2,2) 0.5505 (0.3801) 0.5809 (0.3841) 0.2605 (0.1061) 0.0583 (0.0551)
(3,3,3) 0.9466 (0.9067) 0.7017 (0.5734) 0.4727 (0.4533) 0.2293 (0.1271)
(5,1,1) 0.2190 (0.1047) 0.6239 (0.4033) 0.4945 (0.2448) 0.0280 (0.0026)
(5,1,2) 0.2445 (0.3798) 0.9613 (0.9299) 0.4976 (0.9480) 0.2095 (0.2479)
(5,2,1) 0.1730 (0.1975) 0.5925 (0.3678) 0.4706 (0.2271) −0.0004 (0.0538)
(5,2,2) 0.4730 (0.3290) 0.9820 (0.9687) 0.4554 (0.2455) 0.0791 (0.0385)
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Table 5: The bias and RMSE (Parenthesis) for n = 50 with one outlier.

Parameter α ML LS M (Tukey) OBR

(3,1,1) 0.7658 (0.7925) 0.2757 (0.5942) 0.0844 (0.0336) 0.0972 (0.0192)
(3,1,2) 0.9122 (0.9377) −0.2170 (0.1263) 0.2961 (0.1128) 0.0691 (0.0969)
(3,2,1) 0.8448 (0.8977) 0.7232 (0.5303) 0.0696 (0.0452) 0.0194 (0.0203)
(3,2,2) 0.9860 (0.9818) −0.2744 (0.1613) 0.1150 (0.1290) 0.3149 (0.0935)
(3,3,3) 0.9464 (0.9216) 0.2705 (0.2294) 0.3848 (0.1637) −0.0039 (0.0482)
(5,1,1) 0.5430 (0.8791) 0.6820 (0.5746) 0.3746 (0.2256) 0.1248 (0.0341)
(5,1,2) 0.8018 (0.9470) 0.9043 (0.8835) 0.4865 (0.2431) 0.1075 (0.2400)
(5,2,1) 0.8957 (0.9413) 0.6427 (0.5411) 0.4286 (0.2280) 0.0585 (0.1521)
(5,2,2) 0.9518 (0.9853) 0.9194 (0.8797) 0.4780 (0.2481) 0.1677 (0.2322)

Parameter c ML LS M (Tukey) OBR

(3,1,1) −0.1187 (0.1086) −0.2660 (0.1783) −0.1984 (0.0917) −0.0161 (0.0004)
(3,1,2) −0.0095 (0.0199) −0.1356 (0.0502) −0.1181 (0.0473) −0.0036 (0.0008)
(3,2,1) −0.1724 (0.2018) −0.2910 (0.2963) −0.1612 (0.1244) −0.0281 (0.0024)
(3,2,2) −0.1955 (0.1236) −0.2882 (0.2294) 0.0101 (0.0581) −0.0290 (0.0045)
(3,3,3) 0.5491 (0.3680) −0.2338 (0.2683) −0.0770 (0.1276) −0.0786 (0.0182)
(5,1,1) −0.1099 (0.0960) −0.3937 (0.2707) −0.2269 (0.1000) −0.0159 (0.0004)
(5,1,2) −0.0081 (0.0340) −0.3363 (0.1934) −0.3118 (0.1338) −0.0102 (0.0010)
(5,2,1) −0.1651 (0.2883) −0.5914 (0.5327) −0.3109 (0.1790) −0.0341 (0.0034)
(5,2,2) 0.1245 (0.1309) −0.5378 (0.4875) −0.3568 (0.1874) −0.0336 (0.0051)

Parameter k ML LS M (Tukey) OBR

(3,1,1) 0.2419 (0.1065) −0.3498 (0.3793) 0.2529 (0.0928) 0.0223 (0.0009)
(3,1,2) 0.5264 (0.3272) 0.5314 (0.4231) 0.2287 (0.0853) 0.0217 (0.0074)
(3,2,1) 0.2877 (0.1012) −0.5686 (0.3724) 0.2880 (0.1090) 0.0161 (0.0011)
(3,2,2) 0.6017 (0.4020) 0.6141 (0.4017) 0.2857 (0.1095) 0.0346 (0.0075)
(3,3,3) 0.9529 (0.9132) 0.6530 (0.4790) 0.2459 (0.1222) 0.0912 (0.0250)
(5,1,1) 0.1709 (0.0692) 0.6144 (0.3888) 0.4969 (0.2470) 0.0198 (0.0008)
(5,1,2) 0.3460 (0.1854) 0.9919 (0.9857) 0.4437 (0.2444) 0.0243 (0.0083)
(5,2,1) 0.2067 (0.0796) 0.6092 (0.3788) 0.4968 (0.2470) 0.0118 (0.0081)
(5,2,2) 0.4108 (0.2310) 0.9936 (0.9879) 0.4991 (0.2491) 0.0377 (0.0080)

Table 6 represents the simulation results with one outlier with the sample size 100.
According to Table 6, the OBR estimation method outperforms in terms of bias and RMSE
values for the most values of the parameters among the others.

The results given in Table 7 are similar to the results reported in Tables 4–6. The OBR
estimator seems superior to the other estimators in terms of bias and RMSE values.

To sum up, all of these results show that the amount of efficiency we lose by using the
OBR estimation method is negligible in comparison to the other estimation methods in most
of the cases.
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Table 6: The bias and RMSE (Parenthesis) for n = 100 with one outlier.

Parameter α ML LS M (Tukey) OBR

(3,1,1) 0.8537 (0.9116) 0.7543 (0.6559) 0.0566 (0.0316) 0.0104 (0.0018)
(3,1,2) 0.9586 (0.9905) −0.3791 (0.2258) 0.2690 (0.1110) 0.0130 (0.0016)
(3,2,1) 0.9976 (0.9954) 0.8250 (0.6824) 0.0300 (0.0309) 0.0137 (0.0290)
(3,2,2) 0.4103 (0.1894) −0.2510 (0.1249) 0.3399 (0.1359) 0.0192 (0.0018)
(3,3,3) 0.9669 (0.9403) −0.2345 (0.1484) 0.4405 (0.1998) 0.0393 (0.0753)
(5,1,1) 0.9206 (0.9225) 0.8001 (0.8085) 0.4078 (0.2375) 0.0153 (0.0003)
(5,1,2) 0.9836 (0.9710) 0.9266 (0.8986) 0.4604 (0.2496) 0.0318 (0.0386)
(5,2,1) 0.9471 (1.0099) 0.7665 (0.6802) 0.4633 (0.2418) 0.0180 (0.0407)
(5,2,2) 0.4346 (0.2033) 0.9036 (0.8763) 0.4800 (0.2500) 0.0268 (0.0034)

Parameter c ML LS M (Tukey) OBR

(3,1,1) −0.0742 (0.4301) −0.1888 (0.6320) −0.1622 (0.0572) −0.0013 (0.0231)
(3,1,2) −0.0144 (0.0093) −0.1600 (0.4116) −0.1358 (0.0390) −0.0015 (0.0012)
(3,2,1) −0.2041 (0.1376) −0.4140 (0.3012) −0.2573 (0.1460) −0.0035 (0.0155)
(3,2,2) 0.0852 (0.0584) −0.2921 (0.1768) −0.1749 (0.0913) −0.0036 (0.0451)
(3,3,3) 0.5257 (0.3139) −0.3673 (0.3133) −0.1820 (0.1206) −0.0102 (0.0600)
(5,1,1) −0.0490 (0.0431) −0.3632 (0.2194) −0.2476 (0.1015) −0.0014 (0.0245)
(5,1,2) 0.0414 (0.0126) −0.2780 (0.1118) −0.2837 (0.1087) −0.0020 (0.0012)
(5,2,1) −0.1072 (0.1860) −0.6308 (0.5946) −0.3055 (0.1529) −0.0031 (0.0117)
(5,2,2) 0.3992 (0.0753) −0.5101 (0.3795) −0.3966 (0.1878) −0.0032 (0.0343)

Parameter k ML LS M (Tukey) OBR

(3,1,1) 0.2783 (0.0949) −0.9356 (1.0459) 0.2708 (0.0819) 0.0020 (0.0576)
(3,1,2) 0.5343 (0.3174) 0.6186 (0.4029) 0.2308 (0.1867) 0.0040 (0.0915)
(3,2,1) 0.3315 (0.1188) −1.1387 (1.3363) 0.3016 (0.0988) 0.0025 (0.0857)
(3,2,2) 0.5936 (0.3715) 0.5878 (0.3550) 0.2493 (0.1933) 0.0050 (0.1096)
(3,3,3) 0.9831 (0.9681) 0.8888 (0.8074) 0.2834 (0.1353) 0.0124 (0.0084)
(5,1,1) 0.1908 (0.0588) 0.6082 (0.3774) 0.4993 (0.2493) 0.0019 (0.0458)
(5,1,2) 0.3245 (0.1361) 0.9955 (0.9914) 0.4971 (0.2472) 0.0055 (0.0107)
(5,2,1) 0.2006 (0.0638) 0.6048 (0.3712) 0.4987 (0.2488) 0.0021 (0.0549)
(5,2,2) 0.3428 (0.1376) 0.9992 (0.9985) 0.3428 (0.1376) 0.0041 (0.0679)
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Table 7: The bias and RMSE (Parenthesis) for n = 50 with four outliers.

Parameter α ML LS M (Tukey) OBR

(3,1,1) 1.8192 (1.6599) 0.8780 (0.7723) 0.1795 (0.0634) 0.0834 (0.0116)
(3,1,2) 2.3995 (2.9045) 0.4393 (0.2599) 0.4573 (0.2555) 0.1753 (0.0405)
(3,2,1) 2.1213 (2.6922) 0.8396 (0.7130) 0.2445 (0.1116) 0.1012 (0.0123)
(3,2,2) 2.6898 (2.2763) 0.3345 (0.1911) 0.4635 (0.2822) 0.1896 (0.0679)
(3,3,3) 2.9292 (2.5814) 0.3273 (0.1249) 0.5968 (0.3730) 0.2891 (0.1190)
(5,1,1) 2.9800 (3.0851) 0.8503 (0.7336) 0.2737 (0.1275) 0.1125 (0.0160)
(5,1,2) 3.9945 (4.3873) 0.9993 (0.9986) 0.9991 (0.9982) 0.2696 (0.1125)
(5,2,1) 3.7069 (3.1097) 0.9545 (0.9885) 0.3372 (0.1666) 0.1335 (0.0220)
(5,2,2) 3.5945 (4.1334) 0.9853 (0.9761) 0.9940 (0.9898) 0.2896 (0.1202)

Parameter c ML LS M (Tukey) OBR

(3,1,1) 0.2709 (0.1274) 0.2205 (0.0778) 0.2232 (0.0878) 0.0150 (0.0005)
(3,1,2) 0.3592 (0.1972) 0.1978 (0.0636) 0.1986 (0.0697) 0.0167 (0.0004)
(3,2,1) 0.7857 (1.1572) 0.5197 (0.6674) 0.3933 (0.2462) 0.0329 (0.0015)
(3,2,2) 0.9072 (1.1683) 0.3664 (0.2268) 0.3465 (0.1961) 0.0417 (0.0044)
(3,3,3) 1.3173 (2.0957) 0.3082 (0.1525) 0.3728 (0.2224) 0.0800 (0.0098)
(5,1,1) 0.3561 (0.2606) 0.3810 (0.2948) 0.3490 (0.2166) 0.0128 (0.0002)
(5,1,2) 0.4625 (0.3055) 0.2670 (0.1102) 0.2925 (0.1343) 0.0162 (0.0004)
(5,2,1) 0.9675 (1.4720) 0.8075 (1.0989) 0.5793 (0.4692) 0.0352 (0.0017)
(5,2,2) 0.9994 (1.2173) 0.4066 (0.2439) 0.4501 (0.3097) 0.0402 (0.0025)

Parameter k ML LS M (Tukey) OBR

(3,1,1) 0.5637 (0.3516) 1.8390 (1.6041) 0.3359 (0.1325) 0.0196 (0.0008)
(3,1,2) 1.4464 (2.1420) 0.8282 (0.7011) 0.3686 (0.2293) 0.0474 (0.0031)
(3,2,1) 0.6755 (0.4794) 1.4009 (2.7706) 0.3795 (0.1661) 0.0210 (0.0006)
(3,2,2) 1.6785 (2.8440) 0.8418 (0.7197) 0.5169 (0.3583) 0.0521 (0.0067)
(3,3,3) 2.8503 (3.1275) 0.8355 (0.7122) 0.3288 (0.1913) 0.0926 (0.0129)
(5,1,1) 0.5399 (0.3318) 0.6267 (0.4037) 0.6583 (0.4414) 0.0159 (0.0003)
(5,1,2) 1.4151 (2.0741) 0.9999 (0.9998) 0.7133 (0.7656) 0.0454 (0.0032)
(5,2,1) 0.6832 (0.4851) 0.6485 (0.4277) 0.6753 (0.4605) 0.0205 (0.0006)
(5,2,2) 1.6970 (1.8872) 0.9983 (0.9967) 0.1379 (0.1287) 0.0497 (0.0038)

According to a anonymous referee’s suggestion, we conduct an additional simulation
study to confirm the results of real data example considered in the next section. In this
simulation design we generate 50 observations from the MOEBXII distribution by using the
following initial parameters (α, c, k) = (30, 2, 1). We consider two outlier cases about this
simulation design, first we add one outlier and then we add four outliers. The results of this
simulation are given in Table 8. According to Table 8, the OBR and the ML methods show
similar performances when the data set has no outliers. Considering the RMSE values, the
OBR and ML estimators show better performance than the LS and the M estimators. On
the other hand, when we create one outlier in the data, the performances of the ML and LS
estimators are drastically worsen in terms of the RMSE and the bias values. Unlike the ML
and the LS estimates, M estimates do not affected from the outlier. Considering the OBR
estimator, we observe that it has the best performance among all the estimators we considered.
If the data set has four outliers, then the OBR estimator has the best performances and it is
followed by the M estimator. In this case, the ML and the LS estimators are worse according
to bias and RMSE values.

In summary, when there are potential outliers in the data the OBR estimation method
outperforms among the others in terms of the bias and RMSE values.
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Table 8: The bias and RMSE (Parenthesis) for n = 50 with (α, c, k) = (30, 2, 1).

No outlier ML LS M (Tukey) OBR

α −0.0911 (0.0189) 0.1513 (0.1769) 0.0941 (0.1980) 0.0728 (0.0185)
c 0.0297 (0.0177) −0.2540 (0.2389) −0.1555 (0.2224) 0.0064 (0.0083)
k −0.0355 (0.0334) −0.1736 (0.2788) −0.2290 (0.1051) 0.0034 (0.0027)

One outlier ML LS M (Tukey) OBR

α 0.4326 (0.5467) 0.9932 (0.9774) 0.2994 (0.1121) 0.1264 (0.0404)
c −0.3290 (0.2696) 0.9540 (0.9310) 0.2066 (0.0912) 0.0828 (0.0024)
k 0.2182 (0.1020) 0.6785 (0.5012) 0.1924 (0.0469) 0.0478 (0.0079)

Four outliers ML LS M (Tukey) OBR

α 0.6399 (0.9130) 1.0653 (1.8696) 0.5462 (0.3189) 0.1545 (0.0821)
c 0.7921 (1.1059) 0.7132 (0.8086) 0.5152 (0.2921) 0.0095 (0.0003)
k 0.3678 (0.2183) 0.5893 (0.5048) 0.1863 (0.0461) 0.0547 (0.0095)

5. REAL DATA EXAMPLE

In this section the application of the MOEBXII distribution to a real data set is dis-
cussed to illustrate the performance of the proposed parameter estimation method. We use
a data set from a pharmacy study of Canaparo et et al. [5]. The sample size is n = 65. The
data is related to the ibuprofen which is widely available as an over-the-counter treatment
for pain and fever. It represents the mean plasma concentration–time profile of Ibuprofen (S)
in all healthy subjects after a single 400 mg oral dose of racemic Ibuprofen. Ibuprofen blood
plasma levels are were computed at various time points using data from pharmacokinetics
trials.

We use the MOEBXII distribution to fit the data. We consider the ML, LS, M and the
OBR estimators to obtain the parameter estimates. The following steps are used to obtain
the OBR estimates of the parameters:

(i) Obtain the ML estimate.

(ii) Take cB = 3, the ML estimate as an initial estimate and calculate the OBR
estimate.

(iii) Take cB = 3, the OBR estimate obtained in step (ii) as a new initial estimate
and calculate the OBR estimate again [11].

Note that one can see [11] and [28] for further details about the selection of the robust-
ness tuning constant [8].

To further see the performance of the estimator, we consider adding one and four
outliers to the data. The parameter estimates for the real data are given in Table 9. In
this table, we summarize the results for the cases outliers and without outliers. The fitted
densities obtained from the ML, the LS, the robust M and the OBR estimates in case of
outliers and without outliers, and histogram of the ibuprofen data are shown in Figure 2.
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Table 9: The ML, LS, M and OBR estimates for ibuprofen data.

Estimates
without outlier with one outlier with four outliers

bα bc bk bα bc bk bα bc bk

ML 23.7002 1.7654 0.9243 24.7562 1.5853 0.9899 20.1377 2.2483 0.4986
LS 37.002 1.8365 0.9726 38.1051 1.3580 1.2221 35.8070 3.8365 0.3769
M(Tukey) 41.1842 2.2900 0.8721 40.1748 2.3886 0.8160 41.8742 2.9751 0.6129
OBR 34.5757 2.5723 0.7726 34.7176 2.5421 0.7853 34.8430 2.4720 0.8013

Figure 2(a) illustrates the fitted densities when there is no outlier in the data. From
Figure 2(a), it can be seen that the MOEBXII distribution is suitable to model the mean
plasma concentration of ibuprofen. All of the mentioned estimators are in good agreement
in terms of fitting data in the tail. However, the ML and LS are not provided a good fit in
the central portion of the data. The fitted density obtained from the robust estimator based
on Tukey’s ρb function shows better fit than the ML and LS fits in the central portion of
the data. In particularly, the model obtained from the OBR estimates performs fairly well
to describe the central part of the data set. The fitted densities obtained from the ML, LS
estimates don’t seem catch Cmax, the pick of the data. Therefore these estimators can not
give reasonable estimate for Tmax, the time taken to reach the maximum concentration.

Figure 2(b) shows the fitted densities when there is one outlier in the data set. From
this figure, the OBR and M estimators seem not to be affected from one outlier. In addition,
from Table 9, it is clear that the estimates obtained from the OBR and M estimation with
one outlier is closer to the estimates obtained without outlier. Similar comments can be made
for the ML estimates. Adding one outlier causes a small difference on the ML estimation.
However, it does not still provides better fit than the OBR and M estimators do. The fitted
density obtained from the ML estimates seems not catching the pick of the data. Concerning
the LS estimator, it can be seen that only one outlier has an significant effect on LS estimator.
This can also be observed from Table 9.

Finally, in Figure 2(c) we display the histogram of the data with four outliers along
with the fitted densities. From this figure, we can clearly see that the best fitted density is
obtained from the OBR estimation method. The OBR is followed by the M estimator. This
figure demonstrates how outliers could potentially distort the ML and the LS estimates. The
performance of the ML and the LS estimators are worse than the OBR and M estimator.
Results from Table 9 is also supported this outcome.

From these results, we can conclude that if we have some outliers in the data, the OBR
estimation method can be used safely because the OBR estimation method are not affected
from the outliers as the other methods do. To sum up, we can clearly observe that the
OBR estimation method can be used to find better fits for the data sets that may have some
outliers.
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(a) without outlier

(b) one outlier

(c) four outliers

Figure 2: Histogram of Ibuprofen data and the fitted densities
with the ML, LS, robust M and OBR estimates.
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6. CONCLUSION

Two objectives have been considered in this study. First we have proposed to use the
OBR estimation method to estimate the parameters of the MOEBXII distribution proposed
by Al-Saiari et et al. [3] with the advantage of flexibility to fit the data sets with various
shapes. Second, we have considered the modeling the data sets from pharmacokinetics studies
represent the changes in plasma concentrations of drugs with the MOEBXII distribution.
When the estimation problem is addressed, from both the simulation study and the real
data example we observe that the OBR estimator exhibits strong robustness in presence of
observations discordant with the assumed model. These results show that not only the OBR
estimate achieves smaller RMSE for the small sample sizes but also its RMSE is smaller for
the outlier cases for each sample sizes than those of the ML, LS and robust M estimators.
The simulation results of the ML and LS estimators for the outlier cases are quite different
from the cases without outlier. The existence of outliers in data results in striking differences
in RMSE of ML and LS estimates, in contrast to robust estimates, especially the OBR
estimates. A general inspection of the table shows that a comparison of the OBR with the
ML, LS and robust M estimation methods reveals the superiority of the new estimate in
the outlier case and/or small sample case. When we consider the real world data analysis,
modeling pharmacokinetics data set with the MOEBXII distribution, from the real data
example we can observe that the MOEBXII distribution with the OBR estimates can be a
good choice for modeling the changes in plasma concentrations of drugs which is an important
pharmacokinetics variable. Because estimating the parameters with the OBR estimation
method would be more reliable in estimating other variables such as Cmax and Tmax other
pharmacokinetics variables.
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1. INTRODUCTION

Nonlinear time series have attracted much attention in the last four decades. Many
classes of models have been proposed and applied with great success in many important
real-life problems; such as economics (Granger and Andersen [12]), demography (Subba Rao
and Gabr [32]), environmental studies (Guegan [14]), etc. One of the most popular was the
bilinear time series models BL(p, q, P, Q)1. In the first time, these models were proposed and
developed by Granger and Andersen [12]; then becomes Phan and Tran [27], Subba Rao [31],
Guegan [13], Liu and Brockwell [25]. Particularly to those models, we quote the first-order
superdiagonal bilinear models BL(0, 0, 2, 1), who also recognized applications in many fields
(see, for example, [26, 36, 5]).

This paper deals with the presence of a first-order superdiagonal bilinear model in
panel data (a series of T observations made through time over a number n of individuals),
denoted by BLP (0, 0, 2, 1) and defined, for i = 1, 2, ..., n and t = 1, 2, ..., T , as:

(1.1) Xi,t = bXi,t−2εi,t−1 + εi,t,

where Xi,t is a panel observation (for individual i at time t) described by a nonlinear stochas-
tic difference in time equation; (εi,t) is a white noise process, i.e. a sequence of independent,
identically distributed random variables with mean zero, finite variance σ2 and density dis-
tribution ε 7→ f(ε) := (1/σ)f1(ε/σ) (where f1 ∈ F0, see (2.1)) and b is a constant in R. The
probabilistic properties of a first-order superdiagonal time series model BL(0, 0, 2, 1) processes
(such as invertibility and stationarity) have been studied by several references [28, 13]. These
properties also remain valid under a first-order superdiagonal panel model BLP (0, 0, 2, 1). Let
us denote by Fi,t(ε) and Fi,t(X) the σ-algebras generated by {εi,s|s 6 t} and {Xi,s|s 6 t},
respectively. Then:

1. Equation (1.1) admits a unique stationary solution (Xi,t) (i.e., Fi,t(ε)-measurable)
iff b2σ2 < 1, in this case, one can write

Xi,t =
∞∑

j=1

bjεi,t−2j

j∏
k=1

εi,t−2k+1 + εi,t;(1.2)

2. Equation (1.1) is invertible (i.e., εi,t is Fi,t(X)-measurable) iff 2b2σ2 < 1, in this
case, one can write

εi,t = Xi,t +
∞∑

j=1

(−b)jXi,t−j

j∏
k=1

Xi,t−k−1.(1.3)

1 These models are defined as:

Xt =

pX

j=1

ajXt−j +

qX

j=1

cjεt−j +

PX

j=1

QX

k=1

bjkεt−jXt−k + εt.
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Several methods — such as the method of moments, the least squares method and
the repeated residual method — have been established in the literature for estimating the
parameters of bilinear models, see, for example, Pham and Tran [28], Sesay and Subba Rao
[30], Grahn [11], Bouzaachane [5] and Tan and Wang [34].

Before turning to the problem of estimating the parameters of model (1.1), it is very
important to know if it is indeed a BLP (0, 0, 2, 1), and how the test proposed for testing
randomness against first-order superdiagonal bilinear panel dependence is efficient. Note that
if b = 0, Xi,t reduces to white noise (Xi,t = εi,t), else b 6= 0, panel data follows a BLP (0, 0, 2, 1)
(alternative hypothesis) — such a test is bilateral.

To start with, locally and asymptotically optimal parametric tests are constructed
using the Local Asymptotic Normality LAN property. Then, the special case of the pseudo-
Gaussian tests (optimal under Gaussian densities and valid under finite-variance non-Gaussian
ones) is derived. Unfortunately, their local asymptotic power, under non-Gaussian g1 (es-
pecially the skew and heavy-tailed ones), can be extremely poor. Which leads us to the
construction of rank-based optimal tests (van der Waerden, Wilcoxon, Laplace, data-driven
scores, etc.).

Asymptotic relative efficiencies with respect to the pseudo-Gaussian procedure show
that the van der Waerden version of our rank-based tests uniformly dominates its pseudo-
Gaussian countepart.

The paper is organized as follow: Section 2.1 provides the main definitions and assump-
tions. The local asymptotic normality, with respect to b and σ2, in the vicinity of b = 0, of the
family of distributions associated with (1.1) (with specified f1), is established in Section 2.2.
In Section 3.1, we propose (still, for specified f1) the optimal parametric test. The particular
case of the pseudo-Gaussian test is proposed in Section 3.2. Section 4 proposes rank-based
procedures that remain valid irrespective of f1. Particular cases (van der Warden, Wilcoxon,
Laplace scores, ...) are considered in Section 4.3. Asymptotic relative efficiencies with respect
to the pseudo-Gaussian test is derived in Section 5. Section 6 provides some simulation re-
sults assessing the finite-sample performance of the various tests proposed. Finally, Section 7
concludes.

2. LOCAL ASYMPTOTIC NORMALITY

2.1. Notations and main technical assumptions

Denote by P(n)
σ2,0;f1

the probability distribution under the null Xi,t = εi,t. Under the al-

ternative, the probability distribution is denoted by P(n)
σ2,b;f1

(b 6= 0), the observations X(n) :=

(X(n)′

1 , X
(n)′

2 , ..., X
(n)′
n )′ with X

(n)
i := (Xi,1, ..., Xi,T )′ is generated by (1.1).

We suppose that the vector X
(n)
0 := {(X(n)

i,−1εi,0, X
(n)
i,0 ), i = 1, 2, ..., n} is observable for

each individual i, and admits a density hθ(.) continuous in θ. The influence of these starting
values is asymptotically negligible (see Hallin and Werker (1999) [20] for a detailed discussion).
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Throughout, we consider the class of standardized densities

(2.1) F0 :=
{

f1 :
∫ 0

−∞
f1(u)du = 0.5 =

∫ 1

−1
f1(u)du

}
.

Under f1 ∈ F0, the median and median absolute deviation are 0 and σ respectively; this
standardization avoids all moment assumptions and has no impact on subsequent results.

Our derivation of locally asymptotically optimal tests at density f1 will be based on
the local asymptotic normality, with respect to (σ2, b)′, of the families of distributions

(2.2) P(n)
f1

:=
{
P(n)

σ2,b;f1
|(σ2, b)′ ∈ R∗+ × R and 2b2σ2 < 1

}
at any θ := (σ2, 0)′.

This LAN property requires some technical assumptions on the innovation density f1.
Denote by FA the class of all densities f1 satisfying the following technical assumptions:

(A.1) f1 ∈ F0;

(A.2) f1(u) > 0, ∀u ∈ R;

(A.3) f1 is absolutely continuous on bounded intervals, i.e., there exists f ′1 such that

f1(b)− f1(a) =
∫ b

a
f ′1(u)du for all a < b,

and, letting Φf1 = −f ′1/f1, assume that

I(f1) :=
∫

R
Φ2

f1
(u)f1(u)du and J(f1) :=

∫
R

u2Φ2
f1

(u)f1(u)du

are finite.

For instance, interesting special cases of f1 are obtained:

• The double-exponential or Laplace distribution, with standardized density

f1(u) = fL(u) := (1/2d) exp(−|u|/d),

with I(f1) = 1/d2 and J(f1) = 2; the normalizing constant d := 1/ ln(2) ' 1.4426
is such that fL ∈ FA.

• The logistic distribution, with standardized density

f1(u) = fLog(u) :=
√

b exp(−
√

bu)/(1 + exp(−
√

bu))2,

with I(f1) = b/3 and J(f1) = (12 + π2)/9; the normalizing constant b := (ln 3)2) '
1.2069 is such that fL ∈ FA.

• The Student distributions (with ν > 2 degrees of freedom), with standardized den-
sity

f1(u) = ftν (u) :=
Γ((ν + 1)/2)

Γ(ν/2)

√
aν/πν(1 + aνu

2/ν)−(ν+1)/2,

with I(f1) = aν(ν + 1)/(ν + 3) and J(f1) = 3(ν + 1)/(ν + 3); the normalizing con-
stant aν > 0 is such that ftν ∈ FA.

• The Gaussian distribution, with standardized density (with mean zero and variance
1/a)

f1(u) = fN (u) :=
√

a/2π exp(−au2/2),

with I(f1) = a ' 0.4549 and J(f1) = 3.
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2.2. LAN

Let us denote by θ(n) the local sequences of perturbations of θ = (σ2, 0)′, where

θ(n) = θ + n
−1
2 τ with τ =

(
τ1, τ2

)′ ∈ R2.

The bilateral test is equivalent to: P(n)
θ;f1

: τ2 = 0,

P(n)

θ(n);f1
: τ2 6= 0.

Under the null, the likelihood function for (X(n)
0 , X(n)) is

(2.3) Lθ;f (X(n)
0 , X(n)) = hθ(X

(n)
0 )

n∏
i=1

T∏
t=1

f(Xi,t).

If τ2 6= 0, the likelihood function for (X(n)
0 , X(n)) in this case is

(2.4)

Lθ(n);f (X(n)
0 , X(n)) = hθ(n)(X(n)

0 )
n∏

i=1

T∏
t=1

f
(
Xi,t +

∞∑
j=1

(−n
−1
2 τ2)jXi,t−j

j∏
k=1

Xi,t−k−1

)
= hθ(n)(X(n)

0 )
n∏

i=1

T∏
t=1

f
(
Xi,t + Υn(τ2)

)
,

where Υn(τ2) :=
∞∑

j=1

(−n
−1
2 τ2)jXi,t−j

j∏
k=1

Xi,t−k−1.

Denote by Λ(n)

θ(n)/θ;f
the logarithm of the likelihood ratio (conditional on X

(n)
0 ) for P(n)

θ(n);f

against P(n)
θ;f :

(2.5) Λ(n)

θ(n)/θ;f
:= log

(
Lθ(n);f (X(n)

0 , X(n))/Lθ;f (X(n)
0 , X(n))

)
.

It can be expressed as follows:

Λ(n)

θ(n)/θ;f
=

n∑
i=1

T∑
t=1

(
log f(Xi,t + Υn(τ2))− log f(Xi,t)

)
+ op(1).

The op(1) term (under P(n)
θ;f , as n →∞) corresponds to the influence of the starting value

X
(n)
0 .

Write Zi,t for the standardized residual

Zi,t(σ2, b) := σ−1

(
Xi,t +

∞∑
j=1

(−b)jXi,t−j

j∏
k=1

Xi,t−k−1

)
,

and note that, under P(n)
θ;f1

, these residuals coincide with σ−1εi,t. The local asymptotic nor-
mality result, with respect to σ2 and the parameter of interest b for a fixed density f1, is
established in the next proposition.
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Proposition 2.1. Let f1 ∈ FA. Then the family P(n)
f1

is LAN at any θ = (σ2, 0)′, with

central sequence

(2.6) ∆(n)
f1

(θ) :=

(
∆(n)

f1;1(θ)

∆(n)
f1;2(θ)

)
:=


1

2σ2
n
−1
2

n∑
i=1

T∑
t=1

[
Φf1(Zi,t)Zi,t − 1

]
n
−1
2 σ

n∑
i=1

T∑
t=3

Φf1(Zi,t)Zi,t−1Zi,t−2

 ,

and information matrix

(2.7) Γf1(θ) :=
(
Γf1;ij(θ)

)
1≤i,j≤2

:=

 T

4σ4

(
J(f1)− 1

)
0

0 σ2(T − 2)I(f1)σ4
f1

 .

More precisely, for any τ = (τ1, τ2)′ ∈ R2, under P
(n)
θ;f1

, as n →∞ and fixed T , we have

(2.8) Λ(n)

θ(n)/θ;f1
= τ ′∆(n)

f1
(θ)− 1

2
τ ′Γf1(θ)τ + op(1),

and ∆(n)
f1

(θ) is asymptotically normal, with mean zero under P
(n)
θ;f1

, mean Γf1(θ)τ under

P
(n)

θ(n);f1
and variance Γf1(θ) under both.

Proof: The proof relies on Swensen’s conditions 1.2 to 1.7 of lemma 1 in [33]. More
precisely, the only delicate one is the condition 1.2. The main point consists in showing that

(σ2, b) 7→ q
1
2

σ2,b;f1
(z) :=

[
1
σ

f1

(
z +

∑∞
j=1(−b)jxj

∏j
k=1 xk−1

σ

)] 1
2

is differentiable in mean quadratic. It is established in the following lemma.

Lemma 2.1. Let f1 ∈ FA. Define, for z ∈ R,

Dσ2q
1
2

σ2,0;f1
(z) =

1
4σ2

q
1
2

σ2,0;f1
(z)
(

z
σΦf1

(
z
σ

)
− 1
)
,

Dbq
1
2

σ2,b;f1
(z)|b=0

=
1
2σ

q
1
2

σ2,0;f1
(z)Φf1

(
z
σ

)
x1x0.

Then, as s and l → 0,

1.
∫

R

[
q

1
2

σ2+s,l;f1
(z)− q

1
2

σ2+s,0;f1
(z)− lDbq

1
2

σ2+s,b;f1
(z)|b=0

]2

dz = o(l2),

2.
∫

R

[
q

1
2

σ2+s,0;f1
(z)− q

1
2

σ2,0;f1
(z)− sDσ2q

1
2

σ2,0;f1
(z)
]2

dz = o(s2),

3.
∫

R

[
q

1
2

σ2+s,l;f1
(z)− q

1
2

σ2,0;f1
(z)− (s, l)

 Dσ2q
1
2

σ2,0;f1
(z)

Dbq
1
2

σ2,b;f1
(z)|b=0

]2

dz = o(‖ (s, l)′ ‖2).
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Proof of Lemma 2.1:

1. Let Υ(b) =
∞∑

j=1

(−b)jxj

j∏
k=1

xk−1. Then 1 takes the form

∫
R

[
1√

σ2 + s
f

1
2
1

(
z + Υ(l)√

σ2 + s

)
− 1√

σ2 + s
f

1
2
1

(
z√

σ2 + s

)
− l

1
2
√

σ2 + s
q

1
2

σ2+s,0;f1
(z)Φf1

( z√
σ2 + s

)
x1x0

]2

dz = o(l2),

is equivalent to ∫
R

[
f

1
2
(
z + Υ(l)

)
− f

1
2
(
z
)
− l

2
f

1
2
(
z
)
Φf

(
z
)
x1x0

]2

dz = o(l2),

which is equivalent to∫
R

l2
[
f

1
2

(
z + Υ(l)

)
− f

1
2

(
z
)

l
+

1
2

f ′
(
z
)

f
1
2

(
z
)x1x0

]2

dz = o(l2),

hence, for proving that, it is sufficient to prove that

lim
l→0

∫
R

[
f

1
2

(
z + Υ(l)

)
− f

1
2

(
z
)

l
+

1
2

f ′
(
z
)

f
1
2

(
z
)x1x0

]2

dz = 0.

We have

lim
l→0

f
1
2

(
z + Υ(l)

)
− f

1
2

(
z
)

l
= lim

l→0

f
1
2

(
z + Υ(l)

)
− f

1
2

(
z
)

Υ(l)
× Υ(l)

l

=
(
f

1
2

(
z
))′ × (−x1x0)

= −1
2

f ′
(
z
)

f
1
2

(
z
)x1x0.

And just show that
∫

R

[
f

1
2

(
z + Υ(l)

)
− f

1
2

(
z
)

l

]2

dz 6
∫

R

[
−1
2

f ′
(
z
)

f
1
2

(
z
)x1x0

]2

dz < ∞.

We know that f
1
2

(
z + Υ(l)

)
− f

1
2 (z) =

∫ z+Υ(l)

z

1
2
f ′(t)f

−1
2 (t)dt, then

∫ +∞

z=−∞

[
f

1
2

(
z + Υ(l)

)
− f

1
2

(
z
)

l

]2

dz =
∫ +∞

z=−∞

1
l2

[ ∫ z+Υ(l)

t=z

1
2
f ′(t)f

−1
2 (t)dt

]2

dz

6
Υ(l)
l2

∫ +∞

z=−∞

∫ z+Υ(l)

t=z

[
1
2
f ′(t)f

−1
2 (t)

]2

dt dz

6
Υ(l)
l2

∫ +∞

t=−∞

∫ t

z=t−Υ(l)

[
1
2
f ′(t)f

−1
2 (t)

]2

dt dz

6

[
Υ(l)

l

]2 ∫ +∞

t=−∞

[
1
2
f ′(t)f

−1
2 (t)

]2

dt

6 (−x1x0)2
∫ +∞

t=−∞

[
1
2
f ′(t)f

−1
2 (t)

]2

dt

6
∫

R

[
−1
2

f ′(t)f
−1
2 (t)x1x0

]2

dt.

This completes the proof of part 1 of Lemma 2.1.
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2. The problem here is reduced to the classical case of linear models considered by
Swensen (1985) [33].

3. The result here follows from 1 and 2 above. This completes the proof of
Lemma 2.1.

The diagonal form of the information matrix confirms that σ2 and b are not related, in
the parametric family (2.2). They play distinct and well separated roles.

The Gaussian versions (f1 = fN ) of (2.6) and (2.7) are

∆(n)
N (θ) =


1

2σ2
n
−1
2

n∑
i=1

T∑
t=1

[
aZ2

i,t − 1
]

n
−1
2 σa

n∑
i=1

T∑
t=3

Zi,tZi,t−1Zi,t−2

 and ΓN (θ) =

 T

2σ4
0

0
σ2

a
(T − 2)

 ,

respectively.

The result of Proposition 2.1, implies that, under assumptions FA, as n →∞, the
family of first-order superdiagonal panel models BLP (0, 0, 2, 1) possesses the LAN property
in a neighbourhood of white noise. This result leads us to construct asymptotically optimal
parametric tests under a specified f1. Note that these tests are valid under a specified f1,
and thereafter we will propose more general tests such as Pseudo-Gaussian and Rank-based
procedures which are valid under general densities.

3. OPTIMAL PARAMETRIC AND PSEUDO-GAUSSIAN TESTS

As mentioned above, the Le Cam theory of LAN experiments allows for constructing
tests which are locally asymptotically optimal (namely, most stringent). The basic idea is
the weak convergence concept of the sequence of local experiments to the Gaussian shift two-
dimensional model ∆ ∼ N

(
Γτ,Γ

)
. For a general theory on locally asymptotically optimal

testing in LAN families, the reader is referred to Le Cam (1986) [23] and van der Vaart (1998)
[35].

We are interested in testing the null hypothesis b = 0 of randomness in (1.1), with
unspecified standardized error density in F0. To do, let us start with the case when f1 ∈ F0

is specified, i.e., the null hypothesis is such that

H(n)
0 (f1) :=

⋃
σ2>0

{P(n)
σ2,0;f1

},

and parametric alternatives take the form

H(n)
1 (f1) :=

⋃
σ2>0

⋃
b∈R
{P(n)

σ2,b;f1
}.
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3.1. Optimal parametric tests

Since θ = (σ2, 0)′ = (1, 0)′σ2 =: Ωσ2, then θ ∈ M(Ω), where M(Ω) is the linear sub-
space of dimension 1 of R2 generated by the vector Ω := (1, 0)′. Recall that we are testing
τ2 = 0 against τ2 6= 0, which is equivalent to testing τ ∈M(Ω) against τ /∈M(Ω). Such tests
should be based on the asymptotically chi-square distribution (see S. Ghosh (1999) [10]) and
therefore the test statistic takes the form

(3.1) Qf1(θ) := ∆(n)′

f1
(θ)
[
Γ−1

f1
(θ)− Ω

(
Ω′Γf1(θ)Ω

)−1Ω′
]
∆(n)

f1
(θ).

By algebra calculations, one can write

(3.2) Qf1(θ) = Γ−1
f1;22(θ)∆

(n)2

f1;2 (θ) = ∆(n)2

f1
/((T − 2)I(f1)σ4

f1
) =: Q

f1
,

with ∆(n)
f1

= n
−1
2

n∑
i=1

T∑
t=3

Φf1(Zi,t)Zi,t−1Zi,t−2.

The test based on (3.2) is locally asymptotically most stringent for the problem of
detecting the BLP (0, 0, 2, 1) dependance in white noise process. The application of Le Cam’s
Third Lemma provides the asymptotic law of Q

f1
under P(n)

θ(n);f1
, so we have the following

proposition.

Proposition 3.1. Let f1 ∈ FA. Then, for any τ = (τ1, τ2)′ ∈ R2,

(i) Q
f1

is asymptotically central chi-square with 1 degree of freedom under P
(n)
θ;f1

,

and asymptotically noncentral chi-square, still with 1 degrees of freedom and with

noncentrality parameter λf1 := (T − 2)I(f1)σ2σ4
f1

τ2
2 under P

(n)

θ(n);f1
;

(ii) The sequence of tests rejecting the null hypothesis P
(n)
θ;f1

whenever Q
f1

>χ2
1,1−α, 2

is locally asymptotically most stringent, at asymptotic level α, for
⋃
σ2

{P(n)
σ2,0;f1

}

against
⋃

σ2∈R∗+

⋃
b∈R

{
P

(n)
σ2,b;f1

}
;

(iii) The asymptotic power under P
(n)

θ(n);f1
is 1− F (χ2

1,1−α, λf1).
3

Proof:

(i) From Proposition 2.1, one can write

(3.3) Qf1(θ) = Γ−1
f1;22(θ)∆

(n)2

f1;2 (θ),

with

∆(n)
f1;2(θ) = n

−1
2 σ

n∑
i=1

T∑
t=3

Φf1(Zi,t)Zi,t−1Zi,t−2 = σ∆(n)
f1

,

2 χ2
1,1−α is the (1− α)-quantile of the central chi-square distribution with one degree of freedom.

3 F (., λf1) is the noncentral chi-square distribution function with one degree of freedom and noncentrality
parameter λf1 .
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where ∆(n)
f1

:= n
−1
2

n∑
i=1

T∑
t=3

Φf1(Zi,t)Zi,t−1Zi,t−2, then

Qf1(θ) =
[
σ2(T − 2)I(f1)σ4

f1

]−1[
σ∆(n)

f1

]2 = ∆(n)2

f1
/((T − 2)I(f1)σ4

f1
) = Q

f1
.

(ii) Under P(n)
θ;f1

: ∆(n)
f1
∼N

(
0, (T−2)I(f1)σ4

f1

)
, then ∆(n)2

f1
/((T−2)I(f1)σ4

f1
) = Q

f1
∼χ2

1.

Under P(n)

θ(n);f1
, from Le Cam’s Third Lemma, we have

∆(n)
f1
∼ N

(
(T − 2)I(f1)σσ4

f1
τ2, (T − 2)I(f1)σ4

f1
),

hence ∆(n)2

f1
/((T − 2)I(f1)σ4

f1
) = Q

f1
∼ χ2

1(λf1): noncentral chi-square of one degree of free-
dom and non-centrality parameter

λf1 :=
(√

(T − 2)I(f1)σ4
f1

στ2

)2 = (T − 2)I(f1)σ2σ4
f1

τ2
2 .

(iii) We know that the power of the test is defined by

1− β := Prob
[

rejecting H(n)
f (θ) / H(n)

f (θ(n))
]

= Prob
[
Q

f1
> χ2

1,1−α / τ2 6= 0
]

where β is the second species risk and defined by

Prob
[
Q

f1
< χ2

1,1−α / τ2 6= 0
]

= F (χ2
1,1−α, λf1).

Hence, the power of the test is 1− F (χ2
1,1−α, λf1).

The Gaussian versions of Q
f1

is

(3.4) QN =
a3

T − 2

[
n
−1
2

n∑
i=1

T∑
t=3

Zi,tZi,t−1Zi,t−2

]2

.

Unfortunately, this test statistic needs f1 to be specified as a standardized Gaussian one,
so the parameter a also has to be given. In the next, we will show that an appropriate
version remains asymptotically valid under arbitrary f1 with finite variance and optimal
under Gaussian one (pseudo-Gaussian test).

3.2. Pseudo-Gaussian tests

The Gaussian central sequence ∆(n)
N ;2(θ) allows obtaining asymptotically optimal tests

under f1 = fN , as well as efficient detection of panel bilinear models, in the parametric Gaus-
sian model characterized by Gaussian disturbances. Extending the validity of the Gaussian
optimal test to general densities g1 in a broad class of densities is of course highly desirable.
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Let us show that this is indeed possible and that a slight modification, ∆∗(n)
N ;2 , say, of the

efficient central sequence ∆(n)
N ;2 leads to a pseudo-Gaussian test which remaining valid when

the actual density g1 belongs to the class F (2)
A of all densities in FA with finite variance.

Define

∆∗(n)
N ;2 (θ) = n

−1
2 σa

n∑
i=1

T∑
t=3

(Zi,t −m
(n)
1 )(Zi,t−1 −m

(n)
1 )(Zi,t−2 −m

(n)
1 ),

where m
(n)
1 =

1
nT

n∑
i=1

T∑
t=1

Zi,t is a
√

n-consistent estimator, under P(n)
θ;g1

, of µ1(g1) :=
∫

R
zg1(z)dz.

Decomposing Zi,t −m
(n)
1 into (Zi,t − µ1(g1)) + (µ1(g1)−m

(n)
1 ), then, it is easy to check that

under P(n)
θ;g1

, as n →∞,

∆∗(n)
N ;2 (θ) = n

−1
2 σa

n∑
i=1

T∑
t=3

(Zi,t − µ1(g1))(Zi,t−1 − µ1(g1))(Zi,t−2 − µ1(g1)) + op(1).

Then, still under P(n)
θ;g1

, ∆∗(n)
N ;2 (θ) is asymptotically normal with zero mean and variance

Γ∗N ;g1;22 = a2σ2(T − 2)σ6
g1

,

where σ2
g1

:=
∫

R
(z − µ1(g1))2g1(z)dz.

On the other hand, it is easy to see that, under P(n)

θ(n);g1
, ∆∗(n)

N ;2 (θ) and the log-likelihood

Λ(n)

θ(n)/θ;g1
are jointly binormal; the desired result then follows from a routine application of

Le Cam’s Third Lemma.

A pseudo-Gaussian test may then be based on a statistic of the form

(3.5)
Q∗
N ;g1

(θ) := (Γ∗N ;g1;22(θ))
−1∆∗(n)2

N ;2 (θ)

:=
1

(T − 2)σ6
g1

[
n
−1
2

n∑
i=1

T∑
t=3

(Zi,t −m
(n)
1 )(Zi,t−1 −m

(n)
1 )(Zi,t−2 −m

(n)
1 )
]2

.

In practice, the pseudo-Gaussian test will be based on

Q†
N :=

1
(T − 2)s6

[
n
−1
2

n∑
i=1

T∑
t=3

(Zi,t −m
(n)
1 )(Zi,t−1 −m

(n)
1 )(Zi,t−2 −m

(n)
1 )
]2

,

where s2 =
1

nT

n∑
i=1

T∑
t=1

(Zi,t −m
(n)
1 )2 is the empirical variance of the (Zi,t −m

(n)
1 )’s.

Showing that, under P(n)
θ;g1

, Q†
N −Q∗

N ;g1
(θ) = op(1)., as n →∞, we thus have the fol-

lowing result.

Proposition 3.2. Let g1 ∈ F (2)
A . Then,

(i) Q†
N is asymptotically central chi-square with 1 degree of freedom under P

(n)
θ;g1

,

and asymptotically noncentral chi-square, still with 1 degree of freedom and with

noncentrality parameter λN := (T − 2)σ2
gτ

2
2 under P

(n)

θ(n);g1
;
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(ii) The sequence of tests rejecting the null hypothesis
⋃

g1∈F(2)
A

⋃
σ∈R∗+

{
P

(n)
σ2,0;g1

}
when-

ever Q†
N > χ2

1,1−α, is locally asymptotically most stringent, at asymptotic level

α, against alternatives of the form
⋃

σ∈R∗+

⋃
b∈R

{
P

(n)
σ2,b;fN

}
;

(iii) The asymptotic power under P
(n)

θ(n);g1
is 1− F (χ2

1,1−α, λN ).

4. OPTIMAL RANK TESTS

We start by describing the group invariance structure of the testing problem considered.
Then we introduce (and study the properties of) rank-based versions of the central sequences.
This will allow us to develop the resulting (optimal) rank tests and to derive their asymptotic
properties. The general results of Hallin and Werker (2003) indicate that semiparametrically
efficient and rank-based procedures have been established in relation with ranks that are being
maximal invariants under model-generating groups of transformations. It is clearly that the
null hypothesis H(n)

0 is invariant under the group (G(nT ), ?), such as for any transformation
Gh of RnT we define Gh(Y11, ..., YnT ) := (h(Y11), ..., h(YnT )), where y 7→ h(y) is continuous
and monotone increasing and lim

y→±∞
h(y) = ±∞. The invariance principle therefore suggests

restricting to tests that are invariant with respect to this group. The maximal invariant
associated with (G(nT ), ?) is the rank R(n) :=

(
R

(n)
1,1 , ..., R

(n)
n,T

)
, where R

(n)
i,t denotes the rank of

Z
(n)
i,t among

(
Z

(n)
1,1 , ..., Z

(n)
n,T

)
. It is easy to check that (G(nT ), ?) is actually a generating group

for the null hypothesis H(n)
0 . As a direct corollary, rank tests are distribution-free under the

whole null hypothesis. This explains why rank tests will be validity-robust.

4.1. Rank-based versions of central sequences

According to Hallin and Werker (2003) [21] and under the LAN property with efficient
central sequence ∆(n)

f1;2, an efficient semiparametric inference obtained conditioning ∆(n)
f1;2 by

the rank vector R(n), under the null hypothesis

(4.1) ∆
∼

(n)

f1;2
:= E

[
∆(n)

f1;2 | R
(n)
]
.

The conditional definition (4.1) of ∆(n)
f1;2 gives a statistic based on the ranks of exact scores,

thus Hájek’s projection theorem establishes the asymptotic equivalence between a non-para-
metric statistic and its parametric counterpart (for more details, consult the book of Hájek,
Šidák and Sen (1999) [16]).

To combine validity-robustness/invariance with Le Cam optimality at density f1, we
introduce rank-based versions of the central sequence that appear in the LAN property above
(Proposition 2.1).

(4.2) ∆
∼

(n)

f1;2
:= n

−1
2 σ

n∑
i=1

T∑
t=3

{
ϕf1

( R
(n)
i,t

N+1
)
F−1

1

(R(n)
i,t−1

N+1
)
F−1

1

(R(n)
i,t−2

N+1
)−mf1

}
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with N = n(T − 2), ϕf1 := Φf1 ◦ F−1
1 and

mf1 :=
1

N(N−1)(N−2)

∑∑∑
16t1 6=t2 6=t36N

ϕf1

( t1
N+1

)
F−1

1

( t2
N+1

)
F−1

1

( t3
N+1

).

Let

s
(n)2

f1
:=

1
N(N−1)(N−2)

∑∑∑
16t1 6=t2 6=t36N

[
ϕf1

( t1
N+1

)
F−1

1

( t2
N+1

)
F−1

1

( t3
N+1

)
]2

+
2

N(N−1)(N−2)(N−3)

×
∑∑∑∑
16t1 6=t2 6=t3 6=t46N

ϕf1

( t1
N+1

)
ϕf1

( t2
N+1

)
F−1

1

( t2
N+1

)[
F−1

1

( t3
N+1

)
]2

F−1
1

( t4
N+1

)
+

2
N(N−1)(N−2)(N−3)(N−4)

×
∑∑∑∑∑
16t1 6=t2 6=t3 6=t4 6=t56N

ϕf1

( t1
N+1

)
F−1

1

( t2
N+1

)
F−1

1

( t3
N+1

)ϕf1

( t3
N+1

)
× F−1

1

( t4
N+1

)
F−1

1

( t5
N+1

)

+
N−5

N(N−1)(N−2)(N−3)(N−4)(N−5)

×
∑∑∑∑∑∑
16t1 6=t2 6=t3 6=t4 6=t5 6=t66N

ϕf1

( t1
N+1

)
F−1

1

( t2
N+1

)
F−1

1

( t3
N+1

)

× ϕf1

( t4
N+1

)
F−1

1

( t5
N+1

)
F−1

1

( t6
N+1

)
−Nm2

f1
.

Define the cross-information coefficients I(f1, g1) and σ(f1, g1) as

I(f1, g1) :=
∫ 1

0
Φf1(F

−1
1 (u))Φg1(G

−1
1 (u))du and σ(f1, g1) :=

∫ 1

0
F−1

1 (v)G−1
1 (v)dv,

we then have, for the rank-based ∆
∼

(n)

f1;2
, the following asymptotic representation result.

Proposition 4.1. Let f1 and g1 ∈ FA. Then, as n →∞ and fixed T,

(i) Under P
(n)
θ;g1

,

∆
∼

(n)

f1;2
:= E

(n)
g1

[
∆(n)

f1;2 | R
(n)
1,1 , ..., R

(n)
n,T

]
+ oL2(1)

= ∆∗(n)
f1,g1;2 + oL2(1),

(4.3)

with (denoting by G1 the distribution function associated with g1)

∆∗(n)
f1,g1;2 := n

−1
2 σ

n∑
i=1

T∑
t=3

ϕf1

(
G1(Zi,t)

)
F−1

1

(
G1(Zi,t−1)

)
F−1

1

(
G1(Zi,t−2)

)
;(4.4)

(ii) Still under P
(n)
θ;g1

, ∆
∼

(n)

f1;2
has zero mean and variance Γ∗(n)

f1;22 := σ2(T − 2)s(n)2

f1
=

Γ∗f1;22 + o(1), where Γ∗f1;22 := (T − 2)I(f1)σ2σ4
f1

;

(iii) ∆∗(n)
f1,g1;2 is asymptotically normal, with zero mean under P

(n)
θ;g1

, mean

(T − 2)I(f1, g1)σ2(f1, g1)σ2τ2 under P
(n)

θ(n);g1
and variance Γ∗f1;22 under both.
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Proof: The proof of Part (i) of the proposition follows along the same lines as in
Hallin et al. (1985) [18], and therefore is omitted. Part (ii) is obtained by direct computation.
As for Part (iii), under P(n)

θ;g1
, the result straightforwardly follows from classical central limit

theorem. On the other hand, it is easy to see that, still under P(n)

θ(n);g1
, ∆∗(n)

f1,g1;2 and the

log-likelihood Λ(n)

θ(n)/θ;g1
are jointly binormal; the desired result then follows from a routine

application of Le Cam’s Third Lemma.

4.2. Optimal rank tests

The rank-based version of the quadratic statistic is given by

(4.5)

Q
∼f1

:= (Γ∗(n)
f1;22)

−1∆
∼

(n)2

f1;2

=
1

(T − 2)s(n)2

f1

[
n
−1
2

n∑
i=1

T∑
t=3

{
ϕf1

( R
(n)
i,t

N + 1
)
F−1

1

(R(n)
i,t−1

N + 1
)
F−1

1

(R(n)
i,t−2

N + 1
)−mf1

}]2

,

we then have the following general result.

Proposition 4.2. Let f1 and g1 ∈ FA. Then, for any τ = (τ1, τ2)′ ∈ R2, as n →∞
and for all fixed T ,

(i) Q
∼f1

is asymptotically central chi-square with 1 degree of freedom under P
(n)
θ;g1

,

and asymptotically noncentral chi-square, still with 1 degree of freedom and with

noncentrality parameter

λf1,g1 := (T − 2)I2(f1, g1)σ4(f1, g1)σ2τ2
2 /I(f1)σ4(f1)

under P
(n)

θ(n);g1
;

(ii) The sequence of tests rejecting the null hypothesis
⋃

g1∈FA

⋃
σ2

{
P

(n)
σ2,0;g1

}
when-

ever Q
∼f1

> χ2
1,1−α, is locally asymptotically most stringent, at asymptotic level α,

against alternatives of the form
⋃

σ∈R∗+

⋃
b∈R

{
P

(n)
σ2,b;f1

}
;

(iii) The asymptotic power under P
(n)

θ(n);f1
is 1− F (χ2

1,1−α, λf1,g1).

4.3. Examples of non-parametric statistics

The quadratic statistic Q
∼f1

is a non-parametric statistic that depends only on the

determining of the score function f1 and provides general form for the optimal rank tests of
the null hypothesis of randomness.
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The three most important particular cases for the rank test statistic presented are the
van der Waerden (normal score), the Wilcoxon (logistic score) and the Laplace (double-
exponential score) test statistics, which are respectively optimal at normal, logistic and
double-exponential distributions.

(i) The van der Waerden’s test statistic is given by

Q
∼vdW

:=
a2

(T − 2)s(n)2

fN

∆
∼

(n)2

vdW
,

with

(4.6) ∆
∼

(n)

vdW
= n

−1
2

n∑
i=1

T∑
t=3

{
Ψ−1

( R
(n)
i,t

N + 1
)
Ψ−1

(R(n)
i,t−1

N + 1
)
Ψ−1

(R(n)
i,t−2

N + 1
)−mvdW

}
and

mfN =
1

N(N − 1)(N − 2)

∑∑∑
16t1 6=t2 6=t36N

Ψ−1
( t1
N + 1

)
Ψ−1

( t2
N + 1

)
Ψ−1

( t3
N + 1

),

where Ψ is the standard normal distribution function.

(ii) The Wilcoxon’s test statistic is given by

Q
∼W

:=
1

(T − 2)bs(n)2

l

∆
∼

(n)2

W
,

with
(4.7)

∆
∼

(n)

W
= n

−1
2

n∑
i=1

T∑
t=3

{(
2

R
(n)
i,t

N + 1
− 1
)

log
(

R
(n)
i,t−1

N + 1−R
(n)
i,t−1

)
log
(

R
(n)
i,t−2

N + 1−R
(n)
i,t−2

)
−ml

}
and

ml =
1

N(N − 1)(N − 2)

∑∑∑
16t1 6=t2 6=t36N

(
2t1

N + 1
− 1
)

log
(

t2
N + 1− t2

)
log
(

t3
N + 1− t3

)
.

(iii) The Laplace’s test statistic is given by

Q
∼L

:=
d2

(T − 2)s(n)2

De

∆
∼

(n)2

L
,

with

(4.8) ∆
∼

(n)

L
= n

−1
2

n∑
i=1

T∑
t=3

{
sign

(
F−1

1

( R
(n)
i,t

N + 1
))

F−1
1

(R(n)
i,t−1

N + 1
)
F−1

1

(R(n)
i,t−2

N + 1
)−mDe

}
and

mDe =
1

N(N − 1)(N − 2)

∑∑∑
16t1 6=t2 6=t36N

sign

(
F−1

1

( t1
N + 1

))
F−1

1

( t2
N + 1

)
F−1

1

( t3
N + 1

),

where F1 is the distribution function of the double-exponential and

F−1
1 (u) =

{
d log(2u) if 0 < u 6 1

2

−d log(2− 2u) if 1
2 6 u < 1.
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5. ASYMPTOTIC RELATIVE EFFICIENCIES

In order to compare the performance of the parametric and non-parametric tests pre-
sented, we calculate the Asymptotic Relative Efficiencies (AREs) of rank based tests with
respect to the Pseudo-Gaussian one. The results obtained are satisfactory. Hence, under
P(n)

θ(n);g1
, for any g1 and for different scores f1, the asymptotic relative efficiencies of Q

∼f1

with

respect to QN are

(5.1)
AREg1(Q

∼f1

/QN ) =
(

λf1,g1

λN

)2

=
(
I2(f1, g1)σ4(f1, g1)

σ2
g1

σ4
f1

I(f1)

)2

.

Table 1 gives the numerical values of (5.1) for Q
∼f1

= Q
∼vdW

, Q
∼W

, Q
∼La

, Q
∼ t5

, Q
∼sN (2)

and

Q
∼st5(2)

under densities g1 that are normal, Logistic, Double exponential, Student-t5, Skew-

normal sN (2) and Skew-Student st5(2).

Note that for f1 = vdW these values are always greater than one, i.e., the van der
Waerden test (vdW) always has an efficiency greater than or equal to one, the equality being
realized only if the density underlying g is itself a Gaussian density (N ), which means that
rank based tests are asymptotically more powerful than Gaussian tests (this result is proved in
many cases, see for example, Chernoff and Savage (1958) [7] and Hallin (1993) [17] for ARMA
models). Note also that each value is maximum in its corresponding column. Thus, at each
of the densities, non-parametric tests perform better, compared to the Pseudo-Gaussian test.

Table 1: Asymptotic relative efficiencies of some rank tests
compared to their Pseudo-Gaussian counterpart.

Scores f1

``````````````̀

Actual density g1 N l De t5 sN (2) st5(2)

Van der Waerden 1.0000 1.1723 1.5244 1.3435 1.6328 1.7262
Wilcoxon 0.9347 1.2026 2.3421 1.5002 1.9782 1.7822
Laplace 0.4275 1.1337 4.0000 1.0349 1.5433 1.6889
Student-t5 0.8160 1.1569 2.7812 1.5625 1.8922 1.9501
Skew-normal sN (2) 0.9520 1.0989 1.5633 1.1490 2.2301 2.3301
Skew-Student st5(2) 0.5179 0.9734 1.9331 1.2150 1.7325 3.0133

6. SIMULATION

To enhance the interpretation and validity of the theoretical results of the previous
sections, we present a simulation experiment using R-programming. The purpose of this
section is to evaluate the performance of the proposed tests, at asymptotic level α = 5%.
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We simulated several BLP (0, 0, 2, 1) panel data described by

(6.1) Xi,t = bXi,t−2εi,t−1 + εi,t i = 1, 2, ..., 100, t = 1, 2, ..., 12,

where:

• b = 0 for null hypothesis, and b = 0.05, 0.1, 0.15, 0.2 for increasingly severe alterna-
tives;

• The (εi,t)’s are i.i.d. with a symmetric density - Gaussian (N ), logistic (l), double
exponential (De), Student with ν = 5 degrees of freedom (t5) — or with an asym-
metric density — the skew-normal sN (δ) and skew-Student st5(δ) densities 4 (both
with skewness parameter value δ = 2).

We performed the simulations for n = 100 and T = 12. In each case we generated 2500
independent samples of size N = n(T − 2) = 1000 from (6.1).

For each replication, we performed the following tests at asymptotic level α = 5%: the
pseudo-Gaussian test based on Q†

N , the van der Waerden test based on Q
∼vdW

, the Wilcoxon

test based on Q
∼W

, the Laplace test based on Q
∼L

, the rank tests based on Student with

5 degrees of freedom and data-driven skew-Student stν̂(δ̂) scores.

Rejection frequencies are reported in Table 2 and they amply confirm the excellent
overall performances of our rank-based procedure with data-driven scores. It also appears
from the skew-normal and skew-Student simulations that asymmetry significantly improves
the superiority of rank tests over the pseudo-Gaussian one.

7. CONCLUSION

The problem of testing the null hypothesis of a randomness against first-order super-
diagonal panel model BLP (0, 0, 2, 1) (in large n and small T ) is considered for specified and
unspecified error density. Optimal parametric and pseudo-Gaussian procedures are derived
based on the Local Asymptotic Normality property. Moreover, the pseudo-Gaussian test ap-
pears to have quite poor performances under skewed and heavy-tailed distributions. There-
fore a rank-based version of the test is considered. Particular cases such as van der Waerden,
Wilcoxon, Laplace and data-driven scores are given. These tests exhibit remarkably high
ARE values with respect to their pseudo-Gaussian counterpart. Simulations confirm the
excellent overall performances of the proposed tests.

4 See, for instance, Azzalini and Capitanio (2003) [2] for a definition of skew-normal and skew-Student
densities.
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Table 2: Rejection frequencies (out of 2500 replications), for b = 0 (null hypothesis) and
various non-zero values of b (alternative hypotheses), with error density g1 that
is Gaussian (N ), logistic (l), double exponential (De), Student (t5), skew-normal
(sN (2)) and skew-Student t5 (st5(2)) of the pseudo-Gaussian and rank based
(based on van der Waerden, Wilcoxon, Laplace, Student-t5 and data-driven scores)
procedures.

Underlying densities g1 Test
b

0 0.05 0.1 0.15 0.2

Pseudo Gaussien 0.0520 0.2236 0.7224 0.9680 0.9996
Van der Waerden 0.0512 0.2448 0.6844 0.9564 1.0000

Normal
Wilcoxon 0.0508 0.2280 0.7400 0.9640 1.0000
Laplace 0.0512 0.2160 0.6928 0.8840 0.9992

Student-t5 0.0496 0.2360 0.6560 0.9760 1.0000
Data-Driven 0.0524 0.2800 0.7400 0.9760 1.0000

Pseudo Gaussien 0.0464 0.2400 0.7144 0.9632 0.9992
Van der Waerden 0.0488 0.2688 0.7204 0.9844 0.9996

Logistic
Wilcoxon 0.0520 0.3044 0.7880 0.9620 0.9980
Laplace 0.0496 0.2960 0.7320 0.9840 0.9980

Student-t5 0.0560 0.2488 0.7640 0.9840 0.9996
Data-Driven 0.0500 0.3240 0.8360 0.9920 1.0000

Pseudo Gaussien 0.0524 0.2236 0.6908 0.9544 0.9972
Van der Waerden 0.0476 0.2324 0.7820 0.9956 0.9888

Double exponential
Wilcoxon 0.0492 0.3720 0.8412 0.9884 0.9992
Laplace 0.0520 0.4924 0.9080 0.9960 1.0000

Student-t5 0.0484 0.3920 0.8800 0.9920 1.0000
Data-Driven 0.0480 0.3760 0.8760 0.9520 1.0000

Pseudo Gaussien 0.0496 0.3248 0.8768 0.9932 0.9996
Van der Waerden 0.0488 0.3044 0.8660 0.9924 1.0000

Student-t5
Wilcoxon 0.0492 0.4964 0.9248 0.9732 0.9989
Laplace 0.0488 0.4560 0.8840 0.9880 0.9996

Student-t5 0.0476 0.4640 0.9560 0.9960 1.0000
Data-Driven 0.0540 0.4960 0.9720 1.0000 1.0000

Pseudo Gaussien 0.0496 0.1264 0.4572 0.7900 0.9612
Van der Waerden 0.0464 0.1328 0.4112 0.8084 0.9488

Skew-normal sN (2)
Wilcoxon 0.0468 0.1440 0.4560 0.8240 0.9440
Laplace 0.0492 0.2120 0.4824 0.7244 0.8680

Student-t5 0.0432 0.1760 0.4120 0.7360 0.9240
Data-Driven 0.0460 0.2080 0.5360 0.8080 0.9400

Pseudo Gaussien 0.0480 0.2240 0.6800 0.9392 0.9904
Van der Waerden 0.0524 0.2368 0.7200 0.9240 0.9888

Skew-Student st5(2)
Wilcoxon 0.0488 0.3120 0.7284 0.9688 0.9992
Laplace 0.0540 0.3160 0.6800 0.9124 0.9640

Student-t5 0.0504 0.2840 0.7280 0.9440 0.9920
Data-Driven 0.0484 0.3480 0.8360 0.9720 0.9960
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