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Abstract:

• Kernel-type estimators are popular in density and distribution function estimation. However, they
suffer from boundary effects. In order to modify this drawback, this study has proposed two
new kernel estimators for the cumulative distribution function based on two asymmetric kernels
including the Birnbaum–Saunders kernel and the Weibull kernel. We show the asymptotic conver-
gence of our proposed estimators in boundary as well as interior design points. We illustrate the
performance of our proposed estimators using a numerical study and show that our proposed esti-
mators outperform the other commonly used methods. The illustration of our proposed estimators
to a real data set indicates that they provide better estimates than those of the formerly-known
methodologies.

Keywords:

• cumulative distribution function; boundary effects; kernel-type estimators; asymmetric kernels.

AMS Subject Classification:

• 62G05, 62G20.

mailto:habiballamombeni@gmail.com
https://orcid.org/0000-0001-7358-3583
mailto:b.mansouri@scu.ac.ir
https://orcid.org/0000-0001-7872-2773
mailto:mra.biostat@gmail.com


464 H.A. Mombeni, B. Mansouri and M.R. Akhoond

1. INTRODUCTION

Suppose that X1, X2, ..., Xn be a set of continuous random variables with unknown cu-
mulative distribution function F (x) which we wish to estimate. The Empirical distribution
function provides a uniformly consistent estimate of the cumulative distribution function.
However, estimations which are provided by the Empirical distribution are not smooth. An-
other approach for estimating the cumulative distribution function is to use Kernel-type
estimators. Kernel-type estimators for distribution estimation, based on symmetric kernels,
have been introduced by authors such as Nadaraya [14] and Watson and Leadbetter [21],
and their asymptotic properties have been investigated by Singh et al. [18]. Asymptotical
superiority of Kernel-type estimators to the empirical distribution function at a single point
in density estimation was shown by Reiss [15] and Falk [5].

Although the symmetric kernels are popular and commonly used in Kernel-type esti-
mators, they are not efficient for those distribution (density) functions which have a compact
support due to the boundary bias. This problem is known as boundary effects and several
approaches have so far been proposed to deal with it in regression and density estimation
tasks (Gasser and Muller [6], Rice [16], Gasser et al. [7] and Muller [12]). In a similar manner,
Tenreiro [19] proposed some boundary kernels for estimating a cumulative distribution func-
tion with a finite interval support. These approaches, hereafter called the Boundary kernel
methods or briefly the B-K methods, are based on symmetric kernels.

Asymmetric kernel functions were introduced by Chen [2] as an alternative approach
to the boundary correction in kernel density estimation. He proposed the beta kernel den-
sity estimator to estimate a density with support on [0, 1]. Chen [3] considered the gamma
kernel density estimator to estimate a density with support on [0,∞). In order to pro-
vide a boundary-free estimation for the density function f(x) with support on [0,∞) by the
gamma kernel density estimator, Zhang [22] has shown that having a shoulder at x = 0, whose
derivative of f(x) is zero at x = 0, is a necessary condition. For densities not satisfying this
condition, the gamma kernel density estimator suffers from severe boundary problems. This
approach was extended for estimating a density with support on [0,∞) using other asymmet-
ric kernels (Jin and Kawczak [10], Scaillet [17], Hirukawa and Sakudo [8] and Hirukawa and
Sakudo [9]).

So far, the boundary effects in density estimation have attracted the attention of many
researchers. Accordingly, several methods, using symmetric and asymmetric kernels, have
been proposed to solve the problem. However, in the cumulative distribution estimation, the
boundary effects have received little if any attention.

In this paper, we have focused on estimating those distribution functions with support
on [0,∞) and proposed a new Kernel-type estimator for the cumulative distribution function
based on asymmetric kernels. Our estimator at the design point x has the following form:

(1.1) F̂n(x) = n−1
n∑

i=1

K̄x,b(Xi) ,

where K̄x,b(t)=
∫∞
t kx,b(u) du and k(·) is an asymmetric kernel function on [0,∞) with the

smoothing parameter b. Thus, the kernel has the same support as the true distribution function.
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We introduce two estimators by considering two asymmetric kernels including the Birnbaum–
Saunders (B-S) kernel and the Weibull kernel. In the next section, we demonstrate the
asymptotic properties of our proposed estimator based on the B-S kernel, hereafter called
the B-S kernel estimator. We investigate the rate of convergence of the B-S kernel estimator
both in the interior and the boundary points. In Section 3, we have run the same study
for our second estimator which is based on the Weibull kernel, hereafter called the Weibull
kernel estimator. The rest of the paper is organised as follows. Section 4 is dedicated to
illustrating the performance of our proposed estimators. We conducted a comprehensive
numerical study and considered various cumulative distribution functions to estimate and
compare the performance of our estimators with other existing methods. In Section 5 we
have illustrated the performance of our proposed estimators on a real data set. Finally,
Section 6 is devoted to discussions and conclusions.

In this paper, we assume that the cumulative distribution function F (x) satisfies the
following assumptions:

Assumption 1. The cumulative distribution function F (x) is absolutely continuous
with respect to Lebesgue measure on (0,∞) and has two continuous
and bounded derivatives.

Assumption 2. The smoothing parameter b = bn > 0 satisfies b → 0, as n →∞.

Assumption 3. The following integrals

(1.2)
∫ ∞

0

(
x f(x)

)2
dx and

∫ ∞

0

(
x2f ′(x)

)2
dx

are finite.

Following Hirukawa and Sakudo [9] and ‘In order to describe different asymptotic properties
of an asymmetric kernel estimator across positions of the design point x > 0’, we denote by
‘interior x’ and a sequence of points converging to the boundary or ‘boundary x’ a design
point x that satisfies x/b →∞ and x/b → k for some 0 < k < ∞ as n →∞, respectively.

2. ASYMMETRIC CUMULATIVE DISTRIBUTION FUNCTION ESTIMA-
TION USING B-S KERNEL

In this section, we aim at demonstrating the asymptotic convergence of our first pro-
posed estimator: Equation (1.1) based on the B-S kernel, i.e. the B-S kernel estimator.
To forward this end we will show that the B-S kernel estimator is asymptotically unbiased
and consistent. We will obtain an appropriate smoothing parameter for our estimator through
minimizing the mean integrated square error. In addition, we will discuss the convergence
rate of the B-S kernel estimator in the boundary points.
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2.1. Asymptotic properties of the B-S kernel estimator

Consider the Birnbaum–Saunders kernel given by

(2.1) K̄B-S(t;β, α) = 1− Φ


(√

t
β −

√
β
t

)
α

 , t > 0, α > 0, β > 0 ,

where Φ(·) is the Standard Normal distribution function. Let α =
√

b and β = x, where x

and b denote the design point and the smoothing parameters, respectively. The B-S kernel
estimator for the cumulative distribution function is defined as:

(2.2) F̂1(x) = n−1
n∑

i=1

K̄B-S

(
Xi;x,

√
b
)
.

In what follows we will obtain two approximate expressions for the bias and variance for
F̂1(x) in Lemma 2.1 and Lemma 2.2, respectively. First consider that for the two continuous
distribution functions F and G and their corresponding density function f and g, it is easy
to show that:

(2.3) Eg

(
F (X)

)
= 1− Ef

(
G(X)

)
,

where Eg(F (X)) is the expectation of F (X), when X is a random variable following the
distribution G.

Lemma 2.1. Suppose that Assumptions 1–3 hold. Then we have:

(2.4) E
(
F̂1(x)

)
= F (x) +

b

2

(
xf(x) + x2f ′(x)

)
+ O

(
b2
)
.

Proof: Since Xi’s are identical, we have

(2.5) Ef

(
F̂1(x)

)
= Ef

(
K̄B-S

(
T ;x,

√
b
))

,

where T is a random variable following the distribution F . Using equation (2.3) and Taylor
expansion, we have:

(2.6)

Ef

(
K̄B-S

(
T ;x,

√
b
))

= Ef

(
1−KB-S

(
T ;x,

√
b
))

= Ek

(
F (T )

)
= F (x) + f(x)E(T − x) +

∞∑
i=1

f (j)(x)
j!

E(T − x)j+1 ,

where f (j)(·) is the j-th derivative of f(x) and now T ∼ kx,
√

b(t), where

(2.7) kx,
√

b(t) =
t−

3
2 (t + x)√
2π bx

exp

{
− 1

2b

(
t

x
+

x

t
− 2
)}

, t > 0 , x > 0 , b > 0 .
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Using the results of Johnson et al. [11], we have:

(2.8)

E(T − x) = b
x

2
,

E(T − x)2 =
bx2

2
(2 + 3b) ,

E(T − x)3 =
9b2x3

2
(3 + 5b) ,

=⇒ E
(
F1(x)

)
= F (x) + f(x)

(
b

x

2

)
+

f ′(x)
2

(
bx2

2
(2 + 3b)

)
+

f (2)(x)
6

(
9b2x3

2
(3 + 5b)

)
+ ···

= F (x) +
b

2

(
xf(x) + x2f ′(x)

)
+ O

(
b2
)
,

where f ′(·) is the first derivative of f(x).

So, for the interior points, the bias of the B-S kernel estimator is of order O(b). Although
this rate of convergence to zero seems disappointing, one should be aware that the smoothing
parameter is a function of n. In the remainder of this section, we will show that by taking
this relation into account and considering the rate of convergence based on n, the bias of
the B-S kernel estimator is normal (not too bad). We defer a detailed discussion of this
matter until later in Section 3 where we provide a comparison between the bias of the B-S
kernel estimator and the Weibull kernel estimator. In addition, in the numerical study, we
will see that the overall performance of the B-S kernel estimator is not only satisfactory but
also better than the other competitors. This achievement is the result of a reduction in the
variance of the B-S kernel estimator, as we will see in Lemma 2.2, and what is the so-called
trade-off between the variance and the bias.

Now we turn to the variance of the B-S kernel estimator. The following lemma shows
that the variance of F̂1(x) resembles the variance of the Empirical distribution function to
some extent but it involves a negative term which can lead to its superiority over the Empirical
distribution function since it has a smaller variance.

Lemma 2.2. Suppose that Assumptions 1–3 hold. Then variance of the B-S kernel

estimator can be obtained as:

(2.9) Var
(
F̂1(x)

)
= n−1F (x)

(
1− F (x)

)
− n−1 b

1
2 π−

1
2 xf(x) + O

(
n−1b

)
.

Proof: First consider that

(2.10)

E
(
K̄2

B-S

(
T ;x,

√
b
))

=
∫ ∞

0
K̄2

B-S

(
t;x,

√
b
)
f(t) dt

=
∫ ∞

0
F (t)

(
2 kB-S

(
t;x,

√
b
)
K̄B-S

(
t;x,

√
b
))

dt (using integral by part)

= F (x) + f(x) E(Z − x) +
1
2

f ′(x) E(Z − x)2 + ··· ,

where Z ∼ 2 kB-S

(
z;x,

√
b
)
K̄B-S

(
z;x,

√
b
)

(a skew probability density function) and

(2.11) kB-S

(
z;x,

√
b
)

=
z−

3
2 (z + x)√
2π bx

exp

{
− 1

2b

(
z

x
+

x

z
− 2
)}

, z > 0, x > 0, b > 0 .



468 H.A. Mombeni, B. Mansouri and M.R. Akhoond

By extending the results of Vilca and Leiva [20], we have:

(2.12)
E(Z − x) =

b
1
2 x

2

(
ω1 + b

1
2 γ2

)
,

E(Z − x)2 =
b x2

2

(
2 γ2 + γ4 + b

1
2 xω3

)
,

where γr = E(W r) and ωr = E
(
W r
√

b W 2 + 4
)
. In addition, W is a random variable with a

Skewed Normal distribution, i.e. W ∼ SN(0, 1,−1).
Using the Taylor expansion for W

√
b W 2 + 4 and W 3

√
b W 2 + 4 , we obtain

W
√

b W 2 + 4 = 2W +
1
4

b W 3 − 1
64

b2 W 5 + O
(
b3
)
,

and

W 3
√

b W 2 + 4 = 2W 3 +
1
4

b W 5 − 1
64

b2 W 7 + O
(
b3
)
.

Nadarajah and Kotz [13] show that E(W ) = − 1√
π
, E(W 3) = −

√
5
4π , thus we can deduce that

(2.13) γ2 = 1 , γ4 = 3 , ω1 ≈ −
2√
π

, ω3 ≈ −
√

5
π

.

By substituting γ2, γ4, ω1 and ω3 in (2.12) and then substituting (2.12) in (2.10), we obtain

E
(
K̄2

B-S

(
T ;x,

√
b
))

= F (x)−
√

b

π
xf(x) + O(b) .

Using this result and the result of Lemma 2.1, we have:

(2.14)

Var
(
F̂1(x)

)
= Var

(
n−1

n∑
i=1

K̄B-S

(
Xi;x,

√
b
))

= n−1 Var
(
K̄B-S

(
T ;x,

√
b
))

= n−1

{
E
(
K̄2

B-S

(
T ;x,

√
b
))
− E2

(
K̄B-S

(
T ;x,

√
b
))}

= n−1

{
F (x)− b

1
2 π−

1
2 x f(x) + O(b)

}
− n−1

{(
F (x) +

b

2

(
xf(x) + x2f ′(x)

)
+ O

(
b2
))2}

= n−1F (x)
(
1− F (x)

)
− n−1

(
b

1
2 π−

1
2 xf(x)

)
+ O

(
n−1b

)
.

Using Lemma 2.1 and Lemma 2.2, we can derive an estimate of the mean integrated
square error (MISE) for the B-S kernel estimator as follows:

(2.15)

MISEB-S

(
F̂1(x)

)
=
∫ ∞

0
MSE

(
F̂1(x)

)
dx

≈ n−1

∫ ∞

0
F (x)

(
1− F (x)

)
dx − n−1 b

1
2 π−

1
2

∫ ∞

0
xf(x) dx

+
b2

4

∫ ∞

0

(
xf(x) + x2f ′(x)

)2
dx .

This result gives rise to the following proposition.
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Proposition 2.1. The optimal smoothing parameter for the B-S kernel estimator

based on minimizing the MISE is

(2.16)

bMISE
B-S = arg min︸ ︷︷ ︸

b>0

(
MISEB-S

(
F̂1(x)

))

≈
{∫ ∞

0
xf(x) dx

}2
3
{

π
1
2

∫ ∞

0

(
xf(x) + x2f ′(x)

)2
dx

}− 2
3

n−
2
3 .

This indicates that the optimal smoothing parameter is of order O
(
n−2/3

)
. By substi-

tuting bMISE
B-S in (2.15), we have:

MISEB-S

(
F̂1(x)

)
= n−1

∫ ∞

0
F (x)

(
1− F (x)

)
dx

− 3
4

n−
4
3 π−

2
3

{∫ ∞

0
xf(x) dx

}4
3
{∫ ∞

0

(
xf(x) + x2f ′(x)

)2
dx

}− 1
3

+ O
(
n−

5
3
)

=⇒ MISEB-S

(
F̂1(x)

)
= n−1

∫ ∞

0
F (x)

(
1− F (x)

)
dx − O

(
n−

4
3
)
.

2.2. The performance of the B-S kernel estimator at near boundary points

In order to delve in asymptotic properties of the B-S kernel estimator at the boundary
points and compare the rate of its convergence at the boundary points and the interior points,
we consider two specific cases for the design point x:

a) In the case where x = 0, the B-S kernel is zero, i.e. K̄B-S

(
t;x,

√
b
)

= 0 and, there-
fore, in this case F̂1(0) = 0 which is remarkable because the ordinary kernel esti-
mator does not satisfy this property.

b) For the case where x = cb, where 0 < c < 1, we have:

(2.17) E
(
F̂1(x)

)
= F (x) +

cb2

2
f(x) + O

(
b3
)
,

and

(2.18) Var
(
F̂1(x)

)
= n−1F (x)

(
1− F (x)

)
− n−1 b

3
2 π−

1
2 f(x) + O

(
n−1 b2

)
.

Therefore, we can compute the mean square error (MSE) for the B-S kernel esti-
mator at the boundary points as follows:

(2.19) MSEB-S

(
F̂1(x)

)
≈ n−1F (x)

(
1− F (x)

)
− n−1 b

3
2 π−

1
2 f(x) +

c2 b4

4
f2(x) .

Comparing the bias and variance terms of the B-S kernel estimator at the near bound-
ary and interior points (in equations (2.19) and (2.15), respectively) shows that the bias
term is smaller at the near boundary points at the expense of increasing the variance term.
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Because at the near boundary points, the rate of convergence to zero of the negative portion
of variance, which is the gain of smoothing technique over the empirical distribution function,
is smaller than that of interior points.

Now it is easy to show that the optimal smoothing parameter which minimizes the
MSE is

(2.20) bMSE
B-S = O

(
n−

2
5
)
.

By substituting (2.20) in (2.19), we have:

(2.21) MSEB-S

(
F̂1(x)

)
= n−1F (x)

(
1− F (x)

)
+ O

(
n−

8
5
)
.

3. ASYMMETRIC CUMULATIVE DISTRIBUTION FUNCTION ESTIMA-
TION USING WEIBULL KERNEL

In the previous section, we introduced the B-S kernel estimator and demonstrated its
asymptotic consistency. In this section, we will run a similar study and introduce another
cumulative distribution function estimator based on the Weibull kernel, i.e. the Weibull kernel
estimator.

3.1. Asymptotic properties of the Weibull kernel estimator

Consider the Weibull kernel given by

(3.1) K̄wbl(t;α, β) = exp

{
−
(

t

β

)α
}

, t ≥ 0 , α > 0 , β > 0 .

Since T ∼ Weibull(α, β) then we have:

(3.2) E(T k) = βk Γ
(

1 +
k

α

)
, k = 1, 2, ... ,

where Γ
(
1 + k

α

)
= 1− kγ

α + k2

12α2

(
π2 + 6γ2

)
+ O

(
α3
)

and γ = 0.57721 is the Euler’s constant.
Hirukawa and Sakudo [9] proposed an expansion for Γ

(
1 + 2

α

)
Γ−2

(
1 + 1

α

)
as follows:

(3.3) Γ
(

1 +
2
α

)
Γ−2

(
1 +

1
α

)
= 1 +

π2

6α2
+

γπ2 − 3γ3

2α3
+ O

(
α−4

)
.

Similarly, it is easy to show that

(3.4) Γ
(

1 +
3
α

)
Γ−3

(
1 +

1
α

)
= 1 +

π2

2α2
+ 2

γπ2 − 3γ3

α3
+ O

(
α−4

)
.

Let (α, β) =
(
1/b, x/Γ(1+ α−1)

)
where x and b denote the design point and the smoothing

parameters, respectively. Our second asymmetric Kernel-type estimator, i.e. the Weibull
kernel estimator, is defined as follows:

(3.5) F̂2(x) = n−1
n∑

i=1

K̄wbl

(
Xi; 1/b, x/Γ(1 + b)

)
.
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The Weibull kernel estimator F̂2(x) is nonnegative and appropriate to estimate cumulative
distribution functions with support on [0,∞). In what follows, we present the theoretical
properties of F̂2(x) and we will obtain an appropriate smoothing parameter for this estimator
through minimizing the mean integrated square error. We will obtain approximate expressions
for the bias and variance for F̂2(x) in Lemma 3.1 and Lemma 3.2, respectively. In addition,
we will discuss the convergence rate of the Weibull kernel estimator in the boundary points.

Lemma 3.1. Suppose that Assumptions 1–3 hold. Then the expectation value of F̂2(x)
can be obtained as:

(3.6) E
(
F̂2(x)

)
= F (x) + b2 π2 x2f ′(x)

12
+ O

(
b3
)
.

Proof: The proof is analogous with the proof of Lemma 2.1. Using equation (2.3) and
Taylor expansion, we have:

E
(
F̂2(x)

)
= E

(
K̄wbl

(
T ; 1/b, x/Γ(1+ b)

))
= Ek

(
F (T )

)
= F (x) + f(x) E(T − x) +

∞∑
j=1

f (j)(x)
j!

E(T − x)j+1 ,

where T is a random variable with Weibull
(
1/b, x/Γ(1 + b)

)
probability density function.

Using equations (3.3) and (3.4), we have:

E(T − x) = 0 ,

E(T − x)2 =
(xb π)2

6
+ x2 b3

(
γπ2

2
− 3γ3

)
+ O(b4) ,

E(T − x)3 = (xb)3
(

γπ2

2
+ 3γ3

)
+ O

(
b4
)
.

Now we can conclude that

E
(
F̂2(x)

)
= F (x) +

1
2

f ′(x)

(
(xb π2)

6
+ x2 b3

(
γπ2

2
− 3γ3

))

+
f (2)(x)

6

(
(xb)3

(
γπ2

2
+ 3γ3

))
+ ···

= F (x) + b2 π2 x2f ′(x)
12

+ O
(
b3
)
.

Note that, for the interior points, the bias of the Weibull kernel estimator is of order
O(b2). However, by considering the smoothing parameter as a function of n in Remark 3.1,
we will see that in the sense of convergence rate of bias, the Weibull kernel estimator is the
same as the B-S kernel estimator. The following lemma provides an approximation for the
variance of the Weibull kernel estimator.

Lemma 3.2. Suppose that Assumptions 1–3 hold. Then the variance of F̂2(x) can

be obtained as:

(3.7) Var
(
F̂2(x)

)
= n−1F (x)

(
1− F (x)

)
− n−1 b ln(2) x f(x) + O

(
n−1b2

)
.

where ln(·) is the natural logarithm.
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Proof: First note that

(3.8)

E
(
K̄2

wbl

(
T ; 1/b, x/Γ(1+ b)

))
=
∫ ∞

0
K̄2

wbl

(
t; 1/b, x/Γ(1+ b)

)
f(t) dt

=
∫ ∞

0
F(t)

{
2 kwbl

(
t; 1/b, x/Γ(1+ b)

)
K̄wbl

(
t; 1/b, x/Γ(1+ b)

)}
dt

= F (x) + f(x) E(Z − x) +
1
2

f ′(x) E(Z − x)2 + ··· ,

where Z ∼ 2 kwbl

(
z; 1/b, x/Γ(1+ b)

)
K̄wbl

(
z; 1/b, x/Γ(1+ b)

)
, z > 0, b > 0, x > 0. It is easy

to show that Z is random variable with Weibull
(
α, β

2
1
α

)
density function.

Since 2−
1
α = 1− ln(2)

α + ln2(2)
2α2 + O(α−3), we have:

(3.9)
E(Z − x) = −bx ln(2) +

(
bx ln(2)

)2
6

+ O
(
b3
)
,

E(Z − x)2 = (xb)2
(

ln(2)2 +
π2

6

)
+ O

(
b3
)
.

By substituting (3.9) in (3.8), we obtain

(3.10) E
(
K̄2

wbl

(
T ; 1/b, x/Γ(1+ b)

))
= F (x)− bx ln(2)f(x) + O

(
b2
)
.

Using (3.10) and Lemma 3.1, we can deduce that:

(3.11)

Var
(
F̂2(x)

)
= Var

(
n−1

n∑
i=1

K̄wbl

(
Xi; 1/b, x/Γ(1+ b)

))
= n−1 Var

(
K̄wbl

(
T ; 1/b, x/Γ(1+ b)

))
= n−1

{
E
(
K̄2

wbl

(
T ; 1/b, x/Γ(1+ b)

))
− E2

(
K̄wbl

(
T ; 1/b, x/Γ(1+ b)

))}
= n−1

{
F (x)− bx ln(2) f(x) + O

(
b2
)
−
(

F (x) + b2 π2x2f ′(x)
12

+ O
(
b3
))2}

= n−1F (x)
(
1− F (x)

)
− n−1 b ln(2) xf(x) + O

(
n−1b2

)
.

Using Lemma 3.1 and Lemma 3.2, we can derive an estimate of the MISE for the
Weibull kernel estimator as follows:

(3.12)
MISEwbl

(
F̂2(x)

)
≈ n−1

∫ ∞

0
F (x)

(
1− F (x)

)
dx − n−1b ln(2)

∫ ∞

0
xf(x) dx

+ b4 π4

144

∫ ∞

0

(
x2f ′(x)

)2
dx .

Now we can select the optimal smoothing parameter based on minimizing the MISE.

Proposition 3.1. The optimal smoothing parameter for the Weibull kernel estimator

based on minimizing the MISE of F̂2(x) in (3.12) is

(3.13)

bMISE
wbl = arg min︸ ︷︷ ︸

b>0

(
MISEwbl

(
F̂2(x)

))

=
{

36 ln(2)
∫ ∞

0
xf(x) dx

}1
3
{

π4

∫ ∞

0

(
x2f ′(x)

)2
dx

}− 1
3

n−
1
3 .
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Note that the optimal smoothing parameter is of order O(n−1/3). By substituting bMISE
wbl

in (3.12), we have:

(3.14)

MISEwbl

(
F̂2(x)

)
= n−1

∫ ∞

0
F (x)

(
1− F (x)

)
dx

− 2.4764 (nπ)−
4
3
(
ln(2)

)4
3

{∫ ∞

0
xf(x) dx

}4
3
{∫ ∞

0

(
x2f ′(x)

)2
dx

}− 1
3

+ O
(
n−

5
3
)

=⇒ MISEwbl

(
F̂2(x)

)
= n−1

∫ ∞

0
F (x)

(
1− F (x)

)
dx − O

(
n−

4
3
)
.

Remark 3.1. From the two equations (2.16) and (3.13), the optimal smoothing pa-
rameter of the B-S kernel estimator and the Weibull kernel estimator are of order O(n−2/3)
and O(n−1/3), respectively. Therefore, in terms of the rate of convergence to zero, we have
bMISE

B-S ≈
(
bMISE

wbl

)2. Thus from (2.4) and (3.6), we can conclude that for the interior points,
the bias of the B-S kernel estimator has the same rate of convergence to zero as the bias of
the Weibull kernel estimator.

3.2. The performance of the Weibull kernel estimator near boundary points

In this subsection, we run a similar study like what we have done in Section 2.2
in order to investigate the asymptotic properties of the Weibull kernel estimator at the bound-
ary points. This helps us to compare the rate of convergence at the boundary points and the
interior points. We consider two specific cases for the design point x:

a) In the case where x = 0, we have K̄wbl

(
T ; 1/b, x/Γ(1 + b)

)
= 0, so in this case,

unlike the ordinary kernel estimator, F̂2(0) = 0.

b) For the case where x = cb, where 0 < c < 1, we have:

(3.15) E
(
F̂2(x)

)
= F (x) +

c2b4

2
f(x) + O

(
b5
)

and

(3.16) Var
(
F̂2(x)

)
= n−1F (x)

(
1− F (x)

)
− n−1 cb2 ln(2)f(x) + O

(
n−1b3

)
.

So we can compute the MSE for the Weibull kernel estimator at the boundary
points as follows:

(3.17) MSEwbl

(
F̂2(x)

)
≈ n−1F (x)

(
1− F (x)

)
− n−1 cb2 ln(2)f(x) +

c4b8

4
f2(x) .

Comparing the two equations (3.17) and (3.14) shows a trade-off between the bias and
the variance terms for the Weibull kernel estimator. This is something like what we have
seen for the B-S kernel estimator in Section 2. The bias term is again smaller at the near
boundary points at the expense of increasing the variance term.



474 H.A. Mombeni, B. Mansouri and M.R. Akhoond

Now it is easy to show that the optimal smoothing parameter which minimizes the
above-mentioned MSE is

(3.18) bMSE
wbl = O

(
n−

1
6
)
.

By substituting (3.18) in (3.17), we have:

(3.19) MSEwbl

(
F̂2(x)

)
= n−1F (x)

(
1− F (x)

)
+ O

(
n−

4
3
)
.

Remark 3.2. From the two equations (2.20) and (3.18), the optimal smoothing pa-
rameter of the B-S kernel estimator and the Weibull kernel estimator are of order O(n−2/5)
and O(n−1/6), respectively. By substituting back these values into the corresponding bias
terms of the two estimators, we can deduce that for the near boundary points, the bias of
the B-S kernel estimator is of order O(n−4/5) while the bias of the Weibull kernel estimator
is of order O(n−2/3).

4. NUMERICAL STUDY

In this section, we illustrate the performance of the proposed estimators (the B-S kernel
estimator and the Weibull kernel estimator) through a simulation study. We compare our
proposed estimators with the ordinary kernel method (O-K method), the B-K method and
the Empirical distribution method. In both the O-K method and the B-K method, we use the
Epanechnikov kernel. In order to select an appropriate bandwidth for the O-K and the B-K
methods, we use the optimal bandwidth proposed by Altman and Leger [1] and Tenreiro [19],
respectively.

We generated 1000 samples of size n = 256 and 1024 from eight various distributions in-
cluding, 1: Burr(1, 3, 1), 2: Gamma(0.6, 2), 3: Gamma(4, 2), 4: GeneralizedPareto(0.4, 1, 0),
5: Halfnormal(0, 1), 6: Lognormal(0, 0.75), 7: Weibull(1.5, 1.5) and 8: Weibull(3, 2). In or-
der to estimate the smoothing parameter for the B-S kernel estimator and the Weibull kernel

estimator, we used Gamma density f(x) =
xα−1 exp (− x

β
)

βα Γ(α) as a referenced density in equations
(2.16) and (3.13), respectively. The parameters (α, β) have been estimated by the method of
maximum likelihood estimation.

In order to evaluate the performance of our proposed estimators and compare their
functionality with other existing methods, we considered the integrated squared error ISEi =∫∞
0

(
F̂i(x)− F (x)

)2
dx as an error metrics, where F̂i(x), i = 1, 2, ..., 5, stands for the B-S

kernel estimator, the Weibull kernel estimator, the O-K method, the B-K method and the
Empirical distribution method, respectively. In our setting, we approximated the integral
with summation.

Table 1 shows the mean and standard deviation of the ISE for the eight distributions
and the two sample sizes over one thousand repetitions. In all cases, the mean and standard
deviation of the ISE decreased as the sample size increased. The simulation results show that
based on the ISE, regardless of the sample size, our proposed estimators perform better than
the other three methods. The only exception is distribution 5: Halfnormal(0, 1) with a sample
size of 256 for which the B-K method has a smaller mean of ISE than that of the Weibull
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kernel estimator. However, even for this case, when the sample size is increased to 1024, both
the B-S kernel estimator and the Weibull kernel estimator have a better performance. The
comparison between the B-S kernel estimator and the Weibull kernel estimator indicates the
superiority of the B-S kernel estimator. This is true, surprisingly, even in estimating two
distributions Weibull(1.5, 1.5) and Weibull(3, 2).

Table 1: The mean and standard deviation of the ISE in estimating eight distributions
via five methods (see the text for explanation) for n = 256 and 1024.

Value (×10−4) B-S Weibull Ordinary Boundary Empirical

N Example Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

1 1.33 1.17 1.37 1.20 1.63 1.27 1.59 1.26 1.53 1.12
2 4.24 4.17 4.50 4.28 6.37 5.14 5.46 5.14 4.96 4.24
3 1.37 0.94 1.43 0.98 1.64 1.08 1.64 1.08 1.55 0.91
4 4.44 4.59 4.70 4.74 6.52 5.46 5.33 5.47 5.14 4.64

256
5 2.90 2.77 2.99 2.85 3.60 3.02 2.96 3.03 3.33 2.82
6 5.89 5.90 6.10 6.05 8.05 6.82 7.59 6.82 6.17 5.51
7 3.29 3.02 3.37 3.12 4.20 3.34 3.65 3.29 3.74 3.03
8 2.62 2.40 2.68 2.46 3.09 2.58 3.03 2.57 2.98 2.39

1 0.34 0.28 0.35 0.29 0.46 0.33 0.45 0.32 0.38 0.28
2 1.18 1.14 1.22 1.17 2.38 1.55 1.78 1.56 1.30 1.14
3 0.28 0.31 0.28 0.29 0.74 0.55 0.73 0.54 0.28 0.30
4 1.18 1.21 1.22 1.24 2.18 1.51 1.53 1.54 1.28 1.19

1024
5 0.74 0.72 0.76 0.73 1.14 0.82 0.81 0.82 0.81 0.71
6 0.63 0.56 0.64 0.58 1.04 0.70 0.91 0.69 0.67 0.52
7 0.91 0.81 0.93 0.81 1.30 0.90 1.12 0.89 1.00 0.80
8 0.69 0.62 0.70 0.62 0.87 0.68 0.86 0.68 0.75 0.62

In order to provide a better comparison between the aforementioned methods, we have
presented the boxplots of the ISE for the case n = 1024 in Figure 1. In this figure, we consider
eight boxplots for eight divers’ distributions. In the boxplots, the vertical axis shows the ISE
and the horizontal axis contains the methods. The dotted line in each of the boxplots shows
the lowest median of the ISEs. The overall superiority of the B-S kernel estimator in all
cases is obvious. The overall performance of the Weibull kernel estimator is better than
the B-K method and the Empirical distribution method. The O-K method shows the worst
performance as is expected.

In Figure 2, we provide the results on the mean squared error (MSE) at various points
of the support of the considered distributions in 1000 repetitions for the sample size (1024).
This helps one to see the performance of the compared methods depending on the point where
the distribution function is estimated. To increase the visibility and better compare other
kernel-type estimators, we have ignored the Empirical distribution in this figure. The poor
performance of the O-K method at near boundary region is obvious. At the points far from
the boundary, the O-K method and the B-K method almost match. Although the amount of
MSE is dependent on the design point and the distribution which we want to estimate, the
overall performance of the two proposed estimators are better than both the O-K and the
B-K methods. Note that, the shape of asymmetric kernels changes with the design point and
for the points, those are far enough from the boundary, they become symmetric, and finally
all the methods almost match in Figure 2.
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(a) Burr(1, 3, 1) (b) Gamma(0.6, 2)

(c) Gamma(4, 2) (d) GeneralizedPareto(0.4, 1, 0)

(e) Halfnormal(0, 1) (f) Lognormal(0, 0.75)

(g) Weibull(1.5, 1.5) (h) Weibull(3, 2)

Figure 1: The boxplots of the ISE in estimating eight distribution functions via five methods
in 1000 repetitions (n = 1024) (see text for further explanation).
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(a) Burr(1, 3, 1) (b) Gamma(0.6, 2)

(c) Gamma(4, 2) (d) GeneralizedPareto(0.4, 1, 0)

(e) Halfnormal(0, 1) (f) Lognormal(0, 0.75)

(g) Weibull(1.5, 1.5) (h) Weibull(3, 2)

Figure 2: The Plot of the MSE in estimating eight distribution functions via five methods
in 1000 repetitions (n = 1024) (see the text for further explanation).
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Figures 3 to 6 illustrate 30 estimates in blue along with the true distribution in red for
the eight different distributions (n = 256) via five methods. The density function of these
distributions is plotted as well in the top left corner of each image. The boundary bias of
the O-K method is obvious. The B-K method remedies this drawback but not completely.

(a) Burr(1, 3, 1)

(b) Gamma(0.6, 2)

Figure 3: Plots of 30 estimates (in blue) of Burr(1, 3, 1) and Gamma(0.6, 2) via five methods:
(b) B-S kernel estimator (top mid), (c) Weibull kernel estimator (top right), (d) O-K
method (Bottom left), (e) B-K method (Bottom mid) and (f) Empirical distribution
(bottom right). The true distribution is shown in red and sample size n = 256.
The top left (a) shows the density function of each distribution.
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In particular, a careful inspection of the figures, especially Gamma(4, 2) and Weibull(3, 2),
for near boundary points, shows that the B-K method suffers from over-estimation. It seems
that this problem depends on the shape of the distribution which we wish to estimate.

(a) Gamma(4, 2)

(b) GeneralizedPareto(0.4, 1, 0)

Figure 4: Plots of 30 estimates (in blue) of Gamma(4, 2) and Generalized Pareto(0.4, 1, 0)
via five methods: (b) B-S kernel estimator (top mid), (c) Weibull kernel estimator
(top right), (d) O-K method (Bottom left), (e) B-K method (Bottom mid) and
(f) Empirical distribution (bottom right). The true distribution is shown in red
and sample size n = 256. The top left (a) shows the density function of each
distribution.
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Another striking point is that the Empirical distribution could not provide smooth estimates.
In general, the performance of our proposed estimators is satisfying.

(a) Halfnormal(0, 1)

(b) Lognormal(0, 0.75)

Figure 5: Plots of 30 estimates (in blue) of Halfnormal(0, 1) and Lognormal(0, 0.75) via five
methods: (b) B-S kernel estimator (top mid), (c) Weibull kernel estimator (top
right), (d) O-K method (Bottom left), (e) B-K method (Bottom mid) and (f) Em-
pirical distribution (bottom right). The true distribution is shown in red and sample
size n = 256. The top left (a) shows the density function of each distribution.
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(a) Weibull(1.5, 1.5)

(b) Weibull(3, 2)

Figure 6: Plots of 30 estimates (in blue) of Weibull(1.5, 1.5) and Weibull(3, 2) via five methods:
(b) B-S kernel estimator (top mid), (c) Weibull kernel estimator (top right), (d) O-K
method (Bottom left), (e) B-K method (Bottom mid) and (f) Empirical distribution
(bottom right). The true distribution is shown in red and sample size n = 256. The
top left (a) shows the density function of each distribution.
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5. ILLUSTRATION WITH A REAL DATA SET

In this section, we apply our two proposed estimators to a real dataset. The data are the
time distance between marriage to the first childbirth. This dataset is a result of a field research
performed by Choromzadeh et al. [4] to study the factors that influence childbirth behavioral
patterns of women aged 15–49 in a sample of size n=1106 in Ahwaz, Iran. Due to the traditions,
many families tend to have children immediately after marriage. Therefore, the data has a
natural peak in 9–18 months after marriage. There are rare cases of childbirth in 1–8 months,
which are probably the result of pregnancy before marriage. Figure 7 shows the histogram of
this dataset. On the other hand, due to the changes in socioeconomic and cultural statuses,
there are few families that give birth to their first child in a considerable time after their mar-
riage. Also, there are some families whose delayed first birth is due to sterility problems. Thus,
a long tail with sparse data is another considerable feature in the distribution of this dataset.

Figure 7: Histogram of the months after marriage before the first childbirth.

Figure 8 illustrates 5 estimates of the distribution of this data via five methods. The methods
of choosing the smoothing parameter for various estimators are described in Section 4. Figure
8(a) shows that estimates mainly differ at the near origin. In order to provide a better insight,
we separately illustrate the estimates in the first 9 months in Figure 8(b). In comparison with
the Empirical distribution, the estimates created by the O-K method and the B-K method
are similar. It seems they rise too early. In the simulation study, we have seen that these
two estimators suffer from over-estimating for near boundary points, especially for those
distributions that have the same shape as in Figure 7. The B-S kernel estimate and the
Weibull kernel estimate are very close, and the more consistent they are with the Empirical
distribution and for this dataset, the more realistic they seem to be.
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(a) (b)

Figure 8: Five estimates of the distribution of first childbirth via five methods:
B-S kernel estimator (solid-blue), Weibull kernel estimator (dashed-red),
O-K method (dashed-yellow), B-K method (dotted-purple) and Empir-
ical distribution (solid-green).

6. CONCLUSION AND DISCUSSION

This paper is devoted to proposing some appropriate estimators for the cumulative dis-
tribution functions with non-negative support. To achieve this goal, we proposed a general
asymmetric Kernel-type estimator and introduced two asymmetric estimators for the cumu-
lative distribution function. We demonstrated the asymptotic consistency of our proposed
estimators and we showed that they are free from boundary effects as well. Comparing our
estimators based on the rate of convergence at the boundary points, we found that the B-S
kernel estimator was better than the Weibull kernel estimator. In our setting, we estimated
the bandwidths of the two estimators based on minimizing the MISE. In order to evaluate
the performance of our estimators and compare them with other existing methods, we con-
ducted a numerical study. The results of the numerical study show that both the B-S kernel
and the Weibull kernel estimators are superior to the B-K method proposed by Tenreiro [19].
In the numerical study, the B-S kernel estimator achieved the best results and outperformed
the Weibull kernel estimator. This is consistent with the good asymptotic properties of the
B-S kernel estimator. In this research, we used the B-S kernel and the Weibull kernel as
the asymmetric kernels in our general estimator. As a path for future research, one can try
other existing asymmetric kernels. Another area for future research can be the estimation of
those cumulative distributions with a finite interval support, for instance [a, b]. In addition,
application of this type of cumulative distribution estimator in several other fields such as
the survival analysis and the copula methods is an interesting topic for future research.
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1. INTRODUCTION

Last decades have been characterized by relevant changes in the global macroeconomic
scenario. Naturally, this has affected the way managers make decisions about the future
of firms. Real options theory provides efficient tools to analyze what is the best decision
to make, taking into account all the options faced by the firm. In particular, we can high-
light the following options/problems: the strategy options (see Huisman and Kort (2003) [11],
Pawlina and Kort (2006) [18], and Brealey et al.(2012) [3]), valuation of options for real assets
(see Dixit and Pindyck (1994) [6]), investment options (see Bjerksund and Ekern (1990) [2],
Dixit and Pindyck (1994) [6], Majd and Pindyck (1987) [13], and McDonald and Siegel (1985) [14]),
technology adoption problem (see Farzin et al. (1998) [8], and Hagspiel et al. (2016) [10]),
or abandonment problem (see Brennan and Schwartz (1985) [4], and Myers and Majd (2001) [15]).

During the last economic crisis, many firms felt the need to adjust their production
process, to face declining markets and to avoid large losses. An example of a strategy used
by decision-makers to decrease the costs associated with the production process is the layoff.
Companies like Merck, Yahoo, General Electric, Xerox, Pratt & Whitney, Goldman Sachs,
Whirlpool, Bank of America, Alcoa and Coca-Cola implemented layoff periods, to reduce
costs and face adverse market conditions1. The main goal of firms adopting this type of
strategies is to reduce the risk of having large losses by adopting a production process which
results in a “flat payoff function”: the profits would not be very large if the demand is large
but in case the demand decreases, the firm faces also small losses; the resulting is a sort of
a compromise situation. The idea of flat payoff function is already used in Decision Theory,
with a similar meaning; see, for instance, Pannell (2006) [17]. On the other side of the
scale, you also find companies with a more aggressive behavior, meaning, in this particular
framework, that the firm adapts its production process in order to obtain large profits for
high levels of demand, even if the losses may be large, for small levels of demand. There
are, of course, many strategies which lead to intermediate payoff functions: between the flat
payoff functions (less risky, in terms of potential losses) and the more aggressive ones (more
risky, in terms of potential losses).

The changes in the profit function may be due to several causes, such as technology
innovation or improvement in the production process. Indeed, nowadays, companies face
many challenges, as the markets are very competitive, and technology innovations can radi-
cally change the costs and profits. Technology innovation may change the production costs,
as it gets more advanced, prices drop and products get better. However, it can exist some
drawbacks, such as the costs associated with the technological process or even a chance that
the switch to the new technology does not lead to positive profits but leads to losses, due to
declining markets, for instance. These challenges amplify with the large uncertainty that is
inherent to the market, as Ward et al. (1995) [20] refer.

There are several examples of such a situation. One of such examples occurs in the
area of IT (information technology), the decision of where and when to allocate resources to
IT programs is risky, as although there are many positive outcomes, the executives struggle
with the massive costs and high uncertainty. According to Clemons and Weber (1990) [5],

1Uchitelle, L. (2008, October 26). U.S. layoffs increase as businesses confront the crisis, The New York Times.

Retrieved from http://www.nytimes.com/2008/10/26/business/worldbusiness/26iht-layoffs.1.17246245.html

http://www.nytimes.com/2008/10/26/business/worldbusiness/26iht-layoffs.1.17246245.html
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IT can confer advantage under appropriate conditions, and equally important, even when it fails
to confer advantage, it may still prove crucial. The same authors mention the case of Manu-
facturers Hanover, that in the early 80’s invested 300 million dollars in a telecommunication
network. The actual volumes reached only 50% of the estimates, well below the capacity, and
leading to massive losses, as they could not recover the system cost. See Benaroch (2002) [1].

Another such example is the present situation of ASML: the largest supplier in the world
of photolithography systems for the semiconductor industry. ASML is one of the 8th foreign
companies that have sales of at least 1 billion dollars in South Korea. Recent investments in
the next-generation technologies have allowed ASML to reduce their potential costs by 30%
or 40%. But a serious flare-up between North and South Korea would cause a huge disruption
to commerce. And if operations in the country were suspended or set back for a long time
due to the destruction of facilities, that would disrupt the supply chain of companies around
the world. And ASML, which is vulnerable to this situation, would then face major losses.2

Therefore investments in this area of the planet, although lead to potentially large profits,
also may lead the massive losses.

The last example that we provide is related to the use of statistical process control (SPC)
charts to monitor quality. Control charts are used to keep a process in statistical control,
where the output quality is at a target level; the design of the control chart is usually known as
economic design (see Lorenzen and Vance (1986) [12]). But the implementation of statistical
control can be quite expensive, as Nembhard et al.(2002) [16] refer. But, on the other hand, if
a control chart is not used, the manufacturer may not be aware that the system is producing
low-quality parts. And this may have a cost, as these products may be returned, with extra
replacement costs. Therefore the choice between implementing a production scheme with or
without a rigorous statistical control is a relevant decision in terms of profits and losses, and
the decision must take into account the dynamics in the market conditions.

These examples show a common feature: firms have the opportunity to change their
production systems, due to several reasons, but when deciding about it they need to balance
between potential losses and gains, as these investments do not lead only to larger profits.
Our main objective is to study the time at which the firm should optimally change its produc-
tion system. Reporting to the literature of real options, this problem falls into the category of
single-switch or replacement problems, a problem that is crucial from the management view-
point. We will be mainly concerned with the implications of adjusting the current production
process in a risky or less risky way, where we use the following interpretation:

• The risk increases if when compared with the current profit, the gains of the firm
increase when the demand is sufficiently high, but the losses also increase in case
the demand is not sufficiently high;

• The risk decreases if, when compared with the current profit, the losses of the
firm decrease when the demand reaches sufficiently small levels, but the gains also
decrease in case the demand becomes sufficiently high.

Throughout the paper, we use the terms replacement and investing indistinctly, in the sense
that they both mean that the firm will change its original production process (leading to a
profit function Π1) by a different production process (leading to a profit function Π2).

2Wong, S. and Miller, L.J. (2017, August 20). These are the most vulnerable foreign companies in Korea, Bloomberg Politics.

Retrieved from https://www.bloomberg.com/news/articles/2017-08-20/in-shadow-of-red-line-companies-with-a-lot-to-lose-in-korea

https://www.bloomberg.com/news/articles/2017-08-20/in-shadow-of-red-line-companies-with-a-lot-to-lose-in-korea
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Besides the option to change its production process, a firm may still decide to abandon
the market, in case the conditions are no longer favorable in terms of its profits. Therefore
we also analyze the situation where after the investment in the second production process,
the firm may decide to exit. Moreover, we compare the impact of the abandonment option in
the invest moment in the second production market and, as we will see, this impact depends
on whether the firm intends to increase the risk or not, and the relation between the involved
costs and the parameters of the demand process. Here we assume that abandonment only
happens after investing in the second production process, which is equivalent to say that
abandonment out of the first production process is equally costly as first investing in the
second production process and then abandon. This assumption is also considered in chapter 7
of Dixit and Pindyck (1994) [6].

The rest of the paper is organized as follows: in Section 2 we describe the model,
along with some considerations about the economical meaning; in Section 3 we present the
Hamilton–Jacobi–Bellman equation for the optimization problem. In Section 4 we derive
the solution of the problem and in Section 5 we present comparative statics results. Finally,
in Section 6 we consider the option to abandon the market, after investing in the second
production process. The proofs of the propositions and corollaries can be found in Appendix A.

2. MODEL

In this paper, we consider a firm that produces an established product in a stochas-
tic environment, which is characterized by the stochastic demand process X = {Xt : t ≥ 0},
defined on a complete filtered space (Ω, {Ft}t≥0, P). Moreover, we assume that X follows a
geometric Brownian motion, solution of the stochastic differential equation:

dXt = µXt dt + σXt dWt ,

where X0 = x, µ∈R is the drift, the volatility is equal to σ > 0, and {Wt : t≥ 0} is a Brownian
motion.

Currently, the profit of the firm is Π1, that depends on X, and the firm has the option
to change its profit function to Π2, but staying in the same market (and thus the uncertainty
process, X, does not change its dynamics as a consequence of this change). If the firm decides
to materialize this option at time τ , then its value is given by

J(x, τ) = Ex

 τ∫
0

e−γs Π1(Xs) ds − e−γτR +

∞∫
τ

e−γs Π2(Xs) ds


= Ex

 τ∫
0

e−γs Π1(Xs) ds +

∞∫
τ

e−γs
(
Π2(Xs)− γR

)
ds

 ,

where R ≥ 0 is the cost of adjusting its production process, γ > 0 is the interest rate and Ex

represents the conditional expectation when X0 = x . Defining by S the set of all admissible
{Ft}-stopping times, we are looking for the right moment of changing the production process.
Thus, we define the value function V, given by:

(2.1) V(x) = sup
τ∈S

J(x, τ) = J(x, τ∗) .
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If in the problem (2.1), one has Π1(x) ≤ Π2(x)− γR, for all x > 0, then the decision is
trivial: τ∗ = 0, and therefore the firm must change immediately. On the other hand, when
Π2(x)− γR ≤ Π1(x), for all x > 0, then the decision is also trivial: τ∗ = ∞, and therefore
the firm never takes the decision to invest in the second production process. However, the
most interesting situation is illustrated in Figure 1. In fact, assuming that there is c > 0,
such that Π1(c) = Π2(c)− γR ≡ d > 0, then, we have the following situations:

a) Π1(x) < Π2(x)− γR if and only if x > c. In this case, for lower values of the
demand process, Π1 leads to larger profits or lower losses than Π2, whereas for
large values of demand, Π2 is more profitable. For this reason, we say that in this
situation the risk increases, when we switch from Π1 to Π2;

b) Π1(x) > Π2(x)− γR if and only if x > c. Then Π2 leads to smaller losses/smaller
earnings in case the demand decreases/increases, when compared with Π1. For this
reason, we say that in this situation the risk decreases.

Here, we use isoelastic profit functions, with some constant linear factor:

Πi(x) = ai x
θi − bi , with θi ≥ 1 , ai, bi ≥ 0 ,

where θi is the elasticity coefficient and bi denotes a fixed cost.

Figure 1: Representation of the functions Πs, with s = i, j and i 6= j ∈ {1, 2}, where
Πs(x) = Π1(x) if s = 1 or Πs(x) = Π2(x)− γR, if s = 2, for all x > 0.

Additionally, we will discuss how the option to abandon definitely the market after the
replacement influences the value of the firm as well as the economic mechanisms behind the
decisions. Then, the problem can be re-stated as follows:

W(x) = sup
τ1≤τ2∈S

E

[∫ τ1

0
e−γs Π1(Xs) ds − e−γτ1R +

∫ τ2

τ1

e−γs Π2(Xs) ds − e−γτ2 S

]
≡ sup

τ1≤τ2∈S
I(x, τ1, τ2) ,

(2.2)

where τ1 is the time to replace Π1 by Π2, and τ2 is the time to abandon the market. In (2.2),
S represents the abandonment cost, when S is positive (meaning that the firm needs to pay
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to abandon the market) or a salvage value/disinvestment subsidy, when S is negative
(meaning that the firm receives money upon the exit of the market).

In order to have a well-posed problem, in the sense that the next integrability condition
holds:

(2.3) Ex

[∫ ∞

0
e−γs

∣∣Πi(Xs)
∣∣ ds

]
< ∞ , for i = 1, 2 ,

we assume the following relation on the parameters:

γ >
σ2

2
(θi − 1) θi + θiµ ≡ µθi

, for i = 1, 2 .

See Guerra et al. (2016) [9] for further mathematical explanations about the integrability
condition (2.3). Additionally, for (γ, µ, σ) fixed, let β1 and β2 denote the two roots of the
quadratic equation

γ =
σ2

2
(y − 1) y + µy ,

with β1 < 0 < β2. We notice that the condition (2.3) implies that β2 > θ > 1.

Although the natural economic modeling of this problem relies on the set of parameters
(r, µ, σ), it can be, equivalently, modeled by using the set of parameters (β1, β2, σ), since

γ = −σ2

2
β1β2 and µ =

σ2

2
(1− β1 − β2) .

For future reference, we note that the functions (µ, σ) → βi(µ, σ), with i = 1, 2, are such
that the function β1(·, σ), β2(·, σ) and β2(µ, ·) 3 are decreasing, while β1(µ, ·) is increasing.
This follows in view of the following derivatives:

∂βi

∂σ
= (−1)i+1 σβi (βi − 1)√(

µ− 1
2 σ2

)2 + 2 σ2γ
and

∂βi

∂µ
= (−1)i+1 βi√(

µ− 1
2 σ2

)2 + 2 σ2γ
.

3. HAMILTON–JACOBI–BELLMAN EQUATIONS

In this section, we introduce the HJB equations that lead to the solution of the opti-
mization problems. We start by noticing that for the replacement problem, we may write the
functional J as follows:

J(x, τ) = Ex

 τ∫
0

e−γs
(
Π1(Xs)−Π2(Xs) + γR

)
ds

 + Ex

 ∞∫
0

e−γs
(
Π2(Xs)− γR

)
ds


= Ex

 τ∫
0

e−γs
(
a1X

θ1
s − a2Xθ2

s − b + γR
)

ds

 + a2
xθ2

γ − µ2
− b2 + γR

γ
,

3Along this paper, we use f(·, y) to denote the function f as a function of the first variable, keeping the
second fixed and equal to y.
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for every (x, τ) ∈ ]0,∞[×S, with b = b1 − b2.4 Then, for all x > 0,

(3.1) V(x) = V (x) + a2
xθ2

γ − µ2
− b2 + γR

γ
,

with

(3.2) V (x) = sup
τ∈S

Ex

 τ∫
0

e−γs
(
a1X

θ1
s − a2Xθ2

s − b + γR
)

ds

 ,

and the remaining part of the right-hand side of Equation (3.1) representing the net present
value associated to the second production process. Thus, henceforward, we will be concerned
about the optimal stopping problem defined in (3.2).

In light of the classical Theory of Optimal Stopping (see, for instance, Peskir and
Shiryaev (2006) [19]), V satisfies the HJB equation:

min
{

γv(x)− µxv′(x)− σ2

2
x2v′′(x)−

(
Π1(x)−Π2(x) + γR

)
, v(x)

}
= 0 .

From this equation, it follows that V (x) ≥ 0, for x > 0. Additionally, if there is x0 > 0 such
that V (x0) > 0, then V should satisfy the ODE

(3.3) γv(x)− µxv′(x)− σ2

2
x2v′′(x)−

(
Π1(x)−Π2(x) + γR

)
= 0 ,

in the set
{
x > 0: |x−x0| < ε

}
, for some ε > 0. Equation (3.3) is an Euler–Cauchy differential

equation and admits as solution the function

v(x) = Axβ1 + Bxβ2 + αxθ1 − βxθ2 − b

γ
+ R ,(3.4)

with
α =

a1

γ − µθ1

and β =
a2

γ − µθ2

,

for every A,B ∈ R.

When we consider the exit option after investing in the second process production
process, one may see that standard arguments (see, for instance, Duckworth and Zervos
(2000) [7]) allow us to get an equivalent expression to (2.2), that is:

W(x) = sup
τ1∈S

E

[∫ τ1

0
e−γs

(
Π1(Xs) + γR + γS

)
ds + e−γτ1 W̃(Xτ1)

]
− R − S

≡ sup
τ1≤τ2∈S

Ĩ(τ1, τ2, x) − R − S ,
(3.5)

where

W̃(x) = sup
τ∈S

E

[∫ τ

0
e−γs

(
Π2(Xs) + γS

)
ds

]
.

Thus the corresponding HJB equation is the following:

min
{

γw(x)− µxw′(x)− σ2

2
x2w′′(x)−Π1(x)− γ(R +S), w(x)− W̃(x)

}
= 0

where, in its turn, W̃ is a solution of the HJB equation corresponding to the exit problem:

min
{

γW̃(x)− µxW̃ ′(x)− σ2

2
x2W̃ ′′(x)−Π2(x)− γS, W̃(x)

}
= 0 .

4From now on we will use the notation a = a1 − a2.
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4. THE REPLACEMENT OPTION

In this section we present the solution to the problem (3.2), assuming that θi = 1 and
θj = θ ≥ 1, for i 6= j ∈ {1, 2}. With this assumption, we may derive analytical expressions
for the relevant quantities. Recall that c > 0 is such that Π1(c)−Π2(c) + γR = 0; moreover,
we let d = Π1(c) = Π2(c)− γR.

To solve the problem (3.2), we need to use the smooth pasting conditions in order to find
the unknown terms of (3.4), and its domain. Therefore we need to propose a continuation
region. In fact, depending on the sign of Π1 − Π2 + γR, the geometry of the problem is
different and, consequently, the continuation region is also distinct.

In case of the increasing risk, we expect that the continuation region is of the form
C =

{
x > 0: x < δ

}
, with δ ≥ c, as in that case one should only invest in the more risky

production process when the demand is high (and higher than c, because for x < c, Π2(x)−
γR − Π1(x) < 0). But if the risk decreases, then we expect the continuation region to be
C =

{
x > 0: x > ζ

}
, with ζ ≤ c, since in that case the replacement should be undertaken

when the levels of demand are low. Therefore we need to study the two cases separately, as
we present in the next sections.

4.1. INCREASING RISK

Here, we assume that the profit functions Π1 and Π2 are given by:

(4.1) Π1(x) = a1x− b1 and Π2(x) = a2xθ − b2 ,

with θ > 1, and

(4.2) b1 ≤ b2 + γR .

Note that this inequality may be interpreted as follows: the fixed cost when using Π1 must
be lower than or equal to the sum of the investment rate cost plus the fixed cost of using Π2.
If this condition does not hold, then replacement would be optimal right away (i.e., the
optimal time would be zero).

Proposition 4.1. Let Πi, with i = 1, 2 be given by (4.1). Then, the solution of (3.2)
is as follows:

(4.3) V (x) =

Bxβ2 +
a1

γ − µ
x− a2

γ − µθ
xθ − b− γR

γ
, x < δ ,

0 , x ≥ δ ,

where B is given by

B =
(

a2 δθ

γ − µθ
− a1δ

γ − µ
+

b− γR

γ

)
δ−β2 ≥ 0 .(4.4)
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Additionally, δ is the unique positive solution to

(4.5) f(x) :=
a2 (β2 − θ)

γ − µθ
xθ − a1(β2 − 1)

γ − µ
x + β2

b− γR

γ
= 0 ,

and verifies δ ≥ c. The result remains true when θ = 1, a1 < a2 and b1 < b2 + γR.

Taking into account the explanations provided in Section 3, it follows that

V(x) =


Bxβ2 +

a1

γ − µ
x− b1

γ
, x < δ ,

a2

γ − µθ
xθ − b2 + γR

γ
, x ≥ δ ,

which means that for large levels of demand (x > δ) it is always optimal to switch from
the actual production process to the new one. This reinforce the idea that this type of
strategy may be useful in markets that are in expansion. While the terms a1

γ−µ −
b1
γ and

a2
γ−µθ

− b2
γ represent the net present value associated to the first and second production process,

respectively, the term Bxβ2 gives the value associated with the replacement option when the
current value of the demand is x.

Corollary 4.1. If b̃ ≡ b− γR = 0, then the replacement threshold δ can be explicitly

given by:

δ0 ≡ δ
∣∣∣
b̃=0

= θ−1

√
a1

a2

β2 − 1
γ − µ

γ − µθ

β2 − θ
= θ−1

√
a1

a2

β1 − θ

β1 − 1
.

If θ = 1, a1 < a2 and b1 < b2 + γR, then δ can be explicitly given by:

δ
∣∣∣
θ=1

=
b− γR

a

(
γ − µ

γ

β2

β2 − 1

)
=

b− γR

a

(
1− 1

β1

)
≥ b− γR

a
= c .

For future reference, one can note that δ0 is a lower bound to δ since the function
b̃ → δ(b̃) is decreasing and consequently δ0 ≤ δ. Indeed, in light of the calculations presented
in the proof of Lemma A.1, we get

∂δ

∂b̃
(b̃) = −β2

γ
f ′(δ) < 0 .

4.2. DECREASING RISK

Consider now the case:

(4.6) Π1(x) = a1x
θ − b1 and Π2(x) = a2x− b2 ,

with θ > 1, and
b1 ≥ b2 + γR .

Similarly to the previous situation, the interpretation of this condition is also clear. In order
to have a non-trivial problem, we need to impose that the fixed cost associated with Π1 is
larger than the investment cost rate plus the fixed cost of Π2. Otherwise, replacement would
never be optimal and we would have the optimal time equal to ∞.
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Proposition 4.2. The value function defined by (3.2) is given by:

(4.7) V (x) =


0 , x < ζ ,

Axβ1 +
a1

γ − µθ
xθ − a2

γ − µ
x− b− γR

γ
, x ≥ ζ ,

where A is given by

A =
(

a2 ζ

γ − µ
− a1ζ

θ

γ − µθ
+

b− γR

γ

)
ζ−β1 ≥ 0(4.8)

and ζ is the unique positive solution to

g(x) :=
a1(θ − β1)

γ − µθ
xθ − a2 (1− β1)

γ − µ
x + β1

b− γR

γ
= 0 ,(4.9)

and verifies ζ ≤ c. The result remains true when θ = 1, a1 > a2 and b1 > b2 + γR.

In this case, the value function V is given by

V(x) =


a2

γ − µ
x− b2 + γR

γ
, x < ζ ,

Axβ1 +
a1

γ − µθ
xθ − b1

γ
, x ≥ ζ ,

and, consequently, it is always optimal to reduce the risk associated with the production
process when the demand is sufficiently small (x < ζ). This strategy may be very useful in
declining markets, since it allows the firm to protect itself against the possibility of having
large losses. The term Axβ1 represents the value of the replacement option when the current
value is x > ζ ; otherwise is zero.

Corollary 4.2. If b̃ ≡ b− γR = 0, then, the replacement threshold ζ can be given by:

(4.10) ζ0 ≡ ζ
∣∣∣
b̃=0

= θ−1

√
a2

a1

1− β1

γ − µ

γ − µθ

θ − β1
= θ−1

√
a2

a1

β2 − θ

β2 − 1
.

If θ = 1, a1 > a2 and b1 > b2 + γR, then, the replacement threshold ζ can be given by:

ζ
∣∣∣
θ=1

=
b− γR

a

(
γ − µ

γ

β1

β1 − 1

)
=

b− γR

a

(
1− 1

β2

)
≤ b− γR

a
= c .(4.11)

For future reference, we note that the function b̃ → ζ(b̃) admits the derivative

∂ζ

∂b̃
(b̃) = −β1

γ
g′(ζ) > 0 ,

which means that ζ ≥ ζ0.
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5. COMPARATIVE STATICS

In this section, we assess the impact of changing the demand parameters µ and σ on the
decision strategy. We expect that this behavior depends on whether the replacement leads
to higher or lower risks. We also analyze the effect of increasing /decreasing, even more, the
risk. This will be analyzed by studying the movement of the respective threshold when ai is
replaced by ai + ∆ and bi ≡ bi(ai) = ai c− d is replaced by bi(ai + ∆), where i is such that
Πi(x; ai) = aix− bi(ai). This is illustrated in Figure 2.

Figure 2: Representation of the functions Πj(x) = aj xθ− bj and the function Πi(x; a) = ax1− bi(a),
when a = ai and a = ai + ∆, bs(a), with s = i, j and i 6= j ∈ {1, 2}, verifies bs(a) = b1(a)
if s = 1 or bs(a) = b2(a) + γR if s = 2.

In Proposition 5.1 we show that when the market becomes more uncertain, the firm
waits longer until makes the decision of adjusting the production process. This is coherent
with the classical Theory of Real Options, which postulates that more uncertainty postpones
decisions. Furthermore, when the market becomes more attractive, i.e., the trend associated
with the demand process increases, the decision of replacing the production process reacts in
two ways: if the firm intends to increase the risk then it anticipates the decision, otherwise,
it postpones the decision.

Proposition 5.1. Let δ and ζ be implicitly defined by Equations (4.5) and (4.9).
Then, the functions (µ, σ2) → δ(µ, σ2) and (µ, σ2) → ζ(µ, σ2) are such that

∂δ

∂µ
(µ, σ) ≤ 0 and

∂ζ

∂µ
(µ, σ) ≤ 0 ,

∂δ

∂σ
(µ, σ) ≥ 0 and

∂ζ

∂σ
(µ, σ) ≤ 0 .

First of all, we materialize the situation described in Figure 2 by setting that one of
the following situations happen: (a) i = 1 and j = 2 or (b) j = 1 and i = 2. In the situation
(a), changing ai to ai + ∆ makes the scenario of adjusting the production process less risky
than the original one. Consequently, when we decrease the slope of Π1, the replacement is



496 F.S. Almeida, C. Nunes and C. Oliveira

even riskier. In the case (b) by changing ai to ai + ∆, the second production process becomes
a bit riskier, and, consequently, such adjustment would be more contained in terms of gains
and losses. Therefore, we can say that all the process of adjustment comes riskier.

We prove that for θ > 1, the riskier the replacement process the later is made the
decision of replacement. Note that in the case θ = 1 (i.e., both Π1 and Π2 are linear functions),
changing the risk does not have any impact on the thresholds, as in this case both δ and ε

depend on a1, a2, b1 and b2 through c, which we assume to be constant.

Proposition 5.2. Let δ and ζ be implicitly defined by Equations (4.5) and (4.9).
Then the functions (a1, b1) → δ(a1, b1) and (a2, b2) → ζ(a2, b2) are such that

∂δ

∂a1

(
a1, a1c− d; θ

)
< 0 , and

∂ζ

∂a2

(
a2, a2 c− d; θ

)
< 0 for all θ > 1 ,

∂δ

∂a1

(
a1, a1c− d; θ=1

)
= 0 , and

∂ζ

∂a2

(
a2, a2 c− d; θ=1

)
= 0 .

6. THE EFFECT OF THE EXIT OPTION

In this section we discuss how the abandonment option may influence the replacement
decision. We denote by α the exit threshold, and thus, once the firm invests in the second
production process, the firm stays active as long as the demand is above α; then it abandons
the market. To avoid trivial problems we assume that

(6.1) b2 > γS ,

which means that the abandonment problem is not trivial, in the sense that the time to
abandon is finite, as the fixed cost (in the second production process) is larger than the exit
rate cost.

For future reference, assuming that Π2 is such that Π2(x) = a2xθ2 − b2, with θ2 ≥ 1,
then

W̃(x) =


0 , x ≤ α ,

Ãxβ1 +
a2

γ − µθ2

xθ2 − b2 − γS

γ
, x > α ,

where

(6.2) Ã = − 1
β1

a2

γ − µθ2

αθ2−β1 > 0 and α = θ2

√
b2 − γS

a2

(
1− θ2

β2

)
.

These results follow in light of the Propositions 4.1 and 4.2 presented in the previous section.
Additionally, the firm postpones the exit decision when either the uncertainty or the drift
of the demand process increase. One can obtain such conclusions noticing that the function
(µ, σ) → α(µ, σ) verifies

∂α

∂η
(µ, σ) =

α1−θ2

β2
2

b2 − γS

a2

∂β2

∂η
< 0 , with η = µ, σ .

Next we analyze separately the two cases: increasing and decreasing risk.
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6.1. Increasing risk

In this section we consider the framework described in Section 4.1. In addition to the
conditions (4.2) and (6.1), we also assume that

b1 ≤ γS + γR ,

which means that the replacement followed by the abandonment is more costly than the fixed
cost in the less risky production process, and therefore the time to invest is strictly positive.

The optimal strategy is depicted in Figure 3, and should be interpreted as follows: the
firm stays in the first production process as long as the demand is below δ̃. Then, as soon
as it reaches this value, the firm replaces the production process, investing in the risky one.
If the demand decreases below α, the firm exits the market.

PP1

PP2 -

-uδ̃
?? ? ?

(stay with the PP1) (replacement)

u
α

(stay with the PP2)(exit)

Figure 3: Replacement and abandonment strategy, when investing in the risky market.

Note that in this case the firm will stay in production after replacement for a strictly
positive time, as δ̃ > α. Thus, the value function is such that

(6.3) W(x) =


B̃xβ2 +

a1

γ − µ
x− b1

γ
, x < δ̃ ,

Ãxβ1 +
a2

γ − µθ
xθ − b2

γ
−R , x ≥ δ̃ ,

where Ã is as in Equation (6.2), when we assume that θ2 = θ, and B̃ is given by

B̃ =

(
Ãδ̃β1 +

a2 δ̃θ

γ − µθ
− a1δ̃

γ − µ
+

b

γ
−R

)
δ̃−β2 .(6.4)

Additionally, δ̃ satisfies the following equation

(6.5) h(x) := Ã(β2 − β1) xβ1 +
a2 (β2 − θ)

γ − µθ
xθ − a1(β2 − 1)

γ − µ
x + β2

b− γR

γ
= 0 .

As in Section 4, the terms a1
γ−µ x− b1

γ and a2
γ−µθ

xθ − b2
γ represent the net present value

associated with the first and second production processes, respectively. Additionally, the
terms B̃xβ2 and Ãxβ1 represent, respectively, the value added by the replacement and exit
options when the demand is x.
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Proposition 6.1. Let Πi, with i = 1, 2 be given by (4.1) and Ã and α be defined as

in Equation (6.2) by setting that θ2 = θ. Then, the solution of (3.5), W, is given by (6.3),
with B̃ > 0 given by (6.4). Additionally, δ̃ is the unique positive solution to the Equation

(6.5) satisfying δ̃ > α.

In the next proposition we discuss the influence of the exit option in the investment
threshold. As expected, in the case we invest in a more risky production process, the decision
is anticipated in case we still have the option to abandon the market. The proof of next
proposition is trivial since Ã(β2 − β1) xβ1 > 0.

Proposition 6.2. Let δ be the unique positive solution to Equation (4.5) and δ̃ is the

unique solution of Equation (6.5) such that δ̃ > α. Then, δ̃ < δ.

Additionally, we can say that, as it holds when there is no option to abandon the
market, a risky scenario, in the sense that a1 is replaced by a1−∆ and bi ≡ bi(ai) = ai c− d

is replaced by bi(ai−∆), postpones the replacement decision, when compared with the initial
situation. The proof of this result follows in light of the proof of Proposition 5.2.

Proposition 6.3. Let δ̃ be implicitly defined by Equation (6.5). Then, the function

(a1, b1) → δ̃(a1, b1) is such that

∂δ̃

∂a1

(
a1, a1c− d

)
< 0 .

The following table presents a numerical example which illustrates that although both
replacement thresholds (δ, without the abandonment option, and δ̃, with the abandonment
option) increase with risk, the pace is not the same: δ̃ increases faster with increasing risk
(here measured by ∆) than δ.

Table 1: Thresholds δ and δ̃ considering the parameters: µ = 0.001, σ2 = 0.005, γ = 0.01,
a1 = 1, b1 = 1, a2 = 1, b2 = 10, θ = 2, R = 10, S = 110.

∆ δ̃(a1 − ∆) δ(a1 − ∆) δ(a1 − ∆) − δ̃(a1 − ∆)

0 5.046 5.171 0.125
0.1 5.194 5.311 0.117
0.2 5.342 5.451 0.109
0.3 5.488 5.591 0.103

6.2. Decreasing risk

In this section we consider the set up introduced in Section 4.2. From conditions
b1 ≥ b2 + γR and b2 > γS, trivially follows that:

b1 ≥ γR + γS .
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This condition means that replacement occurs in finite time, as the fixed cost rate, before
replacement, is larger than the total cost of replacement and abandonment.

We find two different strategies according to the value of the replacement cost. On the
one hand, when R is sufficiently large, meaning that R > R∗, where

(6.6) R∗ ≡ 1
β1

(
a1

θ − β1

γ − µθ
αθ + β1

b− γS

γ

)
,

the optimal strategy is depicted in Figure 4. In this case the value function takes the form

(6.7) W(x) =


−R− S , x ≤ ζ̃ ,

Ã1x
β1 +

a1

γ − µθ
xθ − b1

γ
, x > ζ̃ ,

where

(6.8) Ã1 = − 1
β1

a1

γ − µ
ζ̃θ−β1 and ζ̃ = θ

√
b1 − γ (R + S)

a1

(
1− 1

β2

)
.

Here, Ã1x
−β1 represents the value of the abandonment option. Therefore, the firm produces

using the first production process for large values of the demand, as long as they are above ζ̃.
Once the demand hits ζ̃, it decides to abandon the market, paying a sunk cost equal to R+S.
In this case, the firm does not actually produce with the second production process, as the
time elapsed between replacement and abandonment is zero.

PP1 -uζ̃
(Exit) (Stay with the PP1)

Figure 4: Abandonment strategy, when investing in the less risky market.

On the other hand, when R < R∗, the firm decides either to replace its production
process by a second one when the demand reaches any level in ]α, ζ], or to abandon the
market when the demand is smaller than or equal to the level α. The optimal strategy, in
this case, is depicted in Figure 5. Furthermore, the value function is given by

(6.9) W(x) =



−R− S , x ≤ α ,

Ãxβ1 +
a2

γ − µ
x− b2

γ
−R , α < x ≤ ζ ,

Ã2xβ1 +
a1

γ − µθ
xθ − b1

γ
, x > ζ ,

where Ã and α are defined in Equation (6.2) by setting that θ2 = 1, and

Ã2 − Ã =
1
β1

(
a2

γ − µ
ζ − a1θ

γ − µθ
ζθ

)
ζ−β1(6.10)

and ζ is the unique solution to the equation (4.9).
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PP1

PP2 -

-uζ
??????

(Replacement) (Stay with the PP1)

u
α

(stay with the PP2)(exit)

Figure 5: Replacement and abandonment strategy, when investing in the less risky market.

We start by noting that Ãxβ1 represents the value of the abandonment option, while
Ã2xβ1 represents the value of the replacement option when the demand is x. This repre-
sentation is coherent with the classical theory since we are assuming that the exit option is
only available after the replacement. Therefore in each moment until the scrapping, it is only
possible to make one decision.

Proposition 6.4. Let Πi, with i = 1, 2 be given by (4.6) and Ã and α be defined as

in Equation (6.2) by setting that θ2 = 1. Then, the solution of (3.5) is as follows:

• When R ≥ R∗, the value function, W, is given by (6.7), and Ã1 > 0 given by (6.8);

• When R < R∗, the value function, W, is given by (6.9), and Ã2 > 0 given by (6.10).
Additionally, ζ is the unique positive solution to Equation (4.9) satisfying ζ > α.

Finally, we study the impact of changing the drift and/or the volatility in the parameter R∗.
As we show in the next proposition, the situation depicted in Figure 5 is more likely to occur
than the situation depicted in Figure 4 with increasing the drift or the volatility.

Proposition 6.5. Consider R∗(µ, σ) ≡ R∗, with R∗ defined as in (6.6). Then the

functions R∗(·, σ) and R∗(µ, ·) are both decreasing.

7. CONCLUSION

This paper considers the problem of a producing firm that has the option to replace its
current production process by a riskier / less risky one. The concept of risk here considered
relies on the structure of the running payoff function, as described before.

Our main result is that the time until the decision of replacement increases when the
risk associated with the replacement option increases. Additionally, if the firm evaluates the
replacement option taking into account the abandonment option, then its decision regarding
replacement is anticipated. But not only the timing changes, but also there is a clear change
in the structure of the values of the economic indicator that lead to the decision. In fact, if,
on the one hand, when we increase the level of risk of the alternative production process the
replacement is optimal for large levels of the economic indicator, on the other hand, if we
decrease, the replacement is optimal for small levels of the economic indicator.
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A. APPENDIX – Proofs

Unless otherwise stated, we assume, without loss of generality, that R = 0.

A.1. Section 4

Before we prove Propositions 4.1 and 4.2, we state an auxiliary lemma, which will
simplify the proof of this proposition.

Lemma A.1. Equation (4.5) (resp., (4.9)) has a unique solution, δ (resp., ζ).

Proof: To prove that δ is the unique root of Equation (4.5), we calculate f ′:

(A.1) f ′(x) =
a2θ(β2 − θ)

γ − µθ
xθ−1 − a1(β2 − 1)

γ − µ
.

Then, f ′(x) ≥ 0, for x ∈ [x1,∞[, where x1 is the unique zero of f ′(x), given by

x1 =
(

a1

θa2

β2 − 1
γ − µ

γ − µθ

β2 − θ

) 1
θ−1

.

Furthermore, as

f(0) =
β2 b

γ
≤ 0 and lim

x→∞
f(x) = ∞ ,

we conclude that there is a unique positive solution to the equation f(x) = 0, denoted by δ.

To prove that there is a unique positive solution ζ to Equation (4.9), we can follow the
same strategy. For future reference, we note that g′(x) ≥ 0 for x ∈ [x2,∞[, where x2 is the
unique zero of g′(x). Furthermore, as

g(0) =
β1b

γ
≤ 0 and lim

x→∞
g(x) = ∞ ,

we conclude that there is a unique positive solution to the equation g(x) = 0, denoted by ζ.

Proof of Proposition 4.1: To find the parameter B and the threshold δ we use the
smooth pasting conditions

a1

γ − µ
δ − a2

γ − µθ
δθ + Bδβ2 − b

γ
= 0 ,

a1

γ − µ
− a2

γ − µθ
θδθ−1 + β2 Bδβ2−1 = 0 .

Consequently, we obtain B given by (4.4) and δ as a solution to Equation (4.5). Additionally,
Lemma A.1 states that δ is the unique solution to Equation (4.5).
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To prove that the function V defined by (4.3) satisfies the HJB equation, we need to
prove the following relationships:

γV (x)− µxV ′(x)− σ2

2
x2V ′′(x)−Π1(x) + Π2(x) ≥ 0 , for all x ≥ δ ,(A.2)

V (x) ≥ 0 , for all x ≤ δ .(A.3)

First, we note that the inequality in (A.2) may be written as

(A.4) f1(x) := Π1(x)−Π2(x) ≤ 0 , for all x ≥ δ ,

as for x ≥ δ, V = 0. Since f ′1(x) = a1 − a2θxθ−1, then f1 is increasing for x <
(

a2
a1θ

) 1
θ−1 and

decreasing for x >
(

a2
a1θ

) 1
θ−1 . Taking into account that

f1(0) = −b ≥ 0 and lim
x→+∞

f1(x) = −∞ ,

then (A.4) holds true if and only if

(A.5) Π1(δ)−Π2(δ) ≤ 0 .

To prove this, we note that

Π1(δ)−Π2(δ) = −1
2

σ2(δ)2 V ′′(δ) ,

where the equality follows because γV (δ)− µδV ′(δ)− σ2

2 ζ2V ′′(δ)−Π1(δ) + Π2(δ) = 0 and
the smooth pasting conditions. Additionally, we can calculate

V ′′(δ) = β2 (β2 − 1)Bδβ2−2 − a2θ(θ − 1)
γ − µθ

,

which, combined with the smooth pasting conditions, allow us to obtain

−1
2

σ2δ2V ′′(δ) = −1
2

σ2

[
a2 (β2 − θ) θ

γ − µθ
δθ − a1(β2 − 1)

γ − µ
δ

]
< −1

2
σ2

[
a2 (β2 − θ)

γ − µθ
δθ − a1(β2 − 1)

γ − µ
δ

]
=

1
2

σ2 β2 b

γ
≤ 0 .

This proves (A.5) and allow us to conclude that

δ ≥ c .

Finally, to prove the inequality in (A.3), we notice that, in light of the relationship
f(δ) = 0, the parameter B can be written as

B = − 1
β2

[
a1

γ − µ
δ − a2θ

γ − µθ
δθ

]
δ−β2 .

Now, calculating the derivative of the function f2(x) := − 1
β2

(
a1

γ−µ x− a2 θ
γ−µθ

xθ
)
, we obtain

f ′2(x) = − 1
β2

(
a1

γ−µ −
a2 θ2

γ−µθ
xθ−1

)
. Consequently, the function f2 is increasing for x ∈ ]δ1,∞[,

where δ1 is the unique positive root of f ′2. Combining this with the fact that f2(δ0) =
β2

a1δ0
γ−µ

θ−1
β2−θ > 0, then δ1 < δ0 ≤ δ, and, consequently, B ≥ 0.



Production Processes with Different Levels of Risk: Addressing the Replacement Option 503

Taking into account Equation (4.3) and the smooth pasting conditions, we have that

(A.6) V (0) = − b

γ
> 0 and V (δ) = V ′(δ) = 0 .

Additionally,

V ′(x) = β2Bxβ2−1 +
a1

γ − µ
− a2θ

γ − µ
xθ−1 ,

and, consequently, V ′(0) = a1
γ−µ > 0. Since

V ′′(x) =
(

β2 (β2 − 1)Bxβ2−θ − a2θ(θ − 1)
γ − µθ

)
xθ−2 ,

then V ′ is decreasing for all x ∈ ]0, δ2[ and increasing for all x ∈ ]δ2,∞[, where δ2 is the unique
positive root of the equation V ′′(x) = 0. This means that one of two situations may happen:
(1) V ′(x) > 0 for all x∈ ]0, δ[ or (2) V ′(x) > 0 for all x∈ ]0, δ2[ and V ′(x) < 0 for all x∈ ]δ2, δ[.
The situation (1) cannot happen in light of (A.6). Naturally, this implies that V ≥ 0.

Proof of Proposition 4.2: In order to determine values for A and ζ, we use the
smooth pasting conditions

a1ζ
θ

γ − µθ
− a2 ζ

γ − µ
+ Aζβ1 − b

γ
= 0 ,

a1θ

γ − µθ
ζθ−1 − a2

γ − µ
+ β1Aζβ1−1 = 0 ,

which allow us to obtain the parameter A, as defined in (4.8), and ζ as a solution to Equation
(4.9). Additionally, Lemma A.1 states that ζ is the unique solution to Equation (4.9).

To prove that the function V defined by (4.7) satisfies the HJB equation, we need to
prove the following relationships:

γV (x)− µxV ′(x)− σ2

2
x2V ′′(x)−Π1(x) + Π2(x) ≥ 0 , for all x ≤ ζ ,(A.7)

V (x) ≥ 0 , for all x ≥ ζ .(A.8)

First, we note that the inequality in (A.7) can be written as

(A.9) Π1(x)−Π2(x) ≤ 0 , for all x ≤ ζ .

In fact, a similar argument to the one used to prove the inequality in (A.2) proves that the
inequality in (A.9) is satisfied. Additionally, we get that

ζ ≤ c .

To prove the inequality in (A.8), we note that, in light of the relationship g(ζ) = 0, the
parameter A can be written as

(A.10) A = − 1
β1

(
a1θ

γ − µθ
ζθ − a2

γ − µ
ζ

)
ζ−β1 .
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Additionally, V (ζ) = 0 in light of the smooth pasting conditions. Taking into account Equa-
tion (A.10), we can calculate

V ′(x) = a1θ
xθ−1

γ − µθ
− a2

γ − µ
+ A1β1xβ1−1

=
a1θ

γ − µθ
xθ−1 − a2

γ − µ
−
(

a1θ

γ − µθ
ζθ−1 − a2

γ − µ

)
xβ−1

ζβ1−1
≥ 0 ,

where the last inequality follows from:

x → a1θ

γ − µθ
xθ−1 − a2

γ − µ
is an increasing function, and

xβ−1

ζβ1−1
≤ 1 for all x ≥ ζ .

As a consequence, the inequality (A.8) holds true, because V is increasing. To finish the
proof, we just need to verify that A > 0. Consider the function

(A.11) g1(x) :=
a1θ

γ − µθ
xθ − a2

γ − µ
x .

Taking into account that g′1(x) := a1θ2

γ−µθ
xθ−1 − a2

γ−µ , then g1 is increasing in ]ζ1,∞[, where
ζ1 is the unique positive root of g′1. The results follow in light of the facts:

g(0) = 0 , g(ζ0) = ζ0
a2

γ − µ

β1(1− θ)
θ − β1

> 0 and ζ ≥ ζ0 .

A.2. Section 5

Proof of Proposition 5.1: By using the Implicit Function Theorem, we obtain that

∂δ

∂µ
(µ) = −∂f

∂µ
(δ;µ)

(
∂f

∂δ

)−1

(δ;µ) and
∂ζ

∂µ
(µ) = −∂g

∂µ
(ζ;µ)

(
∂g

∂ζ

)−1

(ζ;µ) .

Taking into account Lemma A.1, we note that ∂f
∂δ (δ;µ) > 0 and ∂g

∂δ (δ;µ) > 0, and conse-
quently, we just need to study the sign of ∂f

∂µ(δ;µ) and ∂g
∂µ(δ;µ). Taking into account the

smooth pasting conditions we get, after some simplifications,

∂f

∂µ
(δ;µ) =

a2θ

γ − µθ

(
1
β2

∂β2

∂µ
+

β2 − θ

γ − µθ

)
δθ − a1

γ − µ

(
1
β2

∂β2

∂µ
+

β2 − 1
γ − µ

)
δ := p1(δ; θ) ,

∂g

∂µ
(ζ;µ) =

a1θ

γ − µθ

(
− 1

β1

∂β1

∂µ
+

θ − β1

γ − µθ

)
ζθ +

a2

γ − µ

(
1
β1

∂β1

∂µ
− 1− β1

γ − µ

)
ζ := p2(ζ; θ) .

Assume for now that (i) θ = 1, a1 < a2 and b1 < b2 and (ii) θ = 1, a1 > a2 and and b1 > b2.
Then, we can calculate explicitly the following derivatives (see Corollaries 4.1 and 4.2):

(i)
∂δ

∂µ
(µ) =

b

a

1
γ

∂β2

∂µ

(β2 − 1)2
≤ 0 and (ii)

∂ζ

∂µ
(µ) =

b

a

1
γ

∂β1

∂µ

(β1 − 1)2
≤ 0 .

Combining these derivatives with the expressions of ∂f
∂µ(δ;µ) and ∂g

∂µ(ζ;µ), it is easy to note
that

(A.12)
1
β2

∂β2

∂µ
+

β2 − 1
γ − µ

≥ 0 and
1
β1

∂β1

∂µ
− 1− β1

γ − µ
≤ 0 .
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Indeed, the previous inequalities do not depend on a1 neither on a2, and thus this means
that the result is true for every a1, a2 > 0. Additionally, returning to the case θ > 1, it is a
matter of calculations to see that ∂δ0

∂µ (µ) ≤ 0. In fact, this implies that 0 ≤ ∂f
∂µ(δ0;µ), and,

consequently,
1
β2

∂β2

∂µ
+

β2 − θ

γ − µθ
≥ 0 .

Furthermore, noticing that θ−β1

γ−µθ
= θ−β1

− 1
2

σ2 (θ−β1) (θ−β2)
= 2

σ2
1

(β2−θ) and that

∂

∂θ

(
θ − β1

γ − µθ

)
=

2
σ2

1
(β2 − θ)2

> 0 ,

we obtain:

− 1
β1

∂β1

∂µ
+

(θ − β1)
γ − µθ

≥ − 1
β1

∂β1

∂µ
+

(1− β1)
γ − µ

≥ 0 .

Note now that the function p1(x; θ) has two roots: x = 0 and x = a∗, where a∗ is
its unique positive root. Additionally, it is a matter of calculations to see that there is
a unique b∗ such that ∂p1

∂x (b∗; θ) = 0 and that, in light of Equation (A.12), ∂p1

∂x (0; θ) < 0.
Therefore, p1(x; θ) is increasing for all x > b∗, and decreasing for all x < b∗, and, consequently,
0 ≤ p1(δ0; θ) ≤ p1(δ, θ), since ∂δ

∂b < 0. Finally, we can observe that p2(x, θ) = 0 if and only if
x = 0 and x = c∗ > 0, where

c∗ = θ−1

√√√√√ a2

a1θ

γ − µθ

γ − µ

(
− 1

β1

∂β1

∂µ + 1−β1

γ−µ

)
(
− 1

β1

∂β1

∂µ + θ−β1

γ−µθ

) ≤ ζ0
θ−1

√√√√− 1
β1

∂β1

∂µ + 1−β1

γ−µ

− 1
β1

∂β1

∂µ + θ−β1

γ−µθ

≤ ζ0 .

Furthermore, ∂p2

∂x (x; θ) < 0 for all x < d∗ and ∂p2

∂x (x; θ) > 0 for all x > d∗, where d∗ is the
unique root of the function x → ∂p2

∂x (x; θ). Therefore, p2(x; θ) is an increasing function in x,
for a fixed θ, if x ≥ d∗, with c∗ > d∗. Combining this with the roots to the equation p2(x; θ)
we get that ζ > ζ0 ≥ c∗ > d∗ and, consequently,

0 = p2(c∗; θ) ≤ p(ζ; θ) ,

which concludes this part of the proof.

To finish the proof, we use the Implicit Function Theorem

∂δ

∂σ
(σ) = −∂f

∂σ
(δ;σ)

(
∂f

∂δ

)−1

(δ;σ) and
∂ζ

∂σ
(σ) = −∂g

∂σ
(ζ;σ)

(
∂g

∂ζ

)−1

(ζ;σ) .

From the previous considerations, one just need to discuss the signs of ∂f
∂σ (δ;σ) and ∂g

∂σ (δ;σ).
By using the smooth pasting conditions, one can prove that

∂f

∂σ
(δ;σ) =

a2θ

γ − µθ

(
1
β2

∂β2

∂σ
+

(β2 − θ) σ(θ − 1)
γ − µθ

)
δθ − a1

γ − µ

(
1
β2

∂β2

∂σ

)
δ := q1(δ) ,

∂g

∂σ
(ζ;σ) =

a1θ

γ − µθ

(
− 1

β1

∂β1

∂σ
+

(θ − β1) σ(θ − 1)
γ − µθ

)
ζθ +

a2

γ − µ

(
1
β1

∂β1

∂σ

)
ζ := q2(ζ) .

To show that ∂f
∂σ ≤ 0, we note that, since β2 ≥ 0 and ∂β2

∂σ ≤ 0, then − a1
γ−µ

1
β2

∂β2

∂σ ≥ 0.
Assuming now that b = 0, then δ = δ0, it is a matter of calculations to see that ∂δ0

∂σ ≥ 0.
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Consequently, 0 ≥ q(δ0), thus 1
β2

∂β2

∂σ + (β2−θ) σ(θ−1)
γ−µθ

≤ 0. Trivial calculations allow us to con-
clude that q1(x) is decreasing for all x > e∗ and increasing for all x < e∗, where e∗ is the unique
positive root of the function x → q′(x). Since there is x∗ > 0 such that x = 0 and x = x∗ > 0
are the unique non-negative roots of the function x → q(x), it follows that 0 ≥ q(δ0) ≥ q(δ).

Now, one can note that q2(x) = 0 if and only if x = 0 and x = m∗ > 0, where

m∗ = θ−1

√√√√ a2

a1θ

γ − µθ

γ − µ

− 1
β1

∂β1

∂σ

− 1
β1

∂β1

∂σ + (θ−β1) σ(θ−1)
γ−µθ

< θ−1

√
a2

a1θ

γ − µθ

γ − µ
< ζ0 < ζ .

The first inequality follows because ∂β1

∂σ > 0. Moreover, calculating the derivative of q2,
in order to x, we can conclude that q(x) is increasing for x ≥ n∗, where n∗ is such that
q2
′(n∗) = 0. Combining all these facts we have

0 = q2(m∗) ≤ q2(ζ) ,

which ends the proof.

Proof of Proposition 5.2: We will focus our attention in the case θ > 1. To prove
Proposition 5.2 we note that

f(x; a1) =
a2 (β2 − θ)

γ − µθ
xθ − a1(β2 − 1)

γ − µ
−

β2

(
b1(a1)− b2

)
γ

,

then,

f(x; a1+∆)− f(x; a1) = ∆
(

β2

γ
c− β2 − 1

γ − µ
x

)
.

Therefore, f(x; a1+∆) > f(x; a1) for every x < ỹ, where

ỹ = c
β2

γ

γ − µ

1− β2
.

Note that

f(ỹ) = a2 cθ

(
β2 − θ

γ − µθ

(
β2

γ

γ − µ

β2 − 1

)θ
− β2

γ

)

= a2 cθ

(
1

σ2/2 (θ − β1)

(
1− 1

β1

)θ
+

1
β1σ2/2

)

= a2 cθ 1
σ2/2 (θ − β1)

((
1− 1

β1

)θ
−
(

1− θ

β1

))
,

where we have used the following relationships:

β2

γ

γ − µ

β2 − 1
=

β1(β2 − 1) + 1− β2

β1(β2 − 1)
> 1 and γ − µθ = −σ2

2
(θ − β1) (θ − β2) .

To determine the sign of f(ỹ), we define the function

(θ;β1, σ2) → n(θ;β1, σ2) =
(

1− 1
β1

)θ
−
(

1− θ

β1

)
.
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Then, taking into account that

∂n

∂β1
(θ;β1, σ

2) =
θ

β2
1

((
1− 1

β1

)θ−1

− 1

)
> 0(A.13)

and

lim
β1→−∞

n(θ;β1, σ
2) = 0 ,(A.14)

it follows that f(ỹ) > 0. Consequently, f(x; a1+∆)− f(x; a1) > 0 for all x < ỹ, which implies
that δ

(
a1+∆, b(a1+∆)

)
< δ
(
a1, b(a1)

)
. The case θ = 1 follows in light of similar arguments,

using the relation n(1;β1, σ
2) = 0.

To finish the proof, we can apply the same type of arguments to the function g. In fact,
g(x; a2 +∆) > g(x; a2) for every x < x̃, where

x̃ = −c
β1

γ

γ − µ

1− β
.

Taking into account that

g(x̃) = a1 cθ 1
σ2/2 (β2 − θ)

((
1− 1

β2

)θ
−
(

1− θ

β2

))
,

by using similar arguments to the previous ones, we get that g(x̃) > 0.

A.3. Section 6

Before we start the proofs, we note that the value function may be re-written as follows:

W(x) = sup
τ1≤τ2∈S

Ĩ(τ1, τ2, x)−R− S ,

where Ĩ is defined as in (2.2). Therefore, throughout this section we will use the following
notation:

H(x) ≡ sup
τ1≤τ2∈S

Ĩ(τ1, τ2, x) .

Additionally, we consider R ≥ 0.

Lemma A.2. Equation (6.5) has a unique solution δ̃, which satisfies δ̃ > α, where

α is defined as in Equation (6.2) by setting that θ2 = θ.

Proof: To prove that δ̃ is the unique root of Equation (6.5) satisfying δ̃ > α, we
calculate h′′:

h′′(x) = Ã(β2 − β1) β1(β1 − 1) xβ1−2 +
a2θ (θ − 1) (β2 − θ)

γ − µθ
xθ−2 > 0 .

Taking into account that
lim

x→0+
h(x) = lim

x→+∞
h(x) = +∞ ,
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the result follows in light of the calculations:

h(α) = −a1(β2 − 1)
γ − µ

+ β2
b1 − γR− γS

γ
< 0 ,

where we have used the smooth pasting conditions (used to obtain Ã and α):

Ãαβ1 +
a2

γ − µθ
αθ b2 − γE

γ
= 0 ,

Ãβ1α
β1 +

a2θ

γ − µθ
αθ = 0 .

Proof of Proposition 6.1: The parameters B̃ and δ̃ may be obtained by using the
smooth pasting conditions:

B̃ δ̃β2 +
a1

γ − µ
δ̃ − b1 − γR− γS

γ
= Ã δ̃β

1 +
a2

γ − µθ
δ̃θ − b2 − γS

γ
,

B̃β2 δ̃β2−1 +
a1

γ − µ
= Ãβ1 δ̃

β1−1 +
a2θ

γ − µθ
δ̃θ−1 .

Moreover, in light of Lemma A.2, δ̃ is the unique positive solution Equation (6.5) satisfying
the condition δ̃ > α.

To prove that W, where W is defined by (6.7), is the solution to the optimal stopping
problem (2.2), we need to verify that the function H(x) = W(x)+S +R satisfies the following
inequalities:

γH(x)− µxH ′(x)− σ2

2
x2H ′′(x)−

(
Π1(x) + γR + γS

)
≥ 0 , for all x ≥ δ̃ ,(A.15)

H(x) ≥ W̃(x) , for all x ≤ δ̃ .(A.16)

First of all, we note that (A.15) can be written as

Π1(x)−Π2(x) + γR ≤ 0

because H(x) = W̃(x) and

(A.17) γ W̃(x)− µxW̃ ′(x)− σ2

2
x2 W̃ ′′(x)−Π2(x)− γS = 0

for x ≥ δ̃. Since the function x → Π1(x)− Π2(x) + γR is increasing for x <
(

a1
a2 θ

) 1
θ−1 and

decreasing for x >
(

a1
a2 θ

) 1
θ−1 , we just need to prove that Π1(δ̃)−Π2(δ̃) + γR ≤ 0. Now, com-

bining Equation (A.17) with

γ H(x)− µxH ′(x)− σ2

2
x2H ′′(x)−

(
Π1(x) + γR + γS

)
= 0 ,

we obtain the following equality:

−σ2

2
δ̃2
(
H ′′(δ̃)− W̃ ′′(δ̃)

)
= Π1(δ̃)−Π2(δ̃) + γR .
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It is a matter of calculations to see that

H ′′(δ̃)− W̃ ′′(δ̃) = h′(δ̃) δ̃−1 > 0 ,

where h′ is the derivative of h, defined in (6.5), and the last inequality follows in light of the
calculations in the proof of Lemma A.2.

To prove the inequality (A.16), we note that the function x → H(x) is increasing if
B > 0. In case B > 0, as H(0) = − b1−γR−γS

γ ≥ 0, this proves that H(x) ≥ W̃(x) for all x ≤ α.
To see that α ≤ x ≤ δ̃, we note that δ̃ is the unique solution to the equation H(x) = W̃(x).
Therefore, since H(α)− W̃(α) = H(α) > H(0) ≥ 0, the result is straightforward.

To see that B > 0, one can see that

Bδ̃β2 =
δ̃

β2

(
Ãβ1 δ̃

β1−1 +
a2θ

γ − µθ
δ̃θ−1 − a1

γ − µ

)
.

Additionally, the function x → Ãβ1xβ1−1 + a2 θ
γ−µθ

xθ−1 − a1
γ−µ is increasing and crosses zero

once. By using the smooth pasting conditions (used to obtain Ã and α), we get

Ãβ1α
β1−1 +

a2θ

γ − µθ
αθ−1 − a1

γ − µ
= − a1

γ − µ
< 0 .

Let x̃ be such that Ãβ1 x̃
β1−1 + a2 θ

γ−µθ
x̃θ−1 − a1

γ−µ = 0. Then

h(x̃) = β2

(
A(1− β1) x̃β1 +

a2(1− θ)
γ − µθ

x̃θ +
b− γR

γ

)
≡ h̃(x̃) .

Once again, due to the smooth pasting condition, h̃(α) = 0, and

h̃′(x) = β2

(
A(1− β1) β1 x̃

β1−1 +
a2(1− θ) θ

γ − µθ
xθ−1

)
< 0 .

It follows that h(x̃) < 0, and therefore x̃ < δ̃. Consequently B > 0.

Proof of Proposition 6.4: We start by noticing that, since the terminal cost is
W̃(x), as one can see through (3.5), the smooth pasting conditions are different accord-
ing to ζ > α or ζ ≤ α. Let g be defined as in (4.9). Then it is a matter of calculations to see
that

g(α) = a1
θ − β1

γ − µθ
αθ + β1

b1 − γS − γR

γ
.

Taking into account the analysis made in Lemma A.1, ζ > α ⇔ g(α) < 0, which means that

R < R∗ ≡ 1
β1

(
a1

θ − β1

γ − µθ
αθ + β1

b− γS

γ

)
.

The proof of Proposition 6.4 when R ≥ R∗ follows in light of the arguments used in the proof
of Proposition 4.2. From now on, we will treat the case R < R∗.

By using the smooth pasting conditions, we obtain the following equations

Ã2 ζβ1 +
a1

γ − µθ
ζθ − b1 − γS − γR

γ
= Ãζβ1 +

a2

γ − µ
ζ − b2 − γS

γ
,

Ã2β1ζ
β1−1 +

a1θ

γ − µθ
ζθ−1 = Ãβ1ζ

β1−1 +
a2

γ − µ
.
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These equations allow us to obtain the expression of Ã2 as in (6.10) and Equation (4.9).
In light of Lemma A.1, there is a unique solution ζ to Equation (A.1) and ζ < c.

To prove that W, defined by (6.9), is the solution of the optimal stopping problem (2.2),
we need to verify that H(x) = W(x) + S + R satisfies the following inequalities:

γH(x)− µxH ′(x)− σ2

2
x2H ′′(x)−

(
Π1(x) + γR + γS

)
≥ 0 , for all x ≤ ζ ,(A.18)

H(x) ≥ W̃ , for all x ≥ ζ .(A.19)

In order to prove the inequality (A.18), we start by noting that, for x < α, we can write this
equation as

(A.20) Π1(x) + γ (S + R) ≤ 0 for all x ≤ α .

Since Π1(0) + γ (S + R) = −b1 + γ (S + R) < 0 and Π1 is an increasing function, it follows
that (A.20) holds true if and only if Π1(α) + γ (S + R) ≤ 0. This is true because

0 ≥ g(α) = −β1

γ

(
a1

θ − β1

γ − µθ

γ

(−β1)
αθ −

(
b1 − γS − γR

))
≥ −β1

γ

(
Π1(α) + γ (S + R)

)
,

where the last inequality follows in light of the fact θ−β1

γ−µθ

γ
(−β1) > 1. For α < x < ζ, we use a

similar argument to the one used in the proof of Proposition 6.1. Therefore, the inequality
(A.18) can be written as

γW̃(x)− µxW̃ ′(x)− σ2

2
x2W̃ ′′(x)−

(
Π1(x) + γR + γS

)
= Π2(x)−Π1(x)− γR ,

which means that we just need to show that Π2(x)−Π1(x)− γR ≥ 0, for all α < x ≤ ζ. We
can easily prove that the function x → Π2(x)−Π1(x)−γR increases for x < a1

θa2
and decreases

for x > a1
θa2

. Combining this with the fact that Π2(0)−Π1(0)− γR = b− γR ≥ 0, we need to
prove that Π2(ζ)−Π1(ζ)− γR ≥ 0, which is true in light of Proposition 4.2.

To prove the inequality (A.19), we note that

H(x)− W̃(x) = (Ã2 − Ã) xβ1 +
a1

γ − µθ
xθ − a2

γ − µ
x− b− γR

γ
, H(ζ)− W̃(ζ) = 0 ,

and
H ′(x)− W̃ ′(x) =

(
a2

γ − µ
− a1θ

γ − µθ
ζθ−1

)(
x

ζ

)β1−1

−
(

a2

γ − µ
− a1θ

γ − µθ
xθ−1

)
.

Taking into account the proof of Proposition 4.2, we have that
a2

γ − µ
− a1θ

γ − µθ
ζθ−1 = β1A1 ζβ1−1 < 0 .

Since A1 is defined in (4.8) and verifies A1 > 0, the result follows because
(

x
ζ

)β1−1
< 1, for all

x > ζ, and the function x → a2
γ−µ −

a1θ
γ−µθ

xθ−1 is decreasing. Additionally, we can conclude
that Ã2 > 0.

Proof of Proposition 6.5: Noticing that R∗ can be written as

R∗(µ, σ) =
a1

γ2

(
b2 − γS

γ

)θ 1
θ
β2
− 1

(
1− 1

β2

)θ

+
b− γS

γ
,

the result follow in light of the following calculations:

∂

∂η

(
1

θ
β2
− 1

(
1− 1

β2

)θ
)

= β2

(
1− 1

β2

)θ−1 θ − 1
(θ − β2)

2

θ

β2
2

∂β2

∂η
< 0 .
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1. INTRODUCTION

Over the last two decades, several extensions of the well-known lifetime distributions
have been developed for modeling many types of practical data sets. This development is
followed by many approaches for generating new families of (probability) distributions which
increase chances of modeling data of various random nature. Among those families, we can
mention: The beta generator (beta-G) by Eugene et al. (2002) [9], the gamma-G (type 1)
by Zografos and Balakrishnan (2009) [19], the Kumaraswamy-G (Kw-G) by Cordeiro and de
Castro (2011) [7], the gamma-G (type 2) by Ristic and Balakrishnan (2012) [13], the log-
gamma-G by Amini et al. (2014) [4], beta weighted modified Weibull distribution using the
beta generator by Saboor et al. (2016) [14], the generalized transmuted family of distributions
by Alizadeh et al. (2017) [3], the odd-Burr generalized family of distributions by Alizadeh et

al. (2017) [2], the odd Burr-III family of distributions by Jamal et al. (2017) [11], the extended
odd family of probability distributions by Bakouch et al. (2019) [5] and mid-truncated Burr
XII distribution and its applications in order statistics by Saran et al. (2019) [15].

In practical life problems, truncation arises in many fields, such as industry, biology,
hydrology, reliability theory and medicine. An example of truncation is the progression of
a disease which is not an increasing function, but will stabilize after time point. This point
is called the truncation for the support of the variable of the interest which may be time,
length, height etc. Therefore, many researchers are attracted to analyze such truncated data
using truncated versions of the standard statistical distributions. For instance, the truncated
Weibull distribution has been applied to analyze the tree diameter and height distributions
in forestry, fire size and high-cycle fatigue strength prediction (see Zhang and Xie, 2011 [18]).
In Zaninetti and Ferraro (2008) [17], the truncated Pareto distribution is compared to the
Pareto distribution using astrophysics data and they concluded, generally, that the truncated
Pareto distribution performs better than the Pareto. Burroughs and Tebbens (2002) [6]
showed the suitability of truncated power law distributions for data sets of earthquake mag-
nitudes and forest fire areas. Additional applications of the former distributions in hydrology
and atmospheric science are given by Aban et al. (2006) [1].

Motivated by the importance of general families of distributions and truncation, we
introduce a more flexible class of distributions with the cumulative distribution function
(cdf)

(1.1) F (x) =

G(x,ξ)∫
0

rT (t) dt =

G(x,ξ)∫
0

r(t)
R(1)

dt =
R

[
G(x, ξ)

]
R(1)

,

where rT (t) is the probability density function (pdf) of a random variable (rv) with support
[0, 1], hence it can be any truncated rv T on this support with a cdf, R(·) and G(x, ξ) is the
cdf of a real-valued rv X with pdf g(x, ξ), ξ denoting the related parameter vector. Table 1
gives a list of some truncated distribution in the interval [0,1]. The associated pdf of (1.1) is

(1.2) f(x) =
r
[
G(x, ξ)

]
g(x, ξ)

R(1)
, x ∈ R ,

and the survival function based on (1.1) is given as

(1.3) h(x) =
r
[
G(x, ξ)

]
g(x, ξ)

R(1)−R
[
G(x, ξ)

] .
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Further, the associated quantile function based on (1.1) having the form

(1.4) Qx(u) = G−1
{

R−1
[
R(1)× u

]}
,

where u ∼ uniform[0, 1].

Table 1: List of some truncated distribution in the interval [0,1].

S.r Distribution r(t) rT (t)

1. Uniform F (x) =
x

θ
F (x) = x

2. Exponential F (x) = 1− e−θx F (x) =
1− e−θx

1− e−θ

3. Weibull F (x) = 1− e−axb

F (x) =
1− e−axb

1− e−a

4. Gamma F (x) =
γ
�
a, x

b

�
Γ(a)

F (x) =
γ
�
a, x

b

�
γ
�
a, 1

b

�

5. Lomax F (x) = 1−
�
1 +

x

a

�−b

F (x) =
1−

�
1 + x

a

�−b

1−
�
1 + 1

a

�−b

6. log-logistic F (x) = 1−
�

1 +
xc

a

�−1

F (x) =
1−

�
1 + xc

a

�−1

1−
�
1 + 1

a

�−1

7. Burr XII F (x) = 1−
�
1 + xc

�−k
F (x) =

1− (1 + xc)−k

1− 2−k

8. Burr III F (x) =
�
1 + x−c

�−k
F (x) =

�
1 + x−c

�−k

2−k

9. Frechet F (x) = exp

�
−
�a

x

�b
�

F (x) =
exp

h
−
�

a
x

�bi
exp [−ab]

10. Power function F (x) =
�x

θ

�k
F (x) = xk

11. Log normal F (x) = Φ

�
ln x− µ

σ

�
F (x) =

Φ
�

ln x−µ
σ

�
Φ
�−µ

σ

�

Some additional motivations of the class defined by (1.2) are as follows. The class (1.2)
can be interpreted as weighted family of distributions, for g(x, ξ), with the general weight func-
tion w(X) = r

(
G(x, ξ)

)
and normalizing constant R(1) = E

{
w(X)

}
. Also, the introduced

class generalizes the beta generator family (Eugene et al., 2002 [9]) as beta distribution is a
sub-model of rT (t).

As it can be seen from (1.2), we have a truncated general-G class of distributions and
the only sub-model we aware of is the truncated Weibull G family proposed by Najarzadegan
et al. (2017) [12] as a powerful alternative to beta-G family of distributions. Because of
having two composite general functions R(·) and G(·), we can not investigate more analytic
properties and therefore we aim to study extensively the truncated Burr-G (TB-G) family
of distributions by considering R(·) as the cdf of Burr distribution and G(·) is a general cdf.
The reason of using Burr is due to its ability of analyzing hydrologic, environmental, survival
and reliability data. Another aim is to provide an empirical evidence on the great flexibility
of sub-models of the TB-G family to fit practical data from different domains and this is
investigated in the application section.
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Rest of the paper is outlined as follows. Section 2 concerns with some general mathe-
matical properties of the TB-G family, including mixture representation in terms of baseline
distribution, moments, incomplete moments, moment generating function, stochastic order-
ing of the random variables following such family, stress-strength parameter and entropies
(Shannon and Rényi). Also, some new special models of the generated family are considered.
In Section 3, estimation of the parameters of the family is implemented through maximum
likelihood method with application to two practical data sets. Section 4 gives a simulation
study for a sub-model of the family.

2. THE TRUNCATED BURR-G FAMILY: SOME PROPERTIES AND SUB-
MODELS

This section gives some general mathematical properties of the TB-G family, includ-
ing moments, incomplete moments, moment generating function, stochastic ordering, stress-
strength parameter and entropies. Further, some new sub-models of the family are obtained.

2.1. The truncated Burr-G family

In this section, we introduce the TB-G family of distributions and give its mixture
representation in terms of baseline distribution.

Recall that the Burr distribution has the cdf

(2.1) R(x) = 1− (1 + xc)−k , x > 0 ,

using (1.1), the cdf of the TB-G family is expressed as

(2.2) F (x) =
1−

[
1 + Gc(x, ξ)

]−k

1− 2−k
,

where c, k are the shape parameters of the family and G(x, ξ) is a baseline cdf, which depends
on a parameter vector ξ. Hereafter, for simplicity, we ignore mention of ξ in the functions of
interest, e.g., we set G(x) = G(x, ξ), g(x) = g(x, ξ).

The pdf corresponding to (2.2) is given by

(2.3) f(x) =
c k g(x) Gc−1(x)

[
1 + Gc(x)

]−k−1

1− 2−k
, x ∈ R .

The survival function and hazard rate are, respectively, given by

(2.4) F̄ (x) =

[
1 + Gc(x)

]−k − 2−k

1− 2−k

and

(2.5) τ(x) =
c k g(x) Gc−1(x)

[
1 + Gc(x)

]−k−1[
1 + Gc(x)

]−k − 2−k
.
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Also, the quantile function of the TB-G family has the form

(2.6) Qx(u) = G−1

[{[
1− (1−2−k) u

]− 1
k − 1

}1
c

]
.

Further, the shapes of the density and hazard rate functions of the TB-G family can be
described analytically using their critical points as follows. The critical points of the TB-G
density are the roots of the equation:

g′(x)
g(x)

+ (c−1)
g(x)
G(x)

− c (k +1)
g(x) Gc−1(x)
1−Gc(x)

= 0 ,

while the critical points of the hazard rate are the roots of the equation:

g′(x)
g(x)

+ (c−1)
g(x)
G(x)

− c (k +1)
g(x) Gc−1(x)
1−Gc(x)

+ k c
g(x) Gc−1(x)

[
1 + Gc(x)

]−k−1[
1 + Gc(x)

]−k − 2−k
= 0 .

Note that the equation above may have more than one root.

Now, we close this subsection by obtaining the mixture representation of the TB-G in
terms of baseline distribution as follows.

Consider the series expansion, for |z| < 1,

(2.7) (1− z)−b =
∞∑
i=0

(
b + i− 1

i

)
zi ,

the cdf in equation (2.2) can be written as

(2.8) F (x) =
1

1− 2−k

[
1−

∞∑
i=0

(
k + i− 1

i

)
(−1)i Gic(x)

]
.

Also, it can be rewritten in the form

(2.9) F (x) =
∞∑
l=0

bl Hl(x) ,

where bl = 1
1−2−k

∞∑
i=1

∞∑
j=l

(
k+i−1

i

)(
c i
j

)(
j
l

)
(−1)i+j+l+1 and Hl(x) = Gl(x) is the exp-G distribu-

tion function with power parameter l.

Similarly, simple derivation of the previous equation gives the pdf

(2.10) f(x) =
∞∑
l=0

bl hl−1(x) ,

where hl−1(x) = l× g(x) Gl−1(x) is the exp-G density function with power parameter l−1.
Thus, some mathematical properties of the proposed family can be derived from (2.10) and
those of exp-G properties. For example, the ordinary and incomplete moments and moment
generating function (mgf) of X can be obtained from those exp-G quantities, see the next
subsection.
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2.2. Moments and moment generating function

In this subsection, we will discuss the rth moments, mth incomplete moments and
moment generating function of the TB-G family.

The moments of the TB-G family of distributions can be obtained by using the infinite
mixture representation

(2.11) E(Xr) =
∞∑
l=0

bl

∞∫
−∞

xr hl−1(x) dx ,

where bl and hq−1(x) are defined in (2.10).

The sth incomplete moment of the TB-G family can be obtained as

(2.12) T ′
s(x) =

∞∑
l=0

bl

x∫
−∞

xshl−1(x) dx .

The moment generating function of the TB-G family of distributions is

MX(t) =
∞∑
l=0

bl

∞∫
−∞

etxhl−1(x) dx .

Bonferroni and Lorenz curves, defined for a given probability, π, by B(π) = T ′
1(q)/(πµ′1)

and L(π) = T ′
1(q)/µ′1, respectively, where µ′1 = E(X), T ′

1(x) =
∞∑
l=0

bl

x∫
−∞

xhl−1(x) dx and

q = Q(π) is the quantile function of X at π. These curves for the Truncated Burr log logistic
(TBLL) distribution (see definition of TBLL in the next subsection) as functions of π, are
plotted for some parameter values in Figure 1. These curves are very useful in economics,
reliability, demography, insurance and medicine. The skewness and kurtosis measures can be
calculated from the ordinary moments using well-known relationships form equation (2.11).
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Figure 1: Plots of B(π) and L(π) versus π for the TB-LL distribution.
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Plots of skewness and kurtosis of the TBLL distribution for θ = 1.5 are displayed in Figure 2.
Based on these plots, we conclude that, if c and k increase, the skewness and kurtosis decrease.
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Figure 2: Plots for skewness and kurtosis of the TB-LL distribution.

2.3. Stochastic ordering and reliability parameter

Comparative behavior of random variables can be measured by stochastic ordering
concept (Shaked and Shanthikumar, 1994 [16]) that is summarized in the next proposition.

Proposition 2.1. Let X1 ∼ TB-G(c , k1, ξ) and X2 ∼ TB-G(c , k2, ξ), then the likeli-

hood ratio f(x)
g(x) is

f(x)
g(x)

=
k1

k2

[
1 + Gc(x)

]k2−k1 1− 2−k2

1− 2−k1
.

Taking derivative with respect to x, we have

d

dx

f(x)
g(x)

=
k1

k2

1− 2−k2

1− 2−k1

[
1 + Gc(x)

]k2−k1−1 (k2 − k1) c g(x) Gc−1(x) ,

then d
dx

f(x)
g(x) < 0 for k2 < k1. So, the likelihood ratio exists and this implies that the random

variable X1 is a likelihood ratio order than X2, that is X1 ≤lr X2. Other stochastic ordering
behaviors follow using X1 ≤lr X2, such as hazard rate order (X1 ≤hr X2), mean residual life
order (X1 ≤mrl X2) and stochastically greater (X1 ≤st X2).

The stress strength model is a common approach used in various applications of engi-
neering and physics. Let X1 and X2 be two independent random variables with TB-G(c, k1, ξ)
and TB-G(c, k2, ξ) distributions. Then the stress strength model is given by

R =

∞∫
−∞

f1(x) F2(x) dx .



520 F. Jamal, H.S. Bakouch and M.A. Nasir

Now, by using the mixture representation given in (2.10) and (2.9), we have

R =
∞∑
l=0

∞∑
m=0

bl bm

∞∫
−∞

hl−1(x) Hm(x) dx ,

where hl−1(x) and Hm(x) are already defined by equations (2.9) and (2.10).

2.4. Entropies

The entropy of a random variable X with density function f(x) is a measure of variation
of the uncertainty of physical systems. Two popular entropy measures are due to Shannon
entropy and Rényi entropy. A large value of the entropy may indicate the greater uncertainty
in the data; conversely, a small entropy means less uncertainty. The Rényi entropy is defined
by

(2.13) Iδ =
1

1− δ
log

 ∞∫
−∞

f δ(x) dx

, δ > 0 and δ 6= 1 .

Let f(x) follow the TB-G family, then we have

f δ(x) =
(ck)δ gδ(x) Gδ(c−1)(x)

[
1 + Gc(x, ξ)

]−δ(k+1)

(1− 2−k)δ
.

After some algebra, we get

f δ(x) =
(

ck

1− 2−k

)δ ∞∑
j=0

(
δ(k +1) + j − 1

j

)
(−1)j gδ(x) Gc(j+δ)−δ(x) .

Rewriting the above expression as

f δ(x) =
∞∑

j=0

wj(δ) g
(
x; δ, c(j + δ)

)
,

where wj(δ) =
(

ck
1−2−k

)δ (
δ(k+1)+j−1

j

)
(−1)j and g

(
x; δ, c(j + δ)

)
= gδ(x) Gc(j+δ)−δ(x).

Now equation (2.13) becomes

Iδ =
1

1− δ
log

 ∞∑
j=0

wj(δ)

∞∫
−∞

g
(
x; δ, c(j + δ)

)
dx

 .

The above expression depends only for any choice of baseline distribution.

On the other side, the Shannon entropy of the TB-G family can be obtained using its
definition as

(2.14) η = −E
[
log f(X)

]
.
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Using the pdf of the TB-G family, we have

(2.15)
−E

[
log f(X)

]
= log[1− 2−k]− log(ck)− E

[
log g(X)

]
− (c−1) E

[
log G(X)

]
+ (k +1)E

[
log

{
1 + Gc(X)

}]
.

Making use of the expansions, for |x| < 1,

log(1+ x) =
∞∑
i=1

(−1)i+1

i
xi ,

log x =
∞∑
i=1

(−1)i+1

i
(x−1)i ,

we obtain

E
[
log

{
1 + Gc(X)

}]
=

∞∑
i=1

(−1)i+1

i
E

[
Gc i(X)

]
,

E
[
log G(X)

]
=

∞∑
i=1

(−1)i+1

i

i∑
j=0

(
i

j

)
(−1)j E

(
Gi−j(X)

)
.

Hence, equation (2.15) becomes

−E
[
log f(X)

]
= log[1− 2−k]− log(ck)− E

[
log g(X)

]
− (c−1)

∞∑
i=1

(−1)i+1

i

i∑
j=0

(
i

j

)
(−1)j E

(
Gi−j(X)

)
+ (k +1)

∞∑
i=1

(−1)i+1

i
E

[
Gc i(X)

]
.

The expression above depends only on an arbitrary choice of the baseline distribution.

2.5. Some sub-models

In this subsection, we present four sub-models of the TB-G family by selecting some
baseline distributions and the plots of their density and hazard rate functions. The plots
indicate various shapes for both functions which proves the flexibility of the family. This
flexibility is also confirmed by comparing those sub-models with other competing distributions
for some practical data in Section 3.

Truncated Burr Uniform (TBU) distribution

Consider the uniform distribution on (0, θ) as the baseline distribution with the pdf and cdf,
g(x, θ) = 1

θ and G(x, θ) = x
θ , respectively. Then the pdf and cdf of the TBU distribution

are given by

f(x; c, k, θ) =
ck

θ

(
x
θ

)c−1

1− 2−k

[
1 +

(x

θ

)c
]−k−1

and

F (x; c, k, θ) =
1−

[
1 +

(
x
θ

)c
]−k

1− 2−k
, 0 < x < θ .
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Figure 3 gives the plots of density and hrf of the TBU distribution.
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Figure 3: Plots for density and hrf of the TBU.

Truncated Burr Weibull (TBW) distribution

Let the Weibull distribution be the baseline one with the associated pdf and cdf,
g(x, a, b) = ab xb−1e−axb

and G(x, a, b) = 1− e−axb
, respectively. Then the pdf and cdf of

the TBW distribution are given by

f(x; c, k, a, b) =
ck a b xb−1e−axb

1− 2−k

[
1− e−axb

]c−1

[
1 +

{
1− e−axb

}c
]k+1

and

F (x; c, k, a, b) =
1−

[
1 +

{
1− e−axb}c

]−k

1− 2−k
, 0 < x < ∞ .

Figure 4 displays the plots of density and hrf of the TBW distribution.
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Figure 4: Plots for density and hrf of the TBW.
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Truncated Burr Logistic (TBL) distribution

Consider the Logistic as the baseline distribution with associated pdf and cdf,
g(x, θ) =

{
1− e−θx

}−1 and G(x, θ) = θ e−θx
{
1− e−θx

}−2, respectively. Then the pdf and cdf
of the TBL distribution are given by

f(x; c, k, θ) =
c k θ e−θ x[

1− 2−k
] {

1− e−θx
}2

[
1− e−θx

]1−c
[
1 +

{
1− e−θx

}−c
]−k−1

and

F (x; c, k, θ) =
1−

[
1 +

{[
1− e−θx

]−c
}−k

]
1− 2−k

, 0 < x < ∞ .

In Figure 5 we give the plots of density and hrf of the TBL distribution.
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Figure 5: Plots for density and hrf of the TBL.

Truncated Burr log logistic (TBLL) distribution

Let log logistic be the baseline distribution with the associated pdf and cdf,
g(x, θ) = θ xθ

(1+xθ)2
and G(x, θ) = xθ

1+xθ , respectively. Then the pdf and cdf of the TBLL distri-

bution are given by

f(x; c, k, θ) =
c k θ xθ[

1− 2−k
] (

1 + xθ
)2

[
xθ

1 + xθ

]c−1
[

1 +
{

xθ

1 + xθ

}c
]−k−1

and

F (x; c, k, θ) =
1−

[
1 +

{
xθ

1+xθ

}c
]−k

1− 2−k
.
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Figure 6 portrays the plots of density and hrf of the TBLL distribution.
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Figure 6: Plots for density and hrf of the TBLL.

3. ESTIMATION OF PARAMETERS WITH APPLICATIONS

In this section, we give the maximum likelihood estimators (MLEs) of the unknown
parameters of the TB-G family for complete samples. Using those estimators we check the ca-
pability of some sub-models of this family for fitting some practical data sets. Let x1, x2, ..., xn

be the observed values of a random sample of size n from the TB-G family given in equation
(2.3). The log-likelihood function for the vector parameter Θ = [c, k, ξ]T can be expressed as

`(Θ) = − n log(1− 2−k) + n log(ck) +
n∑

i=1

log g(xi) + (c−1)
n∑

i=1

log G(xi)

− (k +1)
n∑

i=1

log
{
1 + Gc(xi)

}
.

The components of score vector U = (Uk, Uc, Uξ)
T are given by

Uk = −n
2−k log 2
1− 2−k

+
n

k
−

n∑
i=1

log
{
1 + Gc(xi)

}
,

Uc =
n

c
+

n∑
i=1

log G(xi)− (k +1)
n∑

i=1

[
c g(xi) Gc−1(xi)

1 + Gc(xi)

]
,

Uξ =
n∑

i=1

[
gξ(xi)
g(xi)

]
+ (c−1)

n∑
i=1

[
Gξ(xi)
G(xi)

]
− (k +1)

n∑
i=1

[
cGξ(xi) Gc−1(xi)

1 + Gc(xi)

]
.

The equations above are non-linear and hence can not be solved analytically, but can be solved
numerically using software like R language. The rest of this section provides two applications
of four sub-models of the TB-G family, namely, the TBW, TBLL, TBU and TBL distributions
given in Subsection 2.5. Truncated Weibull-BXII (TW-BXII) and Truncated Weibull-Weibull
(TW-W) introduced by Najarzadegan et al. (2017) [12] are used as competitive models for
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those sub-models. For comparison purposes, we consider two practical data sets, one is taken
from El-deeb (2015) [8] and another from Hinkley (1977) [10]. Description of both data sets
is as follows.

Data set 1: This data set is given by El-deeb (2015) [8] and consists of failure times
of (67) truncated Aircraft windshield. The windshield on an aircraft is a complex piece
of equipment, comprised basically of several layers of material, all laminated under high
temperature and pressure. Failures of these items are not structural failures. Instead, they
typically involve damage or delimitation of the nonstructural outer ply or failure of the heating
system. These failures do not result in damage to the aircraft, but do result in replacement
of the windshield. The values of this data set are: 1.866, 2.385, 3.443, 1.876, 2.481, 3.467,
1.899, 2.610, 3.478, 1.911, 2.625, 3.578, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124,
1.981, 2.661, 3.779,1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 3.000, 1.281, 2.085, 2.890,
1.303, 2.089, 2.902, 1.432, 2.097, 2.934, 1.480, 2.135, 2.962, 1.505, 2.154, 2.964, 1.506, 2.190,
3.000, 1.568, 2.194, 3.103, 1.615, 2.223, 3.114, 1.619, 2.224, 3.117, 1.652, 2.229, 3.166, 1.652,
2.300, 3.344, 1.757, 2.324, 3.376.

Data set 2: This data set is given by Hinkley (1977) [10] and consists of thirty
successive values of March precipitation (in inches) in Minneapolis/St. Paul. In meteorology,
precipitation is most commonly rainfall, but also includes hail, snow and other forms of liquid
and frozen water falling to the ground and it is measured by inches in some time period. The
data values are 0.77, 1.74, 0.81, 1.2, 1.95, 1.2, 0.47, 1.43, 3.37, 2.2, 3, 3.09, 1.51, 2.1, 0.52,
1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.9, 2.05.

For each distribution, the MLEs are computed using Quasi-Newton code for Bound
Constrained Optimization (L-BFGS-B) and the log-likelihood function is evaluated. Con-
sequently, the goodness-of-fit measures: Anderson–Darling (A∗), Cramer–von Mises (W ∗),
Akaike information criterion (AIC) and Bayesian information criterion (BIC) are computed.
Lower values of those measures indicate better fit. The value for the Kolmogorov–Smirnov (KS)
statistic and its p-value are also provided. The required computations are carried out using
the R software.

The obtained results are presented in Tables 2–5. As we can see from Tables 2 and 4,
the four sub-models of the TB-G family are strong competitor to the compared models.

Table 2: MLEs and their standard errors (in parentheses) for data set 1.

Distribution c k θ a b

TBW
0.4564 86.9870 — 9.1067 7.9149

(1.9144) (45.4333) — (2.1784) (3.2404)

TBLL
13.6258 193.8078 0.7890 — —
(2.3252) (34.7291) (0.2350) — —

TBU
3.5954 498.2935 14.9104 — —

(0.3412) (15.2232) (12.1123) — —

TBL
23.3433 0.0024 1.6699 — —
(7.0993) (0.0018) (0.1944) — —

TW-BXII
1.2904 11.4013 32.4704 37.8343 3.4896

(0.3253) (13.4118) (35.6313) (40.8586) (2.4676)

TB-W
2.8676 0.8444 — 31.2399 6.7846

(2.7877) (0.6816) — (2.1419) (8.0910)
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Moreover, among all compared models, the TBLL distribution has the smallest values of the
AIC, BIC, A∗, W ∗, and KS, and the largest value of p-value. Thus, we can conclude that the
TBLL distribution is the best fit among those models. Figures 7 and 8 display the plots of the
fitted pdfs and cdfs of the compared distributions for visual comparison with the histogram
and empirical cdf for both data sets. Those figures show the best fit of TBLL distribution.

Table 3: The Value, AIC, BIC, A*, W*, KS, P-Value values for data set 1.

Distribution ` AIC BIC A* W* KS P-Value

TBW 75.1080 158.2162 167.0942 0.5552 0.0951 0.0992 0.5147

TBLL 74.8708 155.7418 162.4003 0.4637 0.0740 0.0808 0.7379

TBU 75.0909 156.1819 162.8404 0.5564 0.0954 0.0997 0.5080

TBL 76.2189 158.4378 165.0963 0.5855 0.0859 0.0927 0.6016

TW-BXII 75.0635 160.1271 171.2246 0.5051 0.0841 0.0893 0.6487

TW-W 75.0454 158.0909 166.9690 0.4889 0.0798 0.0835 0.7299

Table 4: MLEs and their standard errors (in parentheses) for data set 2.

Distribution c k θ a b

TBW
0.3446 30.8825 - 11.9180 5.3663

(2.8251) (17.3728) - (10.6096) (4.4130)

TBLL
8.6122 123.2974 0.4892 - -

(6.0513) (12.2964) (0.4066) - -

TBU
1.8150 259.5434 40.3962 - -

(0.2482) (12.1122) (33.2333) - -

TBL
7.7107 0.5621 1.3198 - -

(2.1529) (3.0901) (0.3681) - -

TW-BXII
1.0579 86.6647 60.8969 0.0024 3.0599

(1.1048) (71.9193) (69.5585) (4.5165) (6.3469)

TB-W
9.7190 6.2763 - 19.3190 0.2883

(12.7756) (9.6175) - (46.5365) (0.4437)

Table 5: The Value, AIC, BIC, A*, W*, KS, P-Value values for data set 2.

Distribution ` AIC BIC A* W* KS P-Value

TBW 38.5661 85.1322 90.7370 0.1571 0.0203 0.0648 0.9996

TBLL 38.0934 82.1868 86.3904 0.1019 0.0137 0.0576 1

TBU 38.6334 83.2668 87.4701 0.1680 0.0217 0.0683 0.9990

TBL 38.9520 83.9040 88.1076 0.1466 0.0185 0.0692 0.9988

TW-BXII 38.0919 86.1839 93.1899 0.1037 0.0141 0.0605 0.9999

TW-W 38.6431 85.2862 90.8910 0.1690 0.0219 0.0688 0.9989
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Figure 7: Estimated pdfs and cdfs for data set 1.
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Figure 8: Estimated pdfs and cdfs for data set 2.

4. SIMULATION STUDY

In this section, the performance of the MLEs of the TBLL distribution parameters
is discussed by means of Monte-Carlo simulation study. The following measures are used
to evaluate the simulation results: Estimated bias, Root mean square error (RMSE) and
coverage probability (CP). The simulation experiment was repeated N= 1,000 times each
with sample sizes n = 20, 50, 100, 200, 300 and 500, where the samples are generated from
the TBLL distribution, with θ = 4.5, c = 2.8, k = 0.8, by using the inverse transform method.
The MLEs of the parameters of TBLL distribution are obtained for each generated sample,
(θ̂, ĉ, k̂). The formulas for biases, RMSEs and CPs are given as follows.

Estimated bias of MLE Θ̂ of the parameter Θ = (θ, c, k) is

1
N

N∑
i=1

(
Θ̂−Θ

)
.
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Root mean squared error (RMSE) of the MLE Θ̂ of the parameter Θ = (θ, c, k) is√√√√ 1
N

N∑
i=1

(
Θ̂−Θ

)2 .

Coverage probability (CP) of 95% confidence intervals of the parameter Θ = (θ, c, k) is
the percentage of intervals that contain the true value of parameter Θ.
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From Figures 9–11 we conclude that the estimated biases are positive for all parameters.
The estimated biases decrease as the sample size n increases. Further, the estimated RMSEs
are so closed to zero for large sample sizes. This result reveals the consistency property of
the MLEs. The CP approaches to the nominal value (0.95) when the sample size increases.
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Figure 11: Estimated CPs for the selected parameters.
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1. INTRODUCTION

In situations where potentially embarrassing or incriminating responses are sought, the
randomized response technique (RRT) is effective in reducing non-sampling errors in sam-
ple surveys. In survey methodology, refusal to respond and lying are two major sources of
non-sampling errors, as the stigma attached to certain practices (e.g. abortion and the use
of illegal drugs) often leads to discrimination. Warner [28] did the pioneering work by sug-
gesting a randomized response technique (RRT), which minimizes under reporting in survey
data related to a socially undesirable or incriminating behaviour questions such as illegal
earning or homosexuality among others. Warner [28] model requires the interviewee to give
a “Yes” or “No” answers either to the sensitive question or to its negative depending on the
outcome of a random device not reported to the interviewer. Further by introducing a choice
of an unrelated question Greenberg et al. [7] modifying the Warner [28] randomized response
model (RRM), the randomized response technique was further modified for different practi-
cal situation by Moors [17], Cochran [5], Fox and Tracy [6], Chaudhuri and Mukherjee [4],
Hedayat and Sinha [8], Ryu et al. [19], Singh and Mangat [22], Tracy and Mangat [26], Tracy
and Osahan [27], Singh [21], Singh and Tarray [23, 24, 25] and Kim and Warde [13] among
others.

Kim and Warde [13] suggested a mixed randomized response model using simple random
sampling with replacement which rectifies the privacy problem. Following the work of Kim
and Warde [13], Amitava [1] and Hussain and Shabbir [10] suggested mixed randomized
response technique (RRT) for complex survey designs and illustrated the superiority of their
models over Kim and Warde [13] model.

Motivated with the above works, we have suggested a modified version of Kim and
Warde [13] model and studied its properties in detail. We also present the less than com-
pletely truthful reporting counterpart of suggested model. It has been demonstrated that
the suggested models perform better than the mixed randomized response model (RRM) of
Kim and Warde [13]. We have also introduced the suggested model for stratified random
sampling. The empirical studies are carried out; which showed dominance of proposed mixed
randomized response models and stratified random sampling as well.

2. SUGGESTED MODEL

Let a sample of size n be selected from a finite population of size N using simple
random sampling with replacement (SRSWR) scheme. Each respondent from the sample is
instructed to answer the direct question“whether he/she is a member of the innocuous group?”
If the answer to the initial direct question is “Yes” then he/she is instructed to go to the
random device R1 consisting of two statements:

(i) “I am a member of the sensitive trait group”,

(ii) “I am a member of the innocuous trait group”,

with probabilities P1 and (1−P1) respectively. If a respondent answers “No” to the direct
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question, then the respondent is instructed to use the random device R2 consisting of the
statements on the first stage which is same as Mangat and Singh [16]:

(i) “Do you possess the sensitive attribute A”, with probability T ,

(ii) “Go to the random device R3 in the second stage”, with probability (1−T ).

The respondents at the second stage are instructed to use the random device R3 using three
statements:

(i) “I possess the sensitive attribute A”,

(ii) “Yes”,

(iii) “No”,

with probabilities P , (1−P )/2 and (1−P )/2 respectively. When the outcome of random
device R3 is either (ii) or (iii), all the respondents, irrespective of whether they possess
attribute A or not, are supposed to say “Yes” or “No” respectively. It is to be mentioned that
the random device R3 is due to Tracy and Osahan [27]. The survey procedures are performed
under the assumption that both the sensitive and innocuous questions are unrelated and
independent in a random device R1. To protect the respondents’ privacy, the respondents
should not disclose to the interviewer the question they answered from either R1 or R2 or R3.
Let n be the sample size confronted with a direct question and n1 and n2 (= n−n1) denote
the number of “Yes”and“No”answers from the sample. Since all respondents using a random
device R1 already responded “Yes” from the initial direct question.

The probability ‘Y ’ of getting“Yes”answers from the respondents using random device R1

is given by

(2.1) Y = P1πs + (1−P1)π1 ,

where πs is the proportion of “Yes” answer from the sensitive trait group and π1 is the
proportion of “Yes” so that (π1 = 1) answer from the innocuous question

(2.2) Y = P1πs + (1−P1) .

The probability ‘Y ∗’ of getting“No”answers from the respondents using random device R1

is given as

(2.3) Y ∗ = 1−
[
P1πs + (1−P1)

]
.

Thus the maximum likelihood function is given by

(2.4) L =
(

n

n1

) [
P1πs + (1−P1)

]n1
[
P1(1−πs)

](n−n1) .

Taking log on the both sides of equation (2.4):

(2.5) log L = log
(

n

n1

)
+ n1 log

[
P1πs + (1−P1)

]
+ (n−n1) log

[
P1(1−πs)

]
.
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Differentiating on both sides of equation (2.5) with respect to πs and equating to zero,
we have

(2.6) P1πs + (1−P1) =
n1

n
.

This is maximum likelihood estimator of Y .

An unbiased estimator of πs, in terms of the sample proportion of “Yes” responses Ŷ ,
becomes

(2.7) π̂a =
Ŷ − (1−P1)

P1
,

where Ŷ is the sample proportion of “Yes” response, thus expected value of π̂a is

(2.8) E(π̂a) =
E(Ŷ )− (1−P1)

P1
= πs .

The variance of π̂a is obtained as

(2.9) V (π̂a) =
1
n1

[
πs(1−πs) +

(1−πs) (1−P1)
P1

]
.

The probability X of“Yes”answers from the respondents using random devices R2 and R3

is given as

(2.10) X = T πs + (1−T )
[
P πs +

(1−P )
2

]
.

An unbiased estimator of πs, in terms of the sample proportion of “Yes” responses X̂,
is given by

(2.11) π̂b =
X̂ − (1−T ) (1−P )

2

T + P (1−T )
.

The variance of unbiased estimator π̂b is obtained as

(2.12) V (π̂b) =
1
n2

[
πs(1−πs) +

(1−T ) (1−P )
[
2− (1−T ) (1−P )

]
4
[
T + P (1−T )

]2

]
.

The estimator of πs, in the terms of the sample proportion of “Yes” response π̂a and π̂b,
is

(2.13) π̂A1 =
(

n1

n

)
π̂a +

(
n2

n

)
π̂b , for 0 <

n1

n
< 1 .

Since π̂a and π̂b are unbiased estimators, therefore the expected value of π̂A1 is

(2.14) E(π̂A1) =
n1

n
E(π̂a) +

(n−n1)
n

E(π̂b) =
n1

n
πs +

(n−n1)
n

πs = πs .
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Thus, the proposed estimator π̂A1 is an unbiased estimator of πs.

Since the random device R1 and Tracy and Osahan [27] randomized response technique
(consists of two random devices R2 and R3) used are independent. We derive the expression
of variance of π̂A1 as

V (π̂A1) =
n2

1

n2
V (π̂a) +

n2
2

n2
V (π̂b)

=
n1

n2

[
(1−πs)

[
P1πs + (1−P1)

]
P1

]
(2.15)

+
n2

n2

[
πs (1−πs) +

(1−T ) (1−P )
[
2− (1−T ) (1−P )

]
4

[
T + P (1−T )

]2

]
.

Under the circumstances that the Warner [28] and Simmons et al. [20] method (known
π1) are equally confidential to respondents, Lanke [14] obtain a unique value of P as
P = 1/2 + P1/

[
2P1 + 4(1−P1) π1

]
, for every P1 and every π1.

Since our proposed mixed model also use Simmons et al. [20] method when π1 =1,
we may apply Lanke [14] technique in our proposed model. Thus we get

(2.16) P =
1

(2−P1)
.

Putting P = 1/(2−P1) in equation (2.12), we get

(2.17)

V (π̂b) =
1
n2

πs (1−πs) +
(1−T )

(
1− 1

(1−2P1)

) [
2 − (1−T )

(
1− 1

(2−P1)

)]
4
[
T + 1

(2−P1) (1−T )
]2


=

[
πs (1−πs)

n2
+

(1−T ) (1−P1)
[
2 (2−P1)− (1−T ) (1−P1)

]
4 n2

[
1 + T (1−P1)

]2

]
.

Thus, we have the following theorem.

Theorem 2.1. The variance of π̂A1 is given by

V (π̂A1) =
πs (1−πs)

n

(2.18) +
1
n

[
λ(1−πs)(1−P1)

P1
+

(1−λ)(1−T )(1−P1)
[
2 (2−P1)− (1−T )(1−P1)

]
4
[
1 + T (1−P1)

]2

]
,

for n = n1 + n2 and λ = n1/n.
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2.1. Efficiency comparison

In this section, the comparison of the proposed model under completely truthful re-
porting case has been made with Kim and Warde [13] model.

From Kim and Warde [13] model, we have

(2.19) V (π̂kw) =
πs (1−πs)

n
+

(1−P1)
[
λ P1 (1−πs) + (1−λ)

]
n P 2

1

.

The estimator π̂A1 is always more efficient than that of Kim and Warde [13] estimator
π̂kw if

V (π̂kw) > V (π̂A1) ,

which gives the conditions, when[
4
(
1 + T (1−P1)

)2 − P 2
1 (1−T )

(
3 + T (1−P1)− P1

)]
> 0 .

To have a tangible idea about the performance of the proposed estimator π̂A1 over Kim
and Warde [13] estimator π̂kw, we compute the percent relative efficiency PRE(π̂A1, π̂kw) for
λ = (0.7, 0.5, 0.3), n = 1000 and for different values of T , πs, n1, n2 and P1, and presented in
Table 1:

(2.20) PRE(π̂A1, π̂kw) =
V (π̂kw)
V (π̂A1)

× 100 .

Table 1: Percent relative efficiency of the proposed estimator π̂A1

with respect to Kim and Warde [13] estimator π̂kw.

πs

n = 1000
λ T

P1

n1 n2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

700 300 0.7 0.1 554.04 313.85 232.53 191.00 165.40 147.71 134.41 123.50 113.26
0.1 500 500 0.5 0.5 1161.80 603.05 414.50 318.32 258.82 217.29 185.45 158.55 132.55

300 700 0.3 0.9 2581.70 1278.40 838.29 613.08 472.76 373.61 296.28 230.14 167.51

700 300 0.7 0.1 601.54 331.57 240.35 193.90 165.40 145.84 131.31 119.75 109.77
0.2 500 500 0.5 0.5 1266.60 638.56 427.09 319.64 253.65 208.18 174.11 146.69 122.86

300 700 0.3 0.9 2794.00 1330.20 838.29 589.05 436.59 332.21 254.93 194.15 143.81

700 300 0.7 0.1 662.49 354.70 251.19 198.87 167.08 145.58 129.96 117.97 108.28
0.3 500 500 0.5 0.5 1401.90 686.31 446.91 326.51 253.65 204.49 168.75 141.24 118.97

300 700 0.3 0.9 3073.90 1410.90 858.93 584.52 421.02 312.88 236.26 179.24 135.16

700 300 0.7 0.1 743.37 385.71 266.30 206.54 170.71 146.89 129.96 117.37 107.67
0.4 500 500 0.5 0.5 1567.20 739.28 466.33 331.77 252.32 200.28 163.76 136.86 116.27

300 700 0.3 0.9 3454.00 1531.80 903.88 598.39 421.02 307.13 229.09 173.12 131.60

700 300 0.7 0.1 855.64 428.97 287.89 218.17 176.97 150.05 131.31 117.72 107.61
0.5 500 500 0.5 0.5 1834.20 844.82 520.90 362.66 270.27 210.52 169.25 139.40 117.08

300 700 0.3 0.9 3993.00 1713.50 982.27 634.07 436.59 312.88 230.23 172.49 130.82
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It is observed from Table 1 and Figure 1 that:

(a) For all the parametric combinations, the values of percent relative efficiencies
are substantially exceeding 100, which indicate that the proposed estimator π̂A1

is uniformly better than Kim and Warde [13] estimator π̂kw.

(b) It may also be seen that the values of the percent relative efficiencies decrease with
the increasing values of P1. However, the values of the percent relative efficiencies
are showing increasing trend with the decreasing values of λ when the values of
P1 are fixed.

(c) From Figure 1 it may be observed that there is a large gain in efficiency by using
the proposed estimator π̂A1 over Kim and Warde [13] estimator π̂kw, when the
proportion of stigmatizing attribute is moderately large.
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Table 1: Percent relative efficiency of the proposed estimator π̂A1 with
respect to Kim and Warde [13] estimator π̂kw

.
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Figure 1: Percent relative efficiency of the proposed estimator π̂A1 with
respect to Kim and Warde [13] estimator π̂kw when T = 0.1 and
λ = 0.7.

3. Less than completely truthful reporting

Various authors including Mangat [16], Tracy and Osahan [27], Chang and
Huang [2], Chang et al. [3], Kim and Warde [12], Kim and Elam [11], Nazuk and

Figure 1: Percent relative efficiency of the proposed estimator π̂A1 with respect to
Kim and Warde [13] estimator π̂kw when T = 0.1 and λ = 0.7.

3. LESS THAN COMPLETELY TRUTHFUL REPORTING

Various authors including Mangat [15], Tracy and Osahan [27], Chang and Huang [2],
Chang et al. [3], Kim and Warde [12], Kim and Elam [11], Nazuk and Shabbir [18] and cited
therein has been consider the problem of “Less than completely truthful reporting” in RR
technique. It is reasonably assumed that the persons who belong to sensitive trait group
state truthful answers with probabilities T1, T2 and T3 in random devices R1, R2 and R3

respectively. The respondents in the non-sensitive group have no reason to tell a lie, they
may lie for the sensitive group.

Since all respondents using a random device R1 already responded “Yes” from the
initial direct question, therefore π1 =1 in R1. Thus, the probability Y ′ of “Yes” answer for
the random device R1 is given by

(3.1) Y ′ = P1πs T1 + (1−P1) .
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An estimator of πs, in term of the sample proportion of “Yes” responses is given as

(3.2) π̂a(1) =
Ŷ ′ − (1−P1)

P1
.

Since each Ŷ ′ follows Binomial distribution B(n1, Y
′), therefore the estimator π̂a(1) has

the following bias and mean square error (MSE):

B
(
π̂a(1)

)
= πs(T1− 1)(3.3)

and

V
(
π̂a(1)

)
=

Y ′(1−Y ′)
n1P 2

1

=
(1− πsT1)

[
1− P1(1− πsT1)

]
n1P1

.(3.4)

Thus, the MSE of π̂a(1) is given by

(3.5)
MSE

(
π̂a(1)

)
= V

(
π̂a(1)

)
+

[
B

(
π̂a(1)

)]2

=
(1− πsT1)

[
1− P1(1− πsT1)

]
n1P1

+ π2
s (T1− 1)2 .

On the basis of the proposed procedure, the probability for the respondents who re-
sponse “Yes” answer using random devices R2 and R3 is given by

(3.6) X ′ = T πs T2 + (1−T )
[
P πs T3 +

(1−P )
2

]
.

By the method of moments, an estimator of population proportion πs is obtained as

(3.7) π̂b(1) =
X̂ ′ − (1−T ) (1−P )

2

T + P (1−T )
.

In random devices R2 and R3, the same sensitive question is asked from the respondents
who belong to rare sensitive group in the sample, so we take T2 = T3 in our case which is
unlike as in case of Kim and Elam [11].

Since each X̂ ′ follows Binomial distribution B(n1, X
′), therefore the estimator π̂b(1) has

the following bias and MSE:

B
(
π̂b(1)

)
= πs(T2−1)(3.8)

and

V
(
π̂b(1)

)
=

X ′(1−X ′)

n2

[
T + P (1−T )

]2

=
πsT2 (1− πsT2)

n2
+

(1−T ) (1−P )
[
2− (1−T ) (1−P )

]
4 n2

[
T + P (1−T )

]2 .

(3.9)

Therefore, the MSE of π̂b(1) is given by

MSE
(
π̂b(1)

)
= V

(
π̂b(1)

)
+

[
B

(
π̂b(1)

)]2

(3.10)
=

πsT2 (1− πsT2)
n2

+
(1−T ) (1−P )

[
2− (1−T ) (1−P )

]
4 n2

[
T + P (1−T )

]2 + π2
s (T2−1)2 .
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Now, we propose the estimator for population proportion πs in the terms of the sample
proportion of “Yes” response π̂a(1) and π̂b(1) as

(3.11) π̂A =
(

n1

n

)
π̂a(1) +

(
n2

n

)
π̂b(1) for 0 <

n1

n
< 1 ,

where n1 + n2 = 1.

Since both the estimators π̂a(1) and π̂b(1) are bias estimator of πs, therefore the bias of
π̂A is given by

(3.12) B(π̂A) = πs

[(
n1

n

)
(T1−1) +

(
n2

n

)
(T2−1)

]
,

and

(3.13)

MSE(π̂A) =
λ(1− πsT1)

[
1− P1(1− πsT1)

]
nP1

+
(1−λ)

n

[
πsT2 (1− πsT2) +

(1−T ) (1−P )
[
2− (1−T ) (1−P )

]
4
[
T + P (1−T )

]2

]

+ π2
s

[
λ2 (T1−1)2 + (1−λ)2 (T2−1)2

]
.

Inserting Lanke [14] a unique value P = 1/(2−P1) in equation (3.10), we get

(3.14)

MSE
(
π̂b(1)

)
=

πsT2 (1− πsT2)
n2

+
(1−T ) (1−P1)

[
2 (2−P1)− (1−T ) (1−P1)

]
4 n2

[
1 + T (1−P1)

]2 + π2
s (T2−1)2 .

Thus, we have the following theorem.

Theorem 3.1. The MSE of π̂A is given by

(3.15)

MSE(π̂A) =
πs

[
λT1(1− πsT1) + (1−λ) T2 (1− πsT2)

]
n

+
(1−P1)

n

[
λ(1− πsT1)

P1
+

(1−λ) (1−T )
[
2 (2−P1)− (1−T ) (1−P1)

]
4

[
1 + T (1−P1)

]2

]

+ π2
s

[
λ2 (T1−1)2 + (1−λ)2 (T2−1)2

]
,

for n = n1 + n2 and λ = n1/n.

3.1. Efficiency comparison

We compare the proposed model with Kim and Warde [13] model, under “Less than
completely truthful reporting” situation.
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The MSE of Kim and Warde [13] estimator π̂kw under less than completely truthful
reporting is given as

(3.16)

MSE(π̂kw) =
πs

[
λT1(1− πsT1) + (1−λ) T2 (1− πsT2)

]
n

+
(1−P1)

[
λP1(1− πsT1) + (1−λ)

]
nP 2

1

+ π2
s

[
λ2 (T1−1)2 + (1−λ)2 (T2−1)2

]
.

The estimator π̂A is always more efficient than that of Kim and Warde [13] estimator
π̂kw if

MSE(π̂kw) > MSE(π̂A) ,

which is true if

(3.17)

[
(1−T )

[
2 (2−P1)− (1−T ) (1−P1)

]
4

[
1 + T (1−P1)

]2 − 1
P 2

1

]
> 0 .

To have an idea about the magnitude of the percent relative efficiency of the proposed
model in relation to Kim and Warde [13] model, we resort to an empirical investigation
for λ = (0.7, 0.5, 0.3), n = 1000, T1 (T2) = 0.7, 0.8, 0.9 (0.6, 0.7, 0.8) and for different values of
T , πs, n1, n2 and P1. The percent relative efficiency of the proposed estimator π̂A with respect
to Kim and Warde [13] estimator π̂kw is defined as

(3.18) PRE(π̂A, π̂kw) =
MSE(π̂kw)
MSE(π̂A)

× 100 .

The following interpretations may be read out from Table 2 and Figure 2:

(a) For all the parametric combinations, the values of percent relative efficiencies
are substantially exceeding 100, which indicate that the proposed estimator π̂A

is uniformly better than Kim and Warde [13] estimator π̂kw.

(b) Table 2 makes it visible that the values of percent relative efficiencies decrease
with the increasing values of P1. Further, we observe that the percent relative
efficiencies increase with the decreasing values of λ (and increasing values of T1, T2)
when the values of P1 are fixed.

(c) It may also be seen that with the increase in the values of πs there is the decreasing
pattern in values of the percent relative efficiencies for fix values of P1.

(d) From Figure 2 it is clear that there is less gain in the efficiency by using the pro-
posed estimator π̂A over Kim and Warde [13] estimator π̂kw, when the proportion
of sensitive attribute is moderately large.



An Efficient Mixed Randomized Response Model for Sensitive Characteristic in Sample Survey 541

Table 2: Percent relative efficiency of the proposed estimator π̂A with
respect to Kim and Warde [13] estimator π̂kw under the
situation of “Less than completely truthful reporting”.

πs

n = 1000
λ T T1 T2

P1

n1 n2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

700 300 0.7 0.1 0.7 0.6 197.29 159.83 137.91 123.84 114.33 107.74 103.14
0.1 500 500 0.5 0.5 0.8 0.7 347.62 257.62 203.92 168.40 143.33 124.85 110.82

300 700 0.3 0.9 0.9 0.8 681.61 470.63 345.02 262.04 203.38 159.88 126.44

700 300 0.7 0.1 0.7 0.6 155.82 129.78 116.64 109.33 105.04 102.46 100.90
0.2 500 500 0.5 0.5 0.8 0.7 253.81 185.33 149.67 129.12 116.52 108.51 103.33

300 700 0.3 0.9 0.9 0.8 450.78 294.67 214.06 167.73 139.19 120.74 108.41

700 300 0.7 0.1 0.7 0.6 132.48 116.20 108.61 104.65 102.43 101.16 100.41
0.3 500 500 0.5 0.5 0.8 0.7 194.00 148.49 126.73 115.02 108.23 104.11 101.57

300 700 0.3 0.9 0.9 0.8 312.22 209.97 161.31 135.06 119.69 110.16 104.03

700 300 0.7 0.1 0.7 0.6 120.45 109.88 105.14 102.73 101.41 100.66 100.23
0.4 500 500 0.5 0.5 0.8 0.7 160.79 130.25 116.28 108.98 104.85 102.40 100.90

300 700 0.3 0.9 0.9 0.8 236.93 168.65 137.44 121.08 111.69 105.98 102.35

700 300 0.7 0.1 0.7 0.6 113.84 106.58 103.39 101.79 100.92 100.43 100.15
0.5 500 500 0.5 0.5 0.8 0.7 141.78 120.40 110.84 105.93 103.18 101.56 100.58

300 700 0.3 0.9 0.9 0.8 194.13 146.38 125.02 113.98 107.71 103.92 101.54

An Efficient Mixed Randomized Response Model 11

Table 2: Percent relative efficiency of the proposed estimator π̂A with re-
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Figure 2: Percent relative efficiency of the proposed estimator π̂A with re-
spect to Kim and Warde [13] estimator π̂kw under the condition
of “Less than completely truthful reporting”, when T = 0.1 and
λ = 0.7.

(a) For all the parametric combinations the values of percent relative efficiencies
are substantially exceeding 100, which indicate that the proposed estimator
π̂A is uniformly better than Kim and Warde [13] estimator π̂kw.

(b) Table 2 visible that the values of percent relative efficiencies decreasing

Figure 2: Percent relative efficiency of the proposed estimator π̂A with
respect to Kim and Warde [13] estimator π̂kw under the con-
dition of “Less than completely truthful reporting”, when
T = 0.1 and λ = 0.7.
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4. A MIX RANDOMIZED RESPONSE MODEL USING STRATIFICATION

4.1. A mixed Stratified randomized response (RR) model

Stratified random sampling is generally obtained by dividing the population into non-
overlapping groups called strata and selecting a simple random sample from each stratum.
The main advantage of the stratified random sampling is that the technique overcomes the
limitation of the loss of individual characteristics of the respondents. A randomized response
(RR) technique using stratified random sampling yields the group characteristics associated
to each stratum estimator. Also, stratified random sampling protects a researcher from the
possibility of obtaining a poor sample. Hong et al. [9] suggested a stratified RR technique us-
ing a proportional allocation. Kim and Warde [12] proposed a stratified randomized response
model using an optimum allocation which is more efficient than that using a proportional
allocation. Kim and Elam [11] suggested a two stage stratified Warner’s RR model using
optimal allocation. Further Kim and Warde [13] suggested a mixed stratified RR model.

In the proposed models, we assume that the population is partitioned into strata, and
a sample is selected by using simple random sampling with replacement (SRSWR) scheme
from each stratum. To get the full benefit from stratification, we assume that the number
of units in each stratum is known. An individual respondent in a sample from each stratum
is instructed to answer a direct question “I am a member of the innocuous trait group”.
Respondents reply the direct question by “Yes” or “No”. If a respondent answers “Yes”, then
the respondent is instructed to go to the random device Rk1 consisting of statements:

(i) “I am a member of the sensitive trait group”,

(ii) “I am a member of the innocuous trait group”,

with probabilities Qk and (1−Qk) respectively. If a respondent answers “No”, then the
respondent is instructed to use the random device Rk2 consisting of two statements (see
Mangat and Singh [16]):

(i) “Do you possess the sensitive attribute A”, with probability Tk,

(ii) “Go to the third random device Rk3 in the second stage”, with probability (1−Tk).

The random device Rk3 at the second stage consists of three statements:

(i) “I possess the sensitive attribute A”,

(ii) “Yes”,

(iii) “No”,

with probabilities Pk, (1−Pk)/2 and (1−Pk)/2. When the outcome of random device Rk3

is either (ii) or (iii), all the respondents, irrespective of whether they possess attribute A or
not, are supposed to say “Yes” or “No” respectively. To protect the respondent’s privacy, the
respondents should not disclose to the interviewer the question they answered from either
Rk1 or Rk2 or Rk3. Let mk denote the number of units in the sample from stratum k and
n as the total number of units in samples from all strata. Let mk1 be the number of people
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responding “Yes” when respondents in a sample mk were asked the direct question and mk2

be the number of people responding “No” when respondents in a sample mk were asked the
direct question, so that n =

∑r
k=1 mk =

∑r
k=1(mk1 +mk2). Under the assumption that these

“Yes” or “No” reports are made truthfully and Qk and Pk are set by researcher. Thus, the
probability Yk of “Yes” answer from the respondents using the random device Rk1 is given by

(4.1) Yk = Qk πsk + (1−Qk) π1k for k = 1, 2, ..., r ,

where πsk is the proportion of respondents with the sensitive trait in stratum k, π1k is the
proportion of respondents with the innocuous trait group in stratum k.

Since the respondent performing a random device Rk1 answered“Yes”to the direct ques-
tion of the innocuous trait, if the respondent selects the same innocuous question from Rk1,
then π1k = 1 (see Kim and Warde [13]). Therefore, equation (4.1) becomes

(4.2) Yk = Qk πsk + (1−Qk) for k = 1, 2, ..., r .

An unbiased estimator of πsk is given as

(4.3) π̂a1k =
Ŷk − (1−Qk)

Qk
for k = 1, 2, ..., r ,

where Ŷk is the proportion of “Yes” answer in a sample in stratum k. Since each Ŷk follows
Binomial distribution i.e. Ŷk ∼ B(mk1, Yk).

The variance of unbiased estimator π̂a1k is given by

(4.4) V (π̂a1k) =
(1−πsk)

[
Qk πsk + (1−Qk)

]
mk1Qk

.

The probability Xk of “Yes” answer from the respondents using random devices Rk2

and Rk3 will be

(4.5) Xk = Tk πsk + (1−Tk)
[
Pk πsk +

(1−Pk)
2

]
,

where πsk is the proportion of respondents with the sensitive treat in stratum k.

An unbiased estimator of πsk is given by

(4.6) π̂b1k =
X̂k − (1−T1)

(1−Pk)
2

Tk + Pk(1−Tk)
,

where X̂k is the proportion of “Yes” responses in a sample from a stratum k. Since each X̂k

follows Binomial distribution i.e. X̂k ∼B(mk1,Xk). By using mk = mk1 + mk2 and Pk = (2−Qk)−1

(see Lanke [14]), the variance of estimator π̂b1k is given by

(4.7) V (π̂b1k) =

[
πsk(1−πsk)

mk2
+

(1−Tk) (1−Qk)
[
2 (2−Qk)− (1−Tk) (1−Qk)

]
4 m2

[
1 + Tk(1−Qk)

]2

]
.
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Now, we develop the unbiased estimator of πsk, in terms of sample proportion of “Yes”
responses Ŷk and X̂k, as

(4.8) π̂msk =
(

mk1

mk

)
π̂a1k +

(
mk2

mk

)
π̂b1k for 0 <

mk1

mk
< 1 .

The variance of the estimator π̂msk is given by

V (π̂msk) =

[
πsk(1−πsk)

mk
+

λk(1−πsk) (1−Qk)
mk Qk

+
(1−λk) (1−Tk) (1−Qk)

[
2 (2−Qk)− (1−Tk) (1−Qk)

]
4 mk

[
1 + Tk(1−Qk)

]2

]
,

(4.9)

where mk = mk1 + mk2 and λk = mk1/mk.

Thus, the unbiased estimator of πs =
∑r

k=1 wk πsk is obtained as

(4.10) π̂Ak =
r∑

k=1

wk π̂msk =
r∑

k=1

wk

[
mk1

mk
π̂a1k +

mk2

mk
π̂b1k

]
,

where N is the number of units in the whole population, Nk is the total number of units in
stratum k, and wk = Nk

N for k = 1, 2, ...., r so that w =
∑r

k=1 wk = 1. It can be shown that
the proposed estimator π̂Ak is unbiased for πs. The variance of π̂Ak is given by

(4.11)

V (π̂Ak) =
r∑

k=1

w2
k

mk

[
πsk(1−πsk) +

λk(1−πsk) (1−Qk)
Qk

+
(1−λk) (1−Tk) (1−Qk)

[
2 (2−Qk)− (1−Tk) (1−Qk)

]
4

[
1 + Tk(1−Qk)

]2

]
.

Here, the requirement of doing the optimal allocation of a sample size n, we need to
know λk = mk1/mk and πsk. In practice the information on λk = mk1/mk and πsk is usually
unavailable. But if prior information about λk = mk1/mk and πsk is available from past
experience, it will help to derive the following optimal allocation formula.

Theorem 4.1. The optimum allocation of m to m1,m2, ...,mr−1 and mr to derive

the minimum variance of the π̂Ak subject to n =
∑r

k=1 mk is approximately given by

(4.12)
mk

n
=

A

B
,

where

A = wk

[
πsk(1− πsk) +

λk(1−πsk) (1−Qk)
Qk

+
(1−λk) (1−Tk) (1−Qk)

[
2 (2−Qk)− (1−Tk) (1−Qk)

]
4

[
1 + Tk(1−Qk)

]2

] 1
2

,

B =
r∑

k=1

wk

[
πsk(1−πsk) +

λk(1−πsk) (1−Qk)
Qk

+
(1−λk) (1−Tk) (1−Qk)

[
2 (2−Qk)− (1−Tk) (1−Qk)

]
4

[
1 + Tk(1−Qk)

]2

] 1
2

.
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Thus, the minimal variance of the estimator π̂Ak is given by

(4.13)

V (π̂Ak) =
1
n

 r∑
k=1

wk

[
πsk(1−πsk) +

λk(1−πsk) (1−Qk)
Qk

+
(1−λk) (1−Tk) (1−Qk)

[
2 (2−Qk)− (1−Tk) (1−Qk)

]
4

[
1 + Tk(1−Qk)

]2

]1
2


2

,

where n =
∑r

k=1 mk, mk = mk1 + mk2 and λk = mk1/mk.

4.2. Efficiency comparison

To show the efficacious performance of the proposed stratified mixed randomized re-
sponse model, we examine the efficiency comparison of the proposed estimator π̂Ak over the
proposed mixed randomized estimator π̂A1 and Kim and Warde [13] estimator π̂kw respec-
tively. The comparisons are given in the form of following theorems.

Theorem 4.2. Suppose there are two strata (i.e. k = 2) in the population and λ =
mk1/mk. The proposed stratified estimator π̂Ak is always more efficient than that of usual

proposed estimator π̂A1 where P1 = Q1 = Q2, λ = λ1 = λ2 and T = T1 = T2.

Proof: Under the assumption k = 2, P1 = Q1 = Q2, λ = λ1 = λ2 and T = T1 = T2,
the equation (4.13) can be rewritten as

(4.14)

V (π̂Ak) =
1
n

 w1

[
πs1(1−πs1) +

λ(1−πs1) (1−P1)
P1

+
(1−λ) (1−T ) (1−P1)

[
2 (2−P1)− (1−T ) (1−P1)

]
4

[
1 + T (1−P1)

]2

]1
2

+ w2

[
πs2(1−πs2) +

λ(1−πs2) (1−P1)
P1

+
(1−λ) (1−T ) (1−P1)

[
2 (2−P1)− (1−T ) (1−P1)

]
4

[
1 + T (1−P1)

]2

]1
2


2

.

If we denote

a1 =
(1−πs1) (1−P1)

P1
,

a2 =
(1−πs2) (1−P1)

P1
,

b =
(1−λ) (1−T ) (1−P1)

[
2 (2−P1)− (1−T ) (1−P1)

]
4

[
1 + T (1−P1)

]2 ,
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we can write equation (4.14) as

(4.15) V (π̂Ak) =
1
n

[
w1

[
πs1(1−πs1) + λa1 + b

]1
2 + w2

[
πs2(1−πs2) + λa2 + b

]1
2

]2

.

From equation (2.18), we have

(4.16) V (π̂A1) =
1
n

[
(w1πs1 + w2πs2) (1− w1πs1 − w2πs2) + λ(w1a1 + w2a2) + b

]
.

Now, subtracting equation (4.15) from equation (4.16), we have

n
[
V (π̂A1)−V (π̂Ak)

]
=

[
(w1πs1 + w2πs2) (1− w1πs1− w2πs2) + λ(w1a1 + w2a2) + b

]
−

[
w1

[
πs1(1−πs1) + λa1 + b

]1
2 + w2

[
πs2(1−πs2) + λa2 + b

]1
2

]2

= w1πs1 + w2πs2 − 2 w1w2πs1πs2 − w2
1 πs1− w2

2 πs2

− w2
1 (λa1+ b)− w2

2 (λa2 + b) + λ(w1a1 + w2a2) + b

− 2 w1w2

[
πs1(1−πs1) + λa1 + b

]1
2
[
πs2(1−πs2) + λa2 + b

]1
2

= w1(πs1 +λa1) + w2(πs2 +λa2)

− w2
1 (πs1 +λa1+ b)− w2

2 (πs2 +λa2 + b)− 2 w1w2πs1πs2 + b

− 2 w1w2

[
πs1(1−πs1) + λa1 + b

]1
2
[
πs2(1−πs2) + λa2 + b

]1
2

> 0 ,

which proves the theorem.

Theorem 4.3. Suppose there are two strata (i.e. k = 2) in the population and λ =
mk1/mk. The proposed stratified estimator π̂Ak is always more efficient than that of Kim and

Warde [13] estimator π̂kw where P1 = Q1 = Q2, λ = λ1 = λ2 and T = T1 = T2.

Proof: Under the assumption P1 = Q1 = Q2, λ = λ1 = λ2 and T = T1 = T2, the min-
imal variance of the Kim and Warde [13] estimator π̂kw is given by

(4.17) V (π̂kw) =
1
n

[
w1(A1+ b1)

1
2 + w2(A2 + b1)

1
2

]2
,

where

A1 = πs1(1−πs1) +
λ(1−P1) (1−πs1)

P1
,

A2 = πs2(1−πs2) +
λ(1−P1) (1−πs2)

P1
,

b1 =
(1−λ) (1−P1)

P 2
1

.
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Equation (4.15) can be rewritten as

(4.18) V (π̂Ak) =
1
n

[
w1(A1+ b)

1
2 + w2(A2 + b)

1
2

]2
.

From equations (4.17) and (4.18), we have

n
[
V (π̂kw)−V (π̂Ak)

]
=

=
[
w1(A1+ b1)

1
2 + w2(A2 + b1)

1
2

]2
−

[
w1(A1+ b)

1
2 + w2(A2 + b)

1
2

]2

=
[
w2

1b1 + w2
2 b1 − w2

1b− w2
2 b + 2 w1w2

[
(A1+ b1)

1
2 (A2 + b1)

1
2 − (A1+ b)

1
2 (A2 + b)

1
2

]]

=
[
(b1− b) (w2

1 +w2
2) + 2 w1w2

[
(A1+ b1)

1
2 (A2 + b1)

1
2 − (A1+ b)

1
2 (A2 + b)

1
2

]]

= (b1− b)

w2
1w2

2 + 2 w1w2
(A1 + A2 + b1 + b)[

(A1+ b1)
1
2 (A2 + b1)

1
2 − (A1+ b)

1
2 (A2 + b)

1
2

]


> 0 ,

since (b1− b) > 0.

Therefore, n
[
V (π̂kw)−V (π̂Ak)

]
is always positive. Thus the theorem is proved.

We have shown the performance of proposed stratified estimator π̂Ak over suggested
mixed estimator π̂A1 and Kim and Warde [13] estimator π̂kw in case of two strata (i.e. k = 2).
Now, we calculate the percent relative efficiencies PRE(π̂Ak , π̂A1) and PRE(π̂Ak , π̂kw) for dif-
ferent values of T , πs, n1, n2 and P1, by using the following formulas:

PRE(π̂Ak , π̂A1) =
V (π̂A1)
V (π̂Ak)

× 100(4.19)

and

PRE(π̂Ak , π̂kw) =
V (π̂kw)
V (π̂Ak)

× 100 ,(4.20)

where

V (π̂kw) =

 2∑
k=1

wk

[
πsk(1−πsk)

n
+

(1−Qk)
[
λk Qk(1−πsk) + (1−λk)

]
n Q2

k

]1
2


2

.

We may observe from Tables 3–4:

(a) For all the parametric combinations the values of percent relative efficiencies are
substantially exceeding 100, which indicate that the proposed stratified estimator
π̂Ak is uniformly better than the proposed mixed estimator π̂A1 and Kim and
Warde [13] estimator π̂kw under optimum allocation condition.

(b) It is also noted, from Table 3, the percent relative efficiencies increasing as the
values of P1 increases. Also the percent relative efficiencies almost increasing as
the values of πs increases for fixed values of λ and T .
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(c) From Table 4, we observe that with the increase in the values of P1 there is a
decreasing pattern in the values of percent relative efficiencies.

(d) Figures 3–4 also show that there is a large gain in efficiencies by using the proposed
stratified estimator π̂Ak over the mixed estimator π̂A1 and Kim and Warde [13]
stratified estimator, when the proportion of stigmatizing attribute is moderately
large.

Table 3: Percent relative efficiency of the proposed stratified estimator π̂Ak

with respect to mixed estimator π̂A1.

πs1 πs2 πs w1 w2 λ T
P1 = Q1 = Q2

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.2 0.1 100.031 100.041 100.051 100.063 100.076 100.090 100.107

0.08 0.13 0.1 0.6 0.4
0.4 0.3 100.026 100.032 100.038 100.046 100.056 100.067 100.080
0.6 0.1 100.023 100.027 100.031 100.036 100.042 100.049 100.058
0.8 0.3 100.023 100.026 100.029 100.033 100.038 100.044 100.051

0.2 0.1 100.035 100.043 100.052 100.061 100.072 100.082 100.094

0.18 0.23 0.2 0.6 0.4
0.4 0.3 100.031 100.037 100.043 100.050 100.058 100.067 100.078
0.6 0.1 100.028 100.032 100.036 100.041 100.046 100.053 100.061
0.8 0.3 100.028 100.031 100.035 100.039 100.043 100.049 100.055

0.2 0.1 100.040 100.047 100.055 100.063 100.071 100.080 100.089

0.28 0.33 0.3 0.6 0.4
0.4 0.3 100.038 100.044 100.050 100.056 100.063 100.071 100.080
0.6 0.1 100.035 100.039 100.043 100.047 100.053 100.059 100.066
0.8 0.3 100.036 100.039 100.043 100.047 100.051 100.057 100.063

0.2 0.1 100.047 100.054 100.060 100.067 100.074 100.081 100.089

0.38 0.43 0.4 0.6 0.4
0.4 0.3 100.049 100.054 100.060 100.066 100.072 100.079 100.087
0.6 0.1 100.046 100.049 100.053 100.058 100.063 100.069 100.075
0.8 0.3 100.047 100.051 100.055 100.059 100.064 100.069 100.075
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Figure 3: Percent relative efficiency of the proposed stratified estimator
π̂Ak with respect to mixed estimator π̂A1 when T = 0.1 and
λ = 0.2.

Table 4: Percent relative efficiency of the proposed stratified estimator
π̂Ak with respect to Kim and warde [13] stratified estimator
π̂kw .

πs1 πs2 πs w1 w2 λ T P1 = Q1 = Q2

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.08 0.13 0.1 0.6 0.4 0.2 0.1 3481.8 2101.6 1442.9 1066.2 826.74 663.42 546.22

0.08 0.13 0.1 0.6 0.4 0.4 0.3 1631.1 1075.7 797.99 631.41 520.33 440.92 381.28

0.08 0.13 0.1 0.6 0.4 0.6 0.1 794.72 546.74 422.30 347.29 297.01 260.87 233.57

0.08 0.13 0.1 0.6 0.4 0.8 0.3 370.55 277.34 230.42 202.03 182.88 169.02 158.45

0.18 0.23 0.2 0.6 0.4 0.2 0.1 3667.2 2161.6 1454.6 1056.2 806.48 638.26 518.94

0.18 0.23 0.2 0.6 0.4 0.4 0.3 1768.8 1146.8 837.14 652.25 529.65 442.57 377.60

0.18 0.23 0.2 0.6 0.4 0.6 0.1 864.48 586.05 446.58 362.71 306.65 266.47 236.23

0.18 0.23 0.2 0.6 0.4 0.8 0.3 399.97 295.03 242.18 210.17 188.57 172.92 160.97

0.28 0.33 0.3 0.6 0.4 0.2 0.1 3914.3 2255.9 1490.7 1066.2 803.68 629.02 506.52

0.28 0.33 0.3 0.6 0.4 0.4 0.3 1946.4 1240.7 891.40 684.34 548.12 452.19 381.28

0.28 0.33 0.3 0.6 0.4 0.6 0.1 953.86 636.79 478.46 383.62 320.52 275.53 241.87

0.28 0.33 0.3 0.6 0.4 0.8 0.3 437.83 317.90 257.52 220.96 196.31 178.47 164.89

0.38 0.43 0.4 0.6 0.4 0.2 0.1 4245.8 2394.1 1555.4 1097.4 817.92 634.11 506.52

0.38 0.43 0.4 0.6 0.4 0.4 0.3 2182.3 1367.1 966.80 731.53 578.17 471.21 392.93

0.38 0.43 0.4 0.6 0.4 0.6 0.1 1072.2 704.20 521.29 412.31 340.23 289.19 251.26

0.38 0.43 0.4 0.6 0.4 0.8 0.3 488.32 348.50 278.17 235.65 207.04 186.39 170.73

(c) From Table 4, we observed that with the increase in the value of P1 there
is a decreasing pattern in the values of percent relative efficiencies.

(d) Figs. 3-4 also shown that there is a large gain in efficiencies by using the
proposed stratified estimator π̂Ak over the mixed estimator π̂A1 and Kim
and Warde [13] stratified estimator, when the proportion of stigmatizing
attribute is moderately large.

Figure 3: Percent relative efficiency of the proposed stratified estimator π̂Ak

with respect to mixed estimator π̂A1 when T = 0.1 and λ = 0.2.
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Table 4: Percent relative efficiency of the proposed stratified estimator π̂Ak

with respect to Kim and Warde [13] stratified estimator π̂kw.

πs1 πs2 πs w1 w2 λ T
P1 = Q1 = Q2

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.2 0.1 3481.8 2101.6 1442.9 1066.2 826.74 663.42 546.22

0.08 0.13 0.1 0.6 0.4
0.4 0.3 1631.1 1075.7 797.99 631.41 520.33 440.92 381.28
0.6 0.1 794.72 546.74 422.30 347.29 297.01 260.87 233.57
0.8 0.3 370.55 277.34 230.42 202.03 182.88 169.02 158.45

0.2 0.1 3667.2 2161.6 1454.6 1056.2 806.48 638.26 518.94

0.18 0.23 0.2 0.6 0.4
0.4 0.3 1768.8 1146.8 837.14 652.25 529.65 442.57 377.60
0.6 0.1 864.48 586.05 446.58 362.71 306.65 266.47 236.23
0.8 0.3 399.97 295.03 242.18 210.17 188.57 172.92 160.97

0.2 0.1 3914.3 2255.9 1490.7 1066.2 803.68 629.02 506.52

0.28 0.33 0.3 0.6 0.4
0.4 0.3 1946.4 1240.7 891.40 684.34 548.12 452.19 381.28
0.6 0.1 953.86 636.79 478.46 383.62 320.52 275.53 241.87
0.8 0.3 437.83 317.90 257.52 220.96 196.31 178.47 164.89

0.2 0.1 4245.8 2394.1 1555.4 1097.4 817.92 634.11 506.52

0.38 0.43 0.4 0.6 0.4
0.4 0.3 2182.3 1367.1 966.80 731.53 578.17 471.21 392.93
0.6 0.1 1072.2 704.20 521.29 412.31 340.23 289.19 251.26
0.8 0.3 488.32 348.50 278.17 235.65 207.04 186.39 170.73

20 Amod Kumar, G. N. Singh and Gajendra K. Vishwakarma

0.1 0.2 0.3 0.4
0

1000

2000

3000

4000

5000

PI
s

Pe
rc

en
t r

el
at

iv
e 

ef
fi

ci
en

cy

 

 
P=0.10
P=0.15
P=0.20
P=0.25
P=0.30
P=0.35
P=0.40

Figure 4: Percent relative efficiency of the proposed stratified estimator
π̂Ak with respect to Kim and Warde [13] stratified estimator
π̂kw when T = 0.1 and λ = 0.2.

5. Conclusions

In this paper, we have estimated the population proportion who possess
to the sensitive attribute in the given population under both the situations of
completely truthful reporting and less than completely truthful reporting as well
as its stratified randomized response model. It has been shown that the proposed
mixed randomized response models are better than the Kim and Warde [13] mixed
randomized response model with larger gain in efficiencies.
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Kim and Warde [13] mixed randomized response model with larger gain in efficiencies.
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1. INTRODUCTION

The half-normal (HN) distribution is a very important model in the study of skewed
distributions. For instance, it is used in the stochastic representation of the skew-normal dis-
tribution in Azzalini [4, 5] and Henze [15]. Several papers in the literature have paid attention
to the half-normal distribution. For instance, Chou and Liu [7] studied its properties and its
uses in quality control. Pewsey [22, 23] studied asymptotic inference and maximum likelihood
estimation for the general location-scale half-normal distribution. For analysis and applica-
tions from a Bayesian point of view, the reader is referred to Wiper et al. [32] and Khan and
Islam [17]. Also, the hnp R package [20], generates half-normal plots with simulated envelopes
using different diagnostics tools from a range of different fitted models. Even though the HN
distribution accommodates only decreasing hazard rates, this distribution has been used to
model positive data and is becoming an important model in reliability theory,. Some of the
generalizations of this distribution can be found in Cooray and Ananda [8], Cordeiro et al. [9],
Olmos et al. [21], Gómez and Bolfarine [13], Bourguignon et al. [6] and Asgharzadeh et al. [1],
among others. Particularly, we focus on the extension proposed in Olmos et al. [21], named
slash half-normal (SHN) distribution, where the goal is to increase the kurtosis with respect
to its parent half-normal distribution, and hence be more useful for modeling positive datasets
that may have a heavy right tail. In this work, we propose a reparameterization for this model
based on the mean. We use this parameterization because it is convenient for proposing a
regression model.

The article is organized as follows. In Section 2, we describe the reparametrized SHN
regression model and compare it with some existing models. In Section 3, we describe param-
eter estimation by the maximum likelihood (ML) method using the expectation-maximization
(EM) algorithm. Goodness of fit through residuals is discussed in Section 4. In Section 5, we
carry out two simulation studies to assess the performance of the proposed estimators and
the two kinds of residuals. In Section 6, we apply the proposed model to analyze two datasets
on the diet of the hunter-gatherer and concentration of minerals in soil samples. Concluding
remarks are given in Section 7.

2. THE PROPOSAL

In this section, we present the proposed reparameterization for the SHN model in terms
of the mean. We also present three common distributions to accommodate positive data that
also are reparametrized in terms of the mean: the gamma, Weibull and Birnbaum–Saunders
models.

2.1. Reparametrized slashed half-normal model

The SHN model (Olmos et al. (2012) [21]) is built in the following way. If X ∼ HN(σ)
(σ > 0) and Z ∼ Beta(α, 1) are independent random variables, then

(2.1) Y =
X

Z
∼ SHN(σ, α) ,
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where α > 0 is a shape parameter that mainly controls the right tail of the distribution.
Lower values of α (0 < α < 1) lead to a heavier tail (see Figure 1 in Olmos et al. [21]).
However, in practice we have found estimates for α greater than 1 (see the two examples
in Olmos et al. [21] and our applications). For this reason, the potential advantages of the
parameterization of the model in terms of the mean (mainly related to the interpretation of the
coefficients in a regression model) justify the restriction α > 1. Such kind of restriction is not
uncommon in the literature. Without going further, the popular Student’s t distribution has
a finite mean if the degrees of freedom are greater than 1. We propose a reparameterization
of the SHN model based on µ =

√
2/π ασ/(α−1). The probability density function of the

reparametrized SHN, henceforth RSHN(µ, α), is given by

fRSHN(y;µ, α) = α

√
2α

π

[√
π

2
µ(α−1)

α

]α
Γ
(

α+1
2

)
y−(α+1) G

[
α2y2

πµ2 (α−1)2
,
α+1

2

]
,(2.2)

for y > 0, where Γ(·) denotes the gamma function and G(y, a) =
∫ y
0 ua−1e−udu/Γ(a) is the

cumulative distribution function (cdf) of the gamma distribution with rate parameter equal
to 1. Based on results in Olmos et al. [21], we have E(Y ) = µ, for α > 1,

Var(Y ) =
µ2

2

[
π − 2 +

π

α(α−2)

]
, for α > 2 ,

√
ν3 =

π
√

2(α−2)
[

4
π α2 (α−2) (α−3)− (α−1)2 (α−4) (α+1)

]
√

α (α−3)
[
(π−2) α (α−2) + π

]3/2
, for α > 3 ,

and

ν4 =
3α(α−2)2 (α−3)

[
π2 (α−1)4 − 4α3(α−4)

]
− 4πα2 (α−1)2 (α−2)(α−4)(α2−3α+8)

α2 (α−3)(α−4)
[
(π−2)α(α−2) + π

]2 ,

for α > 4, where
√

ν3 and ν4 denote the skewness and kurtosis coefficients, respectively. Note
that this parameterization is very convenient because the parameter µ is related only to the
mean and the variance of the distribution.

2.2. Reparametrized gamma distribution

For Y ∼ RG(µ, φ) (the gamma model parametrized in terms of the mean), we have

E(Y ) = µ , Var(Y ) =
µ2

φ
,

√
ν3 =

2√
φ

and ν4 = 3 +
6
φ

.

The RSHN model is a competing distribution for the gamma distribution because the coeffi-
cient of variation (cv), skewness and kurtosis coefficients do not depend on µ in both models.
Figure 1(a) shows the values of φ in the RG(µ, φ) model and α in the RSHN(µ, α) model
that lead to the same values of cv. Figure 1(b) displays the kurtosis coefficient for those
pairs (φ, α) corresponding to the same value of cv. It is clear that the gamma model is more
flexible in the sense that it allows to obtain any positive value for the cv, whereas the RSHN
distribution only supports values for cv greater than

[
(π−2)/2

]1/2 ≈ 0.756, i.e., greater than
the cv of the half-normal distribution. However, there is a range of values of α such that,
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for the same value of the cv, the RSHN distribution has a greater kurtosis coefficient than
the gamma distribution. In short, in the RSHN model the variance is proportional to the
square of the mean (similar to the gamma model), but the RSHN model has a greater kurtosis
coefficient for a certain range of values of α.
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Figure 1: (a) Values for φ and α in the RG(µ, φ) and RSHN(µ, α) distributions that produce
the same coefficient of variation and (b) their respective kurtosis coefficients.

2.3. Reparametrized Weibull and Birnbaum–Saunders distributions

The reparametrized form of the Weibull distribution with parameters µ > 0 and δ > 0
has probability density function

fRW(y;µ, δ) =
φ

γ

(
y

γ

)δ−1

exp

[
−
(

y

γ

)δ]
, for y > 0 ,

where γ = µ
/
Γ(1/δ + 1), so that

E(Y ) = µ and Var(Y ) = µ2

{
Γ(2/δ + 1)[
Γ(1/δ + 1)

]2 − 1

}
.

We denote as Y ∼ RW(µ, δ).

In the same way, Santos-Neto et al. [31] also reparametrized the Birnbaum–Saunders
distribution in terms of the mean. With parameters µ > 0 and ξ > 0, the probability density
function is given by

fRBS(y;µ, ξ) =
exp(ξ/2)

√
ξ +1

4
√

πµ y3/2

(
y +

ξµ

ξ + µ

)
exp

{
−ξ

4

[
y(ξ +1)

ξµ
+

ξµ

y(ξ +1)

]}
,

for y > 0, so that E(Y ) = µ and Var(Y ) = µ2(2 ξ+5)/(ξ+1)2. We use the notation Y ∼RBS(µ, ξ).
The RW and RG (Section 2.2) will be compared with the RSHN model fitted to real datasets
in Section 6.
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Remark 2.1. The RG and RW models are more flexible than the RBS and RSHN
models in the sense that, for a given value of µ, they allow to obtain any positive value for the
variance, whereas the RBS and RSHN models have some restrictions. However, even when
all the models produce the same mean and variance, the skewness and kurtosis are not the
same. Moreover, such terms do not depend on µ. Table 1 shows four models with the same
mean and variance. However, the skewness and kurtosis coefficients are different.

Table 1: Examples of models with the same mean and variance.

Moment or Model

coefficient RG(µ, 1.333) RW(µ, 1.158) RBS(µ, 3.692) RSHN(µ, 4.125)

Mean µ µ µ µ

Variance 0.75 µ2 0.75 µ2 0.75 µ2 0.75 µ2

Skewness 1.732 1.390 12.662 1.791

Kurtosis 7.500 6.868 59.641 120.807

Remark 2.2. The mean and the variance of the RG, RW, RBS and RSHN models
are µ and µ2w2(η), where η represents φ, δ, ξ or α in each model, respectively, and w(·)
is a positive function representing the coefficient of variation. This function is presented
in Table 2. The computational implementation to model mean and dispersion parameters
with a set of covariates linked to both components in RG and RW models is implemented in
the gamlss.dist package in R (see Rigby and Stasinopoulos [28, 29]), while the RBS model is
discussed in Santos-Neto et al. [30]. A similar scheme to model mean and dispersion might
be considered for the RSHN distribution. However, we only consider a model for the mean
parameter in this work.

Table 2: Summary for some models with quadratic variance function.

Model RG(µ, φ) RW(µ, δ) RBS(µ, ξ) RSHN(µ, α)

w(η)
1√
φ

s
Γ(2/δ + 1)�
Γ(1/δ + 1)

�2 − 1

p
(2ξ + 5)

ξ + 1

s
1

2

�
π − 2 +

π

α(α− 2)

�

3. ESTIMATION

In this section, we discuss some details about the estimation procedure based on the
ML method. We also consider an EM type algorithm to obtain a more stable estimation
procedure. Henceforth, we consider a set of p observed covariates for each individual, say
xi = (xi1, ..., xip)>. Since µ = E(Y ) is a positive parameter, we adopt the logarithmic link
function log(µi) = x>i β, i = 1, ..., n, where β is a p×1 vector of regression coefficients.
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3.1. General context

In Olmos et al. [21], parameter estimation (without covariates) was carried out based
on the direct maximization of the log-likelihood function using as initial values the method
of moments estimates of the parameters. In our model, assuming the intercept is included,
naive estimators for β0 and α can be obtained ignoring the covariates, i.e., β1 = ··· = βp = 0.
In this case, such estimators are given by

(3.1) β̂0M = log
(
Y
)

and α̂M =
1
2

+
1
2

√
1 +

π

2Ay − 2 + π
, if Y 2 >

π

2
Y

2
,

where Ay = Y 2/Y
2 and Y 2 is the sample mean of the squared observations.

The log-likelihood function of ψ = (β>, α)> in a random sample with observations
y1, ..., yn is given by

(3.2) `(ψ) = c(α) + α log(µ)− (α +1)
n∑

i=1

log(yi) +
n∑

i=1

log

{
G

[
α2y2

πµ2(α−1)2
,
α +1

2

]}
,

where c(α) =−n(α−1) log(α)−nα log(2)/2+(α−1/2) log(π)+α log(α−1)+n log
[
Γ(α/2+1/2)

]
.

However, direct maximization of (3.2) is not simple and may suffer from numerical instabilities.
In Section 3.2, we propose a stable estimation procedure for this model based on the stochastic
representation in (2.1). We develop in the sequel an EM algorithm (Dempster et al. [10]) for
parameter estimation.

3.2. ECM and ECME algorithms

To facilitate the estimation process, we include latent variables Z1, ..., Zn through the
following hierarchical representation of the RSHN model:

Yi |Zi = zi , µi ∼ HN

[√
π

2
µi(α−1)

αzi

]
and Zi ∼ Beta(α, 1) .

Thus, the complete likelihood function for ψ is given by

Lc(ψ) =

(√
2
π

α2

α−1

)n

exp

{
−

n∑
i=1

[
log(µi)−α log(zi)

]
− α2

π(α−1)2

n∑
i=1

y2
i Z2

i

µ2
i

}
.

Consequently, up to a constant, the complete log-likelihood function for ψ is

`c(ψ) = − α2

π(α−1)2

n∑
i=1

y2
i z2

i

µ2
i

−
n∑

i=1

[
log(µi)−α log(zi)

]
+ n

[
2 log(α)− log(α−1)

]
.

Let ẑ2
i = E

(
Z2

i |ψ= ψ̂
)
, ̂log(zi) = E

(
log(Zi) |ψ= ψ̂

)
and Q

(
ψ | ψ̂

)
= E

(
`c(ψ) |ψ= ψ̂

)
.

With these definitions,

Q
(
ψ | ψ̂

)
= − α2

π(α−1)2

n∑
i=1

y2
i ẑ2

i

µ2
i

−
n∑

i=1

[
log(µi)−α ̂log(zi)

]
+ n

[
2 log(α)− log(α−1)

]
.
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In addition,

f
(
zi | Yi = yi

)
∝ (z2

i )(
α
2
+1)−1 exp

[
− α2y2

i z2
i

πµ2
i (α−1)2

]
I(0,1)(zi) ,

where IA(a) = 1 if a ∈ A and 0 otherwise. Define Wi = Z2
i , i = 1, ..., n. It is straightforward

to show that

f
(
wi | Yi = yi) ∝ w

α+1
2
−1

i exp
[
−πµ2

i (α−1) y2
i wi

α

]
I(0,1)(wi) ,

so that

Wi |Yi = yi ∼ Gamma
[
α +1

2
,
πµ2

i (α−1) y2
i

α

]
I(0,1) ,

i.e., the truncated gamma distribution on the (0, 1) interval. Thus,

ẑ2
i =

πµi(α +1) (α−1)2 G

[
α2y2

i

πµ2
i (α−1)2

,
α +3

2

]
y2

i G

[
α2y2

i

πµ2
i (α−1)2

,
α +1

2

] .

However, a closed form expression for ̂log(zi) is not available, but it can be computed numer-
ically noticing that E

[
log(Zi)

]
= E

[
log(Wi)

]
/2 = Ci1(ψ)/

[
2 Ci0(ψ)

]
, where

(3.3) Cij(ψ) =
∫ 1

0

[
log(w)

]j
w

α+1
2
−1 exp

[
−πµ2

i (α−1) y2
i w

α

]
dw ,

for α > 1 and j = 0, 1. Note that if W ∗
i ∼ Gamma(ai, bi), ai, bi > 0, then E

[
log(W ∗

i )
]

=
η(ai)− log(bi), with η(·) denoting the digamma function. For this reason, the convergence
of Ci1(ψ) is guaranteed because Ci1(ψ) < E

[
log(W ∗

i )
]

< ∞, taking ai and bi conveniently.
Therefore, the k-th iteration of the ECM algorithm takes the form:

• E step. For i = 1, ..., n, use ψ̂
(k−1)

, the estimate of ψ at the (k−1)-th iteration of
the algorithm, to compute

ẑ
2(k)

i =

πµ̂i
(k−1)

(
α̂(k−1) +1

)(
α̂(k−1)−1

)2
G

[
α̂2(k−1)y2

i

πµ̂i
2(k−1)

(
α̂(k−1)−1

)2 ,
α̂(k−1) +3

2

]

y2
i G

[
α̂2(k−1)y2

i

πµ̂i
2(k−1)

(
α̂(k−1)−1

)2 ,
α̂(k−1) +1

2

]

and l̂og(zi)
(k)

= Ci1

(
ψ̂

(k))/[
2 Ci0

(
ψ̂

(k))]
, where µ̂i

(k−1) = exp
(
x>i β̂

(k−1))
and Cij(ψ),

for j = 0,1, is given in (3.3).

• CM step I. Given α̂(k−1) and ẑ 2(k) =
(
ẑ

2(k)
1 , ..., ẑ

2(k)
n

)>, maximize the expression

− α̂2(k−1)

π
(
α̂(k−1)−1

)2 n∑
i=1

y2
i ẑi

2(k)

exp
(
2x>i β

) − n∑
i=1

x>i β

with respect to β to obtain β̂
(k)

.

• CM step II. Given β̂
(k)

and l̂og(z)
(k)

=
(

̂log(z1)
(k)
, ..., ̂log(zn)

(k))>
, maximize the

expression

− α2

π(α−1)2

n∑
i=1

y2
i ẑi

2(k)

µ̂i
2(k)

+ α
n∑

i=1

̂log(zi)
(k)

+ n
[
2 log(α)− log(α−1)

]
with respect to α, subject to α > 1, to obtain α̂(k).
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The maximization procedures in the CM steps can be performed using extant software, e.g.,
with the optim function in the R language [24]. The E and CM steps are repeatedly cycled
until a suitable convergence rule is satisfied, e.g., the difference in successive values of the
estimates given by the Euclidean norm

∥∥ψ(k+1) −ψ(k)
∥∥ is less than a tolerance value.

In practice, the implementation of the ECM algorithm in this form can be compu-
tationally expensive, mainly due to the computation of ̂log(zi), i = 1, ..., n, in the E step.
To avoid this problem and following the same idea used in [19], we can replace the CM step II
by the following step:

• CME step II. Given β = β̂
(k)

, update the estimate of α by maximizing the expres-
sion

∑n
i=1 log

[
fRSHN

(
yi; µ̂i

(k), α
)]

with respect to α, subject to α > 1, where fRSHN

is presented in (2.2). In other words, α is updated based on the maximization of

the observed log-likelihood function with β = β̂
(k)

. This step involves a unidimen-
sional maximization, which can be performed using, for instance, the Brent method
available in the optim function in R.

Finally, the covariance matrix of ψ̂ can be estimated based on the Hessian matrix of the ob-
served log-likelihood function. The numDeriv R package [12] provides an accurate numerical
approximation for this matrix. In Sections 5 and 6, this estimate of the covariance ma-
trix of ψ̂ is used to build approximate confidence intervals and to compute standard errors.
Computational codes are available in supplementary material.

Remark 3.1. For the case without covariates, the CM step I is reduced to

CM step I. Update µ as follows: µ̂(k) =
α̂(k)

α̂(k)−1

(
2

nπ

n∑
i=1

z2
i ŷi

2(k)

)1/2

.

Remark 3.2. In the RSHN regression model, when the intercept term is included in
the model, an initial value to ψ can be obtained based on the moment estimators presented

in (3.1). Such initial value can be considered as ψ̂
(0)

=
(
β̂0M, 0, ..., 0, α̂M).

4. RESIDUAL DIAGNOSTICS FOR THE RSHN MODEL

In this section, we discuss some aspects related to the deviance and quantile residuals
for the RSHN model.

4.1. Deviance residuals

Residual diagnostics for the RSHN model can be carried out using the deviance residuals
defined as rDi = sign(Yi− µ̂i)

√
2
[
`(µ̃i, α̂)− `(µ̂i, α̂)

]1/2, where `(·) denotes the log-likelihood
function, µ̃i is the ML estimator of µi = exp

(
x>i β

)
under the saturated model and µ̂i is

the ML estimator of µi under the working model (with p < n regression coefficients).
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For the RSHN regression model, with µ̃i = Yi and `(·) coming from (3.2), these residuals
are given by

rDi = sign(Yi− µ̂i)
√

2

α̂ log(Yi/µ̂i) + log

{
G

[
α̂2

π(α̂−1)
,
α̂ +1

2

]}

− log

{
G

[
Y 2

i α̂2

πµ̂2
i (α̂−1)

,
α̂ +1

2

]}1/2

, for i = 1, ..., n ,

where G(·) is given in (2.2). If the model is correct, the approximate distribution of rDi ,
i = 1, ..., n, is the standard normal. The normality of the residuals can be tested based on
different tests such as the Shapiro–Wilk (SW), Anderson–Darling (AD) and Cramér–von
Mises (CVM) tests [33]. Moreover, simulated envelopes (Atkinson [3]) are also useful to
assess the fitting of the models.

4.2. Quantile residuals

A second alternative for residual analysis can be based on the normalized quantile
residuals (Dunn and Smyth [11]). These residuals are defined as

rQi = Φ−1
[
F (Yi; ψ̂)

]
, i = 1, ..., n ,

where F ( · ;ψ) is the cdf of the response variable and Φ−1(·) denotes the quantile function
of the standard normal distribution. Except for the uncertainty due to estimation of the
parameters, if the model is correct, rQi , i = 1, ..., n, constitute a random sample from the
standard normal distribution. For the RSHN model, we have

rQi = α̂

√
2bα

π

[√
π

2
µ̂i (α̂−1)

α̂

]
bα

Γ
(

α̂ +1
2

) ∫ Yi

0
u
−(bα+1)
i G

[
α̂2 u2

i

πµ̂2
i (α̂−1)2

,
α̂ +1

2

]
dui ,

where the integral can be computed numerically using, for instance, the integrate function in R.

5. SIMULATION STUDIES

In this section, we present two simulation studies. The first is devoted to assess the
performance of the ML estimator for the RSHN model in finite samples when the model is
well specified. The main goal of the second study is similar to the one in Leiva et al. [18],
with the aim of assess the behavior of the deviance and normalized quantile residuals when
the model is either well or misspecified.

5.1. Parameters recovery

We stress that in Olmos et al. [21], the authors did not carry out a simulation study,
so that it is of interest to address this issue. To draw synthetic datasets from the RSHN
model, we fix β = (β0, β1, β2)> (two covariates) and α at the true values in Table 3.
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Table 3: Bias, average of the asymptotic standard error (SE), square root of
the simulated mean squared error (RMSE) and coverage probability
of the 95% asymptotic confidence intervals (CP) of the estimators
under the RSHN regression model with 1,000 replications.

True n = 50 n = 100 n = 200
Parameter

value Bias SE RMSE CP Bias SE RMSE CP Bias SE RMSE CP

α 2.5 1.962 1.987 1.659 0.906 1.655 1.311 1.178 0.913 1.001 0.926 0.879 0.931
β0 0.5 −0.039 0.352 0.304 0.924 −0.028 0.287 0.231 0.928 −0.011 0.171 0.159 0.955
β1 0.5 −0.001 0.272 0.245 0.933 −0.001 0.192 0.151 0.936 −0.001 0.125 0.111 0.947
β2 0.05 −0.001 0.009 0.005 0.934 0.000 0.007 0.003 0.939 0.000 0.003 0.002 0.947

α 2.5 2.139 2.152 1.993 0.912 1.683 1.559 1.313 0.921 1.149 1.082 1.032 0.932
β0 1.0 0.041 0.281 0.265 0.935 0.031 0.256 0.225 0.937 0.010 0.181 0.169 0.945
β1 0.5 −0.031 0.223 0.201 0.936 −0.029 0.169 0.147 0.941 −0.024 0.127 0.119 0.941
β2 0.05 −0.005 0.010 0.006 0.931 −0.004 0.007 0.004 0.937 −0.004 0.005 0.004 0.942

α 2.5 2.389 1.559 1.379 0.918 1.446 1.333 1.052 0.922 0.982 0.790 0.754 0.935
β0 0.5 −0.089 0.369 0.311 0.912 −0.045 0.246 0.201 0.934 −0.021 0.171 0.152 0.952
β1 0.5 0.031 0.249 0.219 0.924 0.005 0.178 0.152 0.931 0.003 0.130 0.111 0.947
β2 0.025 0.001 0.010 0.005 0.926 0.000 0.008 0.003 0.931 0.000 0.003 0.002 0.939

α 2.5 2.424 1.587 1.401 0.914 1.452 1.156 1.038 0.921 0.951 0.891 0.858 0.941
β0 1.0 −0.079 0.402 0.351 0.924 −0.059 0.271 0.217 0.943 −0.013 0.178 0.156 0.953
β1 0.5 0.012 0.251 0.210 0.931 0.009 0.180 0.154 0.933 0.002 0.135 0.112 0.941
β2 0.025 0.000 0.009 0.005 0.924 0.000 0.007 0.003 0.931 0.000 0.003 0.002 0.941

α 3.0 2.094 1.852 1.650 0.918 1.912 1.210 1.003 0.919 0.929 0.974 0.936 0.937
β0 0.5 0.049 0.336 0.281 0.944 0.043 0.251 0.202 0.945 0.038 0.161 0.143 0.949
β1 0.5 −0.005 0.242 0.200 0.942 −0.002 0.186 0.142 0.943 0.000 0.125 0.101 0.947
β2 0.05 −0.001 0.009 0.004 0.922 −0.001 0.007 0.003 0.939 0.000 0.003 0.002 0.942

α 3.0 2.150 2.014 1.833 0.908 1.850 1.319 1.142 0.923 0.839 0.981 0.954 0.931
β0 1.0 0.090 0.369 0.316 0.914 0.050 0.299 0.245 0.929 0.040 0.214 0.190 0.943
β1 0.5 −0.049 0.241 0.206 0.932 −0.046 0.187 0.143 0.933 −0.038 0.111 0.097 0.944
β2 0.05 −0.006 0.009 0.006 0.917 −0.005 0.008 0.005 0.933 −0.004 0.005 0.004 0.941

α 3.0 2.202 1.263 1.029 0.902 1.456 1.099 0.878 0.914 1.141 0.725 0.697 0.935
β0 0.5 0.057 0.349 0.277 0.930 0.036 0.243 0.192 0.944 0.028 0.151 0.136 0.949
β1 0.5 0.037 0.271 0.203 0.929 0.019 0.160 0.135 0.935 0.013 0.123 0.101 0.943
β2 0.025 0.000 0.009 0.004 0.957 0.000 0.007 0.003 0.952 0.000 0.003 0.002 0.950

α 3.0 2.378 1.295 1.075 0.912 1.670 1.091 0.914 0.925 0.947 0.619 0.600 0.941
β0 1.0 0.035 0.356 0.287 0.948 0.031 0.251 0.193 0.949 0.022 0.178 0.152 0.950
β1 0.5 0.011 0.261 0.198 0.930 0.005 0.184 0.139 0.932 0.001 0.119 0.097 0.943
β2 0.025 0.000 0.008 0.004 0.939 0.000 0.007 0.003 0.946 0.000 0.003 0.002 0.949

α 5.0 2.419 2.514 2.297 0.902 1.926 1.894 1.640 0.930 1.503 1.212 1.199 0.937
β0 0.5 0.060 0.351 0.274 0.962 0.043 0.231 0.187 0.958 0.030 0.134 0.117 0.952
β1 0.5 −0.007 0.246 0.177 0.959 −0.002 0.157 0.116 0.957 −0.001 0.099 0.086 0.956
β2 0.05 −0.001 0.008 0.004 0.961 −0.001 0.007 0.003 0.960 0.000 0.003 0.002 0.957

α 5.0 2.134 2.152 1.958 0.904 1.069 1.419 1.275 0.912 0.825 0.974 0.951 0.939
β0 1.0 0.082 0.362 0.270 0.910 0.078 0.266 0.213 0.934 0.044 0.200 0.181 0.947
β1 0.5 −0.019 0.253 0.183 0.957 −0.015 0.184 0.136 0.954 −0.005 0.119 0.092 0.952
β2 0.050 −0.005 0.009 0.005 0.902 −0.005 0.008 0.005 0.922 −0.004 0.005 0.004 0.939

α 5.0 1.354 2.055 1.728 0.902 1.029 1.462 1.284 0.919 0.899 1.034 0.995 0.932
β0 0.5 0.025 0.314 0.246 0.959 0.018 0.233 0.179 0.954 0.013 0.145 0.126 0.953
β1 0.5 0.014 0.256 0.186 0.958 0.008 0.176 0.128 0.957 0.008 0.099 0.084 0.944
β2 0.025 0.000 0.008 0.004 0.958 0.000 0.007 0.003 0.956 0.000 0.003 0.002 0.952

α 5.0 1.768 2.263 1.928 0.922 1.483 1.500 1.396 0.930 1.156 1.127 1.091 0.938
β0 1.0 −0.007 0.325 0.257 0.962 −0.005 0.221 0.177 0.955 −0.003 0.152 0.131 0.952
β1 0.5 0.006 0.254 0.186 0.960 0.002 0.187 0.136 0.956 0.000 0.100 0.084 0.954
β2 0.025 0.000 0.009 0.004 0.939 0.000 0.007 0.002 0.940 0.000 0.003 0.002 0.942
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In practice, covariates may have any kind of association. Therefore, we assume that the
values of one covariate depends on the other. In short, for i = 1, ..., n, the steps to generate
datasets are the following:

• Draw x1i ∼ U(10, 90) (the uniform distribution).

• Draw x2i ∼ Bernoulli(θi), where θi = exp(2−0.025 x1i)
/[

1+exp(2−0.025 x1i)
]
, i.e.,

x2i = 1 with probability θi that varies between 0.438 and 0.852 depending on the
value of x1i.

• Compute µi = exp(x>i β) and draw Wi ∼ HN(σi) independent from Zi ∼ Beta(α,1),
where σi =

√
2 µi α

/[√
π (α−1)

]
.

• Compute Yi = Wi/Zi.

Once generated, the values of xi, i =1, ..., n, are kept fixed throughout the simulations.
For each generated sample, we apply the scheme described in Section 3.2 to estimate β
and α, while the standard errors of the estimates are computed from the Hessian matrix in
Section 3.2. We report the average bias of the estimates (Bias), the average of the asymptotic
standard error (SE), the square root of the simulated mean squared error (RMSE) and the
coverage probability of the 95% asymptotic confidence intervals (CP).

We considered four different regression coefficients β, namely, (0.5,0.5,0.05), (1.0,0.5,0.05),
(0.5, 0.5, 0.025) and (1.0, 0.5, 0.025). Such values guarantee that the drawn values of yi be-
long to the interval (1.649, 4.711) in all the cases. We also considered α ∈ {2.5, 3.0, 5.0} (that
guarantees a finite value for the variance of yi) and n ∈ {50, 100, 200}. The results presented
in Table 3 were obtained from 1000 replications. Note that in all cases, the absolute value
of bias and the RMSE decrease when n increases, suggesting that the estimators are consis-
tent, and the coverage probabilities are close to the nominal value, as expected. Except for
the estimator of α, we see that SE and RMSE get closer when the sample size increases, as
expected from the asymptotic properties of the estimators. However, even for n = 200 the
bias of α̂ is substantial. This result is in agreement with other slashed distributions in the
literature (see, for instance, Astorga [2] and Reyes et al. [27, 26, 25]). This should not be a
serious concern because in practice the most important inferences pertain to the mean of the
response variable, which depends only on the regression coefficients vector β. Additionally,
since the coverage probability of the confidence interval for α ranges from 0.902 to 0.941, we
see that the interval estimator behaves better than the point estimator.

5.2. Deviance and quantile residuals

In order to assess the performance of the distribution of the deviance and quantile
residuals, we take samples drawn from the RG(µi, φ =1) model (which also corresponds
to the RW(µi, δ =1) model) and RSHN(µi, α =2.1) models, where µi = exp(β0 +β1xi),
and xi was drawn from the U(0, 10) distribution. For each sample, we fit the RSHN,
RG, RW and RBS regression models and present the quantile-quantile (QQ) plots with
simulated envelopes based on 1000 replicates for the deviance and quantile residuals.
We consider three sample sizes: n = 50, n = 100 and n = 200. We also present the
p-value for the SW, AD and CVM normality tests. Tables 4 and 5 show the QQ plots.
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As expected, when the true model is the RG model, the QQ plots related to the RG and RW
models present an approximately linear behavior and a good agreement with the standard
normal distribution for the three sample sizes for both, deviance and quantile residuals.

Table 4: QQ plots with simulated envelopes for the deviance and quantile residuals
when RG(µi, φ =1) is the true model.
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Moreover, the three normality tests do not reject the hypothesis of normality under
the common significance levels. In counterpart, in this case the RSHN regression models
yields unsatisfactory results and the normality assumption of the residuals is questionable.

Table 5: QQ plots with simulated envelopes for the deviance and quantile residuals
when RSHN(µi, α =2.1) is the true model.

Fitted model
Residual n

RSHN RG RW RBS
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When the true model is the RSHN model, as expected, the QQ plots for the deviance and
quantile residuals of the RSHN model present a good agreement with the standard normal for
all sample sizes. In addition, the deviance residuals for the RG and RW models only provides
fair results when n = 50. This result suggest that the RG and RW regression models are
very competitive in small sample sizes, even when the true model is not the RG model or the
RW model. Finally, the deviance and quantile residuals of the RBS regression model are far
away from the identity line in all the cases, suggesting poor results when the true model is
the RG model or the RSHN model.

6. DATA ANALYSIS

In this section, the regression models formulated in Section 2 are applied in the analysis
of two datasets.

6.1. Hunter-gatherer group dataset

In this section, the regression models formulated in Section 2 are applied in the analysis
of a dataset described in Kelly [16]. The dataset is related to the macroecological relationship
between the size of the homerange (measured in km2) of a hunter-gatherer group (response
variable) and the contribution (in percentage) of hunted foods to the diet. The dataset
comprises 39 groups. The sample mean, median and standard deviation of the size of the
homerange are 4004.4, 906.0 and 10728.1 km2, respectively, while the sample skewness and
kurtosis coefficients are

√
ν̂3 = 4.46 and ν̂4 = 23.43.
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Contribution of hunted foods to the diet (%)
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g
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a
)

2

Figure 2: Scatterplot and smoothing spline of the homerange, in 1000 km2,
and the contribution of hunted foods to the diet (observation 2
was perturbed in the analysis).
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Figure 2 shows the scatterplot of the data and a smoothing spline, which indicates
that the logarithmic link function is adequate. We fit the RG, RW, RBS and RSHN models,
with results presented in Table 6. The deviance and quantile residuals plots with envelopes
are presented in the upper panels in Figures 4 and 5. The lines in these plots represent the
2.5%, 50% and 97.5% quantile values of the residuals computed from 100 bootstrap samples
generated from the models in Table 6. Note that, based on both residuals, all models seem
appropriate for this dataset. Furthermore, the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC) values are similar for all models.

Table 6: Parameter estimates (standard errors) and information criteria
for the RG, RW, RBS and RSHN regression models fitted to
the hunter-gatherer group dataset.

Dataset Parameter
Model

RG RW RBS RSHN

β0 5.442 (0.504) 5.456 (0.436) 5.290 (0.478) 5.718 (0.136)
β1 0.063 (0.013) 0.062 (0.012) 0.067 (0.013) 0.059 (0.010)
α — — — 2.225 (1.541)

Unperturbed
φ 0.811 (0.159) — — —
δ — 0.845 (0.100) — —
ξ — — 0.805 (0.227) —

AIC 670.26 669.25 668.02 670.11
BIC 675.25 674.24 673.01 675.10

β0 6.588 (0.759) 6.345 (0.482) 6.407 (0.491) 6.332 (0.340)
β1 0.042 (0.020) 0.047 (0.013) 0.048 (0.014) 0.054 (0.013)
α — — — 1.517 (1.301)

Perturbed
φ 0.602 (0.115) — — —
δ — 0.695 (0.078) — —
ξ — — 0.587 (0.227) —

AIC 698.80 693.57 691.66 688.20
BIC 703.79 698.56 696.64 693.19

In order to illustrate the robustness of the RSHN model, we perturb the response
variable of observation 2 in Figure 2 by adding two standard deviations (originally with
an area of 4,000 km2). The lower panels in Figures 4 and 5 show the deviance and the
quantile residuals plots for the models fitted to the perturbed data. Note that for both
residuals, the SW, AD and CVM tests support that the residuals of the RSHN model
come from the standard normal distribution for datasets without and with perturbation.
This fact suggests that the RG, RW and RBS models do not yield a good fit for the per-
turbed dataset, differently from the RSHN model, which yields a good fit in both scenarios.
Information criteria for the perturbed dataset in Table 6 also suggest that the best fit is
achieved with the RSHN model. Due to the perturbation, estimates of the coefficient of the
contribution of hunted foods to the diet (β1) decrease 33.3%, 24.2% and 28.4% under the RG,
RW and RBS models, respectively, whereas for the RSHN model the reduction amounts to
8.5%. Estimated means of the homerange for unperturbed and perturbed data are displayed
in Figure 3. We stress that the ratio of the estimated area for unperturbed data to perturbed
data is much more stable for the RSHN model, especially for large values of the contribution
of hunted foods to the diet, as can be seen in Figure 3(c).
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Figure 3: Scatterplot of the homerange and the contribution of hunted foods to the diet
together with estimated means under different models for data (a) without
perturbation and (b) with perturbation, and (c) ratio of the estimated area for
unperturbed data (µ̂unpert) to perturbed data (µ̂pert).
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Figure 4: Deviance residual plots with simulated envelopes for the
(a) RG, (b) RW, (c) RBS and (d) RSHN regression models
fitted to the hunter-gatherer group dataset without pertur-
bation (upper panel) and with perturbation (lower panel).
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Figure 5: Quantile residual plots with simulated envelopes for the
(a) RG, (b) RW, (c) RBS and (d) RSHN regression models
fitted to the hunter-gatherer group dataset without pertur-
bation (upper panel) and with perturbation (lower panel).

6.2. Minerals concentration dataset

This dataset is related to the concentration of some minerals in soil samples obtained at
the Mining Department, University of Atacama, Chile. This dataset was previously analyzed
in Gómez et al. [14] and Olmos et al. [21] . The measurements are related to nickel (Ni)
and zinc (Zn) respectively. In our application, we consider to model jointly the positive
measurements related to thorium (Th, n =71), uranium (U, n =57), vanadium (V, n =86)
and zinc (Zn, n =86). The unit of measurement of the concentrations (response variable) is
parts-per million (ppm). The dataset comprises 300 observations. The sample mean, median
and standard deviation of the concentrations are 72.43, 29.00 and 110.06, respectively, while
the sample skewness and kurtosis coefficients are

√
ν̂3 = 4.37 and ν̂4 = 35.87. Note that the

kurtosis is unusually greater than the kurtosis of the normal distribution. Given the high
value of kurtosis, we consider appropriate to model this dataset with the RSHN model in
Section 2, linking the covariates to the mean as µi = exp

(
βThxiTh +βUxiU +βVxiV +βZnxiZn

)
,

i = 1, ..., 300, where xiTh, xiU, xiV and xiZn are indicator variables assuming the value 1 when
the i-th observation corresponds to the referred mineral. We also compare the results with the
RG, RW and RBS regression models. Results are presented in Table 7. Note that AIC and
BIC attain the smallest values for the RSHN model. Figure 6 shows the histogram of thorium
and zinc concentrations compared with the fitted density functions. Table 8 also presents
the p-value for the univariate Kolmogorov–Smirnov (KS) test for comparison of empirical
and fitted cdf’s from each mineral. Note that all p-values are greater than 5% for the RSHN
model, suggesting a better fit for this model over the RG, RW and RBS models.
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Table 7: Parameter estimates (standard errors) and information criteria
for the RG, RW, RBS and RSHN regression models fitted to
the minerals dataset.

Parameter
Model

RG RW RBS RSHN

βTh 2.871 (0.119) 2.866 (0.110) 3.005 (0.146) 2.989 (0.127)
βU 2.436 (0.133) 2.434 (0.123) 2.508 (0.155) 2.581 (0.136)
βV 4.896 (0.108) 4.892 (0.100) 4.646 (0.107) 5.071 (0.124)
βZn 4.572 (0.108) 4.589 (0.101) 4.555 (0.122) 4.458 (0.114)
α — — — 2.871 (2.541)
φ 1.206 (0.088) — — —
δ — 1.080 (0.046) — —
ξ — — 1.147 (0.082) —

AIC 2917.55 2920.67 2980.57 2906.97
BIC 2936.07 2939.18 2999.09 2925.49
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Figure 6: Histogram and fitted density functions for RSHN, RG, RW and
RBS models in minerals dataset: (a) thorium and (b) zinc.

Table 8: p-values for the Kolmogorov–Smirnov goodness-of-fit test.

Mineral RG RW RBS RSHN

Th 0.269 0.195 0.009 0.580
U 0.947 0.955 0.119 0.535
V 0.105 0.112 <0.001 0.348
Zn 0.003 0.002 0.040 0.065
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Besides the information criteria in Table 7, Figures 7 and 8 show the deviance and the
quantile residuals plots for the fitted models. Note that for both residuals, the SW, AD and
CVM tests support (at a 5% significance level) that only the residuals of the RSHN model
come from the standard normal distribution. This fact suggests that the RG, RW and RBS
models do not yield a good fit for this dataset.
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Figure 7: Deviance residual plots with simulated envelopes for the
(a) RG, (b) RW, (c) RBS and (d) RSHN regression models
fitted to the minerals dataset.
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(d)

Figure 8: Quantile residual plots with simulated envelopes for the
(a) RG, (b) RW, (c) RBS and (d) RSHN regression models
fitted to the minerals dataset.

7. CONCLUSION

In this work, a reparameterization of the distribution proposed by Olmos et al. [21]
based on the mean motivated us to propose a regression model for positive data. The proposed
model is an alternative to some well-known models for positive response variables. Maximum
likelihood estimates are computed with the EM algorithm. A simulation study was carried out
to assess some properties of the proposed estimator. The analysis of two datasets illustrates
the robustness of the model. Extensions of this work might include Bayesian inference,
influence assessment and mixed models.
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Authors: José Antonio Roldán-Nofuentes
– Statistics (Biostatistics), School of Medicine, University of Granada,

Granada, Spain
jaroldan@ugr.es

Saad Bouh Sidaty-Regad
– Public Health and Epidemiology, School of Medicine, University of Nouakchott,

Mauritania

Received: November 2018 Revised: June 2019 Accepted: September 2019

Abstract:

• Positive and negative likelihood ratios are parameters which are used to assess and compare the
effectiveness of binary diagnostic tests. Both parameters only depend on the sensitivity and speci-
ficity of the diagnostic test and are equivalent to a relative risk. This article studies the comparison
of the likelihood ratios of two binary diagnostic tests subject to a paired design through confidence
intervals. Six approximate confidence intervals are presented for the ratio of the likelihood ratios,
and simulation experiments are carried out to study the coverage probabilities and the average
lengths of the intervals considered, and some general rules of application are proposed. A method
is also proposed to determine the sample size necessary to estimate the ratio between the likelihood
ratios with a determined precision. The results were applied to two real examples.

Keywords:

• binary diagnostic test; likelihood ratios; sample size.

AMS Subject Classification:

• 62P10, 6207.

https://orcid.org/0000-0003-0251-5588
mailto:jaroldan@ugr.es
https://orcid.org/0000-0002-7695-3903


576 J.A. Roldán-Nofuentes and S.B. Sidaty-Regad

1. INTRODUCTION

A diagnostic test is a medical test that is applied to an individual in order to deter-
mine the presence or absence of a disease. When the result of a diagnostic test is positive or
negative, the diagnostic test is called a binary diagnostic test (BDT). A stress test for the
diagnosis of coronary disease is an example of BDT. The effectiveness of a BDT is measured
in terms of two fundamental parameters: sensitivity and specificity. The sensitivity (Se)
is the probability of the BDT being positive when the individual has the disease, and the
specificity (Sp) is the probability of the BDT being negative when the individual does not
have it. The Se and the Sp of a BDT are estimated in relation to a gold standard (GS),
which is a medical test which objectively determines whether or not an individual has the
disease or not. An angiography for coronary disease is an example of GS. Other parameters
that are used to assess the effectiveness of a BDT are the likelihood ratios (LRs) ([10, 17]).
When the BDT is positive, the likelihood ratio, called the positive likelihood ratio (LR+),
is the ratio between the probability of correctly classifying an individual with the disease
and the probability of incorrectly classifying an individual who does not have it. When the
BDT is negative, the likelihood ratio, called the negative likelihood ratio (LR−), is the ratio
between the probability of incorrectly classifying an individual who has the disease and the
probability of correctly classifying an individual who does not have it. The LRs only depend
on the sensitivity and the specificity of the BDT and do not depend on the disease preva-
lence, and therefore the LRs are superior parameters of the accuracy of a BDT ([10, 17]).
The comparison of the parameters of two BDTs has been the subject of numerous studies in
Statistical literature. When the two BDTs and the GS are applied to all of the individuals in
a random sample sized n (paired design), the comparison of the two sensitivities (specificities)
is made by applying a comparison test of two paired binomial proportions. Subject to this
same sample design, the comparison of the LRs of two BDTs is more complex. Leisenring and
Pepe [6] studied the estimation of the LRs of a BDT through a regression model. Pepe [10]
adapted this model to compare the LRs of two BDTs, for which in the regression model a
variable dummy is considered to compare a BDT in relation to another. Moreover, Pepe [10]
proposed a confidence interval for the ratio of the two positive (negative) LRs estimating the
variance of the ratios subject to the null hypothesis of equality of the two LRs. Section 3.1
summarizes the method of Pepe [10]. Biggerstaff [1] proposed a graphical method to compare
the LRs of two (or more) BDTs. Nevertheless, this method is not inferential and can only
be applied to the estimators. Roldán-Nofuentes and Luna [12] studied hypothesis tests to
compare the LRs individually and simultaneously, and they also studied the same problem for
the case of ordinal diagnostic tests. The hypothesis tests proposed by Roldán-Nofuentes and
Luna [12] are based on the logarithmic transformation of the ratio of the positive (negative)
LRs, and therefore by inverting the test statistics of the individual tests, confidence intervals
are obtained for the ratio of the two LRs (in Section 3.2 we summarize this method). Dolgun
et al. [3] extended the method of Leisenring and Pepe [6] to compare the LRs simultaneously.
Comparing the sensitivities (specificities) of two BDTs, we compare the intrinsic accuracy of
both BDTs, and we determined which BDT is more accurate for an individual who has the dis-
ease (which BDT has the greatest sensitivity) or for an individual who does not have the dis-
ease (which BDT has the greatest specificity). Comparing the positive (negative) LRs of two
BDTs it is possible to quantify with which BDT it is more likely to obtain a positive (negative)
result for the BDT for an individual who has the disease than for an individual who does not.
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In this manuscript we study the comparison of the LRs of two BDTs through confidence
intervals (CIs), making the following contributions: a) four intervals to compare the LRs,
and b) a method to calculate the sample size to compare the LRs through CIs. Section 2
presents the LRs and their properties. Section 3 presents the CIs studied by Pepe [10], by
Roldán-Nofuentes and Luna [12], and four new CIs are proposed: a Wald type interval, an
interval based on the Fieller method, a Bootstrap interval based on the bias-corrected interval,
and a Bayesian interval based on non-informative beta distributions and on the application
of the Monte Carlo method. In Section 4, simulation experiments are carried out to study the
coverage probabilities and the average lengths of the CIs presented in Section 3. Section 5
presents a method to calculate the sample size to compare the LRs through CIs. In Section 6,
the results are applied to two real examples, and in Section 7 the results obtained are discussed.

2. LIKELIHOOD RATIOS

Let us consider a BDT that is assessed in relation to a GS. Let T be the variable that
models the result of the BDT: T =1 when the BDT is positive and T =0 when it is negative.
Let D be the variable that models the result of the GS: D =1 when the individual has the
disease and D =0 when this is not the case. Let π = P (D=1) be the disease prevalence in
the population studied, and π̄ = 1− π. The positive LR ([10, 17]) is defined as

(2.1) LR+ =
P
(
T =1 | D=1

)
P
(
T =1 | D=0

) =
Se

1−Sp
,

and the negative LR as

(2.2) LR− =
P
(
T =0 | D=1

)
P
(
T =0 | D=0

) =
1−Se

Sp
.

The LRs vary between 0 and infinity, and have the following properties:

a) If the BDT and the GS are independent then LR+ = LR− = 1.

b) If the BDT correctly classifies all of the individuals then LR+ = ∞ and LR− = 0.

c) If LR+ > 1 then a positive result of the BDT is more probable for an individual
who has the disease than for an individual who does not.

d) If LR− < 1 then a negative result of the BDT is more probable for an individual
who does not have the disease than for an individual who does.

e) The LRs quantify the increase in knowledge of the presence of the disease through
the application of the BDT. Before applying the BDT, the odds of an individual
having the disease are

pre-test odds =
π

1− π
,

where π is the disease prevalence. After applying the BDT, the odds are

post-test odds =
P
(
D=1 | T = i

)
P
(
D=0 | T = i

) , i = 0, 1 .
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The LRs relate the pre-test odds and the post-test odds:

post-test odds (T =1) = LR+ × pre-test odds ,

post-test odds (T =0) = LR− × pre-test odds .

Therefore, the likelihood ratios quantify the change in the odds of the disease
obtained by knowledge of the application of the BDT.

We then study the comparison of the LRs of two BDTs subject to a paired design
through CIs.

3. CONFIDENCE INTERVALS

Let us consider two BDTs that are assessed in relation to the same GS. Let Th be the
variable that models the result of the h-th BDT, with h = 1, 2, defined in a similar way to
the variable T given in Section 2. Let Seh and Sph be the sensitivity and the specificity of
the h-th BDT, and LR+

h and LR−h the positive and negative likelihood ratios respectively.
Table 1 shows the frequencies and the theoretical probabilities obtained when comparing two
BDTs in relation to a GS subject to a paired design. In the observed frequencies given in
Table 1, the only value set by the researcher is the sample size n.

Table 1: Frequencies and probabilities subject to a paired design.

Frequencies

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0
Total

D = 1 s11 s10 s01 s00 s
D = 0 r11 r10 r01 r00 r

Total s11 + r11 s10 + r10 s01 + r01 s00 + r00 n

Probabilities

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0
Total

D = 1 p11 p10 p01 p00 π
D = 0 q11 q10 q01 q00 π̄

Total p11 + q11 p10 + q10 p01 + q01 p00 + q00 1

Applying the model of conditional dependence of Vacek [14], the theoretical probabili-
ties are expressed as

pij = π
[
Sei

1(1−Se1)1−i Sej
2(1−Se2)1−j + δij ε1

]
(3.1)

and

qij = π̄
[
Sp1−i

1 (1−Sp1)
i Sp1−j

2 (1−Sp2)
j + δij ε0

]
,(3.2)
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where δij =1 if i= j and δij =−1 if i 6= j, with i, j = 0,1, and verifying that π =
∑

ij pij

and π̄ =
∑

ij qij . The parameters ε1 and ε0 are the dependence factors between the two
BDTs when D = 1 and when D = 0 respectively, verifying that

0 ≤ ε1 ≤ Min
{
Se1(1−Se2), Se2(1−Se1)

}
and

0 ≤ ε0 ≤ Min
{
Sp1(1−Sp2), Sp2(1−Sp1)

}
.

If ε1 = ε0 = 0 then the two BDTs are conditionally independent on the disease, which is not
normally a realistic one. In practice, the BDTs are conditionally dependent on the disease,
so that ε1 > 0 and/or ε0 > 0. The frequencies of Table 1 are the product of a multinomial
distribution whose vector of probabilities is ψ =

(
p11, p10, p01, p00, q11, q10, q01, q00

)>. The
maximum likelihood estimators of these probabilities are p̂ij = sij/n and q̂ij = rij/n, those
of π and π̄ are π̂ = s/n and ̂̄π = r/n, and the variance-covariance matrix of ψ̂ is Σ

bψ
={

diag(ψ)−ψψ>
}/

n.

In terms of the probabilities of the vector ψ, the sensitivity and the specificity of
each BDT are written as Se1 = (p10+p11)/π, Sp1 = (q00+ q01)/π̄, Se2 = (p01+p11)/π and
Sp2 = (q00+ q10)/π̄. The estimators of the sensitivities and the specificities are Ŝe1 = s11+s10

s ,
Ŝe2 = s11+s01

s , Ŝp1 = r01+r00
r and Ŝp2 = r10+r00

r , and those of the dependence factors are
ε̂1 = bp11

bπ − Ŝe1 Ŝe2 = s11s00−s10s01
s and ε̂0 = bq00

bπ̄
− Ŝp1 Ŝp2 = r11r00−r10r01

r . Applying the delta

method, it holds that the variances-covariances of Ŝeh and Ŝph are

(3.3)
Var
(
Ŝeh

)
≈ Seh(1−Seh)

nπ
, Var

(
Ŝph

)
≈ Sph(1−Sph)

nπ̄
,

Cov
(
Ŝe1, Ŝe2

)
≈ ε1

nπ
, Cov

(
Ŝp1, Ŝp2

)
≈ ε0

nπ̄
.

The rest of the covariances are zero. Regarding the LRs, applying the delta method again,
their variances-covariances (the proof can be seen in Appendix A) are

(3.4)

Var
(
L̂R

+

h

)
≈

Se2
h Var

(
Ŝph

)
+ (1−Sph)2 Var

(
Ŝeh

)
(1−Sph)4

,

Var
(
L̂R

−
h

)
≈

(1−Seh)2 Var
(
Sph

)
+ Sp2

h Var
(
Ŝeh

)
Sp4

h

,

Cov
(
L̂R

+

1 , L̂R
+

1

)
≈

Se1Se2 Cov
(
Ŝp1, Ŝp2

)
+ (1−Sp1) (1−Sp2) Cov

(
Ŝe1, Ŝe2

)
(1−Sp1)2 (1−Sp2)2

,

Cov
(
L̂R

−
1 , L̂R

−
1

)
≈

(1−Se1) (1−Se2) Cov
(
Ŝp1, Ŝp2

)
+ Sp1Sp2 Cov

(
Ŝe1, Ŝe2

)
Sp2

1 Sp2
2

.

Substituting in the previous expressions the parameters with their estimators, we obtain the
expressions of the estimators of the variances-covariances. Pepe [10] studied the comparison
of the LRs considering the ratio between them, i.e. ω+ = LR+

1 /LR+
2 and ω− = LR−1 /LR−2 .

Roldán-Nofuentes and Luna [12] considered the Napierian logarithm of ω. In this study, we
are going to follow the same criteria as Pepe, and therefore we are going to compare the LRs
through CIs for ω+ and ω−. From here onwards, we are going to consider that LRh is LR+

h

or LR−h , and that ω is ω+ or ω−, depending on whether we compare the positive LRs or the
negative LRs. If the CI for ω contains the value one, then we do not reject the equality of
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the LRs of both BDTs; in the opposite case, the LR of a BDT is significantly higher than
that of the other BDT. Applying the delta method (see Appendix A), the variance of ω̂ is

(3.5) Var(ω̂) ≈ ω2

[
Var
(
L̂R1

)
LR2

1

+
Var
(
L̂R2

)
LR2

2

−
2 Cov

(
L̂R1, L̂R2

)
LR1LR2

]
.

Then six CIs are presented for each ratio ω+ and ω−. The first interval was proposed by
Pepe [10], the second is deduced from the study by Roldán-Nofuentes and Luna [12], and the
rest of the intervals are contributions made by this manuscript.

3.1. Regression model

Leisenring and Pepe [6] studied the estimation of the LRs of a BDT in presence
of covariates through a regression model. For the positive LR, the regression model with

p covariates is ln
(
LR+(X1)

)
= β0 +

p∑
i=1

βiX1p, where βi are the parameters of the model and

X1 = (X11, ..., X1p) is the matrix of covariates. This model can be used to compare two
BDTs ([10]), i.e. ln

[
LR+(XT )

]
= β0 + β1XT , where XT is a variable dummy to compare

a BDT in relation to another. The regression model to compare the two negative LRs is
ln
[
LR−(XT )

]
= α0 + α1XT . In these models, the ratio ω+ is estimated as e

bβ1 and the ratio
ω− as ebα1 . The confidence interval for ω+ is

(3.6) ω̂+ × exp
{
± z1−α/2

√
V̂ar0

[
ln(ω̂+)

]}
,

where z1−α/2 is the 100(1−α/2)-th percentile of the standard normal distribution and

V̂ar0
[
ln(ω̂+)

]
≈ 1− Ŝe1

s Ŝe1

+
Ŝp1

r
(
1− Ŝp1

) +
1− Ŝe2

s Ŝe2

+
Ŝp2

r
(
1− Ŝp2

)
is the estimated variance of ω̂+ subject to the null hypothesis H0 : LR+

1 =LR+
2 . The confidence

interval for ω− is similar to the previous one, where

V̂ar0
[
ln(ω̂−)

]
≈ Ŝe1

s
(
1− Ŝe1

) +
1− Ŝp1

r Ŝp1

+
Ŝe1

s
(
1− Ŝe1

) +
1− Ŝp1

r Ŝp1

.

The book by Pepe [10] discusses the confidence interval obtained from the regression model.

3.2. Logarithmic interval

Roldán-Nofuentes and Luna [12] studied a hypothesis test to compare the positive
(negative) LRs of two BDTs subject to a paired design. These hypothesis tests are based on
the transformation of the Napierian logarithm of the ratio between the two positive (negative)
LRs, i.e., H0: ln(ω) = 0 vs H1: ln(ω) 6= 0, where ω is ω+ = LR+

1 /LR+
2 or ω−= LR−1 /LR−2 , and

the test statistic is

(3.7)
ln(ω̂)√

V̂ar
[
ln(ω̂)

] → N(0,1) ,
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where V̂ar
[
ln(ω̂)

]
is an unrestricted estimator of the variance and is calculated applying the

delta method (see Appendix A), i.e.

(3.8) Var
[
ln(ω̂)

]
≈

Var
(
L̂R1

)
LR2

1

+
Var
(
L̂R2

)
LR2

2

−
2 Cov

(
L̂R1, L̂R2

)
LR1LR2

,

and substituting in this expression each parameter with its estimator. Inverting the test

statistic (3.7), it holds that the CI for ln(ω) is ln(ω̂)± z1−α/2

√
V̂ar
[
ln(ω̂)

]
. Finally, the

logarithmic CI for ω is

(3.9) ω̂ × exp
{
± z1−α/2

√
V̂ar
[
ln(ω̂)

]}
.

Roldán-Nofuentes and Luna studied the size (and the power) of the test H0 : ln(ω) = 0 through
simulation experiments. As the logarithmic interval (3.9) is obtained by inverting the test
statistic (3.7), the coverage probability of this interval is equal to 1 minus the type I error
obtained in the simulations carried out by Roldán-Nofuentes and Luna, and therefore the
results are equivalent.

3.3. Wald CI

The Wald interval ([15]) is a classic interval for a parameter. Assuming the asymptotic
normality of ω̂, i.e. ω̂ −−−→

n→∞
N
[
ω, Var(ω)

]
, the Wald CI for ω is

(3.10) ω̂

1 ± z1−α/2

√√√√V̂ar
(
L̂R1

)
L̂R

2

1

+
V̂ar
(
L̂R2

)
L̂R

2

2

−
2 Ĉov

(
L̂R1, L̂R2

)
L̂R1 L̂R2

 .

3.4. Fieller CI

The Fieller method ([5]) is a classic method used to calculate a CI for the ratio
of two parameters, and requires us to assume that the estimators are distributed accord-
ing to a bivariate normal distribution. Therefore, assuming the bivariate normality, i.e.(
L̂R1, L̂R2

)>−−−→
n→∞

N
[
(LR1,LR2)>,ΣLR

]
, where

ΣLR =

(
Var(LR1) Cov(LR1,LR2)

Cov(LR1,LR2) Var(LR2)

)
,

and, applying the Fieller method, it is verified that

L̂R1 − ω L̂R2 −−−→
n→∞

N
(
0, Var(LR1)− 2 ω Cov(LR1,LR2) + ω2 Var(LR2)

)
.

The Fieller CI is obtained by searching for the set of values for ω that satisfy the inequality(
L̂R1 − ω L̂R2

)2
V̂ar
(
L̂R1

)
− 2 ω Ĉov

(
L̂R1, L̂R2

)
+ ω2 V̂ar

(
L̂R2

) < z2
1−α/2 .
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Solving this inequation, the Fieller CI for ω is
(3.11)

L̂R1L̂R2− σ̂12 z2
1−α/2 ±

√(
L̂R1L̂R2 − σ̂12 z2

1−α/2

)2
−
(
L̂R

2

1− σ̂11 z2
1−α/2

)(
L̂R

2

2− σ̂22 z2
1−α/2

)
(
L̂R

2

2− σ̂22 z2
1−α/2

) ,

where σ̂ii = V̂ar
(
L̂Ri

)
and σ̂12 = Ĉov

(
L̂R1, L̂R2

)
. This interval is valid when

(
L̂R1L̂R2−

σ̂12 z2
1−α/2

)2
>
(
L̂R

2

1− σ̂11 z2
1−α/2

)(
L̂R

2

2− σ̂22 z2
1−α/2

)
and L̂R

2

2− σ̂22 z2
1−α/2 6= 0.

3.5. Bootstrap CI

The Bootstrap method is one which is widely used for the estimation of parameters.
The Bootstrap CI is calculated generating B random samples with replacement from the sam-
ple sized n, and then a CI is calculated. For the interval, we considered the bias-corrected
Bootstrap CI ([4]). For each one of the B samples with replacement, we calculate the esti-
mators of the LRs and of ω, i.e. L̂R1Bi, L̂R2Bi and ω̂Bi, with i = 1, ..., B. The parameter ω is
estimated as the average of the B Bootstrap estimations, i.e.

̂̄ωB =
1
B

B∑
i=1

ω̂Bi .

Let A = #(ω̂Bi < ω̂) be the number of samples in which the Bootstrap estimator ω̂Bi is lower
than the maximum likelihood estimator ω̂. Let ẑ0 = Φ−1(A/B), where Φ−1(·) is the inverse
function of the standard normal cumulative distribution function. Let q1 = Φ(2 ẑ0 − z1−α/2)
and q2 = Φ(2 ẑ0 + z1−α/2), then the bias-corrected Bootstrap CI is

(3.12)
(
ω̂

(q1)
B , ω̂

(q2)
B

)
,

where ω̂
(q)
B is the q-th quantile of the distribution of the B Bootstrap estimations of ω.

The bias-corrected bootstrap CI is consistent, as it verifies ([13]) that P
[√

n (ω̂n−ω) ≤ x
]
−

PB

[√
n (ω̂B,n− ω̂n) ≤ x

]
converges in probability to zero when the sample size is very large

(n →∞) for every value x, where PB is the bootstrap distribution and ω̂B,n is the upper
(lower) limit of the bootstrap CI.

3.6. Bayesian CI

The previous CIs are all frequentists, the problem can also be addressed from a Bayesian
perspective. Conditioning on D = 1, i.e. on the individuals who have the disease, it is verified
that s11+ s10 → B(s,Se1) and that s11+ s01 → B(s,Se2). Conditioning on D = 0 it is verified
that r01+ r00 → B(r,Sp1) and that r10 + r00 → B(r,Sp2). Considering the distribution of the
BDT 1, the estimators of its sensitivity and specificity are Ŝe1 = s11+s10

s and Ŝp1 = r01+r00
r ,

which are estimators of binomial proportions. In a similar way, the estimators Ŝe2 = s11+s01
s
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and Ŝp2 = r10+r00
r are also estimators of binomial proportions. Therefore, for these estimators,

conjugate beta prior distributions are proposed, i.e.

(3.13) Ŝeh → Beta(αSeh
, βSeh

) and Ŝph → Beta(αSph
, βSph

) ,

with h = 1, 2. Let n = (s11, s10, s01, s00, r11, r10, r01, r00) be the vector of observed frequencies,
then the posteriori distributions for the estimators of the sensitivity and the specificity of the
BDT 1 are

Ŝe1 |n → Beta
(
s11+ s10 +αSe1 , s01+ s00 +βSe1

)
(3.14)

and

Ŝp1 |n → Beta
(
r01+ r00 +αSp1

, r11+ r10 +βSp1

)
.(3.15)

In a similar way, the posteriori distributions for the estimators of the sensitivity and the
specificity of the BDT 2 are

Ŝe2 |n → Beta
(
s11+ s01+αSe2 , s10 + s00 +βSe2

)
(3.16)

and

Ŝp2 |n → Beta
(
r10 + r00 +αSp2

, r11+ r01+βSp2

)
.(3.17)

Once all the distributions have been defined, the posteriori distribution for the LRs of each
BDT, and for ω+ and ω−, can be approximated by applying the Monte Carlo method ([2]).
This method consists of generating M random values of the posteriori distributions given
in equations (3.13) to (3.17). In each interaction the generated values of sensitivities (Ŝehi)
and specificities (Ŝphi) are plugged in the equations L̂R

+

hi =
cSehi

1−cSphi

and L̂R
−
hi = 1−cSehi

cSphi

, and

from these each ratio ω̂i is calculated. As an estimator of each ratio, the average of the

M Bayesian estimations is calculated, i.e. ̂̄ωBa = 1
M

M∑
i=1

ω̂i. Finally, from the M values ω̂i

a CI based on the quantiles is calculated, i.e. the 100×(1−α)% CI for ω is

(3.18)
(
ω̂

(α/2)
Ba , ω̂

(1−α/2)
Ba

)
,

where ω̂
(q)
Ba is the q-th quantile of the distribution of the M Bayesian estimations ω̂i.

All of the CIs presented are for ω = LR1/LR2. If we want to calculate the CI for
LR2/LR1 (= ω′ = 1/ω), the regression, logarithmic, Fieller, Bootstrap and Bayesian intervals
are obtained by calculating the inverse of each boundary of the corresponding interval for ω.
Nevertheless, the Wald CI for ω′ is obtained from the Wald CI for ω dividing each boundary
by ω̂2, i.e. if (Lω, Uω) is the Wald CI for ω then the Wald CI for ω′ = 1/ω is

(
Lω/ω̂2, Uω/ω̂2

)
.

4. SIMULATION EXPERIMENTS

Monte Carlo simulation experiments were carried out to study the coverage probabil-
ity (CP) and the average length (AL) of each one of the CIs presented in the Section 3.
For this purpose, N = 10,000 random samples of multinomial distributions with sizes n =
{50, 100, 200, 300, 400, 500, 1000} were generated, and their probabilities were calculated from
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equations (3.1) and (3.2). As sensitivity and specificity of each BDT, the values Seh,Sph =
{0.70, 0.75, ..., 0.90, 0.95} were taken, which are realistic values in clinical practice, and the
LRs were calculated with the equations LR+

h = Seh/(1−Sph) and LR−h = (1−Seh)/Sph with
h = 1, 2. For the disease prevalence, π = {10%, 25%, 50%} was considered, and for the de-
pendence factors ε1 and ε0 intermediate values (50% of the maximum value of each εi) and
high values (80% of the maximum value of each εi) were taken, i.e.

ε1 = k ×Min
{
Se1(1−Se2), Se2(1−Se1)

}
and

ε0 = k ×Min
{
Sp1(1−Sp2), Sp2(1−Sp1)

}
,

where k = {0.50, 0.80}. Once the value of the parameters in each scenario was set, the
probabilities of each multinomial distribution were calculated by substituting the value of the
parameters in equations (3.1) and (3.2).

For the Bootstrap interval, for each one of the N random samples generated, B = 2, 000
replacement samples were generated in turn, and from the B replacement samples the bias-
corrected bootstrap CI was calculated through the method described in Section 3.5.

Regarding the Bayesian CI, for the estimators of the two sensitivities and of the two
specificities, the Beta(1,1) distribution was considered as prior distribution. The choice of
this distribution is justified by the fact that it is a non-informative distribution, which is flat
for every possible value of the sensitivities and the specificities, and it has a minimum impact
on the posteriori distributions. Moreover, for each one of the N generated random samples,
M = 10,000 random samples were generated in turn, and from the M samples the Bayesian
CI was been calculated by applying the method described in Section 3.6.

The simulation experiments were designed so that in every random sample generated,
it is possible to estimate all the parameters and their variances-covariances. Therefore, if a
parameter could not be estimated in a sample (for example, Ŝeh = 0) then that sample was
discarded and another one was generated in its place. This problem mainly occurred in the
samples with n = 50. In each one of the scenarios considered (values set for Seh, Sph, π, ε1

and ε0) the CP and the AL were calculated for each one of the six CIs for ω+ and ω−. The CP
of each CI was calculated as the quotient between the number of intervals that contained the
parameter (ω+ or ω−, depending on the case) and the number of samples generated N , and
the AL was calculated adding the length of the N intervals and dividing this number by N .
As the confidence level we took 95%.

The comparison of the asymptotic behaviour of the CIs was made following the criterion
based on whether the CI“fails”or“does not fail” for a confidence of 95%. This criterion, which
has been used by other authors [11, 7, 8, 9], establishes that a CI fails (or does not fail) if
its coverage probability is ≤ 93% (> 93%). The selection of the CI with the best asymptotic
behaviour was made through the following steps:

1) Choose the CIs with the fewest failures;

2) Choose the CIs which are the most accurate, i.e. those with least AL, and among
these those which have a CP closest to 95%.

This method is justified in Appendix B.
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4.1. Positive LRs

Tables 2 and 3 show some of the results obtained for the intervals of ω+, considering
two different scenarios of sensitivities and specificities. In these tables, failures are indicated
in bold type. From the results of the experiments, the following conclusions are reached:

a) Regression CI. The CI obtained applying the regression method does not fail, and
it has a CP of 100% or very close to this value. In general terms, its AL is larger
than that of the rest of the intervals.

b) Logarithmic CI. The logarithmic CI does not fail. In very general terms, when the
sample size is small (n = 50) or moderate (n = 100) its CP is 100% or very near to
this value. When the sample size is large (n = 200− 400) or very large (n ≥ 500)
its CP fluctuates around 95%. The AL of this interval is lower than that of the
interval calculated through regression.

c) Wald CI. When ω+ 6= 1, this interval may fail if n ≤ 100 and the prevalence is
moderate (π = 25%) or large (π = 50%), whereas if n ≥ 200 the interval does not
fail. When ω+ = 1 the interval does not fail. In situations in which the Wald CI
does not fail, its CP and AL are very similar to those of the logarithmic CI.

d) Fieller CI. The Fieller CI does not fail. In general terms, its CP is 100% or
very close to this value when n ≤ 100. When n ≥ 200 its CP behaves in a very
similar way to the CP of the logarithmic and Wald intervals (and the ALs are very
similar). Therefore, when n ≥ 200, the behaviour of the Fieller CI is very similar
to the logarithmic and Wald intervals.

e) Bootstrap CI. In very general terms, when n≤ 100 this interval may fail if ω+ 6= 1
or its CP is equal (or very near) to 100% if ω+ = 1. When n ≥ 200, the Bootstrap
CI does not fail, its CP fluctuates around 95% and its AL is very similar to that of
the logarithmic, Wald and Fieller intervals. Therefore, when n ≥ 200 the Bootstrap
interval has an asymptotic behaviour which is very similar to that of logarithmic,
Wald and Fieller intervals.

f) Bayesian CI. The Bayesian CI does not fail and has a CP and an AL which are
very similar to those of the interval obtained by regression. The CP and the AL of
the Bayesian interval are almost always higher than those of the logarithmic, Wald,
Fieller and Bootstrap intervals.
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Table 2: Coverage probabilities (%) and average lengths of the CIs
for the ratio of the two positive LRs (I).

LR+
1 = 9.5, LR+

2 = 4.5, LR−1 = 0.056, LR−2 = 0.125, ω+ = 2.111, ω− = 0.444,
Se1 = 0.95, Sp1 = 0.90, Se2 = 0.90, Sp2 = 0.80

Regression Logarithmic Wald Fieller Bootstrap Bayesian
n

CP AL CP AL CP AL CP AL CP AL CP AL

π = 10%, ε1 = 0.0225, ε0 = 0.0400

50 99.95 7.06 99.40 5.72 97.20 4.53 100 8.93 98.30 3.69 99.90 5.90
100 99.25 5.73 97.90 4.75 97.40 4.16 99.80 5.64 98.50 3.09 99.10 5.42
200 99.40 3.04 96.85 2.49 96.60 2.38 97.90 2.61 96.90 2.52 99.30 3.04
300 98.90 2.26 96.15 1.86 96.10 1.81 96.85 1.90 95.60 1.89 99.00 2.27
400 99.10 1.86 95.90 1.53 95.85 1.50 96.10 1.55 95.80 1.55 99.15 1.86
500 98.50 1.61 95.55 1.33 95.45 1.31 95.90 1.35 95.05 1.34 98.35 1.62

1000 98.20 1.07 95.45 0.89 95.30 0.88 95.65 0.89 95.35 0.90 98.20 1.08

π = 10%, ε1 = 0.0360, ε0 = 0.0640

50 99.95 6.54 99.10 4.78 95.50 3.93 99.95 7.74 91.80 2.72 99.95 5.48
100 99.90 5.15 98.60 3.76 96.55 3.39 99.45 4.57 95.60 2.51 99.90 4.91
200 99.60 2.93 96.90 2.09 96.00 2.01 98.15 2.19 96.35 1.95 99.55 2.93
300 99.65 2.21 96.30 1.57 95.90 1.53 97.25 1.61 96.00 1.53 99.60 2.22
400 99.80 1.82 95.90 1.30 95.95 1.28 97.10 1.32 96.30 1.28 99.85 1.83
500 99.75 1.59 95.80 1.13 95.75 1.12 96.35 1.15 95.65 1.13 99.80 1.60

1000 99.55 1.07 95.45 0.76 95.35 0.76 95.70 0.77 95.50 0.76 99.60 1.08

π = 25%, ε1 = 0.0225, ε0 = 0.0400

50 99.85 6.04 97.80 4.89 91.30 3.95 99.90 6.38 93.60 3.28 99.65 5.49
100 99.50 5.19 97.90 4.28 95.05 3.74 99.40 4.52 97.45 2.72 99.35 4.90
200 98.45 2.96 95.60 2.44 94.75 2.32 97.30 2.50 95.90 2.62 98.40 2.91
300 98.45 2.28 95.45 1.88 95.25 1.83 97.05 1.91 94.95 2.03 98.30 2.25
400 99.00 1.91 96.10 1.59 95.95 1.55 96.65 1.60 95.60 1.68 98.85 1.90
500 98.55 1.65 95.60 1.37 95.25 1.35 96.15 1.38 95.55 1.43 98.55 1.65

1000 98.30 1.14 95.15 0.95 94.90 0.94 95.30 0.95 94.65 0.97 98.35 1.14

π = 25%, ε1 = 0.0360, ε0 = 0.0640

50 100 5.77 96.80 4.21 91.50 3.50 99.65 5.56 83.55 2.31 100 5.25
100 99.85 4.45 95.40 3.19 91.85 2.88 97.15 3.45 89.15 2.20 99.80 4.25
200 99.60 2.85 96.15 2.02 94.00 1.95 96.40 2.08 94.85 1.93 99.60 2.80
300 99.40 2.23 94.15 1.59 94.10 1.55 95.15 1.62 94.10 1.60 99.40 2.21
400 99.55 1.87 94.95 1.32 94.85 1.30 95.15 1.34 94.65 1.35 99.50 1.85
500 99.15 1.66 94.85 1.18 94.75 1.16 95.70 1.19 95.05 1.21 99.15 1.65

1000 99.50 1.14 95.00 0.81 95.15 0.81 95.70 0.82 94.90 0.83 99.30 1.14

π = 50%, ε1 = 0.0225, ε0 = 0.0400

50 99.75 5.98 96.75 4.88 89.35 3.97 99.75 6.11 86.45 4.31 99.55 5.39
100 99.60 5.91 96.35 4.87 92.20 3.80 98.90 5.22 94.45 3.81 99.40 5.38
200 98.85 3.78 95.90 3.13 94.15 2.89 97.70 3.21 96.85 3.10 98.70 3.65
300 98.50 2.87 95.00 2.38 94.70 2.26 96.40 2.41 95.40 2.61 98.30 2.82
400 98.50 2.40 95.35 1.99 95.05 1.92 96.80 2.02 94.65 2.20 98.25 2.37
500 98.35 2.08 95.80 1.72 95.45 1.68 95.25 1.74 95.25 1.88 98.20 2.06

1000 97.50 1.41 94.55 1.17 94.80 1.15 95.50 1.17 93.80 1.22 97.60 1.40

π = 50%, ε1 = 0.0360, ε0 = 0.0640

50 99.90 5.47 94.15 4.03 88.70 3.28 99.20 5.26 67.35 2.89 99.80 4.97
100 99.85 5.20 93.80 3.80 91.40 3.22 96.65 4.24 78.55 2.43 99.75 4.79
200 99.70 3.45 93.75 2.47 93.65 2.32 93.70 2.56 89.75 2.15 99.45 3.34
300 99.55 2.72 94.65 1.93 94.45 1.86 94.65 1.98 94.10 1.90 99.55 2.67
400 99.65 2.33 95.15 1.66 94.90 1.62 95.45 1.69 95.35 1.69 99.65 2.31
500 99.45 2.06 95.55 1.46 95.15 1.43 95.25 1.48 96.00 1.51 99.20 2.04

1000 99.20 1.40 94.75 1.00 94.80 0.99 94.85 1.00 94.80 1.03 99.25 1.40
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Table 3: Coverage probabilities (%) and average lengths of the CIs
for the ratio of the two positive LRs (II).

LR+
1 = 6, LR+

2 = 6, LR−1 = 0.118, LR−2 = 0.118, ω+ = 1, ω− = 1,
Se1 = 0.90, Sp1 = 0.85, Se2 = 0.90, Sp2 = 0.85

Regression Logarithmic Wald Fieller Bootstrap Bayesian
n

CP AL CP AL CP AL CP AL CP AL CP AL

π = 10%, ε1 = 0.0450, ε0 = 0.0638

50 99.95 3.61 99.50 2.51 99.85 2.18 100 4.67 100 1.96 99.95 3.16
100 99.80 2.38 97.75 1.65 97.90 1.52 98.85 2.37 98.60 1.51 99.75 2.33
200 99.65 1.33 96.40 0.92 96.90 0.89 97.65 1.02 97.00 0.91 99.60 1.35
300 99.65 1.00 96.25 0.70 96.45 0.68 97.90 0.74 96.75 0.69 99.70 1.01
400 99.65 0.84 95.60 0.58 96.00 0.58 96.95 0.61 96.10 0.58 99.65 0.84
500 99.50 0.72 95.30 0.51 95.70 0.50 96.35 0.52 95.70 0.51 99.60 0.73

1000 99.25 0.48 94.65 0.34 94.30 0.34 95.15 0.35 94.80 0.34 99.25 0.49

π = 10%, ε1 = 0.0720, ε0 = 0.1020

50 100 3.18 100 1.79 99.90 1.62 100 3.65 100 1.43 100 2.77
100 100 2.19 99.85 1.11 99.75 1.06 100 1.58 99.95 0.99 100 2.15
200 100 1.28 98.15 0.60 98.20 0.59 98.75 0.67 98.55 0.57 100 1.29
300 100 0.98 97.05 0.45 97.15 0.45 97.45 0.48 97.95 0.43 100 0.98
400 100 0.82 96.85 0.37 96.90 0.37 97.05 0.39 97.15 0.37 100 0.82
500 100 0.71 96.30 0.33 96.40 0.32 96.80 0.34 96.65 0.32 100 0.72

1000 100 0.49 95.80 0.22 95.80 0.22 96.15 0.22 96.32 0.22 100 0.49

π = 25%, ε1 = 0.0450, ε0 = 0.0638

50 99.90 3.24 99.35 2.25 99.55 1.97 100 3.58 99.95 1.81 99.85 3.06
100 99.65 2.05 96.95 1.39 96.95 1.30 100 1.78 99.15 1.38 99.75 2.00
200 99.30 1.24 95.00 0.86 94.85 0.84 98.45 0.94 95.00 0.90 99.15 1.23
300 99.70 0.97 94.45 0.68 94.10 0.66 97.35 0.71 94.20 0.70 99.65 0.96
400 99.45 0.82 95.55 0.57 94.85 0.57 97.10 0.60 95.05 0.59 99.35 0.82
500 99.45 0.73 94.70 0.51 94.15 0.50 96.15 0.53 94.25 0.52 99.40 0.72

1000 99.60 0.51 95.45 0.36 95.25 0.36 95.85 0.36 95.15 0.36 99.50 0.51

π = 25%, ε1 = 0.0720, ε0 = 0.1020

50 100 2.80 100 1.49 99.85 1.38 100 2.51 100 1.27 100 2.66
100 100 1.93 99.30 0.89 99.25 0.86 100 1.15 100 0.82 100 1.89
200 100 1.21 96.95 0.53 96.50 0.53 98.70 0.59 98.30 0.53 100 1.20
300 100 0.96 95.85 0.42 95.65 0.42 96.75 0.45 97.65 0.42 100 0.95
400 100 0.82 95.35 0.36 94.95 0.36 96.30 0.38 96.35 0.37 100 0.82
500 100 0.73 95.25 0.32 95.25 0.32 95.90 0.33 95.80 0.33 100 0.73

1000 100 0.50 95.25 0.22 95.25 0.22 95.70 0.23 95.40 0.23 100 0.50

π = 50%, ε1 = 0.0450, ε0 = 0.0638

50 99.95 3.27 99.95 2.27 99.60 1.97 100 3.54 100 1.67 99.95 3.06
100 100 2.51 98.90 1.69 97.65 1.52 100 2.39 99.85 1.50 99.85 2.39
200 99.55 1.54 95.60 1.06 94.30 1.01 98.80 1.22 96.45 1.12 99.35 1.51
300 99.35 1.20 96.00 0.83 95.10 0.81 97.70 0.90 95.65 0.86 99.25 1.19
400 99.55 1.02 95.40 0.71 95.40 0.69 96.10 0.75 95.55 0.74 99.50 1.01
500 99.55 0.89 95.20 0.62 94.75 0.61 96.20 0.65 94.15 0.64 99.50 0.89

1000 99.55 0.61 94.40 0.43 94.75 0.43 95.75 0.44 94.25 0.44 99.50 0.61

π = 50%, ε1 = 0.0720, ε0 = 0.1020

50 100 2.81 100 1.50 99.95 1.38 100 2.58 100 1.24 100 2.66
100 100 2.25 99.90 1.05 99.70 1.00 100 1.51 100 0.94 100 2.16
200 100 1.49 99.20 0.66 98.45 0.65 99.95 0.77 99.95 0.64 100 1.47
300 100 1.17 97.70 0.51 97.05 0.50 99.50 0.56 99.45 0.51 100 1.16
400 100 1.00 96.50 0.43 96.40 0.43 98.55 0.46 97.95 0.44 100 0.99
500 100 0.89 95.75 0.39 95.35 0.38 97.55 0.40 96.80 0.39 100 0.88

1000 99.95 0.61 95.55 0.27 95.25 0.27 96.65 0.28 95.60 0.27 99.95 0.61
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4.2. Negative LRs

Tables 4 and 5 show some of the results obtained for ω− considering the same scenarios
as for ω+. Failures are indicated in bold type. From the results, the following conclusions
are obtained:

a) Regression CI. This interval has an asymptotic behaviour which is very similar to
that of the same interval for ω+.

b) Logarithmic CI. In general terms, this interval can fail when ω+ 6= 1 and the
dependence factors are high, whatever the sample size may be. This interval does
not fail when ω+ = 1, and its CP is 100% or very near to this value when n ≤ 100,
and even with n ≥ 200 if the prevalence is small. When this interval does not fail,
its AL is lower than that of the interval obtained through regression.

c) Wald CI. The Wald CI does not fail, and its CP is 100% (or very near) when
n ≤ 100, and its CP fluctuates around 95% when n ≥ 200. The AL of the Wald CI
is slightly lower than that of the logarithmic CI (when this does not fail), and its
CP shows better fluctuations around 95% than that of the logarithmic interval.

d) Fieller CI. This interval does not show any failures. In very general terms, the
Fieller CI has a very similar CP to that of the Wald CI when ω+ 6= 1. When
ω+ = 1, the CP of the Fieller CI is 100% (or near) when n ≤ 100, and fluctuates
around 95% if n ≥ 200. Its AL is greater than that of the Wald CI, especially when
n ≤ 500.

e) Bootstrap CI. This interval has many failures when ω+ 6= 1, especially when the
prevalence is small or moderate, and regardless of the sample size. When ω+ = 1,
the interval does not fail, and its CP is greater than that of the Wald CI or the
logarithmic CI, especially when the prevalence is small or moderate. Regarding the
Fieller CI, the CP of the Bootstrap interval is very similar to that of the Fieller
interval, and its AL is slightly lower than that of the Fieller CI, especially for
n ≤ 500.

f) Bayesian CI. The same as for ω+, the Bayesian CI for ω− does not fail and has
a CP and an AL which are very similar to those of the interval obtained through
regression. The same as for ω+, the CP and the AL of the Bayesian interval are
higher than those of the logarithmic, Wald, Fieller and Bootstrap intervals.
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Table 4: Coverage probabilities (%) and average lengths of the CIs
for the ratio of the two negative LRs (I).

LR+
1 = 9.5, LR+

2 = 4.5, LR−1 = 0.056, LR−2 = 0.125, ω+ = 2.111, ω− = 0.444,
Se1 = 0.95, Sp1 = 0.90, Se2 = 0.90, Sp2 = 0.80

Regression Logarithmic Wald Fieller Bootstrap Bayesian
n

CP AL CP AL CP AL CP AL CP AL CP AL

π = 10%, ε1 = 0.0225, ε0 = 0.0400

50 99.95 2.07 97.30 1.65 96.85 1.27 99.50 2.71 14.80 1.79 99.75 1.90
100 99.90 2.02 96.60 1.59 96.05 1.17 99.60 2.49 35.50 1.83 99.85 1.81
200 99.95 1.99 96.15 1.42 95.90 1.09 99.55 2.40 53.70 1.68 99.85 1.79
300 99.85 1.81 95.45 1.30 95.15 1.03 99.05 1.99 75.95 1.59 99.75 1.65
400 99.85 1.67 96.55 1.23 95.55 0.97 99.10 1.75 86.05 1.55 99.75 1.54
500 99.80 1.62 96.95 1.20 95.95 0.96 98.80 1.70 88.80 1.48 99.60 1.50

1000 99.55 1.22 96.90 0.93 95.90 0.81 97.85 1.16 95.80 1.05 99.45 1.16

π = 10%, ε1 = 0.0360, ε0 = 0.0640

50 100 2.18 92.60 1.63 99.95 1.31 99.50 2.83 5.50 1.70 100 2.01
100 100 2.11 90.85 1.53 98.90 1.19 99.25 2.57 17.25 1.66 100 1.96
200 100 2.16 91.15 1.38 98.35 1.12 99.25 2.48 33.00 1.53 100 1.91
300 99.95 1.94 90.20 1.21 97.60 1.01 98.10 2.02 54.45 1.43 99.90 1.78
400 99.95 1.76 92.40 1.13 97.10 0.95 97.65 1.64 65.25 1.39 99.90 1.63
500 99.90 1.68 92.80 1.09 96.10 0.91 97.85 1.55 70.45 1.35 99.85 1.56

1000 99.90 1.22 93.40 0.79 95.60 0.71 97.45 0.97 84.65 0.93 99.80 1.16

π = 25%, ε1 = 0.0225, ε0 = 0.0400

50 100 2.06 97.80 1.56 96.35 1.18 99.30 2.66 34.05 1.86 99.75 1.87
100 100 1.87 96.20 1.34 95.95 1.04 99.65 2.13 64.85 1.67 99.80 1.70
200 99.65 1.64 96.00 1.22 95.80 0.98 98.00 1.77 89.30 1.50 99.60 1.52
300 99.50 1.44 95.95 1.07 95.60 0.90 97.40 1.46 93.15 1.28 99.45 1.35
400 99.10 1.21 95.75 0.93 95.40 0.81 96.55 1.16 95.35 1.05 98.90 1.15
500 99.50 1.06 95.55 0.82 95.45 0.73 96.00 0.97 95.60 0.89 99.20 1.01

1000 98.60 0.65 95.20 0.52 95.15 0.50 94.65 0.55 95.55 0.52 98.45 0.64

π = 25%, ε1 = 0.0360, ε0 = 0.0640

50 100 2.13 91.90 1.48 99.90 1.19 99.30 2.60 18.35 1.71 99.95 1.95
100 100 2.07 90.35 1.29 99.00 1.08 98.45 2.31 37.80 1.53 99.95 1.89
200 99.85 1.71 91.65 1.09 96.55 0.92 97.40 1.58 67.35 1.35 99.80 1.59
300 99.85 1.48 92.25 0.95 96.35 0.82 97.15 1.28 77.20 1.14 99.75 1.39
400 99.85 1.26 91.90 0.81 95.90 0.72 96.85 1.02 82.05 0.94 99.85 1.20
500 99.85 1.06 92.70 0.69 95.70 0.63 96.35 0.80 87.20 0.77 99.65 1.02

1000 99.50 0.65 94.45 0.43 95.35 0.42 96.20 0.45 94.40 0.44 99.55 0.64

π = 50%, ε1 = 0.0225, ε0 = 0.0400

50 99.90 1.82 97.65 1.35 99.90 1.07 99.60 2.13 71.70 1.76 99.85 1.69
100 99.85 1.67 96.35 1.23 99.30 0.98 99.05 1.82 84.60 1.56 99.80 1.55
200 99.70 1.23 97.10 0.94 96.95 0.81 98.00 1.19 96.05 1.07 99.60 1.17
300 98.75 0.92 96.25 0.73 94.40 0.66 95.60 0.81 97.25 0.76 98.50 0.89
400 98.55 0.75 95.45 0.60 94.45 0.56 95.25 0.64 96.80 0.61 98.60 0.73
500 98.15 0.66 94.35 0.53 94.40 0.50 94.10 0.55 95.05 0.53 97.80 0.65

1000 98.65 0.44 95.20 0.35 95.20 0.35 94.80 0.36 94.35 0.36 98.45 0.43

π = 50%, ε1 = 0.0360, ε0 = 0.0640

50 100 1.90 92.35 1.25 99.30 1.04 98.35 2.01 47.90 1.60 99.95 1.77
100 100 1.74 92.05 1.11 97.80 0.93 97.80 1.63 60.20 1.43 99.95 1.62
200 100 1.26 93.55 0.82 96.30 0.73 97.45 1.02 81.85 0.97 99.90 1.20
300 99.65 0.94 94.70 0.62 95.15 0.58 96.65 0.70 90.15 0.67 99.50 0.91
400 99.70 0.77 94.55 0.51 95.30 0.48 95.95 0.54 93.10 0.52 99.50 0.75
500 99.75 0.65 95.30 0.44 95.20 0.42 95.85 0.46 94.80 0.44 99.55 0.64

1000 99.65 0.43 95.75 0.30 94.80 0.29 95.40 0.30 96.30 0.29 99.55 0.43
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Table 5: Coverage probabilities (%) and average lengths of the CIs
for the ratio of the two negative LRs (II).

LR+
1 = 6, LR+

2 = 6, LR−1 = 0.118, LR−2 = 0.118, ω+ = 1, ω− = 1,
Se1 = 0.90, Sp1 = 0.85, Se2 = 0.90, Sp2 = 0.85

Regression Logarithmic Wald Fieller Bootstrap Bayesian
n

CP AL CP AL CP AL CP AL CP AL CP AL

π = 10%, ε1 = 0.0450, ε0 = 0.0638

50 100 2.55 100 1.84 99.50 1.55 100 3.35 100 1.72 100 2.34
100 100 2.54 100 1.74 98.85 1.44 99.95 3.04 100 1.65 100 2.33
200 100 2.52 100 1.58 95.90 1.36 99.90 3.01 100 1.56 100 2.32
300 100 2.48 100 1.52 93.85 1.34 99.60 2.70 100 1.52 100 2.31
400 100 2.39 99.65 1.51 93.15 1.32 99.20 2.53 100 1.51 99.90 2.26
500 100 2.35 99.65 1.43 94.35 1.31 99.05 2.45 100 1.50 100 2.25

1000 99.85 1.98 97.15 1.33 93.95 1.24 96.85 1.86 98.70 1.38 99.85 1.91

π = 10%, ε1 = 0.0720, ε0 = 0.1020

50 100 2.73 100 1.76 99.90 1.56 100 3.45 100 1.39 100 2.51
100 100 2.68 100 1.56 99.80 1.40 100 2.84 100 1.34 100 2.49
200 100 2.65 100 1.42 99.80 1.30 100 2.78 100 1.23 100 2.40
300 100 2.61 100 1.28 98.60 1.19 99.95 2.62 100 1.12 100 2.33
400 100 2.52 100 1.19 97.70 1.11 98.90 2.05 100 1.07 100 2.27
500 100 2.42 100 1.13 97.10 1.07 97.95 1.85 100 1.03 100 2.18

1000 100 1.91 99.80 0.85 96.80 0.82 97.15 1.16 100 0.80 100 1.85

π = 25%, ε1 = 0.0450, ε0 = 0.0638

50 100 2.56 100 1.72 98.20 1.46 100 3.23 100 1.67 100 2.40
100 100 2.51 100 1.53 95.45 1.35 99.85 2.91 100 1.55 99.95 2.35
200 99.95 2.40 99.50 1.50 93.90 1.31 98.90 2.57 99.95 1.53 99.90 2.20
300 99.85 2.26 98.55 1.48 94.65 1.25 98.00 2.35 99.75 1.47 99.80 2.15
400 99.70 1.98 96.95 1.33 93.05 1.19 96.20 1.85 98.20 1.37 99.55 1.92
500 99.55 1.74 95.20 1.18 92.35 1.10 94.55 1.50 96.40 1.24 99.40 1.70

1000 99.25 1.15 94.80 0.79 94.25 0.75 94.40 0.86 94.15 0.84 99.20 1.13

π = 25%, ε1 = 0.0720, ε0 = 0.1020

50 100 2.86 100 1.57 99.80 1.41 100 3.11 100 1.40 100 2.65
100 100 2.81 100 1.37 98.90 1.26 100 2.95 100 1.22 100 2.54
200 100 2.45 100 1.14 97.75 1.07 100 1.86 100 1.04 100 2.30
300 100 2.22 99.90 1.01 97.20 0.97 99.80 1.54 100 0.93 100 2.10
400 100 1.92 96.95 0.86 96.80 0.83 98.55 1.17 99.95 0.80 100 1.85
500 100 1.69 96.55 0.74 96.45 0.72 98.15 0.94 99.90 0.71 100 1.65

1000 100 1.13 96.05 0.49 95.95 0.48 96.50 0.53 98.45 0.49 100 1.10

π = 50%, ε1 = 0.0450, ε0 = 0.0638

50 100 2.45 100 1.59 95.50 1.40 99.90 2.80 100 1.65 99.95 2.31
100 99.95 2.42 99.25 1.56 94.70 1.35 99.00 2.69 99.95 1.55 99.90 2.25
200 99.80 2.01 96.90 1.34 93.30 1.25 96.20 1.89 98.85 1.37 99.70 1.94
300 99.65 1.57 96.75 1.08 94.30 1.05 96.30 1.29 97.20 1.15 99.60 1.54
400 99.70 1.32 95.40 0.91 94.65 0.88 95.20 1.02 95.20 0.97 99.70 1.30
500 99.70 1.17 95.10 0.81 94.90 0.78 94.70 0.88 94.20 0.85 99.65 1.15

1000 99.40 0.78 95.20 0.54 94.60 0.54 95.05 0.56 94.75 0.56 99.35 0.77

π = 50%, ε1 = 0.0720, ε0 = 0.1020

50 100 2.67 99.95 1.36 99.50 1.26 99.95 2.64 100 1.30 100 2.51
100 100 2.49 100 1.16 98.45 1.09 100 1.95 100 1.09 100 2.36
200 100 1.94 99.55 0.86 97.30 0.83 99.40 1.18 100 0.81 100 1.88
300 100 1.55 98.80 0.67 97.00 0.66 98.55 0.80 99.75 0.65 100 1.51
400 100 1.30 96.95 0.56 96.90 0.55 97.80 0.63 99.60 0.55 100 1.28
500 100 1.14 96.25 0.50 96.25 0.49 96.05 0.54 98.20 0.50 100 1.13

1000 100 0.78 95.35 0.34 95.10 0.34 95.35 0.35 95.30 0.35 100 0.77



Comparison of the Likelihood Ratios of Two Diagnostic Tests Subject to a Paired Design... 591

4.3. Rules of application

Considering the asymptotic behaviour of each one of the CIs studied, it is possible to
give some general rules of application for the CIs studied. These rules of application are for
the different scenarios considered in the simulation experiments, scenarios that correspond to
realistic values of prevalence, sensitivities and specificities in clinical practice. Based on the
sample size, which in practice is the only parameter set by the researcher, the rules are the
following:

a) For the ratio ω+, use the logarithmic CI, whatever the sample size may be, although
when n ≥ 200 we can also use the Wald, the Fieller and the Bootstrap intervals.

b) For the ratio ω−, use the Wald CI, whatever the sample size may be.

5. SAMPLE SIZE

An important question when comparing two parameters is the calculation of the sample
size necessary to compare the parameters with a determined error and power. In the context
of the comparison of the LRs, Roldán-Nofuentes and Luna [12] proposed a method to calculate
the sample size to solve the hypothesis test H0: ln (ω) = 0 vs H1: ln (ω) 6= 0. We then study
the same problem but from the perspective of the CIs. Therefore, we study the problem
of calculating the sample size necessary to estimate the ratio between the two LRs with a
precision δ and a confidence 100 (1− α) %. As in the previous sections, we consider that ω is
ω+ or ω−. Let us first consider the Wald CI, which can be applied both to estimate ω+ (with
n ≥ 200) and ω− (for any sample size). Based on the asymptotic normality of the estimator
of ω, it is verified that

ω̂ ∈ ω ± z1−α/2

√
Var(ω̂) ,

i.e. the probability of obtaining an estimator ω̂ is in this interval with a probability 100(1−α)%.
Let us consider that LR2 > LR1 and, therefore, that ω < 1 (the Wald interval will be lower
than one) and let δ be the precision set by the researcher. As it has been assumed that ω < 1,
then δ must be lower than one, and if we want to have a high level of precision then δ must be
a small value. The sample size n is calculated from the expression

(5.1) δ = z1−α/2 ω

√
Var
(
L̂R1

)
LR2

1

+
Var
(
L̂R2

)
LR2

2

−
2 Cov

(
L̂R1, L̂R2

)
LR1LR2

.

This equation is obtained from the Wald CI (equation (3.10)). Substituting the variances
and the covariance with their respective expressions given in equations (3.4) and clearing n

we obtain the expression of the sample size to estimate ω with a precision δ and a confidence
100 (1− α) %. For ω+ the equation of the sample size is

(5.2) n =
(

z1−α/2 ω+

δ

)2 [ 2∑
h=1

(
1−Seh

π Seh
+

Sph

π̄ (1−Sph)

)
− 2 ε1

π Se1Se2
− 2 ε0

π̄ (1−Sp1)(1−Sp2)

]
,

and for ω− is

(5.3) n =
(

z1−α/2 ω−

δ

)2 [ 2∑
h=1

(
Seh

π (1−Seh)
+

1−Sph

π̄ Sph

)
− 2 ε1

π (1−Se1)(1−Se2)
− 2 ε0

π̄ Sp1Sp2

]
.
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If it is considered that ω > 1 (and consequently the Wald CI is higher than one) the
BDTs can always be permuted and ω will then be lower than one. Another alternative
consists of setting a value for a precision δ′, in a similar way to the previous situation when
ω < 1, and then apply equation (5.2) or (5.3) considering δ = ω̂2δ′. As is explained at the
end of Section 3, this is due to the fact that if (Lω, Uω) is the Wald CI for ω = LR1/LR2 < 1
then the Wald CI for ω′ = 1/ω = LR2/LR1 is

(
Lω
bω2 , Uω

bω2

)
. It is easy to check that the calculated

value of the sample size n is the same both if ω < 1 (with precision δ) and if ω > 1 (with
precision δ = ω̂2δ′).

In order to be able to apply the previous equations, it is necessary to know the sensitivi-
ties, the specificities (and therefore the LRs, ω+ and ω−), the dependence factors between the
two BDTs (εi) and the prevalence (π). In practice, these values can be estimated from a pilot
sample or can be obtained from another similar study. Therefore, the method to calculate
the sample size requires us to know some estimations of the accuracy (Se and Sp) of each
BDT, of the dependence factors between the BDTs and of the disease prevalence, obtained
for example from a pilot study or from other previous studies. The method to calculate the
size of the sample consists of the following steps:

Step 1. Take a pilot sample sized n0 (in general terms, n0 ≥ 200 if ω+ is estimated to
then be able to calculate the Wald CI), and with this sample we calculate Ŝeh,
Ŝph (and therefore L̂Rh, ω̂+ and ω̂−), ε̂i and π̂. The Wald CI for ω is then

calculated, and if this interval has a precision δ, i.e. z1−α/2

√
V̂ar (ω̂) ≤ δ,

then the required precision has been reached; if not, go to the following step.

Step 2. Based on the estimations obtained in Step 1, calculate the sample size n

applying equation (5.2) or (5.3).

Step 3. Take the sample of n individuals (add n− n0 individuals to the initial pilot
sample), and from this new sample we calculate Ŝeh, Ŝph, ε̂i, π̂ and the Wald
CI. If the Wald CI has a precision δ, then the set precision has been achieved;
if not, consider the new sample to be a pilot sample (n0 = n) and go back to
Step 1.

This proposed procedure to calculate the sample size is iterative, and therefore it does
not guarantee that with the sample size calculated we can then estimate the parameter ω

with the required precision. Moreover, if the researcher sets a precision δ+ to estimate ω+ and
also sets a precision δ− to estimate ω−, once both sample sizes have been calculated through
the previous method, the researcher must take a sample size of at least the maximum of
the two sample sizes, to thus guarantee the precision in both estimations. In general, the
calculation of the sample size makes sense when the confidence interval for ω does not contain
the value one, since in this situation (the interval contains the value one) the equality of
both LRs is not rejected and it does not make sense to determine how much larger one LR is
compared to the other. Nevertheless, if the pilot sample is small (for example to estimate ω−)
and the Wald CI for ω− contains the value 1, it may be useful to calculate the sample size to
estimate the ω−. In this situation, the Wald CI for ω− will be very wide (as the pilot sample
is small) and may contain the value 1 even if LR−1 and LR−2 are different.

The calculation of the sample size depends on the estimations obtained from an initial pi-
lot sample. In order to study the effect that this sample has on the calculation of the sample size,
simulation experiments were carried out which were similar to those carried out in Section 4.
From the values of the parameters, we calculated the sample size n applying equation (5.2)
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or (5.3) depending on the case, taking a precision equal to 0.10, and we then generated N =
10,000 random samples of multinomial distributions sized n. In each one of the N random sam-
ples, we calculated the sample size n′i from the estimators calculated with the random sample,
and then calculated the average sample size n̄ =

∑
n′i
/
N and the relative bias RB(n′) =

(n̄−n)/n. Table 6 shows the results obtained for the scenarios considered in Tables 2 and 4
(ω 6= 1). From the results, it holds that the dependence factors εi have an important effect on the
calculation of the sample size, the sample size is smaller when the dependence factors are larger.
Moreover, the increase in the prevalence means an increase (decrease) in the sample size to
estimate ω+ (ω−). The relative biases obtained are very small, and therefore the sample sizes
calculated from equations (5.2) and (5.3) are robust. Consequently, the initial pilot sample
does not have an important effect on the determination of the sample size to estimate ω.

Table 6: Sample size to estimate ω.

LR+
1 = 9.5, LR+

2 = 4.5, LR−1 = 0.056, LR−2 = 0.125,

ω+ = 2.111, ω− = 0.444,

Se1 = 0.95, Sp1 = 0.90, Se2 = 0.90, Sp2 = 0.80

Sample size for ω+

π =10% π =25% π =50%

ε1 = 0.0225, ε0 = 0.0400

Sample size 958 1073 1571
Average sample size 981 1084 1597
Relative bias (%) 2.40 1.03 1.66

ε1 = 0.0360, ε0 = 0.0640

Sample size 701 786 1152
Average sample size 734 796 1160
Relative bias (%) 4.71 1.27 0.69

Sample size for ω−

π =10% π =25% π =50%

ε1 = 0.0225, ε0 = 0.0400

Sample size 14439 5793 2922
Average sample size 14715 5896 2966
Relative bias (%) 1.91 1.78 1.51

ε1 = 0.0360, ε0 = 0.0640

Sample size 10336 4147 2092
Average sample size 10482 4186 2118
Relative bias (%) 1.41 0.94 1.24

If the initial pilot sample has a small or moderate size, then in order to estimate ω+

we use the logarithmic CI. In this situation, the process is similar to the previous one,
and the sample size is calculated from the equation ln(δ) = z1−α/2

√
Var
[
ln(ω̂+)

]
, where the

expression of Var
[
ln(ω̂+)

]
is given in equation (3.8). Following a similar process to the

previous one, it holds that

(5.4) n =
(

z1−α/2

ln(δ)

)2 [ 2∑
h=1

(
1−Seh

πSeh
+

Sph

π̄ (1−Sph)

)
− 2 ε1

π Se1Se2
− 2 ε0

π̄ (1−Sp1)(1−Sp2)

]
.
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6. APPLICATIONS

The results obtained were applied to two real examples: a study of the diagnosis of
coronary disease and another study of the diagnosis of colorectal cancer.

6.1. Diagnosis of coronary disease

The results obtained were applied to the study of Weiner et al. [16] on the diagnosis
of coronary disease, which is a widely used study to illustrate statistical methods for the
estimation and comparison of parameters of BDTs. Weiner et al. studied the diagnosis of
coronary artery disease using as diagnostic tests the exercise test and the resting EKG, and
the coronary arteriography as a GS. Table 7 shows the frequencies obtained by applying the
three medical tests to a sample of 1,465 males, where T1 models the result of the exercise
test, T2 models the result of the resting EKG and D the result of the GS. Table 7 also shows
the estimations of the LRs (ω) and their standard errors (SE), as well as the CIs for ω+ and
ω−.

Table 7: Diagnosis of coronary disease.

Frequencies

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0
Total

D = 1 224 591 32 176 1023
D = 0 35 80 41 286 442

Total 259 671 73 462 1465

Results

cSe ± SE cSp ± SE cLR
+
± SE cLR

−
± SE

Exercise test 0.797± 0.013 0.740± 0.021 3.065± 0.250 0.274± 0.019
Resting EKG 0.250± 0.014 0.828± 0.018 1.453± 0.171 0.906± 0.026

bp bε1 bε0 bω+ ± SE bω− ± SE

0.698 0.020 0.034 2.109± 0.273 0.302± 0.021

CIs for ω+

Regression CI Logarithmic CI Wald CI

(1.589, 2.786) (1.632, 2.713) (1.569, 2.639)

Fieller CI Bootstrap CI Bayesian CI

(1.647, 2.765) (1.501, 2.612) (1.668, 2.567)

CIs for ω−

Regression CI Logarithmic CI Wald CI

(0.263, 0.351) (0.265, 0.348) (0.262, 0.345)

Fieller CI Bootstrap CI Bayesian CI

(0.262, 0.346) (0.280, 0.348) (0.264, 0.343)
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For ω+, from any of the six CIs (all of them are greater than one) it holds that the
positive LR of the exercise test is significantly larger than the positive LR of the resting EKG,
i.e. a positive result in the exercise test is more indicative of the presence of the disease than a
positive result in the resting EKG. Interpreting the results of the logarithmic CI, the positive
LR of the exercise test is (with a confidence of 95%) a value between 1.632 and 2.713 times
larger than the positive LR of the resting EKG.

Regarding ω−, all of the CIs intervals (all are less than one) we reject the equality of the
two negative LRs, and it holds that a negative result for the resting EKG is more indicative
of the absence of the disease than a negative result of the exercise test. Interpreting the
Wald CI, the negative LR of the resting EKG is (with a confidence of 95%) a value between
2.872

(
= 0.262/0.3022

)
and 3.783

(
= 0.345/0.3022

)
times larger than the negative LR of the

exercise test.

Moreover, in order to illustrate the method to calculate the sample size, we are going
to consider that the researcher wants to estimate ω+ with a precision equal to 0.10, which
can be considered to be a high precision. The Wald CI for ω+ is (1.569, 2.639), and therefore
multiplying this interval by 1/(ω̂+)2 = 1/2.1092 it holds that the 95% Wald CI for ω′+ =
LR+

2 /LR+
1 is (0.353, 0.593), and the precision is 0.12. As 0.12 is higher than 0.10, it is

necessary to increase the sample size to estimate ω+ with the required precision. Setting the
confidence at 95% and taking δ = (ω̂+)2 δ′ = 2.1092×0.10 ≈ 0.445, applying equation (5.2) it
holds that n = 2, 146. Consequently, it is necessary to add 681 new individuals to the initial
sample of 1,465 individuals, and once the data are obtained it is necessary to check that the
required precision has been achieved.

6.2. Diagnosis of colorectal cancer

The results obtained were applied to a study of the diagnosis of colorectal cancer,
using as diagnostic tests Fecal Occult Blood Testing (FOBT) and Fecal Immunochemical
Testing (FIT), and the biopsy as the GS. Table 8 shows the results obtained by apply-
ing the three tests to a sample of 168 adult men with suspicious symptoms of the disease,
where the variable T1 models the result of the FOBT, T2 models the result of the FIT and
D models the result of the biopsy. This data came from a study carried out at the University
Hospital of Granada (Spain). Table 8 also shows the estimations of the LRs, their standard
errors and the confidence intervals for ω+ and ω−. Applying the rule given in Section 4.3, as
n = 168 < 200 the logarithmic CI for ω+ must be used in addition to the Wald CI for ω−.
For ω+, the logarithmic CI contains the value one, and therefore we do not reject the equal-
ity of both positive LRs. Regarding ω−, the Wald CI does not contain the value one, and
therefore we reject the equality of both negative LRs. Thus, a negative result for the FOBT
is more indicative of the presence of colorectal cancer than a negative result for the FIT.
The negative LR of the FOBT is (with a confidence of 95%) a value between 1.321 and
3.183 times larger than the negative LR of the FIT. The Wald CI for 1/ω− is (0.260, 0.628),
calculated as

(
1.321/2.2522, 3.183/2.2522

)
.
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In order to illustrate in this example the method of sample size calculation, let us
suppose that the researchers want to estimate 1/ω− with a precision equal to 0.10, or in
other words, to estimate ω− with a precision of 0.10× (ω̂−)2 = 0.10× 2.2522 ≈ 0.50. As with
the sample of 168 individuals the precision obtained with the Wald CI for ω− is 0.931 > 0.50,
or rather a precision equal to 0.184 (> 0.10) with the Wald CI for 1/ω−, then it is necessary
to calculate the sample size. Considering the sample of 168 individuals to be a pilot sample,
applying equation (5.3) it holds that n = 561. Therefore, 561 individuals are needed (we have
to add 393 to the sample of 168) in order to estimate ω− (1/ω−) with a precision equal to
0.50 (0.10) with a confidence of 95%.

Table 8: Diagnosis of colorectal cancer.

Frequencies

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0
Total

D = 1 68 1 18 13 100
D = 0 4 2 1 61 68

Total 72 3 19 74 168

Results

cSe ± SE cSp ± SE cLR
+
± SE cLR

−
± SE

FOBT 0.690± 0.046 0.912± 0.034 7.841± 3.093 0.340± 0.052
FIT 0.860± 0.035 0.926± 0.032 11.622± 5.057 0.151± 0.038

bp bε1 bε0 bω+ ± SE bω− ± SE

0.595 0.087 0.052 0.675± 0.215 2.252± 0.475

CIs for ω+

Regression CI Logarithmic CI Wald CI

(0.212, 2.108) (0.356, 1.255) (0.254, 1.096)

Fieller CI Bootstrap CI Bayesian CI

(0.278, 2.277) (0.281, 1.283) (0.222, 2.057)

CIs for ω−

Regression CI Logarithmic CI Wald CI

(1.265, 4.001) (1.488, 3.403) (1.321, 3.183)

Fieller CI Bootstrap CI Bayesian CI

(1.556, 3.894) (1.553, 3.778) (1.281, 4.006)
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7. DISCUSSION

The LRs are parameters that are used to assess and compare the effectiveness of BDTs,
and only depend on the accuracy (sensitivity and specificity) of the BDT. The comparison
of the positive (negative) LRs of two BDTs subject to a paired design is a topic which has
not been widely studied in Statistical literature and consists of the comparison of two relative
risks subject to the same type of design. The previous studies ([10, 6, 12, 3]) focused mainly
on the study of hypothesis tests to compare the positive (negative) LRs of the two BDTs.
The comparison of the positive (negative) LRs through CIs has been the object of the very
little research, and the studies that have been published by Pepe [10] and Roldán-Nofuentes
and Luna [12] have focused on proposing CIs without dealing with this question in more depth.
In this article, we extend the scope of these previous studies, proposing four new intervals:
three of which are frequentist (Wald, Fieller and Bootstrap) and one which is Bayesian.
The Wald and Fieller intervals are based on the asymptotic normality of the ratio of the
LRs, and the Bootstrap interval is based on the fact that the bootstrap estimator of the ratio
of the LRs can be transformed to a normal distribution. Regarding the Bayesian interval,
this was obtained by applying the Monte Carlo method considering a priori non-informative
distributions. The importance of the study of the CIs for the ratio of the positive (negative)
LRs does not only lie in the fact that these CIs allow us to compare the two positive (negative)
LRs, but also that it allows us to determine (when the equality of both CIs is rejected) how
much bigger one CI than the other, which means an advantage over the hypothesis tests.

The comparison of the asymptotic behaviour of the six CIs was studied through sim-
ulation experiments. The results of these experiments has shown that, in the scenarios con-
sidered, in order to estimate the ratio ω+ = LR+

1 /LR+
2 , in general terms, the intervals with

the best behaviour are the logarithmic (for all the sample sizes), the Wald, Fieller and Boot-
strap intervals (these last three for large or very large samples); whereas in order to estimate
ω− = LR−1 /LR−2 the interval with the best behaviour is the Wald interval (for all of the sam-
ples sizes). The use of different CIs for ω+ and for ω− may be due to the convergence to
the normal distribution of the estimators. For an informative BDT, i.e. for a BDT whose
Youden index is higher than 0 (Y = Se + Sp − 1 > 0), it must be verified that LR+ > 1 and
that LR− < 1. Then, considering that the two BDTs are informative (as should be the case
in clinical practice), ω+ is the ratio between two values greater than 1 and ω− is the ratio
between two values lower than 1. For ω+, ln ω̂+ converges better to the normal distribution
than ω̂+ for n < 200, but when n ≥ 200 both (ω̂+ and ln ω̂+) has a good approximation to
the normal distribution. The Wald CI for ω− has a better asymptotic behaviour than the
logarithmic CI for ω−, which must be due to the fact that ω̂− converges more quickly to the
normal distribution (even with large samples) than ln ω̂−.

An important question when comparing parameters of two BDTs is the calculation of
the sample size necessary to compare the parameters based on certain specifications. When a
hypothesis test is carried out, the sample size is calculated based on an error α, a power θ and
a difference (or ratio) to be detected among the parameters. Roldán-Nofuentes and Luna [12]
proposed a method to calculate sample size to solve the hypothesis test (H0: ln ω = 0) of
equality of the positive (negative) LRs. This article proposes, as a complement to the study
of the CIs, a method to determine the sample size necessary to estimate the ratio between
the LRs with a previously set precision. This is a topic that has never been studied and,
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therefore, represents a contribution to Statistical literature on the subject analysed in this
article. The method, which is based on the Wald (logarithmic) CI, requires knowledge of the
estimations of the sensitivities, specificities, dependence factors and disease prevalence. These
estimations can be obtained from a pilot sample or another similar study and, therefore, as
it depends on the pilot sample selected. Therefore, the method does not guarantee that with
the calculated sample size the parameter ω can be estimated with the set precision, and it is
necessary to check this precision.

The intervals studied in this article can also be applied when the sample design is
case-control. In this type of design, the two BDTs are applied to all of the individuals in two
random samples, one of n1 individuals with the disease and another one of n2 individuals with-
out the disease. If this type of sampling is used, two multinomial distributions are involved,
one for the case sample, whose probabilities are pij = Sei

1(1−Se1)
1−i Sej

2(1−Se2)
1−j + δij ε1

with
∑

pij = 1, and the other for the control sample, whose probabilities are qij =
Sp1−i

1 (1−Sp1)
i Sp1−j

2 (1−Sp2)
j + δij ε0 with

∑
qij = 1. Here, the variances-covariances of

the sensitivities and specificities, obtained applying the delta method, are

Var
(
Ŝeh

)
≈ Seh(1−Seh)

n1
, Var

(
Ŝph

)
≈ Sph(1−Sph)

n2
,

Cov
(
Ŝe1, Ŝe2

)
≈ ε1

n1
, Cov

(
Ŝp1, Ŝp2

)
≈ ε0

n2
.

The equations of the estimators and of the variances-covariances given in the regression, loga-
rithmic, Wald and Fieller intervals are valid substituting s with n1 and r with n2. Regarding
the Bootstrap interval, it is necessary to generate B samples with replacement from the case
sample and another B samples with replacement from the control sample, and the process is
the same as the one described in Section 3.5. Regarding the Bayesian interval, the process is
similar substituting s with n1 and r with n2.

The methodology used in this article, both to obtain the CIs and to calculate the sample
size, can be used to compare other parameters of BDTs, e.g. the odds ratios. The odds ratio
of a BDT is defined as OR = SeSp

/[
(1−Se) (1−Sp)

]
and is a measure of the association

between the BDT and the GS. It is easy to check that the ratio of the odds ratios of two
BDTs is LR+

1 LR−2 /
(
LR−1 LR+

2

)
, and therefore from this expression it is possible to deduce

CIs similar to those given in Section 3 and can also be applied to the same procedure as in
Section 5 to determine the sample size necessary to compare the odds ratios of two BDTs
through a CI.

In this manuscript we studied the comparison of the LRs of two binary diagnostic tests.
When the diagnostic test is quantitative, its accuracy is measured by the area under the ROC
curve. The LRs are related to the equation of the ROC curve. Thus, for a single quantitative
diagnostic test, for each one of the cut off points c of the estimated ROC curve a value for Ŝe
and a value 1− Ŝp are obtained, and therefore a value for L̂R

+
(and another one for L̂R

−
).

For L̂R
+
, its numerator Ŝe is the “y” coordinate of the estimated ROC curve, and the denom-

inator 1− Ŝp is the “x” coordinate of the estimated ROC curve. The estimator of LR for an
interval (c1, c2) of test values corresponds to the slope of the line segment between c1 and c2

on the estimated ROC curve. In the case of two quantitative diagnostic test, for each cut off
point of each estimated ROC curve, we obtain a value for ω̂+ and another one for ω̂−, and
therefore it is possible to calculate the CIs studied in Section 3.
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A. APPENDIX

The asymptotic variances-covariances of all of the parameters were obtained applying
the delta method. Let θ = (Se1,Sp1,Se2,Sp2)

> be a vector whose components are the sensi-
tivities and the specificities, let LR =

(
LR+

1 ,LR+
2 ,LR−1 ,LR−2

)> be a vector whose components
are the positive LRs and the negative LRs, and ω = (ω+, ω−)>. The matrix of asymptotic
variances-covariances of θ̂ is

Σ
bθ

=
(

∂ψ

∂θ

)
Σ
bψ

(
∂ψ

∂θ

)>
.

Regarding the LRs, the matrix of asymptotic variances-covariances of L̂R is

Σ
dLR

=
(

∂LR

∂θ

)
Σ
bθ

(
∂LR

∂θ

)>
.

Finally, the matrix of asymptotic variances-covariances of ω̂ is

Σ
bω =

(
∂ω

∂θ

)
Σ
bθ

(
∂ω

∂θ

)>
.

The matrix of asymptotic variances-covariances of ln (ω̂) is calculate in a similar way, i.e.

Σln(bω) =
(

∂ ln(ω)
∂θ

)
Σ
bθ

(
∂ ln(ω)

∂θ

)>
.

Performing the algebraic operations in each one of the previous expressions and substituting
each parameter with its estimator, we obtain the asymptotic variances-covariances given in
the equations (3.3), (3.4), (3.5) and (3.8) respectively.
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B. APPENDIX

The selection of the CI with the best asymptotic behaviour was made through the
following steps:

1) Choose the CIs with the least failures (CP > 93%);

2) Choose the CIs which are the most precise (lowest AL) and among those which
have a CP closest to 95%.

The first step in this method establishes that the CI does not fail when CP > 93%. The
confidence level was set at 95%, i.e. γ = 1−α = 0.95 was set as the nominal confidence and,
therefore, a nominal error α = 5%. Let γ∗ be the calculated CP, then ∆α = γ∗− γ = α−α∗,
where α∗ is the type I error. Furthermore, the hypothesis test to check the equality of the
two LRs is H0 : LR1 =LR2 vs H1 : LR1 6=LR2, which is equivalent to checking H0: ω =1 vs
H0: ω 6=1. In Step 1, a CI fails if CP ≤ 93%, i.e. if ∆α ≤ −2. In this situation, the type I error
of the hypothesis test is ≥ 7%, and therefore it is a very liberal hypothesis test and can give
false significances. If ∆α > 2%, i.e. CP > 97%, then the hypothesis test is very conservative
(its type I error is very small, < 3%), but does not give false significances. Therefore, the
choice of the CI is linked to the decisions of the hypothesis test, and it is preferable to choose
a conservative test rather than a very liberal one (as there will be no false significances due
to the fact that its type I error is lower than the nominal one).
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