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Editorial
In memoriam - Julio Singer [1950-2022]

We regretfully announce the passing of Julio da Motta Singer, 71, of São Paulo - Brazil,

on May 25th 2022. He was full professor of the Department of Statistics in the Institute of

Mathematics and Statistics (IME) at the University of Sâo Paulo (USP) and our colleague

at REVSTAT as Associate Editor since 2014. He holds a degree in Production Mechanical

Engineering from the University of São Paulo (1973), a MSc in Statistics from the University of

São Paulo (1977) and a PhD in Biostatistics from the University of North Carolina (1983).

His scientific works focus on Statistics, especially on research topics involving categorized data,

longitudinal data, linear models, large sample theory and mixed models. Julio Singer con-

tributed to both the training of several undergraduate and graduate students and the develop-

ment of Statistics in Brazil, and beyond.

One of Julio Singer’s passions was to develop statistical methodology to deal with applied

studies involving real data. Hence, he contributed decisively to the consolidation of the Center

for Applied Statistics at IME-USP. On his website, he has always made some of these

datasets available to motivate the statistical community to produce and improve their

methods with motivations of general interest, as well as their corresponding computational

codes/routines.

In addition to his involvement in the teaching of Statistics at USP, Julio Singer left several

theoretical and applied statistics books and articles published in international journals, namely

with our collaboration, and several statistical advisory works carried out for researchers and

companies from different scientific areas. He usually liked to spread his findings at scientific

meetings, including those promoted by Statistical Brazilian Association, from which he received

the Career Award in 2018, and Statistical Portuguese Society.

Finally, here is our thanks for Julio Singer’s legacy left to Statistics and particularly his work

with REVSTAT, always done in a serious and robust way but with his perceptive humour!

May 25, 2022

Carlos Daniel Paulino (Associate Editor)

Giovani L. Silva (Co-Editor)

REVSTAT-Statistical Journal 
Volume 20, number 4 (July 2022)

https://www.ime.usp.br/~jmsinger/
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1. INTRODUCTION

Longitudinal surveys are designed to measure a sample of respondents repeatedly over
time, and have been extensively applied in various fields such as clinical studies, biological
research and social sciences. Longitudinal surveys are prevalence in studying human’s be-
haviors, health, and mortality because they provide efficient means to estimate the change
in the population, evaluate interventions, test causal hypotheses, and reduce the cost of data
collection [35]. Since longitudinal surveys are conducted at different points of time, the serial
observations obtained from a given unit usually show time dependence. Therefore, a time
series model can be employed to analyze longitudinal survey data [12].

Informative sampling, which refers to sampling design in which the sampling probabili-
ties are correlated with the response variable (conditional on covariates), is often encountered
in longitudinal surveys, see, e.g., Fuller [15]. However, studies ignoring informative sampling
can lead to seriously biased results (Pfeffermann [27], [26]; Eideh and Nathan [12]; Eideh [9];
Sverchkov and Pfeffermann [33]). To handle informative sampling, Pfeffermann et al. [25]
derived the sample distribution from the population distribution and the sampling probabil-
ities under informative sampling, which can permit the use of classical inference methods.
Chambers and Skinner [7], and Pfeffermann and Sverchkov [24] discussed the sample likeli-
hood approach, the pseudo-likelihood approach and the estimating equations approach for
fitting generalized linear models under informative sampling, based on the sample distribu-
tion of Pfeffermann et al. [25]. In fact, the sample likelihood approach has been explored in
many different directions including small area estimation (Pfeffermann and Sverchkov [22];
Eideh and Nathan [11]; Verret et al. [37]), general linear modelling (Chambers and Skinner
[7]; Pfeffermann and Sverchkov [22]; Eideh [9]), and multi-level model analysis (Pfeffermann
et al. [23]; Cai [6]). Recently, Bonnery et al. [4] established the asymptotic properties of the
sample likelihood approach under informative sampling. Other proposed methods include
the inverse probability weighting method (Boudreau and Lawless [5]; Kim and Skinner [17])
and calibration adjustments (Moser et al. [20]). However, most of the above studies explored
the informative sampling problem in the non-longitudinal survey context. Informative sam-
pling in longitudinal surveys was considered in Eideh and Nathan [12], [13], and Eideh [9].
Eideh and Nathan [12], [13] discussed the sample likelihood and pseudo-likelihood methods
in fitting time series models for longitudinal survey data under informative sampling. Eideh
[9] explored further the sample likelihood, pseudo-likelihood likelihood and estimating equa-
tions methods in fitting general linear model for longitudinal survey data under informative
sampling.

In addition to informative sampling, another major issue in longitudinal surveys is the
missing data problem. Following Little and Rubin [18], the mechanisms of missing data can
be classified into three types: missing completely at random (MCAR), missing at random
(MAR), and not missing at random (NMAR). In particular, missing completely at random
and missing at random are called ignorable missingness, whereas not missing at random is
called nonignorable missingness. Under nonignorable missingness, the missing probability
depends on the response variable, and thus will lead to unreliable estimation results (Eideh
[9]; Schlomer et al. [30]; Taisir and Islam [34]). A solution to this problem is the modeling
of nonignorable missing data, which has been applied to general linear models (Bahari et

al. [2]), generalized linear mixed models (Stubbendick and Ibrahim [32]; Sabry et al. [29];
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Almohisen et al. [1]), quantile regression models (Yuan and Yin [38]), latent random effects
models (Tseng et al. [36]; Bhuyan [3]), and Markov chain models (Cole et al. [8]; Taisir and
Islam [34]).

When informative sampling and nonignorable missingness occur in longitudinal surveys
simultaneously, the joint treatment of the two problems becomes a key issue. Pfeffermann
[21] proposed a unified approach to handle the two problems by combining the observed data
model with the missing data model and the target population model based on the Bayes the-
orem. Sverchkov and Pfeffermann [33] extended the approach in Pfeffermann and Sverchkov
[22] in small area estimation under informative sampling to the case that both informative
sampling and nonignorable missingness exist. However, these approaches only considered
data measured at a certain time point and are not applicable to longitudinal data. Eideh and
Nathan [10], and Farahania et al. [14] considered methods to handle informative sampling
and nonignorable missingness simultaneously in longitudinal data analysis. However, their
discussions focus mainly on general regression models.

In this paper, we study time series modeling for longitudinal survey data under informa-
tive sampling and nonignorable missingness. Treating informative sampling and nonignorable
missingness simultaneously becomes especially challenging in time series models due to the
serial correlation of the response variable at various time points. We consider models to ex-
plore the effect of each of informative sampling and nonignorable missingness. For informative
sampling, a variety of models, including exponential, probit, and logistic models are consid-
ered to capture the dependence between the selection probability and the response variable.
For nonignorable missingness, we consider a logistic model to relate the response probability
to the response variables. Based on these models, we derive a sample likelihood for param-
eter estimation under informative sampling and nonignorable missingness. To compute the
sample likelihood function efficiently, an approximation to the integrals in the sample like-
lihood based on series expansions is proposed. Simulation studies and real data application
are provided to illustrate the effectiveness of the proposed method.

The remainder of the paper is organized as follows. Section 2 describes time series
models and parameter estimation methods for longitudinal survey data. Section 3 discusses
informative sampling and nonignorable missingness in longitudinal surveys. In Section 4, the
sample likelihood is derived for conducting time series analysis in longitudinal survey data
under informative sampling and nonignorable missingness. Simulations studies and real data
analysis are performed in Sections 5 and 6, respectively.

2. TIME SERIES MODEL FOR LONGITUDINAL SURVEY DATA

Let U = {1, ...,N} be the index set of a finite population U of size N. Let yi,t (i =1, ...,N,
t = 1, ..., T ) be the value of a response variable y of unit i at time t, and xi be the val-
ues of the covariates of unit i, which are always observed and remain constant over time.
A random sample S of size n is then selected from the finite population at time 1 (t = 1) and
measured independently from time 1 to time T . Suppose that yi,t is correlated with the past
values yi,t′ , 1 ≤ t′ < t ≤ T , for each T . A time series model can then be fitted to analyze this
longitudinal survey data. Typically, time series models with short-range dependence are often
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applied in decision-making and policymaking [12]. For simplicity, we consider the first-order
autoregressive (AR(1)) model

(2.1) yi,t − µ = φ(yi,t−1 − µ) + εi,t , i = 1, ..., N, t = 1, ..., T ,

where µ is the mean level of the data, the errors εi,t
iid∼ N(0, σ2), and |φ| < 1. The model

parameter θ = (µ, φ, σ) is of our interest. Note that unit i in the AR(1) model will fall into
the set {1, ..., n} when the sample data is used to estimate the model parameters.

Usually, the maximum likelihood estimation approach is employed to obtain the model
parameter estimators. Let yi = (yi,1, ..., yi,T )′ be the vector of T measurements on unit i

(i = 1, ..., N). Then, the density function of yi can be expressed as f(yi; θ) = f(yi,1; θ) ·
·
∏T

t=2 f(yi,t|yi,t−1; θ). For the AR(1) model, we have yi,1 ∼ N(µ, σ2/(1 − φ2)) and
f(yi,t|yi,t−1; θ) = (2πσ2)−1/2 exp{−[yi,t − φ(yi,t−1 − µ)− µ]2/(2σ2)}. Thus, the log-likelihood
function of θ can be written as

log L(θ) =
n∑

i=1

log f(yi,1; θ) +
n∑

i=1

T∑
t=2

log f(yi,t|yi,t−1; θ) .(2.2)

It follows that the maximum likelihood estimator of θ can be obtained by maximizing the
log-likelihood function in (2.2).

3. INFORMATIVE SAMPLING AND NONIGNORABLE MISSINGNESS
IN LONGITUDINAL SURVEYS

3.1. Informative sampling

Analytic inference from longitudinal survey data usually fails to account for the complex
sampling design, such as informative sampling. A sampling design is called informative
when the sample selection probabilities are related to the response variable y, even after
conditioning on the covariates. In practice, selection probabilities may be correlated with
the response variable, the covariates and possibly, design variables used for sampling. For
simplicity, we consider the case that selection probabilities depend only on the response
variable.

Let Ii be the sample indicator variable, taking values of 1 if unit i ∈ U is selected
to the sample S and 0 if otherwise. The selection probabilities can then be denoted by
πi = P (Ii = 1|yi). Let fs(yi) and fp(yi) denote the sample density and the population density
of yi, respectively. In fact, the density functions f(yi,1; θ) and f(yi,t|yi,t−1; θ) in Section 2
are the population densities, which can also be denoted by fp(yi,1; θ) and fp(yi,t|yi,t−1; θ),
respectively. Following Pfeffermann et al. [25] as well as Sikov and Stern [31], the sample
density fs(yi) is given by

fs(yi) = f(yi|Ii = 1) =
f(yi, Ii = 1)
P (Ii = 1)

(3.1)

=
P (Ii = 1|yi)fp(yi)

P (Ii = 1)
=

Ep(πi|yi)fp(yi)
Ep(πi)

,
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where πi = P (Ii = 1|yi), Ep(πi|yi) =
∫

P (Ii = 1|yi, πi)fp(πi|yi)dπi = P (Ii = 1|yi), and Ep(πi)
=

∫
P (Ii = 1|yi)fp(yi)dyi = P (Ii = 1). Under informative sampling, the selection probability

πi = P (Ii = 1|yi) depends on yi. Hence, Ep(πi|yi) 6= Ep(πi) and P (Ii = 1|yi) 6= P (Ii = 1),
yielding fs(yi) 6= fp(yi) in general. That is, the sample distribution is different from the
population distribution. However, the sample distribution is viewed as the same as the
population distribution in many analysis under informative sampling, which have resulted in
false inferences (Pfeffermann [27], [26]).

In order to access the sample density, Ep(πi|yi) = P (Ii =1|yi) can be modeled to explore
the relationship between the selection probabilities πi and the response variable values yi.
Pfeffermann et al. [25] and Eideh and Nathan [12] considered

(3.2) Exponential model : Ep(πi|yi) = exp(a0 + a1yi) ,

where a0 and a1 are unknown model parameters. Besides, the probit model and logistic
model, which are less common in longitudinal surveys under informative sampling, can also
be explored to explain the informative sampling mechanism:

(3.3) Probit model : Ep(πi|yi) = Φ(b0 + b1yi) ,

(3.4) Logistic model : Ep(πi|yi) =
exp(c0 + c1yi)

1 + exp(c0 + c1yi)
,

where b0, b1, c0, c1 are unknown model parameters.

3.2. Nonignorable missingness

Missing data is another problem which often arises in longitudinal surveys. Here, we
assume that there exists nonignorable missingness in longitudinal surveys. In particular,
the values yi,1 at time 1 are complete and some of yi,2, ..., yi,T suffer from missingness for
i = 1, ..., n. Denote the response indicator variable by

δi,t =

{
1 if yi,t is observed ,

0 otherwise .
(3.5)

The nonignorable missingness implies that missingness depends on the response variable.
In other words, the response probability is related to the response variable. Under the AR(1)
model, we model the response mechanism using a logistic model

P (δi,t = 1|xi, yi,t−1, yi,t) =: π(xi, yi,t−1, yi,t; η)(3.6)

=
exp(η1xi + η2yi,t−1 + η3yi,t)

1 + exp(η1xi + η2yi,t−1 + η3yi,t)
,

where η = (η1, η2, η3) is the unknown parameter. Equation (3.6) asserts that the response
probability P (δi,t = 1|xi, yi,t−1, yi,t) at time t depends not only on the value yi,t at time t

and the covariate xi, but also on its past value yi,t−1. Clearly, the response mechanism
is nonignorable missingness. Note that (3.6) extends the nonignorable response mechanism
in Qin et al. [28] by incorporating the effect of past observations into the response probability.
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For notational simplicity, only one covariate x is considered in the response model.
The extension to multiple covariates x1, ..., xp in the response model is straightforward.

If we ignore the informative sampling and nonignorable missingness, using the complete
case (CC) analysis (Farahania et al. [14]), the log-likelihood function of θ in the AR(1) model
based on the observed data is rewritten as

log L(θ) =
n∑

i=1

log f(yi,1; θ) +
T∑

t=2

n∑
i=1

δi,t−1δi,t log f(yi,t|yi,t−1; θ)(3.7)

=
n∑

i=1

{
−1

2
log

(
2πσ2

1− φ2

)
− (1− φ2)(yi,1 − µ)2

2σ2

}

+
T∑

t=2

n∑
i=1

δi,t−1δi,t

{
−1

2
log(2πσ2)− 1

2σ2
[yi,t − φ(yi,t−1 − µ)− µ]2

}
.

Then, we can get the maximum likelihood estimator θ̂ of θ via maximizing the log-likelihood
function in (3.7). However, the obtained estimator θ̂ is obviously biased because it ignores
the informative sampling and nonignorable missingness (Pfeffermann et al. [25]; Little and
Rubin [18]; Farahania et al. [14]). In fact, the observed sample distribution is different from
the population distribution under both informative sampling and nonignorable missingness,
which cannot guarantee that the log-likelihood function in (3.7) gives the correct estimates.

4. SAMPLE LIKELIHOOD AND ESTIMATION UNDER INFORMATIVE
SAMPLING AND NONIGNORABLE MISSINGNESS

4.1. Sample likelihood under informative sampling

The sample distribution differs from the population distribution under informative sam-
pling. Therefore, the sample likelihood will be different from the general likelihood under
noninformative sampling. Because the sample is only selected from the finite population at
time 1 in longitudinal surveys, the sample distribution at time 1 can be obtained by replacing
yi in (3.1) with yi,1 in longitudinal surveys. In what follows, the sample density function
fs(yi) of yi in longitudinal surveys under informative sampling can be expressed as

fs(yi) = fs(yi,1; θ)
T∏

t=2

fp(yi,t|yi,t−1; θ)(4.1)

=
Ep(πi|yi,1)fp(yi,1; θ)

Ep(πi)

T∏
t=2

fp(yi,t|yi,t−1; θ) .

Then, the log-likelihood function becomes

log L =
n∑

i=1

log Ep(πi|yi,1)−
n∑

i=1

log Ep(πi)(4.2)

+
n∑

i=1

log f(yi,1; θ) +
n∑

i=1

T∑
t=2

log f(yi,t|yi,t−1; θ) .
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4.2. Sample likelihood under informative sampling and nonignorable missingness

When nonignorable missingness also exists in longitudinal surveys under informative

sampling,
n∑

i=1

T∑
t=2

log f(yi,t|yi,t−1; θ) in (4.2) needs to be modified since f(yi,t|yi,t−1; θ) is not

available when yi,t or yi,t−1 is missing. Taking the response mechanism (3.6) into account,
we propose to replace f(yi,t|yi,t−1; θ) by the conditional densities based on the observed re-
sponse, namely f(yi,t|xi, δi,t−1 = 0, δi,t = 1) or f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1), depending
on whether yi,t−1 is missing or not. It follows that the log-likelihood function under informa-
tive sampling and nonignorable missingness can be rewritten as

log L =
n∑

i=1

log Ep(πi|yi,1)−
n∑

i=1

log Ep(πi) +
n∑

i=1

log f(yi,1; θ)(4.3)

+
n∑

i=1

T∑
t=2

δi,t−1δi,t log f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1)

+
n∑

i=1

T∑
t=2

(1− δi,t−1)δi,t log f(yi,t|xi, δi,t−1 = 0, δi,t = 1) .

Next, we derive the expressions for f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1) and f(yi,t|xi,

δi,t−1 = 0, δi,t = 1) in the following lemma. The proof is given in the Appendix.

Lemma 4.1. The conditional density f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1) satisfies

f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1) =
π(xi, yi,t−1, yi,t)f(yi,t|yi,t−1)∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt

,(4.4)

and f(yi,t|xi, δi,t−1 = 0, δi,t = 1) satisfies

f(yi,t|xi, δi,t−1 = 0, δi,t = 1)(4.5)

=
∫∫

f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)[1− π(xi, yt−2, yt−1)]dyt−2dyt−1

f(xi, δi,t−1 = 0, δi,t = 1)
.

Substituting (4.4) and (4.5) into (4.3) yields the following log-likelihood function under
informative sampling and nonignorable missingness

log L =
n∑

i=1

log Ep(πi|yi,1)−
n∑

i=1

log Ep(πi) +
n∑

i=1

log f(yi,1; θ)(4.6)

+
T∑

t=2

n∑
i=1

δi,t−1δi,t

{
log f(yi,t|yi,t−1; θ) + log π(xi, yi,t−1, yi,t; η)

− log
∫

π(xi, yi,t−1, yt; η)f(yt|yi,t−1; θ)dyt

}
+

T∑
t=2

n∑
i=1

(1− δi,t−1)δi,t

{
log

∫∫
f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)

· [1− π(xi, yt−2, yt−1)]dyt−2dyt−1 − log f(xi, δi,t−1 = 0, δi,t = 1)
}

.
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Using (3.2), (3.3) and (3.4), the log-likelihood functions under nonignorabe missingness and
the three informative sampling models can be expressed as

Exponential model:

log L(θ, η, a1)(4.7)

= a1

n∑
i=1

yi,1 − n[a1µ + σ2a2
1/(2(1− φ2))] +

n∑
i=1

log f(yi,1; θ)

+
T∑

t=2

n∑
i=1

δi,t−1δi,t

{
log f(yi,t|yi,t−1; θ) + log π(xi, yi,t−1, yi,t; η)

− log
∫

π(xi, yi,t−1, yt; η)f(yt|yi,t−1; θ)dyt

}
+

T∑
t=2

n∑
i=1

(1− δi,t−1)δi,t

{
log

∫∫
f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)

· [1− π(xi, yt−2, yt−1)]dyt−2dyt−1 − log f(xi, δi,t−1 = 0, δi,t = 1)
}

,

Probit model:

log L(θ, η, b0, b1)(4.8)

=
n∑

i=1

log Φ(b0 + b1yi,1)−
n∑

i=1

log
∫

Φ(b0 + b1yi,1)f(yi,1)dyi,1 +
n∑

i=1

log f(yi,1; θ)

+
T∑

t=2

n∑
i=1

δi,t−1δi,t

{
log f(yi,t|yi,t−1; θ) + log π(xi, yi,t−1, yi,t; η)

− log
∫

π(xi, yi,t−1, yt; η)f(yt|yi,t−1; θ)dyt

}
+

T∑
t=2

n∑
i=1

(1− δi,t−1)δi,t

{
log

∫∫
f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)

· [1− π(xi, yt−2, yt−1)]dyt−2dyt−1 − log f(xi, δi,t−1 = 0, δi,t = 1)
}

,

Logistic model:

log L(θ, η, c0, c1)(4.9)

= −
n∑

i=1

log[1 + exp(−c0 − c1yi,1)]−
n∑

i=1

log
∫

[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1

+
n∑

i=1

log f(yi,1; θ) +
T∑

t=2

n∑
i=1

δi,t−1δi,t

{
log f(yi,t|yi,t−1; θ)

+ log π(xi, yi,t−1, yi,t; η)− log
∫

π(xi, yi,t−1, yt; η)f(yt|yi,t−1; θ)dyt

}
+

T∑
t=2

n∑
i=1

(1− δi,t−1)δi,t

{
log

∫∫
f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)

· [1− π(xi, yt−2, yt−1)]dyt−2dyt−1 − log f(xi, δi,t−1 = 0, δi,t = 1)
}

.

Therefore, the maximum likelihood estimators of θ, η, a1, b0, b1, c0, and c1 can be
obtained by maximizing the log-likelihood functions in (4.7), (4.8) or (4.9).
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4.3. Computations of the likelihood function

Note that computing the log-likelihood functions in (4.7), (4.8) and (4.9) involves the
density f(xi, δi,t−1 = 0, δi,t = 1), as well as the integrals

∫
π(xi, yi,t−1, yt; η)f(yt|yi,t−1; θ)dyt,∫

[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1,
∫∫

f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t) ·
· [1− π(xi, yt−2, yt−1)]dyt−2dyt−1 and

∫
Φ(b0 + b1yi,1)f(yi,1)dyi,1. In this section we discuss

effective computations for these quantities.

First, f(xi, δi,t−1 = 0, δi,t = 1) can be approximated by the empirical distribution

f(xi, δi,t−1 = 0, δi,t = 1) ≈
∑

i,δi,t=1;
δi,t−1=0

(1− δi,t−1)δi,t

/
n .

Next, the following lemma provides a series expansion for the integral
∫

π(xi, yi,t−1, yt; η) ·
· f(yt|yi,t−1; θ)dyt. The proof is provided in the Appendix.

Lemma 4.2. The integral
∫

π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt satisfies

∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt

=



∞∑
k=0

(−c)k exp(β2k2/2)Φ(γ − βk)

+
1
c

∞∑
k=0

(
−1

c

)k

exp(β2(k + 1)2/2)[1− Φ(γ + βk + β)] , β > 0 ,

∞∑
k=0

(−c)k exp(β2k2/2)[1− Φ(γ − βk)]

+
1
c

∞∑
k=0

(
−1

c

)k

exp(β2(k + 1)2/2)Φ(γ + βk + β) , β < 0 ,

1
1 + c

, β = 0 ,

(4.10)

where c = exp[−(η1xi + η2yi,t−1 + η3µ̃)], µ̃ = µ + φ(yi,t−1 − µ), β = −η3σ, γ = − log c/β

and Φ is the distribution function of standard normal distribution.

In practice, the infinite series in (4.10) has to be approximated by a finite truncated
sum. Simulation studies show that the truncation of summing up to k = 10 gives a good
approximation to the infinite series in most cases.

Based on Lemma 4.2, the following corollary gives a similar series expansion for the
integral

∫
[1+exp(−c0−c1yi,1)]−1f(yi,1)dyi,1 in (4.9). The proof is presented in the Appendix.
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Corollary 4.1. The integral
∫

[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1 satisfies∫
[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1

=



∞∑
k=0

(−c)k exp(β2k2/2)Φ(γ − βk)

+
1
c

∞∑
k=0

(
−1

c

)k

exp(β2(k + 1)2/2)[1− Φ(γ + βk + β)] , β > 0 ,

∞∑
k=0

(−c)k exp(β2k2/2)[1− Φ(γ − βk)]

+
1
c

∞∑
k=0

(
−1

c

)k

exp(β2(k + 1)2/2)Φ(γ + βk + β) , β < 0 ,

1
1 + c

, β = 0 ,

(4.11)

where c = exp(−c0 − c1µ), β = −c1σ/
√

1− φ2, γ = − log c/β and Φ is the distribution func-

tion of standard normal distribution.

Lastly, for the double integral
∫∫

f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t) ·
· [1− π(xi, yt−2, yt−1)]dyt−2dyt−1, the series expansion approach is not applicable. Thus,
it is necessary to consider other numerical methods for computing the double integral. Here,
we adopt the Gauss-Hermite quadrature (Liu and Pierce [19]) to approximate it. Sim-
ilarly, the Gauss-Hermite quadrature can also be employed to approximate the integral∫

Φ(b0 + b1yi,1)f(yi,1)dyi,1 in (4.8). In R, the function gauss.quad under the package statmod
can be employed. Simulations show that the choice of 9 nodes gives satisfactory performance.
In summary, the computation of maximum likelihood function based on Lemma 4.2, Corol-
lary 4.1 and the Gauss-Hermite quadrature has higher efficiency than that based on direct
integration.

5. SIMULATION STUDIES

To evaluate the performance of the estimators obtained by dealing with informative
sampling and nonignorable missingness in longitudinal surveys, we conduct a simulation study
to compare the estimators under informative sampling and/or nonignorable missingness. In
the simulation, N = 1000 univariate normal values of yi,1 are independently generated from
y1 ∼ N(µ, σ2/(1− φ2)) for the first time period (t = 1), where µ = 0.8, φ = 0.3 and σ = 0.5.
Then, we generate N = 1000 population values of yi,t (i = 1, ..., N) at time t = 2, ..., T with
T = 10, 20 and 40 from the AR(1) model, yi,t − µ = φ(yi,t−1 − µ) + εi,t, where εi,t ∼ N(0, 1)
is independent error term. The AR(1) model parameters µ, φ and σ are of our interest.

For the sample selection, samples of size n = 10, 20 and 40 are selected from the pop-
ulation via probability proportional to size (PPS) systematic sampling with size variable z.
The size variable z values are generated in the following ways, which produce various sampling
methods:
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(1) Exponential sampling: zi = exp(0.9 + 0.3yi,1 + µi), µi ∼ U(0, 1).

(2) Probit sampling: zi = Φ(0.72 + 0.09yi,1 + µi), µi ∼ U(0, 2).

(3) Logistic sampling: zi = [1 + exp(0.6− 0.5yi,1 − µi)]−1, µi ∼ U(0, 5).

(4) Noninformative sampling: zi = exp(1.5µi), µi ∼ U(0, 4).

Note that exponential sampling, probit sampling and logistic sampling are informative.

Under the above sampling approaches, selection probabilities are defined as πi = nzi

/ N∑
i=0

zi.

For the missingness mechanism, the population value of the covariate is generated from
xi ∼ N(0, 1), i = 1, ..., N . We assume that the covariate xi and the response variable yi,1

at time t = 1 are always observed, but yi,t at time t = 2, ..., T may subject to missingness.
The response or missing indicator δi,t of yi,t are independently generated from a Bernoulli
distribution with the response probabilities πit(η) = P (δi,t = 1|xi, yi,t−1, yi,t; η) specified by
πit(η) = [1 + exp(−η1xi − η2yi,t−1 − η3yi,t)]−1, where η1 = 0.2, η2 = 0.4, η3 = −0.5. The aver-
age response rates under exponential sampling, probit sampling, logistic sampling and non-
informative sampling are about 50% for the above nonignorable missing mechanism.

For samples under exponential sampling, probit sampling and logistic sampling, we
compute the model parameter estimates by maximizing the sample likelihood under informa-
tive sampling and nonignorable missingness. For the sample under noninformative sampling,
the model parameter estimators is obtained by maximizing the following log-likelihood func-
tion.

log L =
n∑

i=1

log f(yi,1; θ)(5.1)

+
T∑

t=2

n∑
i=1

δi,t−1δi,t

{
log π(xi, yi,t−1, yi,t; η) + log f(yi,t|yi,t−1; θ)

− log
∫

π(xi, yi,t−1, yt; η)f(yt|yi,t−1; θ)dyt

}
+

T∑
t=2

n∑
i=1

(1− δi,t−1)δi,t

·
{

log
∫∫

f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)

· [1− π(xi, yt−2, yt−1)]dyt−2dyt−1 − log f(xi, δi,t−1 = 0, δi,t = 1)
}

.

For comparison, we also compute the naive estimators, which ignore informative sampling
and nonignorable missingness, and are obtained by maximizing the log-likelihood function
(3.7). Moreover, the estimators obtained by ignoring informative sampling or nonignorable
missingness under exponential sampling, probit sampling and logistic sampling are computed.
The estimation procedure is repeated B = 500 times. For each estimator, the Monte Carlo
biases (Bias), standard deviations (SD) under various n and T are presented. Besides, we
also compute the estimation error ‖θ̂ − θ‖2 of the parameter θ = (µ, φ, σ), denoted by ER,
and the standard deviation of ER to further measure the performance of θ. The results are
provided in Tables 1, 2 and 3.
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Table 1: Monte Carlo biases, standard deviations and estimation errors
of the point estimators under n = 10 and T = 10.

Sampling Estimate
Naive Proposed

Ignore
Sampling

Ignore
Missingness

Bias SD Bias SD Bias SD Bias SD

bµ −0.0103 0.1129 −0.0001 0.0735 0.0186 0.0732 −0.0947 0.1712
bφ −0.0241 0.2032 −0.0093 0.1196 −0.0096 0.1139 −0.0256 0.2003

Exponential bσ −0.0232 0.0648 −0.0032 0.0507 −0.0003 0.0521 −0.0355 0.0638
bη1 −0.0135 0.0592 −0.0103 0.0636

Missing bη2 0.0425 0.0548 0.0461 0.0527
46.28% bη3 0.0206 0.0526 0.0131 0.0559

ba1 0.0203 0.0657 0.4578 1.0580

ER (SD) 0.2134 (0.1176) 0.1147 (0.0958) 0.1147 (0.0912) 0.2529 (0.1425)

bµ −0.7105 14.8879 0.0011 0.0743 0.0035 0.0777 −0.0919 0.2255
bφ −0.0420 0.4807 −0.0163 0.1061 −0.0170 0.1226 −0.0029 0.2371

Probit bσ −0.0184 0.1993 −0.0043 0.0500 −0.0051 0.0505 −0.0190 0.0725
bη1 −0.0092 0.0504 −0.0061 0.0616

Missing bη2 0.0337 0.0462 0.0475 0.0645
46.76% bη3 0.0179 0.0452 0.0260 0.0509

bb0 0.0210 0.0517 8.3838 135.7257
bb1 0.0176 0.0485 5.4545 114.8679

ER (SD) 0.9055 (14.8865) 0.1061 (0.0910) 0.1175 (0.1007) 0.2855 (0.1988)

bµ −0.0412 0.1105 −0.0021 0.0492 0.0032 0.0764 −0.0625 0.1091
bφ −0.0361 0.2065 0.0113 0.0460 −0.0150 0.1152 0.0188 0.0801

Logistic bσ −0.0300 0.0612 0.0015 0.0425 −0.0033 0.0510 −0.0118 0.0555
bη1 −0.0055 0.0323 −0.0048 0.0600

Missing bη2 0.0134 0.0252 0.0454 0.0536
46.55% bη3 0.0061 0.0217 0.0228 0.0561

bc0 0.0190 0.0241 0.0478 0.0497
bc1 0.0289 0.0223 0.0656 0.0569

ER (SD) 0.2183 (0.1213) 0.0631 (0.0499) 0.1145 (0.0938) 0.1335 (0.0892)

bµ −0.0404 0.1103 0.0032 0.0779

Noninform bφ −0.0411 0.2348 −0.0230 0.1312
bσ −0.0258 0.0660 −0.0029 0.0516

Missing bη1 −0.0052 0.0645
46.29% bη2 0.0516 0.0721

bη3 0.0213 0.0680

ER (SD) 0.2327 (0.1463) 0.1249 (0.1042)

From Table 1, it can be seen that the proposed method that deals with informative sam-
pling and nonignorable missingness simultaneously generally has smaller biases in comparison
with the others under the four sampling mechanisms. As expected, the parameter estima-
tion error of the proposed method is the smallest among all methods under various sampling
schemes, followed by the estimators handling nonignorable missingness but ignoring infor-
mative sampling, whereas the estimation errors of the naive estimators and the estimators
dealing with informative sampling but ignoring nonignorable missingness are relatively large
among the four methods under exponential sampling, probit sampling and logistic sampling.
Moreover, it is obvious that the proposed estimators of the parameters µ, φ, σ in AR(1) model
have smaller biases than the naive estimators when the sampling design is noninformative.
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All of these indicate that the proposed method has a good performance in handling nonig-
norable missingness. Besides, the proposed method generally yields the smallest standard
deviations of the four methods for the estimation of the parameters µ, φ, σ under different
sampling approaches. Similar results can be found in Table 2 and 3 which focus on different
sample sizes. From Tables 1, 2 and 3, it can be seen as well that the estimation error of
the proposed method decreases with the increase in the sample size n and the time period T

for the four sampling schemes. It is noteworthy that the differences between the estima-
tion errors of the proposed estimators and the estimators ignoring informative sampling
but handling nonignorable missingness become smaller under various sampling schemes as
n and T increase. This is reasonable because the sampling at time 1 may have a smaller
effect on the estimation of the AR(1) model parameters as the time period T becomes larger.
In conclusion, the proposed method performs best in the estimation of parameters.

Table 2: Monte Carlo biases, standard deviations and estimation errors
of the point estimators under n = 20 and T = 20.

Sampling Estimate
Naive Proposed

Ignore
Sampling

Ignore
Missingness

Bias SD Bias SD Bias SD Bias SD

bµ −0.0374 0.0625 0.0043 0.0439 0.0140 0.0395 −0.0904 0.0735
bφ −0.0069 0.0976 −0.0139 0.0710 −0.0115 0.0671 −0.0077 0.0963

Exponential bσ −0.0053 0.0332 0.0039 0.0269 0.0048 0.0261 −0.0113 0.0331
bη1 −0.0322 0.0507 −0.0319 0.0507

Missing bη2 0.0533 0.1096 0.0541 0.0399
49.36% bη3 0.0117 0.1068 0.0162 0.0381

ba1 0.0263 0.0452 0.3980 0.5521

ER (SD) 0.1148 (0.0529) 0.0669 (0.0585) 0.0701 (0.0467) 0.1419 (0.0629)

bµ −0.0612 0.0629 0.0008 0.0381 0.0004 0.0400 −0.0880 0.0806
bφ −0.0020 0.0977 −0.0116 0.0621 −0.0063 0.0658 0.0061 0.1022

Probit bσ −0.0082 0.0341 0.0037 0.0262 0.0035 0.0273 −0.0052 0.0365
bη1 −0.0337 0.0508 −0.0308 0.0543

Missing bη2 0.0422 0.0319 0.0553 0.0406
49.40% bη3 0.0157 0.0335 0.0232 0.0386

bb0 0.0218 0.0311 −1.4934 14.4169
bb1 0.0197 0.0358 10.9502 95.3024

ER (SD) 0.1233 (0.0571) 0.0636 (0.0457) 0.0675 (0.0465) 0.1472 (0.0662)

bµ −0.0570 0.0617 −0.0010 0.0288 0.0036 0.0395 −0.0661 0.0638
bφ −0.0035 0.1012 0.0095 0.0331 −0.0083 0.0688 0.0170 0.0585

Logistic bσ −0.0074 0.0329 0.0056 0.0209 0.0031 0.0251 0.0001 0.0301
bη1 −0.0190 0.0322 −0.0285 0.0489

Missing bη2 0.0178 0.0198 0.0555 0.0426
49.27% bη3 0.0095 0.0215 0.0199 0.0366

bc0 0.0193 0.0191 0.0438 0.0394
bc1 0.0308 0.0191 0.0601 0.0382

ER (SD) 0.1222 (0.0592) 0.0433 (0.0246) 0.0677 (0.0491) 0.0984 (0.0579)

bµ −0.0699 0.0622 0.0014 0.0423

Noninform bφ 0.0012 0.0985 0.0002 0.0641
bσ −0.0093 0.0331 0.0020 0.0258

Missing bη1 −0.0391 0.0540
49.39% bη2 0.0575 0.0398

bη3 0.0216 0.0393

ER (SD) 0.1253 (0.0625) 0.0681 (0.0438)
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Table 3: Monte Carlo biases, standard deviations and estimation errors
of the point estimators under n = 40 and T = 40.

Sampling Estimate
Naive Proposed

Ignore
Sampling

Ignore
Missingness

Bias SD Bias SD Bias SD Bias SD

bµ −0.0614 0.0342 0.0014 0.0297 0.0078 0.0282 −0.0890 0.0377
bφ 0.0012 0.0504 −0.0097 0.0677 −0.0090 0.0613 0.0023 0.0504

Exponential bσ −0.0040 0.0194 0.0039 0.0160 0.0051 0.0175 −0.0066 0.0190
bη1 −0.0746 0.0666 −0.0745 0.0660

Missing bη2 0.0891 0.1987 0.1009 0.1384
50.69% bη3 −0.0025 0.1928 −0.0081 0.1423

ba1 0.0344 0.0425 0.3001 0.3354

ER (SD) 0.0828 (0.0318) 0.0462 (0.0608) 0.0485 (0.0517) 0.1048 (0.0360)

bµ −0.0742 0.0316 0.00081 0.0224 0.0027 0.0346 −0.0904 0.0390
bφ 0.0002 0.0474 −0.0085 0.0373 −0.0107 0.0813 0.0045 0.0503

Probit bσ −0.0051 0.0180 0.0043 0.0151 0.0052 0.0206 −0.0038 0.0189
bη1 −0.0788 0.0548 −0.0769 0.0784

Missing bη2 0.0663 0.0372 0.1129 0.2268
50.67% bη3 0.0098 0.0325 −0.0103 0.2049

bb0 0.0301 0.0282 −0.7884 7.4087
bb1 0.0261 0.0303 5.5026 38.9418

ER (SD) 0.0905 (0.0302) 0.0394 (0.0256) 0.0501 (0.0765) 0.1059 (0.0372)

bµ −0.0716 0.0344 −0.0029 0.0190 0.0029 0.0332 −0.0693 0.0358
bφ 0.0061 0.0496 0.0094 0.0298 −0.0073 0.0741 0.0191 0.0392

Logistic bσ −0.0040 0.0166 0.0070 0.0112 0.0062 0.0173 −0.0004 0.0160
bη1 −0.0389 0.0391 −0.0704 0.0632

Missing bη2 0.0278 0.0179 0.1123 0.2690
50.58% bη3 0.0080 0.0243 −0.0142 0.2514

bc0 0.0245 0.0175 0.0494 0.0320
bc1 0.0357 0.0170 0.0524 0.0323

ER (SD) 0.0892 (0.0337) 0.0340 (0.0190) 0.0481 (0.0684) 0.0830 (0.0368)

bµ −0.0754 0.0347 0.0013 0.0256

Noninform bφ 0.0004 0.0477 −0.0079 0.0465
bσ −0.0043 0.0169 0.0049 0.0160

Missing bη1 −0.0725 0.0551
50.56% bη2 0.0939 0.0724

bη3 0.0049 0.0746

ER (SD) 0.0915 (0.0331) 0.0451 (0.0335)

6. REAL DATA ANALYSIS

The longitudinal data examined in this section comes from AIDS Clinical Trial Group
193A Study (Henry et al. [16]). It concerns AIDS patients with advanced immune suppression
which is measured with CD4 counts. A total of 1309 patients were randomized to one of
the four treatment groups including (1) 600mg zidovudine alternating monthly with 400mg
didanosine, (2) 600mg zidovudine plus 2.25mg of zalcitabine, (3) 600mg zidovudine plus
400mg of didanosine, and (4) 600mg zidovudine plus 400mg of didanosine plus 400mg of
nevirapine. The numbers of patients in the four treatment groups are n = 325, 324, 330 and
330, respectively. Treatments started at the time of week 0 (baseline), and were measured
before the treatments and every 8 weeks. That is, data is collected on the 0, 8, 16, 24,
32, 40th weeks. Here, we denote the six follow-up time points by t = 1, 2, 3, 4, 5, 6. The
measured outcome variable log(CD4 count + 1) is of our interest, whose values in six time
intervals (0, 4], (4, 12], (12, 20], (20, 28], (28, 36], (36, 40] are viewed as yt for t = 1, 2, 3, 4, 5, 6.
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Note that the last record of the variable log(CD4 count + 1) in the interval is adopted as yt

if there are more than one values of log(CD4 count + 1) in a time interval. The covariates
related to the response variable include Age (years) and Gender (Male=1, Female=0). Details
on the data set can be found at https://content.sph.harvard.edu/fitzmaur/ala/cd4.txt .

In the longitudinal survey, the covariates are completely observed, whereas the response
variable yt (CD4 counts) is subject to missingness due to skipping visits or dropouts. In fact,
a low CD4 count implies that HIV has damaged a patient’s immune system to an extent that
they are at risk of serious illnesses or even deaths. Thus, a lower CD4 count increases the
chance of dropouts due to serious illnesses or deaths. As the patients’ dropouts are related to
the CD4 count, the missing process is potentially nonignorable. The missing rates under the
four treatments are approximately 37.79%, 37.19%, 37.93% and 35.86%, respectively. Let δi,t

be the indicator variable for yi,t. Define

δi,t =

{
1 if yi,t is observed ,

0 otherwise ,
(6.1)

for i = 1, 2, ..., n and t = 1, 2, 3, 4, 5, 6. We are interested in estimating the response probability
P (δi,t = 1|xi, yi,t−1, yi,t). We fit the response model using the age variable x1 and the gender
variable x2 in the following logistic model:

(6.2) P (δi,t = 1|xi1, xi2, yi,t−1, yi,t) =
exp(η1xi1 + η2xi2 + η3yi,t−1 + η4yi,t)

1 + exp(η1xi1 + η2xi2 + η3yi,t−1 + η4yi,t)
,

where η1, η2, η3, η4 are the unknown parameters. This missing mechanism is obviously non-
ignorable. For comparison, we also consider the following working model for the response
probability under ignorable missing mechanism:

(6.3) P (δi,t = 1|xi1, xi2) =
exp(η′1xi1 + η′2xi2)

1 + exp(η′1xi1 + η′2xi2)
,

where η′1 and η′2 are the unknown parameters. The response probability in equation (6.3)
only depends on the covariates x1 and x2, implying that the missing mechanism is ignorable.

Assume that the sampling design is exponential sampling, probit sampling and logistic
sampling, respectively. For comparison, we consider two models, the AR(1) model (2.1) and
the following mean model.

(6.4) yi,t = µ + εi,t , i = 1, ..., n, t = 1, ..., 6 ,

where εi,t ∼ N(0, σ2). In fact, the mean model has no time dependence and been considered
by Zhao et al. [39]. The estimates of model parameters µ, φ, σ under different missing models,
sampling schemes and treatments, together with the mean squares of the model residuals
(MSE), are presented in Tables 4 and 5.

As shown in Tables 4 and 5, Treatment 4 presents greater estimated values of µ than
other Treatments regardless of models, missing mechanisms or sampling approaches. Also,
the estimates of µ under Treatment 1 are the lowest among all treatments for all sampling
methods and two missing models. That is, patients under Treatment 4 are superior to those
under other Treatments in terms of the average number of CD4 counts, and the average
number of patients’ CD4 counts under Treatment 1 is relatively low. In fact, a high CD4
counts indicates a strong immune system, which suggests that the patient lives longer. This
may reduce the possibility to drop outs for patients, which in turn reduces the differences
between the parameter estimates under nonignorable missingness and ignorable missingness.

https://content.sph.harvard.edu/fitzmaur/ala/cd4.txt
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Table 4: Estimates for the AIDS clinical trial group 193A study data
under nonignorable missingness.

Sampling Estimate

Treatment 1 Treatment 2 Treatment 3 Treatment 4

Bias SD Bias SD Bias SD Bias SD

AR(1)
Model

Mean
Model

AR(1)
Model

Mean
Model

AR(1)
Model

Mean
Model

AR(1)
Model

Mean
Model

Exponential

bµ 2.5268 2.7442 2.6766 2.7326 2.6609 2.7989 2.8167 2.8772
bφ 0.7124 0.6561 0.7228 0.7730
bσ 0.7076 0.9504 0.7618 1.0893 0.7739 1.1018 0.7203 1.1377

MSE 0.5539 0.6781 0.5848 0.8760 0.7674 1.0883 0.9008 1.3400

Probit

bµ 2.9169 2.7406 2.8934 2.8550 2.8528 2.9042 2.9490 3.1211
bφ 0.6963 0.7092 0.7470 0.7591
bσ 0.7202 0.9300 0.7641 1.0827 0.7526 1.1261 0.7392 1.1644

MSE 0.5265 0.6784 0.5761 0.8511 0.7504 1.0439 0.8805 1.2657

Logistic

bµ 2.6969 2.7452 2.9060 2.7831 2.8900 2.7952 2.9263 2.9543
bφ 0.6276 0.6951 0.7671 0.7809
bσ 0.7544 0.9577 0.7740 1.0982 0.7597 1.1136 0.7288 1.1028

MSE 0.5182 0.6780 0.5717 0.8621 0.7538 1.0903 0.8903 1.3036

Table 5: Estimates for the AIDS clinical trial group 193A study data
under ignorable missingness.

Sampling Estimate

Treatment 1 Treatment 2 Treatment 3 Treatment 4

Bias SD Bias SD Bias SD Bias SD

AR(1)
Model

Mean
Model

AR(1)
Model

Mean
Model

AR(1)
Model

Mean
Model

AR(1)
Model

Mean
Model

Exponential

bµ 2.5349 2.6818 2.6518 2.7504 2.7867 2.9202 3.1894 3.0855
bφ 0.6718 0.6961 0.7288 0.7639
bσ 0.7002 0.9481 0.7563 1.0625 0.7701 1.1311 0.7490 1.1440

MSE 0.5428 0.6880 0.5938 0.8705 0.7523 1.0391 0.8573 1.2691

Probit

bµ 2.7210 2.7339 2.7974 2.7847 2.8407 2.8982 3.2598 3.1054
bφ 0.6775 0.6994 0.7286 0.7692
bσ 0.7065 0.9519 0.7614 1.0698 0.7728 1.1334 0.7365 1.1449

MSE 0.5289 0.6792 0.5806 0.8617 0.7461 1.0458 0.8535 1.2669

Logistic

bµ 2.8759 2.7102 2.8401 2.7172 2.7586 2.9382 2.8827 2.9391
bφ 0.6661 0.7182 0.7373 0.7777
bσ 0.7525 0.9815 0.7634 1.0796 0.7772 1.0921 0.7411 1.1267

MSE 0.5184 0.6825 0.5822 0.8812 0.7579 1.0343 0.8941 1.3098

This point is in line with the fact that the estimates of the key model parameter φ under
nonignorable missingness are very close to those under ignorable missingness in the same
Treatment 4 for various sampling approaches, whereas there is a clear difference between
the parameter estimates of φ under nonignorable missingness and ignorable missingness in
Treatment 1 for different sampling schemes. Moreover, the estimator of φ in the AR(1)
model under Treatment 4 is the largest among all treatments under each informative sampling
model for each missing mechanism, suggesting that the number of CD4 counts of Treatment
4 keeps decreasing more slowly in comparison with the others. Therefore, we conclude that
Treatment 4 has better effect on the AIDS disease than other treatments. Besides, in terms
of the variance estimators σ̂2 of residuals and MSE, the AR(1) model yields lower σ̂2 and
MSE than the mean model. Thus, it seems very reasonable to use the AR(1) model over the
mean model to analyze this data set.
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A. APPENDIX

Proof of Lemma 4.1: First, the conditional density f(yi,t|xi, yi,t−1, δi,t−1=1, δi,t =1)
can be obtained, similar to Pfeffermann et al. [25], as

f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1)(A.1)

=
P (δi,t = 1|xi, yi,t−1, yi,t, δi,t−1 = 1)f(yi,t|xi, yi,t−1, δi,t−1 = 1)∫
P (δi,t = 1|xi, yi,t−1, yt, δi,t−1 = 1)f(yt|xi, yi,t−1, δi,t−1 = 1)dyt

.

The term P (δi,t = 1|xi, yi,t−1, yi,t, δi,t−1 = 1) on the right side of (A.1) can be written as

P (δi,t = 1|xi, yi,t−1, yi,t, δi,t−1 = 1)(A.2)

=
P (δi,t = 1|xi, yi,t−1, yi,t)P (δi,t−1 = 1|xi, yi,t−1, yi,t, δi,t = 1)

P (δi,t−1 = 1|xi, yi,t−1, yi,t)
= P (δi,t = 1|xi, yi,t−1, yi,t)

= π(xi, yi,t−1, yi,t) .

The term f(yi,t|xi, yi,t−1, δi,t−1 = 1) on the right side of (A.1) can be written as

f(yi,t|xi, yi,t−1, δi,t−1 = 1) =
P (δi,t−1 = 1|xi, yi,t−1, yi,t)f(yi,t|yi,t−1)

P (δi,t−1 = 1|xi, yi,t−1)
,(A.3)

where f(yi,t|yi,t−1) = exp{−[yi,t − µ− φ(yi,t−1 − µ)]2/2σ2}/
√

2πσ.

Next, the two conditional probabilities of δi,t−1 in (A.3) can be expressed as

P (δi,t−1 = 1|xi, yi,t−1, yi,t)(A.4)

=
∫

P (δi,t−1 = 1|xi, yt−2, yi,t−1)f(yt−2|yi,t−1, yi,t)dyt−2

=
∫

π(xi, yt−2, yi,t−1)f(yt−2|yi,t−1, yi,t)dyt−2 ,

and

P (δi,t−1 = 1|xi, yi,t−1)(A.5)

=
∫

P (δi,t−1 = 1|xi, yt−2, yi,t−1)f(yt−2|yi,t−1)dyt−2

=
∫

π(xi, yt−2, yi,t−1)f(yt−2|yi,t−1)dyt−2 ,

respectively, where π(xi, yt−2, yi,t−1) is defined in (3.6).

According to the AR(1) model, we can easily prove f(yt−2|yi,t−1, yi,t) = f(yt−2|yi,t−1).
Then, we have P (δi,t−1 = 1|xi, yi,t−1, yi,t) = P (δi,t−1 = 1|xi, yi,t−1). Moreover, f(yi,t|xi, yi,t−1,

δi,t−1 = 1) = f(yi,t|yi,t−1) holds. Thus, the conditional density in (A.1) can be written as

f(yi,t|xi, yi,t−1, δi,t−1 = 1, δi,t = 1) =
π(xi, yi,t−1, yi,t)f(yi,t|yi,t−1)∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt

.(A.6)

Therefore, (4.4) in Lemma 4.1 holds.
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Now we derive the results for f(yi,t|xi, δi,t−1 = 0, δi,t = 1). Based on the definition of
the conditional density, we have

f(yi,t|xi, δi,t−1 = 0, δi,t = 1) =
f(xi, yi,t, δi,t−1 = 0, δi,t = 1)

f(xi, δi,t−1 = 0, δi,t = 1)
,(A.7)

where f(xi, yi,t, δi,t−1 = 0, δi,t = 1) can be given by

f(xi, yi,t, δi,t−1 = 0, δi,t = 1)(A.8)

=
∫∫

f(xi, yt−2, yt−1, yi,t)f(δi,t−1 = 0, δi,t = 1|xi, yt−2, yt−1, yi,t)dyt−2dyt−1

=
∫∫

f(xi, yt−2)f(yt−1|xi, yt−2)f(yi,t|xi, yt−2, yt−1)P (δi,t = 1|xi, yt−2, yt−1, yi,t)

·P (δi,t−1 = 0|xi, yt−2, yt−1, yi,t, δi,t = 1)dyt−2dyt−1

=
∫∫

f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)[1− π(xi, yt−2, yt−1)]dyt−2dyt−1 .

Thus, we can obtain

f(yi,t|xi, δi,t−1 = 0, δi,t = 1)(A.9)

=
∫∫

f(yt−2)f(yt−1|yt−2)f(yi,t|yt−1)π(xi, yt−1, yi,t)[1− π(xi, yt−2, yt−1)]dyt−2dyt−1

f(xi, δi,t−1 = 0, δi,t = 1)
.

It follows that (4.5) in Lemma 4.1 holds.

Proof of Lemma 4.2: According to π(xi, yi,t−1, yi,t) = exp(η1xi + η2yi,t−1 + η3yi,t)/
[1 + exp(η1xi + η2yi,t−1 + η3yi,t)] = 1/[1 + exp(−η1xi − η2yi,t−1 − η3yi,t)] and f(yi,t|yi,t−1) =
(2πσ2)−1/2 exp{−[yi,t − φ(yi,t−1 − µ)− µ]2/(2σ2)}, we have

∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt(A.10)

=
1√
2πσ

∫
1

1 + exp[−(η1xi + η2yi,t−1 + η3yt)]
exp

{
− [yt − φ(yi,t−1 − µ)− µ]2

2σ2

}
dyt .

Let µ̃ = µ + φ(yi,t−1 − µ) and c = exp[−(η1xi + η2yi,t−1 + η3µ̃)], we can obtain

∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt(A.11)

=
1√
2πσ

∫
1

1 + exp{−[η1xi + η2yi,t−1 + η3µ̃ + η3(yt − µ̃)]}
exp

[
−(yt − µ̃)2

2σ2

]
dyt

=
1√
2πσ

∫
1

1 + c · exp(−η3x)
exp

(
− x2

2σ2

)
dx

=
1√
2π

∫
1

1 + c · exp(βy)
exp

(
−y2

2

)
dy ,

where β = −η3σ.
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When β > 0 and 0 < c · exp(βy) < 1, we have y < γ = − log c/β. Further, we can write

∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt(A.12)

=
1√
2π

[∫ γ

−∞

1
1 + c · exp(βy)

exp
(
−y2

2

)
dy +

∫ ∞

γ

1
1 + c · exp(βy)

exp
(
−y2

2

)
dy

]

=
1√
2π

[∫ γ

−∞

∞∑
k=0

[−c · exp(βy)]k exp
(
−y2

2

)
dy

+
exp(β2/2)

c

∫ ∞

γ

∞∑
k=0

[−1/(c · exp(βy))]k exp
[
−(y + β)2

2

]
dy

]

=
1√
2π

[∫ γ

−∞

∞∑
k=0

(−c)k exp
(

β2k2

2

)
exp

[
−(y − βk)2

2

]
dy

+
1
c

∫ ∞

γ

∞∑
k=0

(
−1

c

)k

exp
[
β2(k + 1)2

2

]
exp

{
− [y + β(k + 1)]2

2

}
dy

]

=
∞∑

k=0

(−c)k exp(β2k2/2)Φ(γ − βk) +
1
c

∞∑
k=0

(−1
c
)k exp[β2(k + 1)2/2][1− Φ(γ + βk + β)] .

Similarly, when β < 0 and 0 < c · exp(βy) < 1, we have y > γ = − log c/β. Then we
can obtain

∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt(A.13)

=
1√
2π

[∫ γ

−∞

1
1 + c · exp(βy)

exp
(
−y2

2

)
dy +

∫ ∞

γ

1
1 + c · exp(βy)

exp
(
−y2

2

)
dy

]

=
1√
2π

[∫ ∞

γ

∞∑
k=0

(−c)k exp
(

β2k2

2

)
exp

[
−(y − βk)2

2

]
dy

+
1
c

∫ γ

−∞

∞∑
k=0

(
−1

c

)k

exp
[
β2(k + 1)2

2

]
exp

{
− [y + β(k + 1)]2

2

}
dy

]

=
∞∑

k=0

(−c)k exp(β2k2/2)[1− Φ(γ − βk)] +
1
c

∞∑
k=0

(
−1

c

)k

exp[β2(k + 1)2/2]Φ(γ + βk + β) .

Specially, when β = 0, we get

∫
π(xi, yi,t−1, yt)f(yt|yi,t−1)dyt =

1√
2π

∫
1

1 + c
exp

(
−y2

2

)
dy =

1
1 + c

.

Thus, Lemma 4.2 holds.
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Proof of Corollary 4.1: Note that the results in Lemma 4.2 can also be used to
compute the integral

∫
[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1 in (4.9). Similar to the proof of

Lemma 4.2, the integral
∫

[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1 can be written as∫
[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1(A.14)

=

√
1− φ2

√
2πσ

∫
1

1 + exp(−c0 − c1yi,1)
exp

{
−(1− φ2)(yi,1 − µ)2

2σ2

}
dyi,1 .

Let y =
√

1− φ2(yi,1 − µ)/σ, we have∫
[1 + exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1(A.15)

=
1√
2π

∫
1

1 + exp[−c0 − c1(σy/
√

1− φ2 + µ)])
exp

(
−y2

2

)
dy

=
1√
2π

∫
1

1 + c · exp(βy)
exp

(
−y2

2

)
dy ,

where c = exp(−c0 − c1µ) and β = −c1σ/
√

1− φ2. Thus, we can compute the integral
∫

[1 +
exp(−c0 − c1yi,1)]−1f(yi,1)dyi,1 by replacing c = exp[−(η1xi + η2yi,t−1 + η3µ̃)] and β = −η3σ

in Lemma 4.2 with c = exp(−c0 − c1µ) and β = −c1σ/
√

1− φ2. It follows that Corollary 4.1
holds.

ACKNOWLEDGMENTS

The authors thank the Editor, the Associate Editor and referees for their constructive
comments. The collaborative work described in this paper was supported by HKSAR-RGC-
GRF Nos. 14305517, 14601015 and 14302719 (Yau) and National Social Science Foundation
of China, No. 18BTJ022 (Liu).

REFERENCES

[1] Almohisen, A.; Henderson, R. and Alshingiti, A.M. (2019). An alternative sensitivity
approach for longitudinal analysis with dropout, Journal of Probability and Statistics,
https://doi.org/10.1155/2019/1019303 .

[2] Bahari, F.; Parsi, S. and Ganjali, M. (2019). Empirical likelihood inference in general
linearmodel with missing values in response and covariates by MNAR mechanism, Statistical
Papers, https://doi.org/10.1007/s00362-019-01103-0 .

[3] Bhuyan, P. (2019). Estimation of random-effects model for longitudinal data with nonignor-
able missingness using Gibbs sampling, Computational Statistics,
https://doi.org/10.1007/s00180-019-00887-x .

https://doi.org/10.1155/2019/1019303
https://doi.org/10.1007/s00362-019-01103-0
https://doi.org/10.1007/s00180-019-00887-x


Time series analysis under informative sampling and nonignorable missingness 425

[4] Bonnery, D.; Breidt, F.J. and Coquet, F. (2018). Asymptotics for the maximum sample
likelihood estimator under informative selection from a finite population, Bernoulli, 24(2),
929–955.

[5] Boudreau, C. and Lawless, J.F. (2006). Survival analysis based on the proportional haz-
ards model and survey data, The Canadian Journal of Statistics, 34(2), 203–216.

[6] Cai, T. (2013). Investigation of ways to handle sampling weights for multilevel model analyses,
Sociological Methodology, 43(1), 178–219.

[7] Chambers, R.L. and Skinner, C.J. (2003). Analysis of Survey Data. John Wiley and Sons,
Ltd., New York.

[8] Cole, B.F.; Bonetti, M.; Zalavasky, A.M. and Gelber, R.D. (2005). A multistate
markov chain model for longitudinal, categorical quality-of-life data subject to non-ignorable
missingness, Statistics in Medicine, 24(15), 2317–2334.

[9] Eideh, A.A.H. (2010). Fitting general linear model for longitudinal survey data under infor-
mative sampling, Statistics in Transition-new series, 11(3), 517–538.

[10] Eideh, A.A.H. and Nathan, G. (2009a). Joint treatment of nonignorable dropout and in-
formative sampling for longitudinal survey data. In “Methodology of Longitudinal Surveys”
(P. Lynn, Ed.), pp. 251-264, John Wiley and Sons, Ltd., New York.

[11] Eideh, A.A.H. and Nathan, G. (2009b). Two-stage informative cluster sampling — esti-
mation and prediction with applications for small-area models, Journal of Statistical Planning
and Inference, 139(9), 3088–3101.

[12] Eideh, A.A.H. and Nathan, G. (2006a). Fitting time series models for longitudinal survey
data under informative sampling, Journal of Statistical Planning and Inference, 136(9), 3052–
3069.

[13] Eideh, A.A.H. and Nathan, G. (2006b). The analysis of data from sampling surveys under
informative sampling, Acta et Commentationes Universitatis Tartuensis de Mathematica, 10,
41–51.

[14] Farahania, Z.S.M.; Khorrama, E.; Ganjalib, M. and Baghfalakic, T. (2019).
Longitudinal data analysis in the presence of informative sampling: weighted distribution
or joint modelling, Journal of Applied Statistics, 46(12), 2111–2127.

[15] Fuller, W.A. (2009). Sampling Statistics, John Wiley and Sons, Inc., New Jersey.

[16] Henry, K.; Erice, A.; Tierney, C.; Balfour, J.H.; Fischl, M.A.; Kmack, A.; Liou,
S.H.; Kenton, A.; Hirsch, M.S.; Phair, J.; Martinez, A. and for the AIDS Clinical
Trial Group 193A Study Team (1998). A randomized, controlled, double-blind study
comparing the survival benefit of four different reverse transcriptase inhibitor therapies (three-
drug, two-drug, and alternating drug) for the treatment of advanced AIDS, Journal of Acquired
Immune Deficiency Syndromes and Human Retrovirology, 19(4), 339–349.

[17] Kim, J.K. and Skinner, C.J. (2013). Weighting in survey analysis under informative sam-
pling, Biometrika, 100(2), 385–398.

[18] Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis With Missing Data (Second
Edition), John Wiley and Sons, Inc., New Jersey.

[19] Liu, Q. and Pierce, D.A. (1994). A note on Gauss-Hermite quadrature, Biometrika, 81(3),
624–629.

[20] Moser, A.; Bopp, M.; Zwahlen, M. and Swiss National Cohort Study Group (2018).
Calibration adjustments to address bias in mortality analyses due to informative sampling —
a census-linked survey analysis in Switzerland, https://doi.org/10.7717/peerj.4376 .

[21] Pfeffermann, D. (2017). Bayes-based non-bayesian inference on finite populations from non-
representative samples: a unified approach, Calcutta Statistical Association Bulletin, 69(1),
35–63.

https://doi.org/10.7717/peerj.4376


426 Z. Liu and C.Y. Yau

[22] Pfeffermann, D. and Sverchkov, M. (2007). Small-area estimation under informative
probability sampling of areas and within the selected areas, Journal of the American Statistical
Association, 102(480), 1427–1439.

[23] Pfeffermann, D.; Moura, F.A.D.S. and Silva, P.L.D.N. (2006). Multi-level modelling
under informative sampling, Biometrika, 93(4), 943–959.

[24] Pfeffermann, D. and Sverchkov, M. (2003). Fitting generalized linear models under in-
formative sampling. In “Analysis of Survey Data” (Southampton, 1999), Wiley Series in Survey
Methodology, pp. 175–195, Wiley, Chichester.

[25] Pfeffermann, D.; Krieger, A.M. and Rinott, Y. (1998). Parametric distributions of
complex survey data under informative probability sampling, Statistica Sinica, 8, 1087–1114.

[26] Pfeffermann, D. (1996). The use of sampling weights for survey data analysis, Statistical
Methods in Medical Research, 5(3), 239–261.

[27] Pfeffermann, D. (1993). The role of sampling weights when modeling survey data, Inter-
national Statistical Review, 61, 317–337.

[28] Qin, J.; Leung, D. and Shao, J. (2002). Estimation with survey data under nonignorable
nonresponse or informative sampling, Journal of the American Statistical Association, 97(457),
193–200.

[29] Sabry, M.Y.; Kholy, R.B.E. and Gad, A.M. (2016). Generalized linear mixed models for
longitudinal data with missing values: a monte carlo EM approach, International Journal of
Probability and Statistics, 5(3), 82–88.

[30] Schlomer, G.L.; Bauman, S. and Card, N.A. (2010). Best practices for missing data
management in counseling psychology, Journal of Counseling Psychology, 57(1), 1–10.

[31] Sikov, A. and Stern, J.M. (2019). Application of the full Bayesian significance test to model
selection under informative sampling, Statistical Papers, 60(1), 89–104.

[32] Stubbendick, A.L. and Ibrahim, J.G. (2006). Likelihood-based inference with nonignorable
missing responses and covariates in models for discrete longitudinal data, Statistica Sinica, 16,
1143–1167.

[33] Sverchkov, M. and Pfeffermann, D. (2018). Small area estimation under informative
sampling and not missing at random non-response, Journal of the Royal Statistical Society:
Series A, 181(4), 981–1008.

[34] Taisir, R. and Islam, M.A. (2014). EM algorithm for longitudinal data with non-ignorable
missing values: an application to health data, Bangladesh Journal of Scientific Research, 27(2),
133–142.

[35] Thompson, M.E. (2015). Using longitudinal complex survey data, Annual Review of Statistics
and Its Application, 2, 305–320.

[36] Tseng, C.H.; Elashoff, R.; Li, N. and Li, G. (2016). Longitudinal data analysis with
non-ignorable missing data, Statistical Methods in Medical Research, 25(1), 205–220.

[37] Verret, F.; Rao, J.N.K. and Hidiroglou, M.A. (2015). Model-based small area estima-
tion under informative sampling, Survey Methodology, 41(2), 333–347.

[38] Yuan, Y. and Yin, G.S. (2010). Bayesian quantile regression for longitudinal studies with
nonignorable missing data, Biometrics, 66, 105–114.

[39] Zhao, P.Y.; Wang, L. and Shao, J. (2018). Analysis of longitudinal data under nonignor-
able nonmonotone nonresponse, Statistics and Its Interface, 11(2), 265–279.



REVSTAT – Statistical Journal
Volume 20, Number 4, July 2022, 427–447

https://doi.org/10.57805/revstat.v20i4.382

Impact of Academic Authorship Characteristics
on Article Citations∗

Authors: Philipp Otto �

– European University Viadrina,
Germany
otto@europa-uni.de

Philipp Otto
– European University Viadrina,

Germany
potto@europa-uni.de

Received: March 2020 Revised: August 2020 Accepted: September 2020

Abstract:

• Scientific self-evaluation practices are increasingly built on citation counts. Citation practices
for the top journals in economics, psychology, and statistics illustrate article characteristics that
influence citation frequencies. Citation counts differ between the investigated disciplines, with eco-
nomics attracting the most citations and statistics the least. Although articles in statistics are cited
less frequently, its proportion of uncited articles is the smallest of all three disciplines. Academic
authorship characteristics clearly influence the number of citations. Having authors alphabetically
ordered, a practice differently present in the investigated disciplines, increases citations. Further,
the more authors there are, the more the article is cited, and a first author with a common surname
has positive effects on citation counts, whereas two or more authors sharing a surname attracts
fewer citations. In addition, the shorter the article’s title, the higher the number of citations.

Keywords:

• scientometrics; publication index; citation characteristics; popular author names; alphabetical
authorship.

AMS Subject Classification:

• 62C25, 91C05.

� Corresponding author.
∗To the best of our knowledge, this is the first published article where both authors share their surname

and given name, while working at the same university. Thus, the two authors are largely indistinguishable,
which highlights the importance of individual author identifiers like ORCID.

https://doi.org/10.57805/revstat.v20i4.382
https://orcid.org/0000-0001-8630-108X
mailto:otto@europa-uni.de
https://orcid.org/0000-0002-9796-6682
mailto:potto@europa-uni.de


428 P. Otto and P. Otto

“If men define situations as real, they are real in their consequences.”
(William Isaac Thomas & Dorothy Swaine Thomas 1859, p. 572)

1. INTRODUCTION

Being cited is typically good news for the author(s) of a paper. However, the reference
made could be rather critical. In any case, the number of citations reflects the academic
impact of an article, and citation counts often provide an initial estimate of the quality of
the cited publication, its author(s), and the publishing journal. Because journal rankings
and, therefore, academic success are increasingly based on citation counts, the central aim
of journal editors appears to be to select articles with the highest citation count expectation
(cf. Bornmann et al. 2011 [4]). Whereas the practice of quantifying the number of achieved
citations in published work is widespread and appears rather useful, citation criteria are
manifold and can potentially be self-supporting.

Generally, citation rates are difficult to predict. In this paper, potential drivers are
investigated on an exemplary basis for the highest SCImago-ranked journals in economics,
psychology, and statistics. Even after ten years, a large proportion (12.4%) of articles were
not cited, and half of the articles in the top-ranked journals remained below 20 citations,
whereas the total number of citations is slightly above 200 on average. Considering average
citations per year, the maximum increase in citations is reached somewhere after 11 years
(see Figure 1). This leads to the question of whether there are any identifiable criteria that
can explain higher citation counts?

(a)

Years since publication

P
er

ce
nt

ag
e 

of
 u

nc
ite

d 
pa

pe
rs

0 5 10 15 20 25

0.
0

0.
2

0.
4

(b)

Years since publication

A
ve

ra
ge

/m
ed

ia
n 

ci
te

s 
pe

r 
ye

ar

0 5 10 15 20 25

0
5

10
15

−
2

0
2

4

(c)

Years since publication

M
ed

ia
n 

nu
m

be
r 

of
 c

ite
s

5 10 15 20 25

2
6

16
46

14
8

55
0

Figure 1: Temporal dynamics of the total number of citations per year since publication.
(a) Percentage of uncited articles.
(b) Average citations (solid line, with 95%-confidence intervals as shaded area)
and median citations (dashed line) per year depicted for papers, which have
been published 1, 2, ..., 27 years ago, with absolute temporal differences per year
as red/green-colored bars.
(c) Median total number of citations after 1, 2, ..., 27 years with the shaded area
representing the interquartile range and the 95% quantile as a dashed line.

The most common dependency is that the more an article has been cited in the past,
the more it will be cited in the future (cf. Stegehuis et al. 2015 [30]). Furthermore, a typical
article citation curve describes a steady increase over its life cycle. Within approximately
three years, an article typically gains momentum (or lack thereof), then reaches a top level
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of citations somewhere between 10 and 15 years. Thereafter, the majority of articles are
cited less frequently.1 Various factors can be investigated to compare the above-median cited
articles against those below. We quantify some easily available article differentials, with a
concentration on authorship characteristics, namely research discipline, years since publica-

tion, title length, number of authors, alphabetically ordered authors, author name-sharing,
and common author name). Beginning with a specification of the potential influences and
postulating canonical regularities, we provide an empirical analysis using a freely-available
data source with an accordingly adapted statistical model and present the results for the
investigated dependencies. In the conclusion, the postulated regularities are critically evalu-
ated, how these results relate to other regularities reported in the literature is discussed, and
an outlook on the future development of applicable article quality criteria is provided.

2. CITATION CRITERIA AND POSTULATED DEPENDENCIES

The hereby proposed citation criteria introduce alternative measures for explaining
citation counts, which are derived historically, structurally, or purely descriptively. All the
tested criteria are easily quantifiable and can be divided into the following two categories:
structural regularities, or purely authorship-related characteristics. This shifts the focus from
quality or relevance toward other criteria as the ones being responsible for citation counts.
As an implicit test, it refutes the discussion on the usefulness of derived empirical indicators
for academic success, such as the Hirsch (2005) [20] index and others (compare for example
Lindsey 1989 [23]), but also illustrates potential regularities as to the ways researchers are
citing each other’s work.

2.1. Structural regularities

Differences in academic disciplines provide a starting point in the evaluation of arti-
cle characteristics to find regularities in citing practices. Here, economic, psychology, and
statistics publications were used to study discipline-specific differences, as well as broader
influences on citation frequencies.

The following exemplary regularities were provided ad hoc: psychological publications
would be cited more often (mainly in other disciplines) due to a generally larger public
interest in their research topic and strong interdisciplinary focus (compare interdisciplinary
citations in Jacobs 2013 [21]). Statistics is the smallest discipline and, therefore, citations
were expected to be less frequent, although statistics are used for empirical analyses in all
disciplines. This postulates a regularity that can be summarized as

Hypothesis 1. Citation frequencies vary over research disciplines with being:

(a) higher for psychology publications;

(b) lower for statistics publications.

1A more general description of citation changes over time, with more profound numbers on passing critical
thresholds to develop a momentum, would require time-series data. Investigations that account for other
temporal influences, such as citation density or prolonging increases in citations are provided by Quandt
(1976) [28] or Parolo et al. (2015) [26].
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Other characteristics can be article specific and illustrate a direct structural dependency
with citation frequencies. Two discipline-independent influences were proposed with opposing
regularities: citation frequencies increase with the years since publication and decrease with
the title length of the article. Naturally, it takes time for articles to be cited and for the
academic community to acknowledge new work. However, one could also expect a slowdown
several years after the time of publication, due to decreased novelty. Another issue that was
included is simplicity. An anticipated effect is based on information processing and recall.
The title length of the article serves as an indicator to investigate this kind of influence.
Bounded rationality, in the form of limitations when recalling more complex article titles,
could lead to lower citation counts. These two apparent article characteristics needed to be
controlled, in addition to the differences between the research disciplines, when investigating
the following influences.

2.2. Authorship characteristics

Authorship characteristics might also affect citation frequencies. These characteristics
could result from academic practices or other easily identifiable article differentials. Thus,
the guiding question was, how much variance in citation frequencies can be explained by
extrinsic article characteristics related to authorship. This would be in addition to structural
influences and the article’s quality as the fundamental value.

The first source for identifiable article differentials is academic differences based on the
cultural and historical development of respective research disciplines. A prominent example
in this regard would be how authors are ordered in a joint publication. Some disciplines
prefer purely alphabetical order, whereas others strictly list the author names in the order of
the contributed amounts of work. This difference in approach for author listing is exploited
by Van Praag and van Praag (2008) [33] and Einav and Yariv (2006) [11], who postulate
a positive correlation between the surname initials and the scientific success of the author.
The influence of the initial letter of the first author can, thus, be seen as a random charac-
teristic independent of the article’s quality.

Our three investigated research fields differ with regard to author listing order. Author
listings could be either alphabetical or organized by their respective shares of work (i.e., the
first author would be the main author of the article). However, it is not always feasible
to distinguish between these two kinds of author listings. A non-alphabetically sorted list of
authors does not automatically imply that the first author contributed the most, and in an al-
phabetically sorted list of authors, the first author could still be the main contributing author.
For simplification, Figure 2 illustrates this relation for articles with two authors. Plot (a)
shows the percentage of articles in which the authors are listed alphabetically. Van Praag and
van Praag (2008) [33] computed the probability of an alphabetical ordering for uniformly dis-
tributed first letters. However, the chance of having a surname with the initial letter being ‘A’
differs from that of having the initial letter ‘Z’. Hence, in our data set, we used the observed
frequencies of the first letters of all surnames as a proxy for the natural distribution of initial
letters. The ratio between the observed percentages of alphabetically ordered authors, and
this baseline probability can be seen as the percentage of authors intentionally sorted by the
first letter of their surnames. This further implies that the authors of the remaining articles
are listed in a non-alphabetical way — potentially to reflect the amount of contributed work.



Impact of academic authorship characteristics on article citations 431

The accordingly estimated proportions of intentionally alphabetically ordered authors are
shown in Figure 2(b), which were strictly lower in psychology when compared with economics
and statistics. One can conclude that the first author is most likely to be the main author for
articles published in the top psychology journals, whereas in economics and statistics, both
authorship orderings coexist.2 Note that only the first letter of the surname is compared.
Names with the same first letter are considered as being alphabetically ordered, although this
includes the curiosity that, if all authors have the same surname, they are considered as being
alphabetically ordered, although these are at the same time non-alphabetically ordered.
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Figure 2: Percentage of articles with two authors having alphabetically ordered names separated
by the initial letter of the first author.
(a) Percentage of ordered lists of authors in economics (red), statistics (green), and
psychology (blue). The bold line depicts the probability of two random surnames being
in alphabetical order.
(b) Ratio between observed frequencies and the expected base probability (black baseline)
illustrates the proportion of intentionally alphabetically ordered authors.

In addition to the citation differences between the three investigated disciplines, pub-
lication practices could affect an article’s citation count. The two different ways of ordering
authors might directly influence its number of citations because the main author is not easily
identifiable with alphabetically ordered authors, and the allocation of the main work to one
specific versus various researchers might influence its citation.

Hypothesis 2. Citation frequencies change when the main author is listed as the

first author of the article.

2As the estimated frequencies from our data set could be biased, Appendix A provides a comparison of
these results to the distribution of UK surnames, as reported by Gray (1958) [15], and for the top 100 surnames
in the United States of America (provided by the U.S. Census Bureaus for the year 2000), thereby confirming
these regularities.
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The relation between citation counts and surname familiarity is included in the analysis
as another test for the influence of recall simplicity. The top 100 U.S. surnames served as a
proxy for common author names.3

Hypothesis 3. Citation frequencies increase with the first author having a common

surname.

Another simplicity-related claim goes back to Goodman et al. (2015) [14], who inves-
tigated a descriptive curiosity of authors sharing surnames. Sources for name doubling, or
more generally author name-sharing, could be for various reasons and could also directly link
to citation counts. Without knowing why the same name occurs twice (or even more often),
we argue that these articles are easier to remember and to recall.

Hypothesis 4. Citation frequencies increase when authors share their surnames.

A more universal relationship is hypothesized for authorship with regard to the number
of people involved with the published research. The number of authors is expected to show
a direct relationship with citation counts.

Hypothesis 5. Citation frequencies increase with the number of listed authors for

an article.

With more authors, the new information spreads faster and can be expected to be
better connected within the respective scientific communities — not to mention direct (or
reciprocal) self-citations.

3. EMPIRICAL DATA ANALYSIS

The systematic rating of evoked citations increasingly influences the scientific evalu-
ation process, ranging from the rankings of individual publications to that of authors and
journals. A practical advantage is that citations can easily be retrieved, in addition to di-
verse article characteristics.4 The predictive variables of interest are the research discipline,
years since publication, title length, number of authors, alphabetically ordered authors, author
name-sharing, and common author name.

3.1. Data and descriptive statistics

The data analysis was based on 196, 365 journal articles that were published in 115
journals from 1990 to 2016. For each, we observed the current citation count as well as
various article characteristics. To be precise, the focus was on the highest-ranked journals

3This list also includes popular surnames from other nationalities (e.g., Lee, Nguyen, or Rodriquez).
In addition, we considered the soundex of all names to account for different spellings such as Li, Lee,
or Liu, but this opposes a unique author identification and, thereby, the postulate of recall simplicity.

4Different elicitation methods are described more broadly in Ball (2014) [3].
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in three scientific fields, namely economics, psychology, and statistics. The definition of
journals belonging to the top journals, to be included in the following analysis, is based on
the SCImago journal ranking within the respective subject areas:

• “Economics, Econometrics and Finance”: top ten journals of each subcategory
(except “Science” as not being a mainly economic journal);

• “Psychology”: top ten journals of each subcategory;

• “Statistics, Probability and Uncertainty”: top quartile journals
(as already a “subcategory”).

All included journals are listed in Table 1 (31 from economics, 57 from psychology, and
27 from statistics), with the number of articles, the average SCImago journal ranking index
(SJR), the average Hirsch index (H), and the average citations per document for each of
the three investigated research areas. The number of total citations recorded until November
2017 serves as a performance measure of each article. To be more specific, citation counts
reported by Microsoft Academic Search (MAS) are used as the dependent variable. These
counts partly incorporate statistical models based on network data to provide more accurate
citation counts; a more detailed discussion of the data set and the MAS citation count is
provided in Appendix A.

For the empirical analysis of the postulated hypotheses, we use the current citation
counts of all papers published within these journals and the above-mentioned time period.
Hence, the citation counts are cumulated values for each individual paper, but independent
across time because each paper appears only once in the sample. Figure 1(a) depicts the
percentage of uncited articles with respect to the elapsed years since publication (in full
years). This ratio decreases from thirty percent for all publications in the year of publication
(i.e., 2016) to approximately twelve percent within the first three years. The proportion of
articles not cited remains stable thereafter, whereas the total number of citations increases
over time. The positive growth rate lasts for about 11 years after publication.

The annual average and median citations depicted in plot (b) of Figure 1 have their
peaks after 11 years, which implies declining growth rates afterward. However, it is important
to note that we have independent samples over time, such that the downslope is partly due
to the generally increasing number of citations. For comparison, we also depict the lower
quartiles, medians, upper quartiles, and 95%-quantiles of the total citation counts over the
elapsed time since publication on a log-scale in Figure 1(c). This supports the assumption
that the number of new citations increases in the beginning but reduces with decreasing
novelty, and the latter effect seems to be strengthened by an overall increase in the number
of citations over the years since 1990 (i.e., older articles are cited less often over their citation
life-span). Moreover, Table 2 summarizes the descriptive statistics for the central variables
of the regression: the number of citations, percentage of uncited articles, average years since
publication, and number of authors (36.7% with one author and 25.7% with two authors).
In addition, the average title length is included as the number of characters in the title of the
article. Author name-sharing occurred in 0.2% of all included articles.
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Table 2: Descriptive statistics of selected covariates.

Variable Freq. of 0 Min. L.Q. Median Mean U.Q. Max. St. Dev.

Citations 0.124 0 5 21 123.25 108 56424 482.86
Citations (> 0) — 1 9 29 140.76 126 56424 513.63
Years since publ. — 1 5 10 11.71 18 27 7.68
Title length — 9 57 77 81.20 100 567 33.47
Number of authors — 1 1 2 2.74 3 50 2.26
Single author 0.742 — — — — — — —
Author name-sharing 0.998 — — — — — — —

3.2. Model

Because more than ten percent of the articles were not cited within the investigated
time frame, the statistical model needs to account for this excess of non-citations. For our
data, a zero-inflated negative binomial model was used because it provided a comparatively
better fit than other models (e.g., a zero-inflated Poisson model), which is further supported
by the Ord plot (see Ord 1967 [25]). Please see Appendix B for a more detailed discussion of
this distributional choice.

To define the statistical model, we introduce a random variable Y for the citation
counts. The observations of Y are denoted by y. Then, the conditional probability of Y is
given by

(3.1)
P

(
Y = y

∣∣Xz,Xc,βz,βc

)
=

= Pz

(
Y = 0

∣∣Xz,βz

)
I{0}(y) +

(
1− Pz

(
0

∣∣Xz,βz

))
Pc

(
Y = y

∣∣Xc,βc

)
,

where Xz and Xc are the matrices of explanatory variables for the probability of Y = 0
(index z) and Y = y ≥ 0 (index c). The respective coefficients for these regressors are
βc and βz. Moreover, IA(x) stands for the indicator function on a set A. Whereas Pz

describes the conditional probability for Y = 0, the probability density of Pc defines the num-
ber of citations. For our analysis, we assume that Pc is a negative binomial distribution,
i.e.,

Pc

(
Y = y

∣∣Xc,βc

)
=

Γ(θ + y)
Γ(y + 1) Γ(θ)

ry(1− r)θ with r =
exp(Xcβc)

exp(Xcβc) + θ
.

Due to the methodological separation of articles into cited and uncited, it is possible to distin-
guish two different effects: the predictive variable Xz, influencing the fact of an article being
cited at all, and Xc, influencing the number of citations of a particular work. Corresponding
regression coefficients are obtained as maximum-likelihood estimators of a generalized linear
model, which is computationally implemented as in Zeileis et al. (2008) [40]. The start-
ing values of the iterative maximization of the likelihood function have been chosen by an
expectation maximization algorithm.
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3.3. Results

All articles were searched for characteristics that explained, firstly, if it was cited at all
and, secondly, the number of citations reached.5 Table 3 shows the results of the zero-inflated
negative binomial model with parameters estimated by the maximum-likelihood approach
(cf. Greene 2003 [16]; Zeileis et al. 2008 [40]). For this, we included all variables introduced in
Section 2 that have a potential influence on citation counts. For simplicity of interpretation
of the results, we omit potential interactions between the regressors, which are reported
in Appendix C. To allow for a more intuitive interpretation of the regression coefficients,
we report the corresponding odds ratios ri for the count and zero component of the model.

Table 3: Estimated coefficients β̂z
i and β̂c

i as well as odds ratios r̂z
i and incident risk ratios r̂c

i

of a zero-inflated negative binomial regression model for citation counts. The zero-
inflated effect as well as the count effect are significant for all introduced regressors
and p-values are given in parentheses.

Zero-inflation Count
coefficients coefficientsVariable i

β̂z
i r̂z

i β̂c
i r̂c

i

Regressors

Intercept 0 2.760 3.589
(< 0.0001) (< 0.0001)

Field of research: Psychology 1 0.368 1.445 −0.256 0.774
(< 0.0001) (< 0.0001)

Field of research: Statistics 2 −0.662 0.516 −1.095 0.334
(< 0.0001) (< 0.0001)

Years since publication: in full years 3 −0.052 0.949 0.072 1.074
(< 0.0001) (< 0.0001)

Title length: number of characters in title 4 0.015 1.015 −0.001 0.999
(< 0.0001) (< 0.0001)

Number of authors 5 −4.638 0.010 0.027 1.027
(< 0.0001) (< 0.0001)

Alphabetically ordered authors: true 6 0.539 1.714 0.201 1.222
(0.214) (< 0.0001)

Author name-sharing: existent 7 1.450 4.264 −0.220 0.803
(0.031) (0.001)

Common author name: 8 −0.227 0.797 0.043 1.044
first author within top 100 surnames (< 0.0001) (< 0.0001)

log(θ̂) −0.835
(< 0.0001)

Summary Statistics

AIC 1771146

exp
�
log(θ̂)

�
0.547

LR (null model) 22313.31

5Articles with total citations that were above the 95% quantile are neglected to avoid anomalies due to
outlying observations.
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These ratios depict the factor by which the expected citation count or probability of being
cited changes if the corresponding dummy variable is present or the independent variable is
increased by one unit (see Table 3).

3.3.1. Structural regularities

Citation existence and level are highly influenced by the amount of time passed since
an article has been published. The older the publication, the higher the likelihood that
the publication does not belong to the class of not cited articles, while its citation count
is expected to be higher. Thus, years since publication increase the likelihood of being
cited (negative zero-inflation coefficient β̂z

3), as well as the number of citations (positive
count coefficient β̂c

3). Further, the expected regularities for title length are fully confirmed.
The longer the title, the more likely it belongs to the uncited articles category and the
lower the citation counts. These strong and clear intrinsic influences fully confirm the first
two expected regularities, that citation frequencies are indeed determined by the years since

publication as well as by its title length.

Mixed results are observed concerning the differences in the three research disciplines
because partly opposite patterns were noted. For Statistics, both coefficients β̂z

2 and β̂c
2 are

negative, which indicates opposite effects. Whereas Statistics has fewer uncited articles when
compared with Economics, these articles gather fewer citations. Examining the count model,
we see that citation counts were lower in both Psychology (contradicting Hypothesis 1(a)
and Statistics (supporting Hypothesis 1(b). Consequently, Economics attracted the most
citations compared to the two other disciplines. Given that an article is cited, Statistics
articles were cited less frequently when compared to Economics and Psychology. This fully
supports Hypothesis 1(b) because the respective coefficients of the count model confirm this
order, i.e., 0 > β̂c

1 > β̂c
2. Articles in Statistics were cited less often than articles in Psychol-

ogy (p < 0.0001) and articles in Economics (p < 0.0001). Moreover, citations in Psychology
were lower than in Economics (p < 0.0001). These pairwise relations are also supported by
Mann–Whitney-U tests on all cited articles (citations > 0). Thus, the postulated order of
the disciplines concerning citation frequencies when being cited is confirmed only when com-
paring Statistics with Psychology or Economics, but not when comparing Psychology with
Economics. The research discipline has a strong influence on the number of citations, but
the relations postulated under Hypothesis 1 are only partially confirmed.

3.3.2. Authorship characteristics

Authorship characteristics generally remain influential for citation frequencies, when
controlling for structural regularities. However, the empirical findings were not always as
hypothesized. Articles having alphabetically ordered authors show an opposing effect; these
are more inflated by uncited articles, but they are cited more often (i.e., β̂z

5 and β̂c
5 are

positive). Hypothesis 2 is only partially supported. Having the first author as the main
author is more likely to attract at least one citation, but this effect is insignificant. Articles
where the main author appears as the first author are, in fact, cited significantly less than
articles with purely alphabetical ordering.6

6Although this effect of alphabetically ordered authors is largely reduced in Psychology, it still has a positive
influence across all the considered research disciplines. Interactions with research discipline and their cultural
differences in sorting authors is further discussed in Appendix C.
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In contrast, Hypothesis 3 is fully supported. Having a common author name, as a
first author surname characteristic consistently related to citation likelihood and frequency.
Having a common surname increases the probability of being cited. Important here is that
judging whether the surname is a common name based on the exact spelling, rather than
on its soundex, leads to a better model fit. Thus, the unique spelling of the name seems
to be crucial for its recall simplicity. Another unexpected result was observed regarding the
influence of author name-sharing. For both cases of being cited and the frequency of citations,
the relation is in the opposite direction than postulated under Hypothesis 4. Articles that
have (for some authors) the same surnames were significantly less likely to be cited, and in
cases where they were cited, they are cited significantly less often. Hence, our hypotheses
concerning authorship simplicity are only partly confirmed: having a common name has
a positive effect, but when authors share the same surname, this is negatively related to
citation frequencies. Note that authors randomly sharing a surname is more frequent for
popular names.

The strongest influence on citations was the number of authors, which increases the
likelihood of being cited as well as the number of citations. The negative zero-inflation
coefficient (β̂z

3) and the positive count coefficient (β̂c
3) clearly support Hypothesis 5.

4. DISCUSSION AND CONCLUSION

Influences on citation counts has received little attention besides noting its fundamen-
tal and growing importance for evaluating scientific productivity. Everyday practice simply
assumes a direct relation between the gained citations and the importance of the research.
This does neglect alternative influences on citation counts. In this regard, various authorship
characteristics were evaluated for three research disciplines in social sciences. Without claim-
ing any kind of prominence, systematic regularities can be observed in the data. The time

since publication is possibly the most important structural component, for which a monotonic
increasing relationship is confirmed. To determine an article’s citation life (possibly with a
critical growth period), however, time series of the citation counts of each article would be
required. Although it naturally takes time to acknowledge quality, the duration or speed of
this process remains uncertain. Broader issues, such as an overall increase in publications
and citations, further complicate this analysis. In addition, fashionable trends are difficult
to isolate, particularly in cases where quality intertwines with the novelty of the research
topic (compare Van Dalen and Henkens 2001 [32]; Webster et al. 2009 [38]; Chen 2012 [8]).
Our empirical results show that the title length decreases the likelihood and frequency of
being cited. Simplicity might help recognition. A positive relation between an article having
a short title and citation counts has already been claimed for economic articles (Bramoullé
and Ductor 2018 [6]; Gnewuch and Wohlrabe 2017 [13]). These results are confirmed here,
whereas recognition not only decreases the chance of belonging to the class of uncited articles,
but it also increases the number of attracted citations. However, simplicity and recall proba-
bility can oppose uniqueness, which might play a role as well. Naturally, the predictive power
of such content-free characteristics needs to be investigated in more detail to be applicable
because, for example Didegah and Thelwall (2013) [9] claim in a broader study of research
disciplines that the length of the title has no significant influence on citation counts.



Impact of academic authorship characteristics on article citations 439

Differences between the field of research (Hypothesis 1) illustrate a more specific reg-
ularity in citation frequencies. This potentially originates from other sources than research
quality. These differences could have historical reasons or be confounded with the other ex-
pected regularities as well as authorship characteristics. We compared articles in Psychology,
Economics, and Statistics, where the popularity was expected to decrease in this order (also
due to the size of the (sub-)discipline in the case of Statistics). The postulated relationship
is not fully reflected in the citation count data. Articles published in the top journals in
Psychology are less frequently cited than those in Economics, but publications in Statistics
were cited the least. Interestingly, our regression analysis provides a more profound picture.
Articles in Statistics are cited less often, but there were also fewer nil citations. These seem-
ingly opposing effects might be due to a flatter distribution pattern, which might also be
responsible for the advantage of Economics over Psychology. It is worth noting that only the
top journals of each subject are included in the analysis. A broader sample, of course, might
reveal different relations. The proportion of uncited articles can be expected to be more
profound and the concentration of citations on fewer articles (such as those in top journals)
to be more pronounced in Economics. This is because Economics is more concentrated on a
smaller number of leading publications along with a higher impact factor of the top economics
journals. This tendency toward the top journals seems to be prolonged (Card and DellaVigna
2013 [7]; Heckman and Moktan 2018 [19]). Fourcade et al. (2015) [12] claim that Economics
is generally more hierarchically organized. Why the pattern of citation counts in Statistics
shows a flatter distribution requires further investigation, possibly in comparison to a larger
and more diverse number of research fields. In general, explanations for the variety in citation
counts has to be searched and accounted for as has been stressed by Varin et al. (2016) [34]
regarding cross-citations among highly ranked statistics journals or by Aksnes (2006) [1] for
subfields of research in Norway. Radicchi et al. (2008) [29] and Albarrán et al. (2011) [2] pro-
vide first approaches to correct citation count evaluations with respect to the field of research.

A central idea put forward here is to isolate various authorship characteristics that
can explain part of the observed variation in citations. This could not only lead to a better
understanding of the relationship between quality and being cited but also illustrates the po-
tential pitfalls of not being cited. Not all of the included characteristics have a strong effect,
and the results do sometimes point in the opposing direction. If articles have alphabetically

ordered authors (Hypothesis 2), this actually increased the number of citations but reduced
the likelihood of being cited at all. This kind of academic tradition, which is more prominent
in Economics and Statistics, could represent things other than quality (dominance, conser-
vatism, etc.). Although indirect and only in terms of citation frequencies, this confirms the
claim made by Van Praag and van Praag (2008) [33] that authors with names toward the
beginning of the alphabet tend to be more successful (under the assumption that an author’s
future citations directly depend on previous citations).

Author names can also have an influence in terms of their popularity, especially under
the expectation of recognition simplicity (Hypothesis 3); namely, that the first author having
a common author name increases the number of citations, an occurrence that is confirmed by
the data. Note that this expectation equally applies to how having an uncommon name (below
the 100 most common names benchmark) leads to fewer citations, possibly because it is more
difficult to recall unpopular names. Other demographic or personal author characteristics
might help to further elaborate upon this kind of relationship. Naturally, author influences
that are not investigated here, such as reputation (as for example author eminence as in
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Haslam et al. 2008 [18]) or connectivity (as for example number of references as in Haslam
et al. 2008 [18]; Vieira and Gomes 2010 [35]; Bornmann et al. 2012 [5]; Chen 2012 [8];
Didegah and Thelwall 2013 [9]), could play a central role for citation counts. Along the
lines of research embedding, the strongest authorship influence on citation counts is the
number of authors (Hypothesis 5). This is not only the result of self-citations, which have
not been distinguished here; rather, it is attributed to the fact that the more authors there
are, the better the interconnectivity and the higher the potential of the paper to be discovered.
Thus, the research output is better represented in the respective scientific community, and
connections to neighboring fields become more likely. Systematic self- or cross-citations can
clearly oppose quality concerns, but dependencies are manifold. For example, collocation
effects in the citation networks of authors and institutions can be observed (see Yan and
Ding 2012 [39]). Still, a larger number of authors can positively affect the quality of an
article, due to increased awareness or a more sophisticated cross-checking, for example, but
negative effects of co-authorship can also result from this self-selection process (cf. Ductor
2015 [10]). Also note that for natural sciences, Onodera and Yoshikane (2015) [24] report
only a weak and Bornmann et al. (2012) [5] a negative effect of the number of authors on
citation counts. In summary, a better understanding of the different effect strengths of the
investigated authorship characteristics is required to be more conclusive here.

Initially most surprising for us was that author name-sharing appears to have the op-
posite effect than expected (Hypothesis 4) because it negatively influences citation counts.
Authorship recognition does not appear to be the driving influence. Possibly, this influence
of recognizing an article is largely covered by the popularity of the first author’s surname
because more frequent names already result more often in coauthors sharing their surnames.
Further, the list of reasons for authors sharing the name (given by Goodman et al. 2015 [14])
provides a plausible answer here. The sources for people having the same name and pub-
lishing an article together (i.e., marriage or other family relations) might reduce the quality
of its content. However, name-sharing could also be fully coincidental (as in the case of the
“Goodmen”). Furthermore, name-sharing might represent narrowness, and internationality
has been reported as a factor strongly increasing citations. Documented positive influences
are international collaboration (Didegah and Thelwall 2013 [9]), authors not sharing the same
department (Vieira and Gomes 2010 [35]), as well as the article being published in English
(Van Dalen and Henkens 2001 [32]; Bornmann et al. 2012 [5]). This further illustrates the
need for systematically distinguishing behavioral influences from those that represent and
acknowledge the quality of an article.

Citation indices have been proposed as a heuristic method for informing decision-
making on various levels (see for example Perry and Reny 2016 [27]; Hamermesh 2018 [17]).
With diverse drivers influencing citation frequencies, these must be treated even more cau-
tiously. Little has been done to better understand citation behavior, despite it being increas-
ingly crucial in determining academic success. Although it is reasonable to argue that all the
articles included in our analysis are of substantial quality because they are published in the
top journals of their respective research field, a large proportion are still rarely or not cited
at all, whereas other articles strongly pull citations. If specific authorship characteristics are
influencing this process, and various data sources exist to evaluate the dependencies here,
then these can easily be detected and controlled to better inform decisions. Complementary
proxies for research quality are, thus, required to supplement citation indices and journal
ranks, both of which are currently solely based on citation count data.
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APPENDICES

A. DATA SOURCE

Figure 3 visualizes the distribution of the observed counts by a so-called rootogram,
depicting the histogram bars pinned to the best-fitting density curve. In this case, we plot
the counts against a negative binomial distribution. This figure shows two major issues that
need to be addressed. First, uncited articles are excessive because articles cited between one
and three times are less frequently observed than expected by a negative binomial distri-
bution. Consequently, we observed such an excess of zero citations that small counts were
overestimated. Second, there is a substantial gap in articles for the area between 33 and
50 citation counts. This lack is due to the specific counting approach of Microsoft Aca-
demic Search. In particular, the software uses a statistical model based on citation graphs
to estimate citation counts, from which the accuracy is lower for all publications just below
50 citations (confirmed by Microsoft Academic Search). Thus, they reported the true cita-
tion count only for the remaining publications, for which the predicted count is less than 50.
The resulting anomalous pattern for articles cited between 33 and 50 times is rather unsatis-
factory. However, the observed effects should not substantially differ, with the main influence
on goodness-of-fit measures being based on residuals.
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Figure 3: Rootogram (hanging histogram bars) and best fitting negative binomial distribution
colored in red. The gap between 33 and 50 citations is due to the specific reporting
of the Microsoft Academic Search program. The total number of citations is shown
on a square-root scale.

Section 2.2 includes the likelihood of two authors in an article being in alphabeti-
cal order, to estimate the proportion of intentionally ordered author lists. The reasons for
this calculation would be the observed empirical frequencies of the initial letters, thus re-
sulting in the included articles of the top journals of Economics, Statistics, and Psychology.
However, this could be a biased proxy for the true distribution of the first letters of surnames.
Hence, we compared these frequencies to the frequency table published by Gray (1958) [15].
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In contrast, Gray (1958) [15] reports the distribution for UK surnames only, which might
differ from the frequency distribution of first letters of surnames globally. To further jus-
tify the results, we also compared our estimated distributions from the data against the top
100 U.S. surnames from the census in 2002. Figure 4 depicts these empirical distributions.
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Figure 4: Empirical distribution of the first letter of surnames for our data set (dark-gray), the
top 100 U.S. surnames (gray), and the UK surnames by Gray (1958) [15] (light-gray).

There are no large differences between the estimated probabilities, aside for some letters
(e.g., ‘R’ or ‘W’) where we observe fewer authors in our data than one would expect when
looking at the top 100 U.S. surnames or the results of Gray (1958) [15]. However, this did not
affect the main findings. Differences in the resulting ratios are small, as shown in Figure 5
(analogously to Figure 2), based on the empirical distribution of UK surnames (also not
different for the 100 U.S. surnames census data).
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Figure 5: In contrast to Figure 2, we chose the empirical distribution of UK surnames reported by
Gray (1958) [15] as a benchmark, i.e., the bold line first plot (a) depicts the probability for
two random surnames being in alphabetical order according to this empirical distribution.
In the second plot (b), we computed the ratio between the observed frequencies of ordered
authors and the estimated probability (black baseline) as an estimate for the percentage
of articles that were being intentionally set in alphabetical order.
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B. MODEL SELECTION

First impressions of the underlying discrete probability of the citation counts can be
obtained by the so-called Ord’s plot (cf. Ord 1967 [25]). For our data, the plot indicates
that the data are generated by a negative binomial distribution, which is also supported by
the histogram, or rootogram (e.g. Wainer 1974 [37]). Lee et al. (2007) [22] observed similar
behavior for patent citation counts. Comparing a zero-inflated negative binomial and zero-
inflated Poisson model by a Vuong test (cf. Vuong 1989 [36]), the negative binomial model
is significantly preferred, with a test statistic of |z| = 308.4410 (uncorrected). Less-complex
models, such as the negative binomial model without zero inflation, can be ruled out due to
their larger information criteria (the Akaike information criterion (AIC) is 1,787,653 for the
negative binomial model and 1,771,146 for the zero-inflated model).

Moreover, the zero-inflated model allows for the comparison of the probability for being
cited and the citation counts across the fields, whereas count data models without zero
inflation measure the overall effect. For instance, the estimated coefficients for the indicator
variables of research field are −0.235 (β̂c

5, Psychology) and −1.055 (β̂c
6, Statistics) for a

negative binomial, without modeling the inflation of uncited articles. This confirms our
results, namely that articles in Psychology are more often cited than in Statistics and that
the latter articles are cited the least (in this particular group of the three research disciplines).
However, it does not allow for interpretations regarding the excess of uncited articles.

Furthermore, the reported model results (in Table 3 of Section 3.3) include all intro-
duced potential characteristics from Section 2 influencing citation counts as main effects.
To provide a model with the best data fit, we also selected covariates and their interactions
by stepwise minimizing AIC. The resulting model is discussed next as “model extensions”
(in Appendix C).

C. MODEL EXTENSIONS

All results were obtained by a simple regression model, which meant an easier inter-
pretation because we only focused on the direction of the main effects, despite the possibility
that there could be interactions between the regressors. For instance, alphabetically sorted
authors could have different implications for each research discipline. Although it is some-
times common to sort authors alphabetically (66.1% of all the included articles with more
than one author in statistics), authors were less often sorted alphabetically in Psychology
(24.7%) or Economics (77.1%).

Including interaction terms for the above-mentioned effects, the interpretation of the
results does not change. We report the estimated coefficients and ratios for this more complex
model in Table 4. All included interaction terms were found to have a significant influence.
Moreover, the AIC is smaller compared to the model reported in Table 3.

To control for the fact that the probability for name-sharing authors is increased with
an increasing number of authors, we estimated a further model with only partial data.
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In particular, we only included articles that had exactly two authors. For this model (B),
parameter estimates and ratios were shown in an analogous manner in Table 5. The results
are in line with the results of the model described in Section 3.3, with a negative impact of
authors sharing the same surnames, as well as more uncited articles of authors sharing the
same surnames.

Table 4: Estimated parameters β̂A,i with odds ratios r̂z
A,i or incidence risk ratios r̂c

A,i

of the zero-inflated negative binomial model for the first alternative model (A)
with p-values in parentheses.

Zero-inflation Count
coefficients coefficientsVariable i

β̂z
A,i r̂z

A,i β̂c
A,i r̂c

A,i

Regressors

Intercept 0 2.139 3.721
(< 0.001) (< 0.001)

Field of research: Psychology 1 0.364 1.439 −0.214 0.807
(< 0.001) (< 0.001)

Field of research: Statistics 2 −0.731 0.481 −1.092 0.336
(< 0.001) (< 0.001)

Years since publication: in full years 3 −0.052 0.950 0.067 1.076
(< 0.001) (< 0.001)

Title length: number of characters in title 4 0.016 1.016 −0.001 0.999
(< 0.001) (< 0.001)

Number of authors 5 −4.085 0.017 0.011 1.011
(< 0.001) (0.161)

Single author (additional effect) 6 — — −0.288 0.750
(< 0.001)

Alphabetically ordered authors: true 7 −0.018 0.982 0.157 1.170
(0.955) (< 0.001)

Author name-sharing: existent 8 1.476 4.377 −0.211 0.810
(0.029) (0.001)

Common author name: 9 −0.238 0.788 0.042 1.042
first author within top 100 surnames (< 0.001) (0.002)

Interaction: number of authors in Psychology 10 — — −0.014 0.986
(0.068)

Interaction: number of authors in Statistics 11 — — 0.010 1.010
(0.229)

Interaction: alph. ordered authors in Psychology 12 — — −0.139 0.870
(< 0.001)

Interaction: alph. ordered authors in Statistics 13 — — −0.071 0.932
(0.001)

log(θ̂) −0.604
(< 0.0001)

Summary Statistics

AIC 1770226

exp
�
log(θ̂)

�
0.547

LR (null model) 22778.4
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Table 5: Estimated parameters β̂B,i with odds ratios r̂z
B,i and incidence risk ratios r̂c

B,i

of the zero-inflated negative binomial model for all articles of only two authors
(alternative model B) and with p-values in parentheses.

Zero-inflation Count
coefficients coefficientsVariable i

β̂z
B,i r̂z

B,i β̂c
B,i r̂c

B,i

Regressors

Intercept 0 −4.743 3.708
(< 0.001) (< 0.001)

Field of research: Psychology 1 −2.410 0.090 −0.126 0.881
(< 0.001) (< 0.001)

Field of research: Statistics 2 −2.937 0.053 −0.997 0.369
(< 0.001) (< 0.001)

Years since publication: in full years 3 −0.057 0.944 0.064 1.066
(0.003) (< 0.001)

Title length: number of characters in title 4 0.030 1.031 −0.001 0.999
(< 0.001) (< 0.001)

Number of authors 5 — — — —

Alphabetically ordered authors: true 6 −1.044 0.352 0.205 1.228
(< 0.001) (< 0.001)

Author name-sharing: existent 7 1.080 2.945 −0.176 0.839
(0.072) (0.006)

Common author name: 8 −1.460 0.232 0.038 1.039
first author within top 100 surnames (0.051) (0.086)

Interaction: number of authors in Psychology 9 — — — —

Interaction: number of authors in Statistics 10 — — — —

Interaction: alph. ordered authors in Psychology 11 — — −0.211 0.810
(< 0.001)

Interaction: alph. ordered authors in Statistics 12 — — −0.121 0.886
(0.004)

log(θ̂) −0.561
(< 0.0001)

Summary Statistics

AIC 591036.7

exp
�
log(θ̂)

�
0.571

LR (null model) 5106.93
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1. INTRODUCTION

In this partly expository article, I am concerned with some simple yet fundamental
aspects of distributions on N0 ≡ 0, 1, ..., whose probability mass functions (p.m.f.’s) p are
uniform or more generally monotone nonincreasing or even more generally α-monotone (see
below), together with certain extensions of these distributions to Nd

0 ≡ N0×···×N0, especially
N2

0, and subsets thereof. As a prime example of a univariate distribution with a non-uniform
monotone nonincreasing p.m.f. — a ‘monotone p.m.f.’ for short — think of the geometric
distribution; the Poisson distribution turns out to be an example of an α-monotone distribu-
tion.

The main topics to be considered in this article, by section, are:

§2. Khintchine’s theorem for monotone distributions on N0, re-interpreted in terms of
mixtures of discrete uniform distributions, and a consequent variance inequality
for univariate discrete monotone distributions.

§3. A general family of multivariate discrete distributions with uniform marginal dis-
tributions associated in an attractive yet novel way with copulas;

§4. Univariate α-monotone distributions on N0 which, for 0 < α < 1, are a ‘stronger’
subset of monotone distributions, and which are of interest for α > 1 also, when
they can be non-monotone and include many familiar distributions. Originally
introduced by Steutel (1988) [21], I pursue further interpretation and properties.

§5. Families of multivariate discrete distributions with α-monotone marginals associ-
ated with the distributions of Sections 3 and 4. Their correlation structures are
explicit and relatively straightforward.

Potential Bayesian applications of Khintchine’s theorem for discrete distributions (§2)
are to the provision of monotone prior distributions for discrete-valued parameters and of
nonparametric priors for α-monotone discrete distributions (similar to e.g. Brunner & Lo,
1989 [5], in the continuous case). Families of multivariate discrete distributions with sep-
aration between marginal and dependence parameters (§3 and especially §5) can, as in the
continuous case, form good test-beds for simulation studies; in particular, as a referee suggests,
the opportunity arises to simulate correlated discrete variables with a given correlation matrix
and univariate margins. Distributions with monotone and especially α-monotone marginals
can be used as models for appropriate data too, of course. I look briefly at alternative
multivariate geometric and Poisson distributions to those in e.g. Davy & Rayner (1996) [7]
and Bermúdez & Karlis (2011) [3], respectively, while alternatives to existing multivariate
binomial (e.g. Westfall & Young, 1989 [23]) and multivariate negative binomial (e.g. Shi &
Valdez, 2014 [20]) distributions are also readily available but not developed explicitly.

All mathematical manipulations made in this article have the major benefit of being
simple and direct. As I go along, it will often be useful to point out analogies and connec-
tions with results for continuous data which have uniform or α-monotone probability density
functions (p.d.f.’s) f on R+, and their multivariate extensions.
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2. DISCRETE KHINTCHINE’S THEOREM

Let f be a monotone p.d.f. on R+. Then, the renowned Khintchine’s Theorem (Khint-
chine, 1938 [16], Feller, 1971 [9]) says thatX ∼ f can be written as a uniform scale mixture, ei-
ther as X = UY , where U and Y are independent, U ∼ Uniform(0, 1) and Y ∼ G for some cu-
mulative distribution function (c.d.f.) G on R+, or equivalently as X|Y = y ∼ Uniform(0, y),
Y ∼ G. If f is differentiable, then typically G has a p.d.f. g such that g(x) = −xf ′(x).
(The distribution of Y is not absolutely continuous if f has support (0, b) say, when b <∞
and f(b) > 0; see Section 4.)

Implicit in Steutel’s (1988) [21] paper on “discrete α-monotonicity” — of which, more
in Section 4 — is a corresponding result to Khintchine’s theorem in the discrete case. (See
also the earlier work of Medgyessy, 1972 [17].) It is framed in terms of binomial thinning,
as first proposed by Steutel and van Harn (1979) [22]. For values of θ ∈ [0, 1], the random
variable Nm,θ is the binomially thinned version of the count m ∈ N0 if

Nm,θ ≡ θ ◦m ≡
m∑

j=1

Bj

where the sum is understood to be zero if m= 0. Here, B1, ...,Bm are independent Bernoulli(θ)
random variables. (Note that if θ = 1, Nm,θ = m and if θ = 0, Nm,θ = 0.) A useful equivalent
way of expressing Nm,θ = θ ◦m is as

Nm,θ = θ ◦m ∼ Binomial(m, θ)

where Binomial(0, θ) is understood to be the degenerate distribution at zero.

The above is binomial thinning for fixed θ and m, extensions to which are to mix over
distributions for their random variable versions, Θ and/or M . So, consider the distribution of
N = Θ◦M ∼ p on N0 where Θ ∼ h on (0, 1), independently ofM ∼ q on N0. This distribution
can be expressed as

N |M = m ∼ BinMix(m), M ∼ q,

with the binomial mixture distribution ‘BinMix’ defined as follows: Nm ≡ Θ◦m ∼ BinMix(m)
if

(2.1) Nm|Θ = θ ∼ Binomial(m, θ), Θ ∼ h.

Steutel’s (1988) [21] observation is that taking Θ ∼ Uniform(0, 1) is equivalent to p

being a monotone p.m.f. on N0. I now note that in that case, where h(θ) = I(0 < θ < 1) and
I(·) denotes the indicator function,

Nm = Θ ◦m ∼ Uniform{0, ...,m},

that is, the binomial mixture distribution reduces to the uniform distribution on {0, ...,m}.
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To see this, note that, for each x ∈ {0, ...,m},∫ 1

0

(
m

x

)
θx(1− θ)m−x dθ =

(
m

x

)
B(x+ 1,m− x+ 1) =

1
m+ 1

(here, B(·, ·) is the beta function). This is, of course, a very special case of the beta-binomial
distribution (see Johnson, Kemp and Kotz, 2005 [13], Section 6.9.2).

The discrete analogue of Khintchine’s theorem can therefore be given most simply —
and not unexpectedly given its continuous analogue — as a discrete uniform mixture, as in
Result 2.1:

Result 2.1. A p.m.f. p on N0 is monotone if and only if N ∼ p can be written as

N |M = m ∼ Uniform{0, ...,m}, M ∼ q,

where q is any p.m.f. on N0. In fact, the p.m.f.s p and q are related by

(2.2) p(n) =
∞∑

m=n

q(m)
m+ 1

, q(m) = (m+ 1) {p(m)− p(m+ 1)} .

Also, the corresponding c.d.f.s P and Q are related by

Q(n) = P (n)− (n+ 1)p(n+ 1).

Example 2.1.

(a) Let N ∼ Geometric(p), 0 < p < 1, which has strictly decreasing p.m.f. In this
case,

q(m) = (m+ 1) p2(1− p)m,

that is, M ∼ NegativeBinomial(2, p), which is the distribution of the sum of two
independent Geometric(p) random variables.

(b) Let N ∼ Poisson(µ) with 0 < µ ≤ 1. Then, p is monotone on N0, and Result 2.1
applies with

q(m) = (m+ 1− µ) p(m).

One of a number of ways of interpreting q is that it is the distribution of M0 +B

where B ∼ Bernoulli(µ), independent of M0 ∼ Poisson(µ).

(c) Now let M ∼ Poisson(λ), λ > 0. Then, N has the strictly decreasing p.m.f.

p(n) =
e−λ

λ

∞∑
j=n+1

λj

j!
=

1
λ

Γ(λ;n+ 1)

where Γ(·; ·) is the incomplete gamma function ratio. From (2.3) below, E(N) =
λ/2 and V(N) = λ(6 + λ)/12, so p is overdispersed as well as decreasing.

(d) The distribution of part (c) is a special case of taking q(m) = (m+ 1) r(m+ 1)/µr

where r is an arbitrary p.m.f. on N0 with finite mean µr. Then, p(n) = R(n)/µr

where R(n) = P (R > n) and R ∼ r, so p is clearly monotone.

(e) There is no distribution satisfying p = q. If there were, p must satisfy p(m+ 1)/
p(m) = m/(m+ 1), m = 0, 1, ..., and this was shown by Leo Katz in the 1940s not
to correspond to a valid distribution (see Johnson et al., 2005 [13], Section 2.3.1).
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Either directly or as a consequence of more general results for mixed binomial thinning,
it is easy to show that

(2.3) E(N) = E(M)/2, V(N) =
[
4V(M) + 2E(M) + {E(M)}2

]
/12.

Since V(M) ≥ 0 and E(M) = 2E(N), the following variance-mean inequality arises.

Result 2.2. If N follows a monotone p.m.f. on N0, then

V(N) ≥ E(N) {1 + E(N)}/3,

and any monotone distribution is overdispersed if E(N) > 2.

This inequality and observation arose in Jones and Marchand (2019) [15] from a different
perspective. The inequality is the discrete analogue of the inequality V(X) ≥ {E(X)}2/3 of
Johnson and Rogers (1951) [14] in the continuous monotone case.

3. MULTIVARIATE DISCRETE UNIFORM DISTRIBUTIONS

Write c and C for the p.d.f. and c.d.f. of an absolutely continuous copula on (0, 1)d

(e.g. Nelsen, 2006 [18], Joe, 1997 [11], 2014 [12]). This section and the next can be seen as an
investigation of a role for such multivariate continuous uniform distributions in providing the
dependence properties of certain multivariate discrete distributions, starting in this section
with multivariate discrete distributions with discrete uniform marginal distributions, referred
to from here on as multivariate discrete uniform distributions. Note that this is quite different
from the use of a copula in conjunction with the discontinuous c.d.f.’s and quantile functions
of discrete marginals, a common practice but with a number of “dangers and limitations”, as
discussed by Genest and Nešlehová (2007) [10]. That said, a multivariate discrete uniform
distribution does not fulfil the same role for multivariate discrete distributions as a copula does
for multivariate continuous distributions because univariate discrete c.d.f.’s, when considered
as functions of their random variable, are not distributed as discrete uniforms i.e., if X has
distribution F , and F is discrete, then F (X) is not uniform. In contrast, F (X) is (continuous)
uniform when F is continuous.

The fact that a binomial distribution mixed over a continuous uniform distribution for
its probability parameter is itself a discrete uniform distribution suggests that a multivariate
discrete uniform distribution can be defined as the distribution of (N1, ..., Nd) on {0, ...,m1}×
··· × {0, ...,md} such that

Ni|Θi = θi ∼ Binomial(mi, θi) independently for i = 1, ..., d,

Θ(d) ≡ {Θ1, ...,Θd} ∼ c(θ1, ..., θd).

The joint p.m.f. of (N1, ..., Nd) is

pU (n1, ..., nd |m1, ...,md)

=

{
d∏

i=1

(
mi

ni

)} ∫ 1

0
···

∫ 1

0

{
d∏

i=1

θni
i (1− θi)mi−ni

}
c(θ1, ..., θd) dθ1··· dθd .(3.1)
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Its univariate marginal distributions are discrete uniform by construction because those of
the copula are continuous uniform.

Moments of this construction are readily available and, in particular, correlations are
determined by those of the copula as follows. Since Cov(Ni, Nj |Θ(d) = θ(d)) = 0, it is the case
that

Cov(Ni, Nj) = Cov{E(Ni|Θ(d) = θ(d)),E(Nj |Θ(d) = θ(d))} = mimjCov(Θi,Θj).(3.2)

Also, since V(Ni) = mi(mi + 2)/12, V(Nj) = mj(mj + 2)/12, it is the case that

Corr(Ni, Nj) =
mimjCorr(Θi,Θj)/12√
mi(mi + 2)mj(mj + 2)/12

=
√

mi

mi + 2

√
mj

mj + 2
Corr(Θi,Θj).(3.3)

So, while the correlation of Ni and Nj has the same sign as that of Θi and Θj , it reduces to
one-third that of the copula in the binary case, and increases, tending to a factor of 1, as the
marginal supports grow larger. Note that Corr(Θi,Θj) is Spearman’s rho.

The existence of this simple relationship between discrete and continuous uniform cor-
relations is a reason for preferring the current construction to discretisations of the copula,
although the two can be very similar, as the following simple example shows.

Example 3.1. Consider the bivariate Farlie–Gumbel–Morgenstern (FGM) copula
given by

C(u, v) = uv{1 + φ(1− u)(1− v)}, c(u, v) = 1 + φ(1− 2u)(1− 2v),

on 0 < u, v < 1 with −1 ≤ φ ≤ 1. Entering this into (3.1) when d = 2 gives

pFGM (n1, n2) =
1

(m1 + 1)(m2 + 1)

{
1 + φ

(2n1 −m1)(2n2 −m2)
(m1 + 2)(m2 + 2)

}
;

its correlation, from (3.3) and e.g. Example 2.4 of Joe (1997) [11], is√
m1

m1 + 2

√
m2

m2 + 2
φ

3
.

A natural discretisation of any C in the bivariate case is

p′(n1, n2) = C

(
n1 + 1
m1 + 1

,
n2 + 1
m2 + 1

)
+ C

(
n1

m1 + 1
,

n2

m2 + 1

)
−C

(
n1 + 1
m1 + 1

,
n2

m2 + 1

)
− C

(
n1

m1 + 1
,
n2 + 1
m2 + 1

)
which turns out in the FGM case to equate to

(3.4) p′FGM (n1, n2) =
1

(m1 + 1)(m2 + 1)

{
1 + φ

(2n1 −m1)(2n2 −m2)
(m1 + 1)(m2 + 1)

}
;

this differs just a little from pFGM . The correlation associated with this model, calculated
directly from (3.4), is similar to that of pFGM , but a little larger; it is√

m1(m1 + 2)
(m1 + 1)2

√
m2(m2 + 2)
(m2 + 1)2

φ

3
.
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Formula (3.1) is a particular way of constructing multivariate distributions with uniform
univariate marginals. If a multivariate discrete uniform distribution is specified by other
means, there is not necessarily a copula leading to it via construction (3.1). Even when
there is, as with copula discretisation, there is not generally a unique copula leading to that
distribution. The following simple, if extreme, example makes this clear.

Example 3.2. Let d = 2 and m1 = m2 = 1. In this case, the elements of the joint
p.m.f. of (N1, N2) depend only on pU (0, 0) ≤ 1/2, since pU (0, 1) = {1−2pU (0, 0)}/2, pU (1, 0) =
{1− 2pU (0, 0)}/2 and pU (1, 1) = pU (0, 0). Write EC for expectation under the copula. Then,
from (3.1), we have

pU (0, 0) = EC{(1−Θ1)(1−Θ2)} = EC(Θ1Θ2),

pU (0, 1) = EC{(1−Θ1)Θ2} = 1
2 − EC(Θ1Θ2),

pU (1, 0) = EC{Θ1(1−Θ2)} = 1
2 − EC(Θ1Θ2),

pU (1, 1) = EC(Θ1Θ2).

Therefore, any copula with EC(Θ1Θ2) = pU (0, 0) will give rise to this bivariate binary uniform
distribution. (In fact, the uniform marginals of the copula are not required for this argument:
the copula can be replaced by any distribution on (0, 1)× (0, 1) with marginal means equal
to 1/2 and E(Θ1Θ2) = pU (0, 0).) However, the product moment requirement translates to
Corr(Θ1,Θ2) = 12pU (0, 0)− 3, which restricts the existence of such a mixing distribution to
when 1/6 ≤ pU (0, 0) ≤ 1/3.

4. DISCRETE α-MONOTONICITY

I now return to the univariate domain. To set the scene, I first describe the situation in
the continuous case. There, α-monotonicity was introduced by Olshen and Savage (1970) [19]
(see also Dharmadhikari and Joag-Dev, 1988 [8], and Bertin, Cuculescu and Theodorescu,
1997 [4]): the distribution of a continuous random variable X is said to be α-monotone if
and only if the distribution of Xα is monotone, α > 0. Then, X can be written in the form
X = AαY say, where Aα ∼ Beta(α, 1), independently of Y ∼ g on R+, in a similar manner
to Khintchine’s theorem; equivalently, X = U1/αY where U ∼ Uniform(0, 1). Clearly α = 1
corresponds to ordinary monotonicity. By construction, if a distribution is α0-monotone say,
then is it also α-monotone for all α > α0. In particular, α-monotone distributions with α < 1
are also ordinary monotone.

Providing an alternative view of an equivalent formulation of Abouammoh (1987/1988)
[1], Steutel (1988) [21] first put forward discrete α-monotonicity in the following manner:
for α > 0, N∼ p is discrete α-monotone if N=Aα ◦Mα =U1/α ◦Mα, where Aα∼Beta(α, 1),
U ∼ Uniform(0, 1) and either of these is independent of Mα∼ qα on N0. The distribution of N
can now be recognized, from Section 2, as being that of

(4.1) N |Mα = mα ∼ BetaBinomial(mα, α, 1), Mα ∼ qα,

where the BetaBinomial(mα, α, 1) distribution has p.m.f.

(4.2) pBB1(x) =
αmα! Γ(x+ α)
x! Γ(mα + α+ 1)
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for x ∈ {0, ...,mα}. This is because now h(θ) = αθα−1I(0 < θ < 1) in (2.1) so that the bino-
mial mixture distribution becomes

α

∫ 1

0

(
mα

x

)
θx+α−1(1− θ)mα−x dθ = α

(
mα

x

)
B(x+ α,mα − x+ 1) = pBB1(x).

(4.1) and (4.2) lead directly to confirmation of Steutel’s (1988) [21] formula

p(n) = α
Γ(n+ α)

n!

∞∑
m=n

m! qα(m)
Γ(m+ α+ 1)

.

Steutel then observes that

(4.3) (n+ α)p(n)− (n+ 1)p(n+ 1) = αqα(n)

from which it can be concluded that discrete α-monotonicity corresponds to p having the
simple property that

(n+ α)p(n) ≥ (n+ 1)p(n+ 1).

Here, the inequality is strict except when qα(n) = 0. The corresponding c.d.f.s P and Qα are
related by

αQα(n) = αP (n)− (n+ 1)p(n+ 1),

which can be readily checked to give rise to (4.3). Comments above on continuous α-monoto-
nicities for various values of α continue to hold in the discrete case.

It can be added that (4.3) can also be written

(4.4) q(n) = (1− α)p(n) + α qα(n)

where q = q1 is as at (2.2) in Result 2.1. To corroborate and interpret (4.4) in the case that
0 < α ≤ 1, an alternative way of expressing α-monotonicity arises from writing Aα = UV

where U ∼ Uniform(0, 1) independently of some appropriate V ; this is possible when 0 <
α ≤ 1 because then Beta(α, 1) is monotone (nonincreasing). Moreover, Beta(α, 1) is then a
distribution on a finite interval with non-zero density at its upper endpoint. As signposted
at the start of Section 2, the density of V is not −xf ′(x) if f has support (0, b) and f(b) > 0;
in fact,

V ∼

{
Y with probability 1− α,

b with probability α,

where Y ∼ −xf ′(x)/{1− f(b)} on (0, b). When b = 1 and h(x) = αxα−1 so that h(1) = α,
it turns out that −xh′(x)/{1− h(1)} = h(x). In the case of discrete α-monotonicity with
0 < α ≤ 1, it follows that N = Aα ◦M = (UV ) ◦M = U ◦ (V ◦M) so that N = U ◦N0 where
U ∼ Uniform(0, 1) and

N0 ∼

{
N with probability 1− α,

M with probability α,

which is immediately seen to be equivalent to (4.4).

By any of a number of routes, it can be shown that, for α-monotone distributions for
any α > 0,

E(N) =
αE(Mα)
α+ 1

, V(N) =
α

[
(α+ 1)2V(Mα) + (α+ 1)E(Mα) + {E(Mα)}2

]
(α+ 1)2(α+ 2)

.
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Since V(Mα) ≥ 0 and E(Mα) = (α + 1)E(N)/α, the following variance-mean inequality
ensues.

Result 4.1. If N follows an α-monotone p.m.f. on N0 for all α ≥ αmin say, then

V(N) ≥ E(N){αmin + E(N)}
αmin(αmin + 2)

≥ E(N){α+ E(N)}
α(α+ 2)

.

The ‘outside’ inequality is essentially Theorem 3.1 of Abouammoh, Ali and Mashhour
(1994) [2] with a = 0 and Corollary 5.3.21 of Bertin et al. (1997) [4]. An α-monotone distri-
bution is thereby guaranteed to be overdispersed if E(N) > αmin(αmin + 1). Of course, the
outside inequality in Result 4.1 reduces to Result 2.2 when α = 1.

Example 4.1.

(a) N ∼ Geometric(p) is α-monotone for α ≥ 1− p ≡ αmin. Using (4.3), the corre-
sponding p.m.f. of Mα is

qα(m) = {(m+ 1)p− (1− α)}p(1− p)m/α.

As noted in Example 2.1(a), M1 ∼ NegativeBinomial(2, p) while it can now also be
observed that M1−p has the distribution of M1 + 1. The dispersion inequality for
α-monotone distributions confirms the overdispersion of the geometric distribution
for all 0 < p < 1.

(b) Let N ∼ Poisson(µ) with 0 < µ ≤ α. Then, the Poisson p.m.f. p is α-monotone
on N0, and formula (4.3) applies to give

qα(m) = (m+ α− µ) p(m)/α.

Now, qα is the distribution of M0 +B where B ∼ Bernoulli(µ/α), independent
of M0 ∼ Poisson(µ). In particular, qµ is the length-biased form of the Poisson
distribution which is, in fact, the distribution of M0 +1. The dispersion inequality
is, of course, not satisfied for any µ > 0.

(c) Both of the above examples together with binomial and negative binomial distri-
butions are covered by the Katz family, for which

(1 + n) p(n+ 1) = (a+ bn) p(n);

see Section 2.3.1 of Johnson et al. (2005) [13]. In general, a > 0 and b < 1, but
α-monotonicity restricts the range of a to 0 < a ≤ α. For any Katz distribution,

qα(m) = {(α− a) + (1− b)m}p(m)

reducing to qa(m) = (1− b)mp(m)/a when α = a. Let Ka,b be a random variable
following the Katz distribution with parameters a and b. Then, the latter length-
biased distribution is also the distribution of Ka+b,b +1. Since E(Ka,b) = a/(1− b)
and V(Ka,b) = a/(1 − b)2, the dispersion inequality yields overdispersion if
(a+1)(1− b) < 1 while a Katz distribution is actually overdispersed for 0 < b < 1.
The general results reduce to those of part (a) when a = b = 1− p and part (b)
when a = µ, b = 0. They give results for the Binomial(k, p) distribution when
a = kp/(1− p), b = −p/(1− p), and to the NegativeBinomial(k, p) distribution
when a = k(1− p), b = (1− p).
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5. MULTIVARIATE DISCRETE DISTRIBUTIONS WITH α-MONOTONE
UNIVARIATE MARGINALS

Combining Sections 2 and 3 further, it is natural to develop discrete distributions on Nd
0

with monotone univariate marginals as the distribution of N (d) ≡ (N1, ..., Nd) where

Ni|Mi = mi,Θi = θi ∼ Binomial(mi, θi) independently for i = 1, ..., d,

M (d) ≡ {M1, ...,Md} ∼ q(m1, ...,md),

Θ(d) ≡ {Θ1, ...,Θd} ∼ c(θ1, ..., θd),

where q is now an arbitrary p.m.f. on Nd
0 and M (d) is independent of Θ(d). This is, of course,

equivalent to mixing the multivariate discrete uniform distribution of Section 3 over q:

N (d)|M (d) = {m1, ...,md} ∼ pU (n1, ..., nd|m1, ...,md), M (d) ∼ q(m1, ...,md).

To additionally fold in the work of Section 4, to provide multivariate discrete distribu-
tions with α-monotone marginal distributions (more properly α(d)-monotone marginal dis-
tributions where α(d) ≡ {α1, ..., αd}), the key is to replace Θ(d) by Θ(d)

α ≡ {Θ1/α1

1 , ...,Θ1/αd

d }.
Let the resulting random variable be N (d)

α . The joint p.m.f. of N (d)
α is

pD(n1, ..., nd;α1, ...αd) =
∞∑

m1=n1

···
∞∑

md=nd

q(m1, ...,md)

{
d∏

i=1

(
mi

ni

)}

×
∫ 1

0
···

∫ 1

0

{
d∏

i=1

θ
ni/αi

i (1− θ
1/αi

i )mi−ni

}
c(θ1, ..., θd) dθ1··· dθd .(5.1)

Its univariate marginal distributions have the α1-monotone, α2-monotone, ..., αd-monotone
p.m.f.’s of Section 4 by construction. The form of (5.1) involves d infinite sums and integrals
but, as will be seen below, certain special cases simplify considerably. Moments remain readily
available and correlations are as follows. Using (2.3) and (3.2),

Cov(Ni, Nj) = E(MiMj) Cov(Θ1/αi

i ,Θ1/αj

j ) +
αi

αi + 1
αj

αj + 1
Cov(Mi,Mj)

so that

Corr(Ni, Nj)(5.2)

=
E(MiMj) Corr(Θ1/αi

i ,Θ1/αj

j ) +
√
αi(αi + 2)αj(αj + 2) Cov(Mi,Mj)√[

(αi +1)2V(Mi) + (αi +1) E(Mi) + {E(Mi)}2
][

(αj +1)2V(Mj) + (αj +1) E(Mj) + {E(Mj)}2
] .

In the following two subsections, I will take a brief look at two major particular cases of
this in terms of the form of distribution for M . These distributions and their properties are
analogues of those given in Section 3 of Bryson and Johnson (1982) [6] in the continuous
case when d = 2. They are theoretically interesting but for the most part may prove to have
limited practical applicability.
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5.1. When M1, ...,Md are mutually independent

Let Mi ∼ qi, independently for i = 1, ..., d. This allows the dependence structure of pD

to depend only on that of C ameliorated by the value of α(d). The joint p.d.f. of N (d)
α is given

by the obvious small change to (5.1). The correlation of Ni and Nj , given by (5.2), reduces
to

Corr(Ni, Nj) =

√
E(Mi)

(αi + 1)2D(Mi) + E(Mi) + αi + 1

×

√
E(Mj)

(αj + 1)2D(Mj) + E(Mj) + αj + 1
Corr(Θ1/αi

i ,Θ1/αj

j ).(5.3)

where D(M) = V(M)/E(M) is the index of dispersion of M . Again, this has the same sign
as the correlation associated with the copula and is always a reduction of the absolute value
of the correlation compared with that of the copula, sometimes considerably so.

Example 5.1. This example concerns a family of multivariate distributions with geo-
metric marginal distributions. Following Example 2.1(a), let qi(m) = (m+1) p2

i (1−pi)m with
E(Mi) = 2(1− pi)/pi and V(Mi) = 2(1− pi)/p2

i , i = 1, ..., d. The corresponding multivariate
geometric distribution arises by taking α1 = ··· = αd = 1. Reduction of (5.1) in this case
requires simplification of terms of the form

∑∞
m=n(m+ 1)p2(1− p)m

(
m
n

)
θn(1− θ)m−n which

is achieved by noting that, with 0 < ψ ≡ (1− p)(1− θ) < 1,
∞∑

m=n

(m+ 1)
(
m

n

)
ψm−n = (n+ 1)

∞∑
m=n

(
m+ 1
n+ 1

)
ψm−n

= (n+ 1)
∞∑

j=0

(
n+ j + 1

j

)
ψj =

n+ 1
(1− ψ)n+2

.

This results in the joint p.m.f.

pG(n1, ..., nd; p1, ..., pd)

=
d∏

i=1

(ni + 1)p2
i (1− pi)ni

∫ 1

0
···

∫ 1

0

[
d∏

i=1

θni
i

{1− (1− pi)(1− θi)}ni+2

]
c(θ1, ..., θd) dθ1··· dθd

with correlations
Corr(Ni, Nj) =

1
3

√
(1− pi)(1− pj) Corr(Θi,Θj).

The correlations associated with this family of multivariate geometric distributions are there-
fore limited to the range −1/3 < Corr(Ni, Nj) < 1/3, although the range of correlations de-
creases as the pi’s increase.

Example 5.2. In a similar manner to Example 5.1, this example concerns a family of
multivariate distributions with Poisson marginals. It arises by taking qi(m) =µm−1

i e−µi/(m−1)!,
m = 1, 2, ..., and αj = µj , j = 1, ..., d (cf. Example 4.1(b)). In this case, simplification of (5.1)
requires simplification of sums of the form

∑∞
m=n e

−µµm−1
(
m
n

)
θn/µ(1− θ1/µ)m−n/(m− 1)!.

Now, with Ω ≡ µ(1− θ1/µ) > 0,
∞∑

m=n

m
Ωm−n

(m− n)!
=

∞∑
m=n

(m− n)
Ωm−n

(m− n)!
+ n

∞∑
m=n

Ωm−n

(m− n)!
= (Ω + n)eΩ.
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The corresponding joint p.m.f. is

pP (n1, ..., nd;µ1, ..., µd)

=
d∏

i=1

µni

ni!

∫ 1

0
···

∫ 1

0

{
d∏

i=1

θ
ni/µi

i

(
1− θ

1/µi

i +
ni

µi

)
e−µiθ

1/µi
i

}
c(θ1, ..., θd) dθ1··· dθd .

Since E(Mi) = µi + 1,V(Mi) = µi, i = 1, ..., d, the correlations associated with these distri-
butions are

Corr(Ni, Nj) =
1√

(µi + 2)(µj + 2)
Corr(Θ1/µi

i ,Θ1/µj

j )

so that −1/2 < Corr(Ni, Nj) < 1/2. In this case, the range of correlations decreases as the
mean parameters increase.

5.2. When M1, ...,Md are equal or most strongly dependent

Let M1 = ··· = Md = M say, i = 1, ..., d, with M ∼ q0. This particular comonotonicity
also allows the dependence structure of pD to depend on that of C, but with an opportunity
for higher correlations. Let nmax = max(n1, ..., nd). The joint p.d.f. of N (d)

α is given by

pD(n1, ..., nd;α1, ..., αd)

=
∞∑

m=nα,max

q0(m)

{
d∏

i=1

(
m

ni

)} ∫ 1

0
···

∫ 1

0

{
d∏

i=1

θ
ni/αi

i (1− θ
1/αi

i )m−ni

}
c(θ1, ..., θd) dθ1··· dθd .

Its correlations are, from (5.2),

ρij ≡ Corr(Ni, Nj)

=
{D(M) + E(M)}Corr(Θ1/αi

i ,Θ1/αj

j ) +
√
αi(αi + 2)αj(αj + 2) D(M)√[

(αi + 1)2D(M) + E(M) + αi + 1
][

(αj + 1)2D(M) + E(M) + αj + 1
] ,(5.4)

which are all equal if α1 = ··· = αd. If rij denotes the correlation at (5.3) when both Mi and
Mj have the distribution of M , then

ρij = rij +
D(M)

{
Corr(Θ1/αi

i ,Θ1/αj

j ) +
√
αi(αi + 2)αj(αj + 2)

}
√[

(αi + 1)2D(M) + E(M) + αi + 1
][

(αj + 1)2D(M) + E(M) + αj + 1
]

which is typically greater than rij , certainly whenever αi(αi + 2)αj(αj + 2) > 1.

Example 5.3. While in Sections 3 and 5.1 the independence copula with density
c(θ1, ..., θd) =

∏d
i=1 I(0 < θi < 1) results in distributions with independent marginals, this is

not the case here because of the commonality of M . In fact, using the independence copula,
the joint p.m.f. of N (d)

α depends only on nmax and is given by

pI(n1, ..., nd;α1, ..., αd) =
∞∑

m=nmax

q0(m)(m!)d
d∏

i=1

αi Γ(ni + αi)
ni! Γ(m+ 1 + αi)

,
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reducing to

pI(n1, ..., nd; 1, ..., 1) =
∞∑

m=n1,max

q0(m)
(m+ 1)d

.

The corresponding correlations are, in general,

Corr(Ni,Nj) =

√
αi(αi + 2)

(αi +1)2 D(M) + E(M) +αi +1

√
αj(αj + 2)

(αj +1)2 D(M) + E(M) +αj +1
D(M) ,

which are all positive. When α1 = ··· = αd = 1,

0 < Corr(Ni, Nj) =
3D(M)

4D(M) + E(M) + 2
<

3
4

.

Example 5.4. For a general copula, let us contrast the correlation structure as-
sociated with the specific multivariate geometric and Poisson distributions of Examples
5.1 and 5.2 when M1, ...,Md are independent with the corresponding distributions when
M1 = ··· = Md = M .

(a) Let α1 = ··· = αd = 1 and M ∼ NegativeBinomial(2, p). Then, the corresponding
family of multivariate distributions with Geometric(p) marginals has correlations

Corr(Ni, Nj) =
1
2

+
(3− 2p) Corr(Θi,Θj)

6
.

In this case, 0 < Corr(Ni, Nj) < 1, contrasting with a range of (−1/3, 1/3) in
Example 5.1. In fact, these correlations are always greater than those when pi =
pj = p in the independent M ’s case because α(α+ 2) = 3 > 1. In the case of the
independence copula as in Example 5.3, Corr(Ni, Nj) = 1/2.

(b) Let α1 = ···=αd = µ and M=M1+1 where M1∼ Poisson(µ), as in Example 5.2.
Then, the corresponding family of multivariate Poisson distributions has correla-
tions

Corr(Ni, Nj) =
(

µ

µ+ 1

)2

+
(µ2 + 3µ+ 1) Corr(Θ1/µ

i ,Θ1/µ
j )

(µ+ 1)2(µ+ 2)
.

It is certainly the case that−1/2 < Corr(Ni, Nj) < 1 (contrasting with (−1/2, 1/2)
in Example 5.2) although slightly more negative correlation is possible for certain
very small µ. The correlation is greater than that when µi = µj in Example 5.2
whenever Corr(Θ1/µ

i ,Θ1/µ
j ) > −µ(µ+ 2). In the case of the independence copula,

0 < Corr(Ni, Nj) = µ2/(µ+ 1)2 < 1.

Finally, if M1, ...,Md are not the same, then the strongest dependence is comonotonicity
or the Fréchet upper bound. The expression for pD does not simplify but the pair {Ni, Nj}
can be more highly correlated in comparison to Section 5.1.
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1. INTRODUCTION

Spectral data are characterized by a large number of interrelated measurements, in-
tensities and absorptions, which are regularly recorded across a range of wavelengths. They
are recorded by means of modern instruments and are often used as predictors in regression
problems. In near infra-red (NIR) spectroscopy, in the food industry, for instance, samples
of meat are analyzed for their fat content, and their NIR spectra are then used to predict
fat concentration. Similar applications may be found in agriculture for the determination of
properties of grains, in oil industry, in the analysis of pharmaceuticals, etc.

Using the spectral measurements as predictors in a regression problem limits traditional
regression methods and implies the use of high-dimensional regression techniques. Partial
least squares (PLS) regression has been for a long time implemented to deal with such regres-
sion problems, see [1]. PLS methods are based on reducing the dimension of the regression
problem to a small-m number of factors rather than a large-p number of variables. This is
achieved using information on the response variable, making PLS regression models excellent
for prediction purposes.

More than twenty years have passed since the first smooth PLS regression has been
presented in [2]. The authors have been motivated by non-parametric regression techniques
in [3], and established the link between PLS regression and functional data analysis. This link
resulted in numerous publications on PLS regression for functional data; see [4, 5, 6, 7, 8, 9].
The increasing interest in using functional data techniques for spectral applications stems
from the fact that spectral data are indeed functional. NIR spectra, for example, are discrete
instances of the chemical spectrum of a sample on a range of different wavelengths. This
is illustrated in Figure 1 for 60 gasoline samples for which their spectral measurements are
recorded at every two nanometers (nm) from 900 to 1700 nm. They are discrete values of
continuous functions which are also smooth. Following [2] the extracted factor loadings should
resemble to the spectra, and therefore should exhibit some degree of smoothness; the same
holds for the regression solution. The gasoline samples data together with other two spectral
data sets will be used in the examples that follow.

Figure 1: Gasoline data: Spectral data for 60 gasoline samples measured from 900 to 1700
nanometers (nm). The spectral data are registered every two nanometers.
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We revisit smooth PLS regression after a short overview on PLS regression given in
Section 2. Two smooth PLS regression using wavelets are presented in Section 3 and Section 4.
Their theoretical properties are investigated in Section 5; proofs are given in the Appendix.
In Section 6 three well-known NIR data sets are revisited in order to illustrate smooth PLS
regression. Focus is mainly given on NIR applications. Nevertheless, the presented smooth
PLS regression alternative naturally applies to other spectral data, as well. Conclusions are
given in Section 7.

Throughout the paper bold face lower and upper case letters are used for vectors and
matrices, respectively. The number of samples will be denoted by n while the number of
predictors by p. The subscript m is used to denote the dimension of the PLS regression
models, while the hat suffix is used for least squares fitted vectors. Further notations are
introduced when needed.

2. PLS REGRESSION

Working within a linear model framework for regression problems the following linear
model is assumed:
(2.1) yi = µ+ x′iβ + εi , i = 1, ..., n ,
where yi is the observed response for sample i, xi are p-vectors of explanatory variables,
β is the unknown p-vector of regression parameters, and εi the error term of the regression
model. Without loss of generality we assume data to be centred to zero and therefore we
freely assume µ = 0. Using matrix notation: X = (x1, ...,xp) stands for the data matrix with
predictors in its columns, y is the response vector, and β ∈ Rp is the unknown regression
coefficient vector commonly estimated using least squares.

When the number of predictors (p) is large relative to the sample size (n) and/or the
predictors are correlated, the least squares solution, when it exists, is highly variable due to
rank deficiency of the data matrix X. When n < p the least squares solution doesn’t even
exist. In such cases, PLS regression offers an alternative by solving the regression problem
after reducing its dimension; from hundreds of correlated predictors xj , j = 1, ..., p, to a small
set of orthogonal components tm with m << p. These are linear combination of the original
predictors, and are used in the final regression on the response. PLS regression, therefore,
iteratively approximates the least squares solution from a sequence of subspaces indexed by
m ≤ p. Using m orthogonal components in the final model, PLS regression lets for bias to
decrease variance, and allows for a low mean square error for the final regression solution.

The restriction of orthogonal components may be relaxed in order to get PLS regres-
sion on orthogonal loadings. This has given rise to two different implementations of PLS
regression, see [10] and [11]. The two algorithms are equivalent for prediction purposes; for a
proof see [12]. Both PLS regression algorithms deflate data at each iteration, and X-residuals
and y-residuals are used instead of X and y when m > 1. These are least squares residuals
and will be denoted hereafter by Em and fm, respectively, while we let E0 = X and f0 = y.
An important simplification when the response is a vector is the following: deflating y is
not necessary; see [1]. More efficient computational algorithms for PLS regression without
X-data deflation have been proposed in [13] and [14]. We provide in Algorithm 1 a sketch of
the PLS regression on orthogonal loadings; see [11]. This implementation will be used in the
PLS regression calculations throughout the rest of the paper.
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Algorithm 1 – Partial least squares regression on orthogonal loadings. |
Input: For i = 1, .., n and j = 1, ..., p , E0 = X and f0 = y .

For m = 1, 2, ..., k ≤ p

1. Compute pm according to: pm = E′
m−1fm−1 .

2. Derive tm = Em−1 pm/p
′
m pm and store in Tm = (t1, ..., tm).

3. Em = Em−1 − tm p′m .
4. fm = y −

∑m
a=1 ta q̂ma where

q̂m = (q̂m1, ..., q̂ma, ..., q̂mm)′ = (T ′
m Tm)−1 T ′

m y .

Output: Give the resulting sequence of the fitted vectors ŷm = Tm q̂m .

The PLS regression coefficient vector β̂pls

m is determined by the matrix Pm containing
in its columns the orthogonal loading vectors p1, ...,pm. It is derived according to:

(2.2) β̂pls

m = Pm q̂m ,

where q̂m is defined in Algorithm 1. Similar to principal components; see [15] the dimension
reduction process of PLS implies a change of basis from the p-dimensional unit basis to a
subspace of reduced dimension m < p. For principal components this corresponds to the
subspace generated by a small set of selected eigenvectors. For PLS regression the new basis
corresponds to the Krylov subspace of dimension up to m, defined as follows:

Definition 2.1. For matrix A = X ′X and vector b = X ′y the Krylov subspace of
dimension m≤ p is given by:

(2.3) Km(b,A) = span(b,A1b, ...,Am−1b) .

The loading vectors in Pm (see Algorithm 1) span the Krylov subspace Km(b,A). The
same holds for the PLS regression solution; see [12]. The PLS regression coefficient based on
m components is given as the solution to:

(2.4) β̂pls

m = argminβ

{
(y − ŷ)′ (y − ŷ)

}
where ŷ = Xβ, β ∈ Km(b,A) .

Krylov spaces are location and scale invariant (see [16], chapter 12) and they further
benefit from the following property:

Remark 2.1. For an orthogonal basis change in Km(b,A) induced by an orthogonal
matrix Q we get an orthogonal similarity transformation of A, that is:

(2.5) Km(Q b, QAQ′) = QKm(b,A) , for m ≤ p .

The last property becomes even more interesting given that the Discrete Wavelet Trans-
form (DWT), to be used in the following section, is such an orthogonal matrix.
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3. SMOOTH PLS REGRESSION ON WAVELET TRANSFORMED DATA

Spectral data are discrete values of continuous functions. Wavelets are used to approx-
imate such functional data by means of the so-called mother and father wavelet, at different
scales ` and locations k according to:

(3.1) f(x) =
∑
k∈Z

c`0,k φ`0,k(x) +
∑

`0≤`, k∈Z

d`,k ψ`,k(x) ,

where c`,k and d`,k are the scaling and detail wavelet coefficients, respectively. The father
wavelet coefficient at scale zero (`0) reflects the global average of the spectrum, and when
the data are centered it is equal to zero. The wavelet transform can be expressed as a matrix
multiplication using the Discrete Wavelet Transform (DWT) matrix; see [17], Chapter 12 as
well as [18], paragraph 4.3. This allows changing coordinates system from the original to
the wavelet domain forwards and backwards. The operation is fast ([19]) and safe given that
DWT is orthogonal. Each row spectrum xi is mapped into a vector of wavelet coefficients x̃i

by means of matrix multiplication according to: x̃i =Wxi, where W is the DWT orthogonal
matrix of dimension p×p. Note that for a spectral data matrix X the DWT is given by
postmultiplying the spectral data by W ′, to get:

(3.2) X̃ = XW ′.

PLS regression on transformed data has been presented in [5]. It is run on the wavelet domain
instead of the original spectra. The regression solution is then approximated on the wavelet
domain as:

(3.3) ̂̃
βpls

m,` = argmin
eβ

{
(y − ŷ)′ (y − ŷ)

}
where ŷ = X̃ β̃, β̃ ∈ Km(b̃, Ã) ,

with Ã = W` AW ′
` and b̃ = W` b. The matrix W` denotes the truncated DWT matrix of

dimension 2`×p. The use of the subscript ` for the coefficient vector in the transformed
coordinates is used to highlight the wavelet truncation. Mother wavelet coefficients associated
to the finest scales and very often the noisy part of the spectrum are truncated to zero. The
final regression solution is recovered in original coordinates by means of the inverse DWT,
denoted hereafter as iDWT. Using matrix multiplication this is the transpose of the DWT
matrix. The PLS regression solution is smooth and given according to:

(3.4) β̂spls.1

m = W ′
`
̂̃
βpls

m,` .

The authors in [5] used the term ‘wavelet compressed data’ to describe their algorithm
motivated by the wavelet’s outstanding performance to retain spectral information in a few
wavelet coefficients. They truncated wavelet coefficients based on their variance spectrum,
retaining most often the largest ones. Our motivation is smoothness. We truncate to zero
wavelet coefficients associated to the finest resolution level scales. Other truncation strategies
could be based upon other rules such as the universal threshold or using adaptive thresholding
rules at each different resolution level; see [20], [21] and the references therein.

The smooth PLS regression algorithm based on wavelet transformed data is imple-
mented using the orthogonal loadings PLS regression algorithm. It is similar to Algorithm 1,
and therefore will not be given here. It uses all vectors and matrices z transformed in the
wavelet domain and denoted z̃. For instance, the loading vector pm is replaced by p̃m.
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The same holds for all data and residual data matrices, for the score vectors, and for the
coefficient vectors q and β. Expression (3.4) is used in the end to recover the final regression
solution back in the original coordinates system. The choice of ` is an additional argument
in the algorithm’s input.

4. PLS REGRESSION ON SMOOTH LOADINGS

Transforming data to the wavelet domain is not the only one way to obtain a smooth
PLS regression solution. Smoothness may be embedded directly on the loadings. This is
done here by means of a PLS regression algorithm on smooth loadings. Wavelets are used
on the loading vectors and data aren’t transformed. At each iteration m the loading vector
is reconstructed using a subset of the wavelet coefficients. The resulting loading vectors are
both orthogonal and smooth. They are orthogonal due to the PLS algorithm, and smooth
due to wavelet truncation. In terms of matrix multiplication we truncate the DWT matrix W
to its first ` rows, that is, W` which correspond to the coarsest scales. The resulting recon-
structed smooth loading vector is given as: p?

m = W ′
` p̈m, with

(4.1) p̈m =
∑

ř, ǩ∈Z

dř,ǩ ψř,ǩ(pm) ,

being the approximated loading vector using all the detail wavelet coefficients for scales up to ř
and their associated locations ǩ. The smooth loadings (p?

1, ...,p
?
m) are stored in the matrix P ?

m.
Similarly the regression coefficients q̂?

ma are stored in the vector q̂?
m = (q̂?

m1, ..., q̂
?
ma, ..., q̂

?
mm)′.

The final regression solution is given according to Expression (2.2) with matrix P ?
m taking

over Pm. The algorithm for PLS regression on smooth loadings is sketched in Algorithm 2.

Algorithm 2 – PLS regression on smooth loadings. |
Input: For i = 1, .., n and j = 1, ..., p , E0 = X and f0 = y .

Select ` such that 2` < p and compute W`.

For m = 1, 2, ..., k ≤ p

1. Compute p?
m according to: p?

m = W ′
` p̈m ,

where p̈m as in Expression (4.1) with pm = E
′
m−1fm−1 .

2. Derive t?
m = Em−1 p?

m/p
? ′
m p?

m and store in T ?
m = (t?

1, ..., t
?
m).

3. Em = Em−1 − t?
m p? ′

m .
4. fm = y −

∑m
a=1 t?

a q̂
?
ma where

q̂?
m = (q̂?

m1, ..., q̂
?
ma, ..., q̂

?
mm)′ = (T ? ′

m T ?
m)−1 T ? ′

m y .

Output: Give the resulting sequence of the fitted vectors ŷ spls

m = X β̂spls.2

m ,
where β̂spls.2

m = P ?
m q̂?

m for P ?
m = (p?

1, ...,p
?
m).

The PLS regression on smooth loadings algorithm is computationally much faster than
the algorithm for smooth PLS regression on wavelet transformed data. In the former algo-
rithm the data are not transformed and only a few matrix-vector multiplications are required.
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In Algorithm 2 the wavelet expansion and truncation is done once for each loading vector.
Normally the number of the extracted loadings is much smaller than the number of data
samples. Moreover, the regression solution resulting from Algorithm 2 is on the original coor-
dinates system and there is no need to be transformed back from the wavelet to the original
domain. It turns out that the relation between the two algorithms is far more interesting
from a theoretical point of view. This is further explored in the following section.

5. THEORETICAL ASPECTS OF SMOOTH PLS REGRESSION

The relation between the two smooth PLS regression algorithms is explored here from a
theoretical viewpoint. The loading and regression vectors resulting from the two smooth PLS
regression implementations are investigated. Results are given in the following propositions,
while the proofs are provided separately in the Appendix.

Proposition 5.1. The regression loadings p̃m and p̈m are identical.

Proposition 5.2. The smooth PLS regression loadings p?
m computed in Algorithm 2

are orthogonal.

Proposition 5.3. The two smooth PLS regression algorithms generate the same se-

quence of approximate regression solutions, that is:

(5.1) β̂spls.1

m,` = β̂spls.2

m,` = β̂spls

m,` .

Proposition 5.4. Both algorithms approximate the solution of the linear system of

equations

(5.2) M Aβ?
m = M b , with M = W ′

`W` for m ≤ p and 2` ≤ p ,

iteratively through Krylov subspace approximations.

As a direct consequence of Proposition 5.4 we state the following proposition.

Proposition 5.5. For m ≤ p and increasing wavelet scale ` such that 2` → p the

sequence of smooth PLS regression solutions generates the same subspaces and converges to

the sequence of ordinary PLS regression solutions, that is:

β̂spls

m,` → β̂pls

m .

For both ordinary and smooth PLS regression the reduction of the dimension of the
regression problem from large-p to small-m is almost identical. This is stated in the propo-
sition below by employing the term of equivalence. The proof for Proposition 5.6 is given in
the Appendix.

Proposition 5.6. Ordinary and smooth PLS regression models are equivalent in

reducing the dimension of the regression problem.
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Proper model selection is crucial for smooth PLS regression as it is for ordinary PLS
regression. Prior to applying and assessing smooth PLS regression one needs to identify
the dimension of the regression model, that is, the number of PLS regression components
to be retained. This is done in the following section by means of cross validation prior to
investigating smooth PLS regression on three well known NIR data sets.

6. EXPERIENCE WITH NIR DATA

Three well-known data from NIR spectroscopy are used here to assess smooth PLS
regression. These are the diesel, the gasoline, and the biscuit data sets. All of them are
available through the internet. The diesel data has been downloaded from the Eigenvector
Research site at http://www.eigenvector.com/data/SWRI/, while the gasoline and the biscuit
data have been downloaded from the R packages pls ([22]) and ppls ([23]) through the
R website at http://www.r-project.org/. All three NIR data sets have been extensively used
in the literature; see for instance [2], [24], [7], [8], and [9].

The diesel and the gasoline data sets quantify the cetane and the octane number of
381 diesel and 60 gasoline samples, respectively. The cetane number for diesel samples is the
equivalent of the octane number for gasoline samples. The biscuit data measure fat concentra-
tion of 71 cookies. The data include information on 72 biscuit samples, yet, observation 23 is
removed as a reported outlier. One can find more information on these three NIR data sets in
the references given above. All three data sets use spectra for predictors. The NIR for the ana-
lyzed samples are registered over a broad range of wavelengths, measured in nanometers (nm).
We retained in the analysis the appropriate wavelength ranges in order to build spectra of
appropriate length (equal to a power of 2). For all three data sets the length of the spectra
equals 256 = 28.

The data have been centered prior to regression analysis by subtracting column means.
They have been randomly split on 10 folds, and a 10-fold cross validation (see [25], Chapter 7)
has been used in order to assess the number of PLS components. The NIR data (D) have
been split into 10 mutually exclusive groups, forming a training set Dtrain (used for model
construction) and a test set Dtest = D? (used for model validation), where Dtrain ∩ Dtest = ∅
and Dtrain ∪ Dtest = D. The cross validated mean squared prediction error MSEPcv for a
regression model based on m components, has been computed according to:

(6.1) MSEPcv
m = EK

[
Ek

(
L
(
y?, ŷ? (−k)

m

))]
,

where the superscript ? is used to indicate the observations in D?, and k = 1, ...,K the part
of the K = 10 groups of data which are left out. The notation EK highlights average over
the K different splits, while Ek indicates average over the number of observations inside the
kth test set. The suffix (−k) indicates that the fits are given by the investigated regression model
on the data set excluding the kth part. Using the same splits we did the same for the smooth
PLS regression using wavelet approximation including wavelet scales up to ` = 6 and ` = 7.
The results for the model selection study are reported in Table 1.

http://www.eigenvector.com/data/SWRI/
http://www.r-project.org/
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Table 1: NIR data: 10-fold cross-validation estimates for the prediction
loss of the PLS and the smooth PLS regression models (sPLS`)
including 1 to 10 components for ` = 7 and ` = 6, respectively.

Data
Set

Regression
Model

Components

1 2 3 4 5 6 7 8 9 10

PLS 3.09 2.84 2.64 2.27 2.09 2.26 1.99 2.09 2.17 2.15
diesel sPLS7 2.60 2.44 2.02 2.35 2.12 2.39 2.20 2.04 2.05 2.07

sPLS6 2.04 2.03 1.98 1.98 1.77 1.75 1.53 1.53 1.55 1.55

PLS 0.79 0.29 0.23 0.25 0.25 0.26 0.30 0.28 0.27 0.24
gasoline sPLS7 0.83 0.23 0.11 0.15 0.14 0.13 0.15 0.19 0.15 0.13

sPLS6 0.79 0.21 0.11 0.11 0.12 0.10 0.13 0.17 0.18 0.17

PLS 1.25 1.33 0.79 0.42 0.25 0.30 0.28 0.30 0.28 0.27
biscuit sPLS7 1.86 1.80 1.34 0.92 0.637 0.45 0.39 0.37 0.37 0.35

sPLS6 1.07 1.12 0.58 0.43 0.40 0.28 0.23 0.27 0.25 0.24

The PLS regression model selection results in Table 1 are similar to the ones already
known from the existing literature. Furthermore, the model selection results for the smooth PLS
regression are almost identical to the PLS regression results. As expected, the minimum pre-
diction loss for smooth PLS regression is reached after retaining almost the same number of
components as for ordinary PLS regression. The estimated out-of-sample prediction error for
smooth PLS regression is sometimes even reduced compared to ordinary PLS regression predic-
tion error. Notably for the gasoline data the prediction performance for smooth PLS improves
substantially compared to ordinary PLS regression. Yet, this is not the case for the biscuit data.

Figure 2: Diesel data. Regression coefficient for a regression model including 7 components.
Response is the cetane number of the diesel samples and predictors are the NIR spectra
over the wavelength region from 848 to 1358 nanometers (nm). Black points and black
thin line correspond to the PLS regression coefficient. The smooth PLS regression
coefficients with `= 7 and `= 6 are plotted in green and blue dashed lines, respectively.
Selected wavelength regions (A and B) are magnified in the lower left and right panels.
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Figures 2, 3, and 4 illustrate the regression solutions for PLS and smooth PLS re-
gression. Black solid lines and points are used to depict the PLS regression solution, while
dashed lines are used for smooth PLS regression results. For illustration purposes selected
wavelength regions are magnified and plotted in the lower left and right panels. These allow
better inspecting the smoothness induced by the use of the smooth PLS regression.

Figure 3: Gasoline data. Regression coefficient vector for a regression model including 3 components.
Response is the octane number of 60 gasoline samples and predictors are the NIR spectra
over the wavelength region from 1098 to 1608 nanometers (nm) in steps of two. Black
points and black thin line correspond to the PLS regression coefficient. The smooth PLS
regression coefficients with ` = 7 and ` = 6 are plotted in green and blue dashed lines,
respectively. Selected wavelength regions (A and B) are magnified in the lower left and
right panels.

For the diesel and the gasoline data set in Figures 2 and 3 the smooth PLS regression
solution efficiently smooths the PLS regression coefficient vector especially for ` = 6, see the
light gray (blue) dashed line. The lower panel plots help discriminating between the three
solutions. The smooth PLS regression coefficient is less efficient in smoothing the final solution
for the biscuit data; see Figure 4. The ordinary PLS regression solution for this data set was
already rather smooth.

Finally it is worth noting that smooth PLS regression may improve the prediction
performance notably when the PLS regression solution is noisy. Smoothing reduces the
prediction error in the diesel and the gasoline data. In contrast this is not the case in the
biscuit data where PLS regression is already smooth.
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Figure 4: Biscuit data. Regression coefficient vector for a regression model including 5 components.
Response is the fat concentration of biscuit samples and predictors are the NIR spectra over
the wavelength region from 1100 to 2498 nanometers (nm). Black points and black thin
line correspond to the PLS regression coefficient. The smooth PLS regression coefficients
with ` = 7 and ` = 6 are plotted in green and blue dashed lines, respectively. Selected
wavelength regions (A and B) are magnified in the lower left and right panels.
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7. CONCLUSIONS

Most spectral data used in chemometrics are high dimensional and very often functional.
PLS regression methods are well suited for high dimensional data. Wavelets are well suited
for functional data. We explored the combination of these two in order to build smooth
alternatives for PLS regression. The rationale behind smooth PLS regression stemmed from
the fact that PLS regression coefficients are low dimensional approximations for the regression
solution and should exhibit some degree of smoothness.

We showed that PLS regression can be effectively combined to wavelets for functional
data analysis and provide smooth regression solutions to high dimensional regression prob-
lems. Wavelet expansion and truncation allowed us building two equivalent smooth PLS
regression algorithms. The two algorithmic implementations for smooth PLS regression have
been proven to be equivalent and to produce the same sequence of approximate solutions.
These are regression solutions approximated through Krylov subspaces of dimension m ≤ p.
They are, therefore, PLS regression solutions. Working in the framework of spectral data
we focused on near infra-red experiments which have been used to illustrate the potential of
smooth PLS regression using wavelets. Three well known NIR data sets from the literature
have been used to confirm that smooth PLS regression is a valuable alternative to ordinary
PLS regression for smoothing the final regression solution while maintaining good prediction
performance and dimension reduction.

The two presented smooth PLS regression algorithms have been implemented based on
the PLS regression algorithm on orthogonal loadings. It is straightforward to implement both
using the PLS regression algorithm on orthogonal scores; the results will be identical. The
implementation of the proposed methods is straightforward. We used the S-PLUS wavelet
package S+WAVELETS in our implementation; see [17]. Similar computer packages for wavelet
analysis exist in R, as well; see for instance the wavethresh package in R (see [22]). Existing
computational tools give all that is required for further smooth PLS regression developments.
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A. APPENDIX

Prior to the proof of the propositions in Section 5 we state two lemmas required for
the development of the proofs. The proof for Lemma A.1 is a direct consequence of wavelet
properties and is omited; the interest reader can see [18], paragraph 4.3.1. The proof for
Lemma A.2 is provided below using mathematical induction. Finally the notation 2` → p

is used to denote the increasing order approximation of X by allowing finner scales to be
included in the rows of matrix W`.

Lemma A.1. For the truncated matrix W` of dimension 2` < p we have:

1. All cross-product matrices W ′
`W` with 2` < p are block-diagonal, with

W ′
`W` → Ip as 2`→ p ,

where Ip is used to denote the identity matrix of order p.

2. All cross-product matrices W`W ′
` with 2`≤ p satisfy:

W`W ′
` = Ip .

Lemma A.2. For all m ≤ p, EmW ′
` = Ẽ

(`)
m .

Proof of Lemma A.2: We use mathematical induction. For m= 1 the lemma holds
given:

E0W ′
` = XW ′

` = X̃(`) = Ẽ
(`)
0 .

Let it be true for m− 1, that is assume that:

Em−1W ′
` = Ẽ

(`)
m−1 .

We will prove that this also holds for m, that is:

(A.1) EmW ′
` = Ẽ(`)

m .

We develop seperately both sides of Expression (A.1). For the left hand side of Expression
(A.1) we have:

EmW ′
` =

(
Em−1 − t?

mp? ′
m

)
W ′

`

=
(
Em−1 −Em−1 p?

mp? ′
m

)
W ′

`

=
(
Em−1 −Em−1W ′

` p̈m p̈′mW`

)
W ′

`

= Em−1W ′
` −Em−1W ′

` p̈m p̈′mW`W ′
`

= Em−1W ′
` −Em−1W ′

` p̈m p̈′m

= Em−1W ′
`

(
I − p̈m p̈′m

)
.

For the right hand side of Equation (A.1) we have:

Ẽ(`)
m = Ẽ

(`)
m−1− t̃m p̃′m

= Ẽ
(`)
m−1− Ẽ

(`)
m−1 p̃m p̃′m

= Ẽ
(`)
m−1

(
I − p̃m p̃′m

)
.
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Furthermore, given Expression (4.1) we have:

p̈m p̈′m = W` pmp′mW ′
` = p̃m p̃′m ,

which completes the proof.

Proof of Proposition 5.1: Recall that for univariate PLS regression there is no need
to deflate the response vector y. The loading vector p̈m in Expression (4.1) can be written
in matrix form as W` pm; it then follows:

p̈m = W` pm = W`E
′
m−1y =

(
Em−1W ′

`

)′
y = Ẽ

(`) ′
m−1 y = p̃m .

Proof of Proposition 5.2: Using Proposition 5.1 and noting that the loading vec-
tors p̃ are orthogonal by construction (they are the ordinary PLS regression loadings in the
wavelet domain), it follows that:

p? ′
i p?

j = p̈′iW`W ′
` p̈j = p̃′iW`W ′

` p̃j = p̃′i p̃j = 0 , for i 6= j and i, j ≤ p .

Therefore the smooth PLS regression loadings p? are orthogonal.

Proof of Proposition 5.3: The smooth regression coefficients β̂spls.1

m and β̂spls.2

m are
identical, as:

β̂spls.2

m = P ?
m q̂?

m

= W ′
` P̈m q̂?

m

= W ′
` P̃m

̂̃qm

= W ′
`
̂̃
βpls

m,` = β̂spls.1

m .

Note that ̂̃qm = q̂?
m. This is justified by the fact that both are implied by the loading’s matrix

P̈m and P̃m, respectively. These are, yet, identical as shown in Proposition 5.1.

Proof of Proposition 5.4: The link between PLS regression and conjugate gradi-
ents for solving large linear system of equations is well-known; see for instance [26]. The
solution to the system of equations is approximated through Krylov subspaces. The sys-
tem in (5.2) is pre-multipled by a non-singular matrix M. This is sometimes referred to
in numerical analysis as a preconditioned system. While preconditioning mainly focuses on
improvement in the convergence of iterative solution methods, such as the Krylov methods,
here it is used to induce smoothness. This is done by using M =W ′

`W`. The two smooth PLS
regression algorithms are two facets of preconditioning the conjugate gradients. While the
former operates on transformed coordinates (Ã and b̃), the latter (Algorithm 2) iterates start-
ing from directions determined by matrix M. The equivalence between these two algorithms
is sketched below:

M Aβ?
m = M b ,

W ′
`W` Aβ?

m = W ′
`W` b ,

W` AW ′
` β̃m = W` b ,

Ã β̃m = b̃ , for m ≤ p .



Smooth PLS regression for spectral data 477

The final solution β̃ can be transformed back in the original coordinates according to:

β?
m = W ′

` β̃m ,

in exactly the same manner that the loading vectors p̃ can be also transformed back in
original coordinates as:

p?
m = W ′

` p̃m .

Proof of Lemma 5.5: For M = Ip in the system of equations (5.2) the ordinary PLS
regression solution is recovered. This happens for increasing ` as 2`→ p. The PLS regression
solution is a Krylov solution, that is:

β̂pls

m ∈ Km(b,A) , for m ≤ p .

The smooth PLS regression solution given in Expression (3.4) as:

β̂spls

m = W ′
`
̂̃
βpls

m , for m ≤ p ,

is a Krylov solution. Combining Remark 2.1 and expression (2.5) to the orthogonality of the
DWT matrix W, as long as 2`→ p one gets:

β̂spls

m ∈ W ′
` Km(W` b,W` AW ′

` ) = W ′
`W` Km(b,A) u Km(b,A) , for m ≤ p .

Proof of Proposition 5.6: The dimension reduction performance of both ordinary
and smooth PLS regression is determined by the minimum number of iterations required to
achieve the best approximate solution to the system of equations in (5.2). This is strongly
dependent on the spectrum of A and MA for ordinary and smooth PLS regression, respec-
tively. Let S(A) be the spectrum of a symmetric matrix A as given by its eigen decomposition
A = V Λ V′ with Λ = diag(λ1, ..., λp) denoting the diagonal matrix of eigenvalues of A, and V
its orthonormal set of eigenvectors. Similarly, let S(MA) be the spectrum of the symmetric
matrix Ã. A sufficient condition for Proposition 5.6 to hold is given below:

Ordinary and smooth PLS regression are approximately equivalent in reducing the di-
mension of the regression problem whenever:

S(MA) ≈ S(A) .

Consider the eigen decomposition of matrix Ã as follows:

(
Ṽ̀ Ṽ¯̀

)
×

(
Λ̃` 0
0 Λ̃¯̀

)
×

(
Ṽ ′
`

Ṽ ′
¯̀

)
,

for Ṽ̀ = W` V̀ and Ṽ¯̀ = W¯̀V¯̀, where the subscript ` is used to denote the `-scales wavelet
approximation and ¯̀ used to denote the excluded wavelet scales. The expression above
simplifies to:

(A.2) Ẁ V̀ Λ̃`V
′

` W′
` + W̄̀ V̄̀ Λ̃¯̀V ′

¯̀ W′
¯̀ ,
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We discuss the two following cases:

1. When 2` = p, the second term in Expression (A.2) disappears and S(Ã) = S(A)
since W` is the identity matrix and V̀ = V . The two regression methods are then
identical in reducing the dimension of the regression problem.

2. When 2` < p the second term in Expression (A.2) is generally much smaller than
the first term, especially for collinear and functional data (such as the NIR data)
where PLS regression is used. The diagonal entries in Λ̃¯̀ are close to zero and the
second term in Expression (A.2) vanishes; hence the spectrum of A is approximated
by the first term and S(MA) ≈ S(A).
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distribution.

AMS Subject Classification:

• 62B10, 94A15, 94A17.

� Corresponding author.

https://doi.org/10.57805/revstat.v20i4.385
https://orcid.org/0000-0003-4260-9028
mailto:jittojosevkm@gmail.com
https://orcid.org/0000-0001-9032-8701
mailto:sathare@gmail.com


482 Jitto Jose and E.I. Abdul Sathar

1. INTRODUCTION

Shannon [33] defined the entropy of a system which measures uncertainty contained in
a random variable. The Shannon entropy measure of uncertainty is inversely related to the
occurrence probability of the event. For a non-negative and absolutely continuous random
variable X with probability density function (pdf) f(x), the Shannon entropy is defined by

H(X) = −
∫ ∞

0
f(x) ln f(x)dx.

Moreover, Rényi [30] introduced one parameter extension of Shannon entropy by defining an
entropy of order α called Rényi entropy. The Rényi entropy of X with pdf f(x) is defined by

(1.1) Hα(X) =
1

1− α
ln

∫ ∞

−∞
fα(x)dx, α > 0, (α 6= 1).

It can be easily shown that lim
α→1

Hα(X) = H(X). Some important properties of Rényi entropy

are as follows: Hα(X) can be negative, Hα(X) is invariant under a location transformation,
Hα(X) is not invariant under a scale transformation and for any α1 < α2, we have Hα1(X) ≥
Hα2(X), the equality occurs if and only if X is uniformly distributed. The Rényi divergence
of order α between two random variables X and Y with density functions f(x) and g(y),
respectively, given by

Dα(f, g) =
1

α− 1

∫ ∞

−∞

[
f(x)
g(x)

]α−1

f(x)dx.(1.2)

For details, see Golshani and Pasha [19] and Contreras-Reyes [8]. The intriguing properties
and applications of Rényi entropy have been extensively studied in literature.

Morales et al. [27] studied properties of Rényi entropy with respect to testing of hy-
pothesis in parametric models. The connection of Rényi information with log-likelihood of
the random variable derived from the gradient of the spectrum of Rényi information is dis-
cussed in Song [34]. Csiszár [10] gave Rényi’s entropy and divergence of order α operational
characterizations in terms of block coding and hypothesis testing. In the field of statistical
mechanics, the ergodic diffusion processes in terms of Rényi entropy has been discussed in
De Gregorio and Iacus [12]. Further, Kirchanov [24] uses Rényi entropy to describe quantum
dissipative systems. For more details about the application of Rényi entropy, one may refer
Nadarajah and Zografos [28], Asadi et al. [5], Contreras-Reyes [8] and Contreras-Reyes and
Cortés [9].

This paper is structured as follows: Section 2 gives a brief introduction about k-records.
Section 3 expresses Rényi Entropy of k-records arising from any continuous distribution.
In Section 4, we discuss some important properties of Rényi entropy of upper and lower
k-records. Section 5 presents two applications of Rényi entropy of k-records. The overall
findings are stated in Section 6.
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2. BACKGROUND OF k-RECORDS

Chandler [7] defined records as successive extremes occuring in a sequence of indepen-
dent and identically distributed (iid) random variables. Records are of great importance in
several real life problems involving weather, economic studies, sports, etc. Prediction of next
record value is an interesting problem in many real life situations. For example, the prediction
of next record level of water that a dam can capture is helpful in holding or discharge of the
water. Similarly, prediction of lowest share value in stock markets is essential to plan for the
investment strategies. More applications of record values are available in Arnold et al. [4]
and Ahsanullah [3].

In many events associated with athletics, temperature, wind velocity, etc., one is com-
pelled to depend upon the available record data to deal with statistical inference problems of
the parent distribution. But, statistical inferences based on records are difficult to make since
the records occurs rarely in real life situations. We can observe that the expected waiting
time for every record after the first observation is infinite. One may overcome this difficulty
by the use of k-records introduced by Dziubdziela and Kopociński [13] which occur more
frequently than the classical records. For example, consider first 10 observations from the
data given in David and Nagaraja [11]: 0.464, 0.060, 1.486, 1.022, 1.394, 0.906, 1.179, −1.501,
−0.690, 1.372. The records observed from the data are: 0.464 and 1.486. We can construct
upper k-records from the data as given below:

Table 1: Sequences of k-records for k = 2, 3, 4.

2-Records 0.060, 0.464, 1.022, 1.394.

3-Records 0.060, 0.464, 1.022, 1.179, 1.372

4-Records 0.060, 0.464, 0.906, 1.022, 1.179

It is well known that if the number of observations on the random variable increases
the statistical inferences becomes more reliable. In other words, the uncertainty contained in
the random variable reduces.

Many works are going on to detect outliers in a data so as to delete them for devising
more reasonable statistical methods to the problem of interest. The integer parameter k
involved in k-records can be chosen in such a manner that the record data generated will ex-
clude the specified number of outliers which are feared to be crept into the data. For example,
if some initial scrutiny of the data reveals that there is a possibility of occurrence of only one
outlier in terms of its largeness in the data, then it is enough to consider upper 2-records
as the desirable record data that may be used for further analysis. Hence, it is beneficial to
construct k-records from a sequence of random variables than constructing classical record
values in such situations.

Suppose {Xi, i ≥ 1} is a sequence of iid random variables. If for a positive inte-
ger k, we collect those observations in the sequence which occupy the k-th largest posi-
tion but exceeds in value for the first time the just previously recorded k-th largest value.
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Then, the resulting sequence is known as the sequence of k-th upper records or simply
k-records. We denote the times at which upper k-record values occur as Tn(k) for n = 1, 2, ...
and are defined by T1(k) = k and for n > 1, Tn+1(k) = min{j : j > Tn(k), X[j : j + k − 1] >
X[Tn(k) − k + 1 : Tn(k)]}, where X[p : q] is the p-th order statistic in a random sample of
size q. Then we define the sequence of upper k-record values denoted by Un(k) as Un(k) =
X[Tn(k) − k + 1 : Tn(k)]. If the parent distribution is absolutely continuous with survival func-
tion F̄X(x) and pdf fX(x), then, the pdf of the n-th upper k-record value Un(k) is given by
(see Arnold et al. [4])

fn(k)(x) =
kn

Γ(n)
[
− ln F̄X(x)

]n−1[F̄X(x)]k−1fX(x), n = 1, 2, ....(2.1)

Similarly, we can define the lower k-records. For a positive integer k, if we denote the
times at which lower k-records occur as TLn(k) for n = 1, 2, ... and are defined by TL1(k) = k and
for n > 1, TLn+1(k) = min{j : j > TLn(k), X[j : j + k − 1] < X[TLn(k) − k + 1 : TLn(k)]}. Then we
define the sequence of lower k-records denoted by Ln(k) as Ln(k) = X[TLn(k) − k + 1 : TLn(k)].
If the parent distribution is absolutely continuous with cumulative distribution function
(cdf) FX(x) and pdf fX(x), then, the pdf of the n-th lower k-record value Ln(k) is given by
(see Ahsanullah [3])

gn(k)(x) =
kn

Γ(n)
[− lnF (x)]n−1[F (x)]k−1f(x), n = 1, 2, ....(2.2)

Several applications of k-records are available in the literature. In reliability, a k-out-of-n
system breaks down at the time of the failure of (n− k + 1)-th component. The life time of
a k-out-of-n system is the (n− k + 1)-th order statistic in a sample of size n. Consequently,
the n-th upper k-record value can be regarded as the life length of a k-out-of-Tn(k) system.
In actuarial science, there arises situations where second or third largest set of values are of
special interest when the insurance claim of some non-life insurance is considered. One may
refer Kamps [23] for more details. Detailed description on the theoretical aspects as well as
applications of k-records are available in Arnold et al. [4], Nevzorov [29] and Ahsanullah [3].

Many authors have discussed about the information measures of classical records and
its generalized version (k-records) arising from probability distribution. Hofmann and Na-
garaja [21] derived some general results on the Fisher information contained in the classical
record values and Hofmann and Balakrishnan [20] derived some general results on the Fisher
information contained in the k-record values generated from an iid sample of fixed size from
a continuous distribution. Madadi and Tata [25] present results on the Shannon information
contained in classical record values and Madadi and Tata [26] present results on the Shannon
information contained in k-record values. They have established a relationship between the
Shannon information content of a random sample of fixed size and the Shannon information
in the data consisting of sequential maxima. Also, they have considered the information con-
tained in the k-record data from an inverse sampling plan as well. Goel et al. [18] discussed
the measure of entropy for past lifetime distributions based on k-records. Recently, Jose and
Sathar [22] studied some important properties of residual extropy of k-record values as well.
It is to be noted that, when k = 1, we can easily obtain classical record values from k-records.
Hence, k-records can be also considered as a generalized version of classical records. Barat-
pour et al. [6] studied entropy properties of classical records. Abbasnejad and Arghami [2]
have discussed about the information contained in classical record values in detail and have
derived some important properties as well. But to the best of our knowledge, no attention
has been paid to the study of Rényi information contained in k-records.
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Through this paper, the Rényi entropy of k-records arising from any continuous dis-
tribution has been discussed in detail. We also explore some of its important properties and
have presented two applications of Rényi entropy of k-records.

3. RÉNYI ENTROPY OF k-RECORDS

Let {Xi, i ≥ 1} be a sequence of iid random variables with parent distribution f(x).
Then, analogous to (1.1), the Rényi entropy of n-th upper k-record value

(
Un(k)

)
is defined by

Hα(Un(k)) =
1

1− α
ln

∫
x

fαn(k)(x)dx, α > 0, (α 6= 1).(3.1)

In the following example, we illustrate that Rényi entropy measure of uncertainty con-
tained in the original random variable is more when compared to that of k-records arising
from the observations on the original random variable.

Example 3.1. Assume X is a random variable following U(2, 4) with pdf given by

fX(x) =


1
2
, 2 ≤ x ≤ 4,

0, otherwise.

We use the Rényi entropy to measure the uncertainty involved in the random variable X.
Let Hα(X) denote the Rényi entropy of X. Then from (1.1), we get Hα(X) = ln 2. Also, the
Rényi entropy of n-th upper k-record value arising from U(2, 4) is obtained from (3.1) as

Hα
(
Un(k)

)
=

1
1− α

ln
[

kαn

Γα(n)2α−1

Γ(α(n− 1) + 1)
(α(k − 1) + 1)α(n−1)+1

]
.

It is to be noted that Hα(X) is independent of α. Moreover, Hα(X)−Hα
(
Un(k)

)
≥ 0 for

α > 0. This means that the uncertainty of X is more than Un(k). Thus, the predictability of
X is smaller than the predictability of Un(k). The graphical representation of Rényi entropy
of X and the Rényi entropy of Un(k) for varying α is given in Figure 1.

Figure 1: Rényi entropy of X and Un(k) for various values of α.
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Fashandi and Ahmadi [15] have represented Rényi entropy of n-th upper k-record value
in terms of Rényi entropy of n-th upper k-record value arising from U(0, 1). But they have
not used that representation to study the properties of Rényi entropy of n-th upper k-record
value arising from any continuous distribution. In this paper, we use the expression of Rényi
entropy of n-th upper k-record value in terms of Rényi entropy of n-th upper k-record value
arising from U(0, 1) to carry out investigation on properties and divergence of Rényi entropy
of n-th upper k-record value. Let {Xi, i ≥ 1} be a sequence of iid random variables with a
common distribution U(0, 1). Let U∗n(k) denote the n-th upper k-record value arising from the
sequence {Xi, i ≥ 1}. Using (2.1) in (3.1), we get

Hα

(
U∗n(k)

)
=

1
1− α

ln
∫ ∞

−∞

kαn

Γα(n)
[ln(1− x)]α(n−1)[1− x]α(k−1)dx.

Using the transformation z = − ln(1− x), we have

Hα

(
U∗n(k)

)
=

1
1− α

ln
∫ ∞

0

kαn

Γα(n)
zα(n−1)e−z(α(k−1)+1)dz.

Then, the Rényi entropy of U∗n(k) is given by

Hα

(
U∗n(k)

)
=

1
1− α

ln
[
kαn

Γα(n)
Γ(α(n− 1) + 1)

(α(k − 1) + 1)α(n−1)+1

]
.(3.2)

Then, for a sequence of iid random variables {Xi, i ≥ 1} with cdf F (x) and pdf f(x).
If we denote Un(k) the n-th upper k-record value of the sequence {Xi}. Applying (2.1) in
(3.1), we get

Hα
(
Un(k)

)
=

1
1− α

ln
kαn

Γα(n)

∞∫
−∞

[− ln(1− F (x))]α(n−1)[1− F (x)]α(k−1)fα(x)dx.

Using the transformation u = − ln(1− F (x)) and on integrating, we get

Hα
(
Un(k)

)
=

1
1− α

ln
{

kαn

Γα(n)
Γ(α(n− 1) + 1)

(α(k − 1) + 1)α(n−1)+1
E

[
fα−1

(
F−1(1− e−V )

)]}
,

where V follows gamma distribution with parameters α(n− 1) + 1 and α(k − 1) + 1 and we
denote it by V ∼ Gamma(α(n− 1) + 1, α(k− 1) + 1). Then, from (3.2), the Rényi entropy of
Un(k) is given by

Hα
(
Un(k)

)
= Hα

(
U∗n(k)

)
+

1
1− α

ln
{
E

[
fα−1

(
F−1(1− e−V )

)]}
.(3.3)

Similarly, the Rényi entropy of n-th lower k-record value arising from any continuous
distribution can be expressed in terms of Rényi entropy of n-th lower k-record value arising
from U(0, 1). Let Ln(k) denote the n-th lower k-record value of the sequence {Xi}. Then,
the Rényi entropy of Ln(k) is given by

Hα
(
Ln(k)

)
= Hα

(
L∗n(k)

)
+

1
1− α

ln
{
E

[
fα−1

(
F−1(e−V )

)]}
,(3.4)

where Hα
(
L∗n(k)

)
denote the Rényi entropy of n-th lower k-record value arising from U(0, 1)

and V ∼ Gamma(α(n− 1) + 1, α(k − 1) + 1).
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As an illustration, we obtain the Rényi entropy of k-records arising from exponential
and Pareto distribution in the following examples.

Example 3.2. Let {Xi, i ≥ 1} be a sequence of iid random variables having a common
Pareto distribution with density function given by

f(x) =
β

σ

(x
σ

)−β−1
, x > σ.

Here,

F−1(x) = σ[1− x]−
1
β .

Now, we have

E
[
f(F−1(1− e−Vn))

]
=

βαn

σα−1

[
α(k − 1) + 1
α(βk + 1)− 1

]α(n−1)+1

.

Then, from (3.2) and (3.3), we get

Hα
(
Un(k)

)
=

1
1− α

ln
[
kαn

Γα(n)
βαnΓ(α(n− 1) + 1)

σα−1[α(βk + 1)− 1]α(n−1)+1

]
.

The graphical representation of the Rényi entropy of UXn(k) arising from Pareto distribu-
tion with shape parameter β=3 and scale parameter σ=2 is given in Figure 2, for varying α.
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Figure 2: Rényi entropy of UX
n(k) for various values of α.

If we put k=1, we can easily obtain the classical records from the sequence of k-records.
From the figure, it can be observed that the Rényi entropy of classical upper record values
(when k = 1) is greater than the Rényi entropy of upper k-records. This means that the un-
certainty contained in classical records is more than that of k-records. Hence, one may observe
certain situations where the predictability of classical records is less than the predictability
of k-records when analyzed using Rényi entropy.
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Example 3.3. Let {Xi, i ≥ 1} be a sequence of iid random variables having a common
exponential distribution with density function given by

f(x) = θe−θx, x > 0, θ > 0.

Here,

F−1(x) = −1
θ

ln(1− x).

Now, we have

E
[
fα−1(F−1(1− e−V ))

]
=

[
α(k − 1) + 1

αk

]α(n−1)+1

θα−1.

Then, from (3.2) and (3.3), we get

Hα
(
Un(k)

)
=

1
1− α

ln
[
kαn

Γα(n)
θα−1Γ(α(n− 1) + 1)

(αk)α(n−1)+1

]
.

4. PROPERTIES OF RÉNYI ENTROPY OF k-RECORDS

In this section, we discuss some important properties of Rényi entropy of upper and
lower k-records arising from any continuous distribution. To determine the monotonicity of
Rényi entropy of upper and lower k-records arising from any continuous distribution we make
use of the following definitions of stochastic and likelihood ratio orders given in Shaked and
Shanthikumar [32].

Definition 4.1. LetX and Y be two non-negative random variables with cdfs F andG
and with pdfs f and g respectively, then X is said to be smaller than Y :

(1) in the likelihood ratio order, denoted by X ≤lr Y, if f(x)
g(x) is decreasing in x ≥ 0;

(2) in the usual stochastic order, denoted by X ≤st Y, if F̄ (x) ≤ Ḡ(x) for all x ≥ 0,
where H̄(·) is the survival function.

It is well known that X ≤lr Y =⇒ X ≤st Y and X ≤st Y if and only if E[φ(X)] ≤ E[φ(Y )]
for all increasing functions φ.

Definition 4.2. The random variable X is said to be less than or equal to the random
variable Y in Rényi entropy ordering, denoted by X ≤RE Y, if Hα(X) ≤ Hα(Y ) for all α > 0.

The following theorem reveals the monotone behaviour of Rényi entropy of upper
k-record values based on n.

Theorem 4.1. Let {Xi, i ≥ 1} be a sequence of iid random variables with a common

cdf F (x) and pdf f(x). Let Un(k) denote the n-th upper k-record value. If f(x) is non-

decreasing in x, then for n > k, Hα
(
Un(k)

)
is non-increasing in n.

Proof: The proof is straightforward as in Theorem 2.1 of Abbasnejad and Arghami [2].
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In a similar way, we can state the monotone behaviour of Rényi entropy of lower
k-records as given in the following theorem. The proof is not included since it easily follows
as in Theorem 4.1.

Theorem 4.2. Let {Xi, i ≥ 1} be a sequence of iid random variables with a common

cdf F (x) and pdf f(x). Let Ln(k) denote the n-th lower k-record value. If f(x) is non-

increasing in x, then for n > k, Hα
(
Ln(k)

)
is non-increasing in n.

We will now discuss about the Rényi entropy ordering of n-th upper k-record value
of two random variables. Abbasnejad and Arghami [2] have used Rényi entropy ordering
of the random variables to establish their Rényi entropy ordering of classical record values.
In the following theorem, we make use of Rényi entropy ordering of the random variables to
establish their Rényi entropy ordering of n-th upper k-record value.

Theorem 4.3. Let X and Y be two continuous random variables with cdfs F (x) and

G(y) and pdfs f(x) and g(y) respectively. Suppose that UXn(k) and Uyn(k) represents the n-th

upper k record value arising from X and Y respectively. Assume that

Λ1 =
{
v > 0

g(G−1(1− e−v))
f(F−1(1− e−v))

≤ 1
}
,

Λ2 =
{
v > 0

g(G−1(1− e−v))
f(F−1(1− e−v))

> 1
}

and X ≤RE Y . If inf Λ1 ≥ supΛ2, then UXn(k) ≤RE U
Y
n(k), ∀ n ≥ 1 and n > k.

Proof: The proof is omitted since it is similar to that of Theorem 2.3 in Abbasnejad
and Arghami [2].

In the following example, we apply Theorem 4.3 to obtain Rényi entropy ordering of
two random variables following exponential distribution based on upper k-records.

Example 4.1. Let X and Y be two random variables having common exponential
distribution with different scale parameters σ and λ respectively, where σ > λ. Then from
(1.1), we get

Hα(X) =
1

1− α
ln(α)− ln(σ).

It can be easily verified that Hα(X) is a decreasing function of σ. Thus, we have Hα(X) ≤
Hα(Y ) and thereby X ≤RE Y . We have f(F−1(1− e−x)) = 1

σ e−x and inf Λ1 = supΛ2. Hence,
by Theorem 4.3 we get UXn(k) ≤RE U

Y
n(k).

Similar to Theorem 4.3, we establish the Rényi entropy ordering of two random variables
based on lower k-records.
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Theorem 4.4. Let X and Y be two continuous random variables with cdfs F (x) and

G(y) and pdfs f(x) and g(y) respectively. Suppose

Λ1 =
{
v > 0

g(G−1(e−v))
f(F−1(e−v))

≤ 1
}
,

Λ2 =
{
v > 0

g(G−1(e−v))
f(F−1(e−v))

> 1
}

and X ≤RE Y . If inf Λ1 ≥ supΛ2, then LXn(k) ≤RE L
Y
n(k), ∀ n ≥ 1 and n > k.

The following lemma explains the effect of location-scale transformation on random
variable in the case of Rényi entropy of k-records. The proof is simple and hence omitted.

Lemma 4.1. Consider a non-negative random variable X with pdf f and cdf F . Let

Z = aX + b be a transformation on X, where a > 0 and b ≥ 0 are constants. Then

Hα

(
UZn(k)

)
= Hα

(
UXn(k)

)
+ ln a,(4.1)

where UZn(k) and UXn(k) are the n-th k-record corresponding to Z and X respectively.

Thus, the Rényi entropy of k-records changes due to the change in scale, but it does
not change due to the change in location. The next theorem will discuss on the Rényi entropy
ordering of k-records under location-scale transformation.

Theorem 4.5. Consider two absolutely continuous random variablesX and Y. Assume

that UZn(k) and UXn(k) are the n-th upper k-record corresponding to X and Y respectively. Let

UZ1

n(k) = a1U
X
n(k) + b1 and UZ2

n(k) = a2U
Y
n(k) + b2, where a1, a2 > 0 and b1, b2 ≥ 0 are constants.

If UXn(k) ≤RE U
Y
n(k), then UZ1

n(k) ≤RE U
Z2

n(k) for a1 ≤ a2.

Proof: If UXn(k) ≤RE U
Y
n(k), then

Hα

(
UXn(k)

)
≤ Hα

(
UYn(k)

)
.

Since a1 ≤ a2, ln a1 ≤ ln a2. Hence,

ln a1 +Hα

(
UXn(k)

)
≤ ln a2 +Hα

(
UYn(k)

)
.

Thus, from (4.1), we get UZ1

n(k) ≤RE U
Z2

n(k). Hence the theorem.

We will now deduce the following corollary which removes the restriction on the scale
constants.

Corollary 4.1. Consider two absolutely continuous random variablesX and Y. Assume

that UZn(k) and UXn(k) are the n-th upper k-record corresponding to X and Y respectively.

Let UZ1

n(k) = aUXn(k) + b and UZ2

n(k) = aUYn(k) + b, where a > 0 and b ≥ 0 are constants.

If UXn(k) ≤RE U
Y
n(k), then UZ1

n(k) ≤RE U
Z2

n(k).
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We will now discuss the effect of monotone transformation for Rényi entropy of k-records
through the following theorem.

Theorem 4.6. Assume a strictly convex function ψ having ψ(0) = 0 and ψ(∞) =∞.

Consider, if Y = ψ(X) then

Hα

(
UYn(k)

)
= Hα

(
U∗n(k)

)
+

1
1− α

ln

{
E

[
f(F−1(1− e−Vn))
ψ ′(F−1(1− e−Vn))

]α−1
}
,(4.2)

where Vn ∼ Gamma(α(n− 1)+1, α(k− 1)+1). Here, UYn(k) are the n-th upper k-record value

corresponding to Y .

Proof: Let gn(k)(y) and Ḡn(k)(y) be the pdf and survival function of n-th upper
k-record value corresponding to Y . Then, from (2.1) we get

Hα

(
UYn(k)

)
=

1
1− α

ln
∫ ∞

0

kαn

Γα(n)
[
− ln Ḡ(y)

]α(n−1)[Ḡ(y)]α(k−1)gα(y)dy.

Applying the transformation Y = ψ(X), we have

Hα

(
UYn(k)

)
=

1
1− α

ln
kαn

Γα(n)

∞∫
0

[
− ln F̄ (x)

]α(n−1)[F̄ (x)]α(k−1)

(
f(x)
ψ ′(x)

)α

ψ ′(x)dx.

Using the substitution u = − ln F̄ (x) in the integral, the theorem follows.

The following theorem, establishes the Rényi entropy ordering of strictly increasing
convex functions of two n-th upper k-records based on the Rényi entropy ordering of their
respective k-records.

Theorem 4.7. Suppose X and Y are non-negative random variables such that

UXn(k) ≤RE U
Y
n(k) and ψ be a strictly increasing convex function with ψ(0) = 0, ψ(∞) = ∞,

ψ ′(x) exists and is continuous with ψ ′(0) ≥ 1. Then ψ
(
UXn(k)

)
≤RE ψ

(
UYn(k)

)
, where UXn(k)

and UYn(k) denote the n-th upper k-record value corresponding to X and Y respectively.

Proof: Since UXn(k) ≤RE U
Y
n(k), we have Hα

(
UXn(k)

)
≤ Hα

(
UYn(k)

)
. This implies

Hα

(
UX∗n(k)

)
E

[
fα−1

(
F−1(1− e−Vn)

)]
≤ Hα

(
UY ∗n(k)

)
E

[
gα−1

(
G−1(1− e−Vn)

)]
,(4.3)

where Vn ∼ Gamma(α(n− 1) + 1, α(k − 1) + 1). Then, from (4.2), we have

Hα

(
ψ

(
UXn(k)

))
−Hα

(
ψ

(
UYn(k)

))
=

= Hα

(
UX∗n(k)

)
−Hα

(
UY ∗n(k)

)
+

1
1− α

ln


E

[
f(F−1(1−e−Vn ))
ψ′(F−1(1−e−Vn ))

]α−1

E
[
g(G−1(1−e−Vn ))
ψ′(G−1(1−e−Vn ))

]α−1

.
Since ψ ′(0) ≥ 1 and from (4.3), we obtain Hα

(
ψ

(
UXn(k)

))
−Hα

(
ψ

(
UYn(k)

))
≤ 0. Hence,

ψ
(
UXn(k)

)
≤RE ψ

(
UYn(k)

)
.
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Therefore, we can observe that the Rényi entropy ordering of two random variables
determine the Rényi entropy ordering of their respective k-records and the Rényi entropy
ordering of the respective convex function of k-records are determined by the Rényi entropy
ordering of their respective k-records. The following example discusses the same.

Example 4.2. Consider a convex function ψ(x) = βx, where β ≥ 1. Hence ψ be a
strictly increasing convex function with ψ(0) = 0, ψ(∞) = ∞, ψ ′(x) exists and is continuous
with ψ ′(0) ≥ 1. From Example 4.1, we have UXn(k) ≤RE U

Y
n(k). Thus, the assumptions of

Theorem 4.7 are satisfied and therefore, we can directly obtain ψ
(
UXn(k)

)
≤RE ψ

(
UYn(k)

)
in

which X and Y have common exponential distribution with different scale parameters σ and λ
respectively, where σ > λ.

We will now study another property regarding the bound of Rényi entropy of k-records.
Through the following theorem, we present a lower bound for the Rényi entropy of upper
k-records arising from any continuous distribution.

Theorem 4.8. Let {Xi, i ≥ 1} be a sequence of iid random variables with a common

distribution function F (x) and density function f(x). LetHα
(
Un(k)

)
denote the Rényi entropy

of n-th upper k-record value arising from the sequence and Hα

(
U∗n(k)

)
denote the Rényi

entropy of n-th upper k-record value arising from U(0, 1). Suppose that M = f(m) exists,

where M is the mode of X, then for α > 0

Hα
(
Un(k)

)
≥ Hα

(
U∗n(k)

)
− lnM.(4.4)

Proof: Since M is the mode of X, we have

f(F−1(y)) ≤M.

Using the transformation y = 1− e−V , we get

f(F−1(1− e−U )) ≤ M,

fα−1(F−1(1− e−U )) ≤ Mα−1.

Taking expectations on both sides, we obtain

E
[
fα−1(F−1(1− e−U ))

]
≤ Mα−1.(4.5)

Similarly, for 0 < α < 1

E
[
fα−1(F−1(1− e−U ))

]
≥ Mα−1.(4.6)

From (4.5) and (4.6), for α > 0, we have

1
1− α

lnE
[
fα−1(F−1(1− e−U ))

]
≥ − lnM.(4.7)

Using (3.3) in (4.7), we get

Hα
(
Un(k)

)
−Hα

(
U∗n(k)

)
≥ − lnM

Hα
(
Un(k)

)
≥ Hα

(
U∗n(k)

)
− lnM.

Hence the theorem.
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In the following example, we make use of Theorem 4.8 to obtain bound for Rényi
entropy of upper k-record value arising from Gompertz distribution.

Example 4.3. The pdf of Gompertz distribution with shape parameter λ and scale
parameter β is given by

f(x) = βλeβx+λ(1−eβx), x > 0, β, λ > 0.

We know that mode of this distribution is 1
β ln 1

λ . Thus, from (4.4) we have

Hα
(
Un(k)

)
≥ 1

1− α
ln

[
kαnβ

lnλΓα(n)
Γ(α(n− 1) + 1)

(α(k − 1) + 1)α(n−1)+1

]
.

In the following theorem, similar to Theorem 4.8, we obtain lower bound for Rényi
entropy of lower k-records arising from any continuous distribution.

Theorem 4.9. Let {Xi, i ≥ 1} be a sequence of iid random variables with a common

distribution function F (x) and density function f(x). LetHα
(
Ln(k)

)
denote the Rényi entropy

of n-th lower k-record value arising from the sequence and Hα

(
L∗n(k)

)
denote the Rényi

entropy of n-th lower k-record value arising from U(0, 1). Suppose that M = f(m) exists,

where M is the mode of X, then for α > 0

Hα
(
Ln(k)

)
≥ Hα

(
L∗n(k)

)
− lnM.(4.8)

In the following example, we make use of Theorem 4.9 to obtain lower bound for Rényi
entropy of lower k-records arising from Fréchet distribution.

Example 4.4. The density function of Frechet distribution with shape parameter a
and scale parameter s is given by

f(x) =
a

s

(x
s

)−1−a
e−(x

s )
−a

, x > 0; a, s > 0.

We know that mode of this distribution is s
(

a
1+a

) 1
a . Thus, from (4.8), we get

Hα
(
Un(k)

)
≥ 1

1− α
ln

{[
a

a+ 1

]a kαn

s Γα(n)
Γ(α(n− 1) + 1)

(α(k − 1) + 1)α(n−1)+1

}
.

5. APPLICATIONS OF RÉNYI ENTROPY OF k-RECORDS

This section deals with the applications of Rényi entropy of k-records. One application
of Rényi entropy of k-records is that it can be used to characterize a class of distributions
of non-negative random variables. Another application of Rényi entropy of k-records is that
it determines Rényi divergence between the distribution of k-record values and its parent
distribution.
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5.1. Characterization of exponential distribution

Ebrahimi [14] suggested that maximum entropy paradigm can be used to produce a
model for the data generating distribution. In the maximum entropy procedure, a model that
best approximates the unknown distribution is derived based on the partial knowledge about
this distribution in terms of a set of information constraints. Then, the inference is based
on the model that maximizes the entropy of the random variables subject to the information
constraints. In this subsection, we derive exponential distribution as the distribution that
maximizes the Rényi entropy of k-records under some information constraints.

Let ξ be a class of distributions F (x) of non-negative random variables X with F (0) = 0
such that

(i) r(x, θ) = a(θ)b(x),

(ii) b(x) ≥ β, β > 0,

where b(x) = B′(x) is a non-negative function of x and a(θ) is a non-negative function of θ.

Abbasnejad and Arghami [2] derived exponential distribution as the distribution that
maximizes the Rényi entropy of classical record values under some information constraints.
In the following theorem we characterize ξ using the Rényi entropy of n-th upper k-record
value.

Theorem 5.1. Let Un(k) be the n-th upper k-record value of F (x; θ), where F (x; θ)
is in class ξ. Then, the n-th upper k-record value of the distribution F (x; θ) has maximum

Rényi entropy in ξ if and only if F (x; θ) = 1− e−a(θ)βx.

Proof: The proof follows similar steps to that of Theorem 4.1 in Abbasnejad and
Arghami [2].

5.2. Rényi divergence of k-records

Several applications of entropy divergence measures in formulating test statistics for
testing of hypotheses and goodness-of-fit tests are available in literature. Gil et al. [16] pre-
sented closed form expressions of Rényi divergence for nineteen commonly used univariate
continuous distributions as well as those for multivariate Gaussian and Dirichlet distributions.
Salicrú et al. [31] suggested test statistics using some families of divergence like φ-divergence.
Vasicek [35] used the sample Shannon entropy estimate to test normality. Abbasnejad [1] ob-
tained a test statistic for exponentiality based on Rényi divergence. Abbasnejad and Arghami
[2] studied Rényi divergence between parent distribution and distribution of classical record
value as well. Through the following theorem, we study Rényi divergence between parent
distribution and distribution of n-th upper k-record value.
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Theorem 5.2. The Rényi divergence between distribution of n-th upper k-record

value and its parent distribution is given by

Dα(fn(k), f) = −Hα
(
U∗n(k)

)
,

where fn(k) is the pdf of Un(k) and U∗n(k) is the n-th upper k-record value arising from U(0, 1).
Moreover, Dα(fn(k), f) is increasing in n.

Proof: Using (2.1) in (1.2) and by the transformation u = − ln F̄ (x), we get

Dα(fn(k), f) =
1

α− 1
ln

∫ ∞

0

kαn

Γα(n)
uα(n−1)e−u(α(k−1)+1)du,

= −Hα
(
U∗n(k)

)
.

Hence, the Rényi divergence between the distribution of the n-th upper k-record value and
the parent distribution is distribution free. Moreover, taking the derivative of Hα

(
U∗n(k)

)
with respect to n, we get

dHα

(
U∗n(k)

)
dn

=
α

α− 1
(1− ln k)− 1

α− 1
ξ(α(n− 1) + 1) +

α

α− 1
ξ(n),

where ξ(u) =
d ln Γ(u)
du

. For every u, the function ξ(u) is non-decreasing and therefore

Hα

(
U∗n(k)

)
is non-increasing in n. Thus the result follows.

Thus, by increasing n, we expect that the divergence between the distribution of the
n-th upper k-record value and the parent distribution increases.

5.3. Numerical illustration

In this subsection, we propose a simple estimator for the Rényi entropy of the n-th
upper k-record value and discuss the merit of k-records over classical records and parent
random variable in terms of uncertainty. To estimate the Rényi entropy based on n-th upper
k-record value, kernel density has been applied to estimate the density function and empirical
distribution has been used as an estimator for the distribution function. The estimator is
proposed for Rényi entropy obtained by replacing the density of the parent random variable
by the density of n-th upper k-record value and hence much complexities arises while deriving
the properties of the proposed estimator directly. Therefore, the proposed simple estimator for
Rényi entropy based on n-th upper k-record value can be analysed numerically by evaluating
the average bias and MSE for different sample sizes which examines the bias and consistency
characteristics of the proposed estimator. A numerical illustration has been presented with
an intention to describe the benefit of applying Rényi entropy based on n-th k-record in
comparison to that of the parent random variable. Using (2.1) in (3.1), the Rényi entropy of
the n-th upper k-record can be expressed as

Hα
(
Un(k)

)
=

1
1− α

ln

∞∫
0

kαn

Γα(n)
[
− ln F̄ (x)

]α(n−1)[
F̄ (x)

]α(k−1)
fα(x)dx.(5.1)
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A simple estimator for the Rényi entropy of the n-th upper k-records value based on a random
sample of size n is given by

Ĥα

(
Un(k)

)
=

1
1− α

ln

∞∫
0

kαn

Γα(n)

[
− ln ˆ̄F (x)

]α(n−1)[ ˆ̄F (x)
]α(k−1)

f̂α(x)dx,(5.2)

where f̂(x) = 1
nbn

n∑
j=1

K
(x−Xj

bn

)
, denotes the kernel density estimator with the bandwidth bn.

Also K(·) is a kernel function satisfying the condition
∫∞
−∞K(x)dx = 1 and is usually a

symmetric pdf. Also, ˆ̄F (x) = 1
n

n∑
i=1

I(Xi ≥ x) is the empirical survival function and I(Xi ≥ x)

is the indicator function.

In the following illustration, we use a real life data set to compute Rényi entropy of the
n-th upper k-record value and make a comparison with that of classical records and parent
random variable.

Dataset 1: Let the random variable X represents the brain weight (in grams) of
237 adults discussed in Gladstone [17]. The brain weight of an adult is not so easy to obtain
and hence for more reliable inferences on the random variable X, the distribution of X should
possess less uncertainty. The study focus on the uncertainty contained in the distribution of
the random variable X. Initial study on distribution of X suggests the normal distribution
with location parameter µ = 1282.87 and scale parameter σ = 120.86 is a good fit for the
data set with Kolmogrove-Smirnov (K-S) statistic = 0.03914 and p-value = 0.9755. Since
the normal distribution is a good fit for the proposed data, a Gaussian kernel can be chosen
for estimation procedure using the given data set. The fit of normal distribution to data is
depicted in Figure 3.
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(a) Histogram and normal curve.
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(b) Normal and empirical CDF.

Figure 3: Modelling brain weight data using normal distribution.

To estimate Rényi entropy of the n-th upper k-record value the Gaussian kernel with
bn = 120 is applied in (5.2). The closeness of the estimators of Rényi entropy based on n-th
upper k-record value and the parent random variable with the theoretical value of Rényi
entropy which has been obtained by assuming normal distribution for the random variable
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with parameter values µ= 1282.87 and σ = 120.86 (ML estimates) for different choices of α
are presented in Table 2.

Table 2: Comparison of theoretical values and estimates of Rényi entropy
based on X and Un(k) where k = 1, 2, 5, 7, 9 and 10.

α Hα(X) Ĥα(X) Ĥα

�
Un(1)

�
Ĥα

�
Un(2)

�
Ĥα

�
Un(5)

�
Ĥα

�
Un(7)

�
Ĥα

�
Un(9)

�
Ĥα

�
Un(10)

�

0.10 6.9885 8.9341 7.2943 6.4240 6.3835 6.2870 5.9981 5.8530
0.30 6.5692 9.5116 8.8650 8.7573 8.7103 8.6019 8.1354 7.5349
0.50 6.4024 11.1967 10.3061 10.2393 9.7591 9.6735 9.6341 9.5618
0.70 6.2846 20.6588 13.7849 13.7476 12.6784 12.6646 12.6296 12.5986
1.15 6.1556 17.3662 12.4395 12.3814 12.3616 12.2889 11.8381 11.7295
1.40 6.1147 10.8954 10.0227 9.2979 9.2531 9.1823 9.1673 9.1643
1.75 6.0823 3.7508 7.7072 7.5870 7.8013 7.8826 7.5907 7.6997
2.00 6.0558 3.1864 6.8005 6.7703 6.7178 6.7033 6.5973 6.5817
2.25 6.0336 2.2530 6.4741 6.1328 6.0768 6.0333 5.9477 5.8533
2.50 6.0147 1.6343 5.0568 4.9876 4.7800 4.6415 4.5031 4.4339
3.25 5.9839 0.8677 3.9306 3.8767 3.7152 3.6076 3.4999 3.4460
3.50 5.9598 0.4133 3.3674 3.3213 3.1828 3.0906 2.9983 2.9521

From Table 2, we can observe that the estimates of Rényi entropy based on n-th upper
k-record value is closer to its theoretical value than the estimate of Rényi entropy based
parent random variable. Also, when k = 1, k-records becomes classical records. In terms of
uncertainty, we have compared three different estimates (based on parent random variable,
classical records and k-records) for Rényi entropy which can be obtained from a random
sample. Hence, from Table 2, one may conclude that there are situations where construction
of k-records or classical records from random sample gives closer estimate than the estimate
obtained based on random variable. Moreover, the k-records or classical records are ordered
random variables which carry an additional information about their ranks when compared to
the parent random variable.

Table 3: Average bias and MSE of the estimate of Rényi entropy
of the n-th upper k-record value for different choices of α.

n k
α = 0.25 α = 0.75 α = 1.50 α = 3.0

Bias MSE Bias MSE Bias MSE Bias MSE

20

1 1.14072 1.09495 1.12052 1.06003 1.11085 1.03190 1.09435 1.03083
3 1.07479 1.00485 1.07209 0.99914 1.06225 0.92091 1.05467 0.90367
6 1.00195 0.89941 0.99823 0.85221 0.96188 0.81123 0.94057 0.80224
8 0.92137 0.79354 0.91658 0.77677 0.91307 0.77391 0.89728 0.75497

10 0.85722 0.74954 0.83132 0.73397 0.81957 0.71637 0.80547 0.68588

60

1 0.93818 0.84330 0.90040 0.84103 0.88101 0.82568 0.87493 0.82497
3 0.85666 0.81577 0.83509 0.80718 0.82274 0.74541 0.79530 0.73895
6 0.79185 0.73802 0.78635 0.73201 0.78544 0.71686 0.76749 0.70849
8 0.76585 0.65507 0.75573 0.61861 0.72946 0.57439 0.70244 0.57347

10 0.68611 0.53900 0.67284 0.50139 0.66842 0.49361 0.65933 0.44052

100

1 0.76797 0.69524 0.76709 0.68935 0.75349 0.68063 0.75052 0.68010
3 0.74507 0.59512 0.73545 0.59152 0.72329 0.56915 0.71883 0.55927
6 0.71429 0.53813 0.70983 0.52673 0.69858 0.51378 0.65525 0.48069
8 0.64116 0.46515 0.63902 0.43912 0.62873 0.43155 0.61199 0.42260

10 0.58717 0.41116 0.57277 0.40205 0.57109 0.38755 0.56469 0.37685
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To study the effect of the estimator suggested for Rényi entropy of the n-th upper
k-record value denoted as Hα

(
Un(k)

)
, we have obtained average bias and mean square error

(MSE) of the estimator using bootstrapping procedure. The bias and MSE of the estimates
are evaluated from value of Rényi entropy of the n-th upper k-record obtained using the
parameter estimates µ = 1282.87 and scale parameter σ = 120.86 in (5.1) which we have
considered as the true value of Hα

(
Un(k)

)
. The average bias and MSE of Hα

(
Un(k)

)
based

on 100 bootstrap estimates from samples of sizes 20, 60 and 100 are presented in Table 3.
It can be observed that the average bias and MSE of the estimator of Rényi entropy of the
n-th upper k-record value diminishes as sample size becomes large.

6. CONCLUSION

The study explains the relevance of k-records in measuring uncertainty using Rényi
entropy after comparing it with Rényi entropy of classical records as well as with Rényi en-
tropy of original random variable. Fashandi and Ahmadi [15] have expressed Rényi entropy
for k-records arising from any continuous distribution in terms of Rényi entropy of k-records
arising from uniform distribution and we have used that representation to derive some im-
portant properties of Rényi entropy of k-records. The monotone behaviour of Rényi entropy
of k-records have been derived. We have shown that the Rényi entropy ordering of random
variables determines the Rényi entropy ordering of their respective k-record values. The
Renyi entropy ordering of k-records determines the Renyi entropy ordering of their respec-
tive linear transformations of k-records as well as their convex function of k-records. A lower
bound for the Rényi entropy of k-records have been obtained in this work. We have applied
Rényi entropy of k-records to characterize exponential distribution by maximization of Rényi
entropy based on certain information constraints. The study also establishes that the Rényi
divergence between the distribution of k-records and its parent distribution is distribution
free and the divergence increases with increase in n. A simple estimator for Rényi entropy of
k-records has been proposed and compared estimates of Renyi entropy of k-records, classical
records and parent random variable using a real life data set.
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[19] Golshani, L. and Pasha, E. (2010). Rényi entropy rate for Gaussian processes, Information
Sciences, 180(8), 1486–1491.

[20] Hofmann, G. and Balakrishnan, N. (2004). Fisher information in k-records, Annals of
the Institute of Statistical Mathematics, 56(2), 383–396.

[21] Hofmann, G. and Nagaraja, H. (2003). Fisher information in record data, Metrika, 57(2),
177–193.



500 Jitto Jose and E.I. Abdul Sathar

[22] Jose, J. and Sathar, E.I.A. (2019). Residual extropy of k-record values, Statistics & Prob-
ability Letters, 146(C), 1–6.

[23] Kamps, U. (1995). A concept of generalized order statistics, Journal of Statistical Planning
and Inference, 48(1), 1–23.

[24] Kirchanov, V.S. (2008). Using the renyi entropy to describe quantum dissipative systems
in statistical mechanics, Theoretical and Mathematical Physics, 156(3), 1347–1355.

[25] Madadi, M. and Tata, M. (2011). Shannon information in record data, Metrika, 74(1),
11–31.

[26] Madadi, M. and Tata, M. (2014). Shannon information in k-records, Communications in
Statistics-Theory and Methods, 43(15), 3286–3301.

[27] Morales, D.; Pardo, L. and Vajda, I. (1997). Some new statistics for testing hypotheses
in parametric models, Journal of Multivariate Analysis, 62(1), 137–168.

[28] Nadarajah, S. and Zografos, K. (2003). Formulas for Rényi information and related
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1. INTRODUCTION

The count data sets arise in different fields such as yearly number destructive earth-
quakes, monthly traffic accidents and hourly bacterial growth and among others. These
kind of data sets are modeled with discrete probability distributions. Poisson and negative-
binomial distributions are the most popular distributions and are widely used to model these
kind data sets. In recent years, researchers have shown great interest to introduce new dis-
crete distributions by discretizing a continuous failure time model. Let the continuous random
variable X has the survival function (sf) S (x) = Pr (X > x). The probability mass function
(pmf) dealing with the continuous random variable X is given by

Pr (X = x) = S (x)− S (x + 1) , x = 0, 1, 2, ...

Many researchers have introduced sophisticated discrete distributions by applying the dis-
cretization method to the continuous failure time models. For instance, discrete Lindley
distribution by Gómez-Déniz and Caldeŕın-Ojeda (2011) [12], discrete Rayleigh distribution
by Roy (2004) [28], discrete inverse Rayleigh distribution by Hussain and Ahmad (2014)
[13], discrete Pareto distribution by Buddana and Kozubowski (2014) [6], discrete Weibull
distribution by Nakagawa and Osaki (1975) [21], discrete Lomax distribution by Para and
Jan (2016a) [24], discrete generalized Weibull distribution by Para and Jan (2017) [26] and
exponentiated discrete Lindley by El-Morshedy et al. (2019) [10], discrete flexible one param-
eter distribution by Eliwa and El-Morshedy (2020) [7] and discrete gompertz-G by Eliwa et

al. (2020a) [8] and among others. The discrete analogue of the Burr-Hatke distribution was
introduced by El-Morshedy et al. (2020) [11] with its regression model and residual analysis.
More recently, Eliwa et al. (2020b) [9] introduced the discrete analogue of the three-parameter
Lindley distribution and demonstrated its performance in modeling the time series of counts.

In this paper, we introduce a new one-parameter discrete distribution by applying
the discretization method to the Bilal distribution, proposed by Abd-Elrahman (2013) [4].
The arising distribution is called as the discrete Bilal (DBL) distribution. The DBL dis-
tribution has simple probability mass and cumulative distribution functions and statistical
properties such as mean, mode, skewness, kurtosis measures, mean deviation and also stress-
strength reliability are obtained in explicit forms. The DBL distribution provides an op-
portunity to model different types of the count data sets such over and under-dispersed.
We illustrate the importance of DBL distribution in first-order integer-valued autoregressive
(INAR(1)) process by applying the DBL distribution as an innovation process of INAR(1)
process, introduced by McKenzie (1985) [20] and Al-Osh and Alzaid (1987) [1]. INAR(1) pro-
cess is widely used to model time series of counts. Several researchers have done important
studies on the INAR(1) processes with more flexible innovation distributions. For instance,
Jazi et al. (2012) [14] introduced the INAR(1) process with geometric innovations (INAR(1)G)
to model the over-dispersed time series of counts. Similarly, Ĺıvio et al. (2018) [19] intro-
duced the INAR(1) process with Poisson-Lindley innovations (INAR(1)PL) for over-dispersed
time series of counts. More recently, Altun (2020a) [2] introduced a new generalization of
the geometric and demonstrated its performance in INAR(1) process. More recently, Altun
(2020b) [3] introduced a mixed Poisson distribution and defined a new INAR(1) process for
over-dispersed time series of counts.
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The remaining parts of the presented study is organized as follows. The statistical
properties of the DBL distribution are obtained in Section 2. The parameter estimation of
the DBL distribution is discussed in Section 3. The INAR(1) process with DBL innova-
tions is introduced in Section 4 with its parameter estimation. In Section 5, we discuss the
finite-sample performance of the parameter estimation methods via two simulation studies.
In Section 6, three data sets are analyzed with DBL and other competitive models to prove
the importance of the DBL distribution practically. Section 7 deals with the concluding
remarks of the study.

2. THE DISCRETE-BILAL DISTRIBUTION

Recently, Abd-Elrahman (2013) [4] proposed a new flexible model, called Bilal (BL)
distribution. The cumulative distribution function (cdf) of the BL distribution is

(2.1) Π(x;β) = 1−
(
3− 2e

− x
β

)
e
− 2x

β , x ≥ 0, β > 0.

The sf and probability density function (pdf) of (2.1) are given, respectively, by

(2.2) S(x;β) =
(
3− 2e

− x
β

)
e
− 2x

β , x ≥ 0, β > 0,

(2.3) π(x;β) =
6
β

(
1− e

− x
β

)
e
− 2x

β , x ≥ 0, β > 0.

Now, we introduce a DBL distribution by discretizing the sf of the BL distribution. Let the
parameter p = e

− 1
β , the cdf of DBL distribution is given by

(2.4) F (x; p) := F (X ≤ x) = 1−
(
3− 2px+1

)
p2(x+1), x = 0, 1, 2, 3, ...

The corresponding sf and pmf to (2.4) are given, respectively, by

(2.5) S(x; p) =
(
3− 2px+1

)
p2(x+1),

and

(2.6) f(x; p) := P (X = x) = 2(p3 − 1)p3x − 3(p2 − 1)p2x, x = 0, 1, 2, 3, ...

The pmf in (2.6) is log-concave for all values of p, where

(2.7)
f(x + 1; p)

f(x; p)
=

2px+6 − 2px+3 − 3p4 + 3p2

2px+3 − 3p2 − 2px + 3

is a decreasing function in x for all value of p. The possible pmf shapes of the DBL distribution
are displayed in Figure 1. These figures show that the DBL distribution has right-skewed
shapes and it has long right-tails.
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Figure 1: The pmf plots of the DBL distribution.

The hazard rate function (hrf) is

(2.8) h(x; p) =
2(p3 − 1)px − 3(p2 − 1)

3− 2px
, x ∈ N0,

where h(x; p) = fx(x;p)
R(x−1;p) . The reversed hazard rate function (rhrf) is

(2.9) r(x; p) =
2(p3 − 1)p3x − 3(p2 − 1)p2x

1− (3− 2px+1) p2(x+1)
, x ∈ N0,

where r(x; p) = fx(x;p)
F (x;p) . Figure 2 shows the hrf and rhrf plots for different values of the

parameter p.

It is clear that the hrf of the DBL distribution increases up to time t where 0 < t < x <∞,
whereas the hrf is constant after time t. Regarding to the rhrf, it is seen that it always
decreases for all x.

Suppose X1 and X2 are two independent random variables following the DBL distribu-
tion with the parameters p1 and p2, respectively. Let W = min(X1, X2) be a random variable
which has a hrf

hW (x; p1, p2) =
P (min(X1, X2) ≥ x)− P (min(X1, X2) ≥ x + 1)

P (min(X1, X2) ≥ x)

=
2(p3

1 − 1)px
1 − 3(p2

1 − 1)
3− 2px

1

+
2(p3

2 − 1)px
2 − 3(p2

2 − 1)
3− 2px

2

−
{
2(p3

1 − 1)px
1 − 3(p2

1 − 1)
}{

2(p3
2 − 1)px

2 − 3(p2
2 − 1)

}
(3− 2px

1) (3− 2px
2)

.(2.10)

The extra term h1(x; p1)h2(x; p2) arises because in the discrete case P (X1 = x,X2 = x) 6= 0,
where h1(x; p1) and h2(x; p2) are the hrfs of X1 and X2, respectively. The rest of this section
contains the statistical properties of the DBL distribution.
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Figure 2: The hrf and rhrf of the DBL distribution.

2.1. Mode

The mode of the DBL distribution is obtained by solving (2.11):

(2.11) 6(p3 − 1)p3x ln(p)− 6(p2 − 1)p2x ln(p) = 0.

By solving (2.11), we have

(2.12) Mode(X) =
ln(p + 1)− ln(p2 + p + 1)

ln(p)
.

As seen from (2.12), mode of the DBL distribution is an increasing function of the parameter p.

2.2. Moments, skewness and kurtosis

The probability generating function (pgf) of the DBL distribution is obtained as follows:

GX(s) =
∞∑

x=0

sxfx(x; p)

= 2
∞∑

x=0

(p3 − 1)
(
p3s
)x − 3

∞∑
x=0

(p2 − 1)
(
p2s
)x

=
2(p3 − 1)
1− p3s

− 3(p2 − 1)
1− p2s

,(2.13)
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where
∑∞

x=0 aqx = a
1−q . Replacing s with es, the moment generating function (mgf) of the

DBL distribution is

(2.14) MX(s) =
2(p3 − 1)
1− p3es

− 3(p2 − 1)
1− p2es

.

Using the mgf, given in (2.14), we obtain the mean, variance, skewness and kurtosis of the
DBL distribution, given, respectively, by

E(X) =
p2(p2 + p + 3)

(p2 + p + 1)(1− p2)
,(2.15)

Var(X) =
p2(3p4 + 4p3 − p2 + 4p + 3)

(p2 + p + 1)2(p2 − 1)2
,(2.16)

Sk(X) = −3p8 + 7p7 − 3p6 + 6p5 + 44p4 + 6p3 − 3p2 + 7p + 3
p(3p4 + 4p3 − p2 + 4p + 3)3/2

,(2.17)

and

Ku(X) =

3p12 + 10p11 + 19p10 + 72p9 + 224p8 + 206p7+
+ 21p6 + 206p5 + 224p4 + 72p3 + 19p2 + 10p + 3

[p(3p4 + 4p3 − p2 + 4p + 3)]2
.(2.18)

The behavior of the mean, variance, skewness and kurtosis are displayed in Figures 3.
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Figure 3: The mean, variance, skewness and kurtosis values of the DBL distribution.
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According to results in Figure 3, the following observations are obtained:

1. The mean and variance increase as p → 1;

2. The skewness and kurtosis decrease as p → 1;

3. The proposed distribution is suitable model for the positively skewed count data sets;

4. The proposed distribution is leptokurtic since its kurtosis is always greater than 3.

2.3. Dispersion index and coefficient of variation

The dispersion index (DI) is calculated as variance to mean ratio. When DI is greater
than 1, the distribution is over-dispersed, opposite case shows the under-dispersion. When
DI is equal to 1, the distribution is equi-dispersed. The coefficient of variation (CV) is also
very similar measure to DI. It is calculated as a ratio of the standard deviation to the mean.
The DI and CV measures of the DBL distribution are given, respectively, by

DI(X) =
(3p4 + 4p3 − p2 + 4p + 3)

(p2 + p + 1)(p2 + p + 3)(1− p2)
,(2.19)

CV(X) =

√
3p4 + 4p3 − p2 + 4p + 3

p(p2 + p + 3)
.(2.20)

Figure 4 shows the DI and CV plots of the DBL distribution for various values of the model
parameter. It is observed that DI can be either smaller or larger than one.
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Figure 4: The DI and CV plots of the DBL distribution.
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2.4. Mean deviation

The mean deviation (MD) about the mean measures the amount of scatter in a popu-
lation. For a random variable X having a DBL distribution, the MD is defined as

MD(X) =
∞∑

x=0

|x− E(X)| f(x; p)

=
E(X)∑
x=0

(E(X)− x)f(x; p) +
∞∑

x=E(X)+1

(x− E(X))f(x; p)

= 2E(X)F (E(X); p) − 2
E(X)∑
x=0

xf(x; p)

= −2

p8+2p7+p6−2p5−4p4−2p3+p2+2p+1



−6p
p4+p3−6p2−3p−3
(p2+p+1)(p2−1) + 4p

p4+p3−9p2−4p−4
(p2+p+1)(p2−1)

+2p
2p4+2p3−9p2−5p−5

(p2+p+1)(p2−1) + 6p
2(2p4+2p3−3p2−3p−3)

(p2+p+1)(p2−1)

−4p
4p4+4p3−9p2−7p−7

(p2+p+1)(p2−1) + 6p
5p4+5p3−6p2−7p−7

(p2+p+1)(p2−1)

−2p
5p4+5p3−9p2−8p−8

(p2+p+1)(p2−1) + 3p
2(3p4+3p3−3p2−4p−4)

(p2+p+1)(p2−1)

−6p
2(p4+p3−3p2−2p−2)

(p2+p+1)(p2−1) − 2p
3(p4+p3−3p2−2p−2)

(p2+p+1)(p2−1)

−3p
−2(3p2+p+1)

(p2+p+1)(p2−1) + 2p
−3(3p2+p+1)

(p2+p+1)(p2−1)


.

The MD increases with p → 1.

2.5. Stress-strength reliability

Stress-strength reliability (SSR) analysis is widely used in reliability engineering.
Assume that both stress and strength are in the positive domain. Let Xstress ∼ DBL(p)
and Xstrength ∼ DBL(q). Then, the expected SSR can be expressed in a closed form as

(2.21) SSR := P [Xstress ≤ Xstrength] =
∞∑

x=0

fXstress(x; p)RXstrength
(x; q).

Using (2.5) and (2.6), we get

(2.22) SSR =
4q3(p3 − 1)
p3q3 − 1

+
6q2(1− p3)
p3q2 − 1

+
6q3(1− p2)
p2q3 − 1

+
9q2(p2 − 1)
p2q2 − 1

.

Figure 5 shows the SSR for various values of the parameters p and q. According to Figure 5,
we concluded that:

(i) The SSR increases for q → 1 with fixed value of p ;

(ii) The SSR decreases for p → 1 with fixed value of q.
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Figure 5: The SSR utilizing the DBL distribution.

2.6. Order statistics

Let x1:n, x2:n, ..., xn:n be the order statistics of a random sample from the DBL distri-
bution. The cdf of i-th order statistics for an integer value of x is given by

Fi:n(x; p) =
n∑

k=i

(
n
k

)
[Fi(x; p]k [1− Fi(x; p)]n−k

=
n∑

k=i

n−k∑
j=0

Υ(n,k)
(m) [Fi(x; p)]k+j

=
n∑

k=i

n−k∑
j=0

Υ(n,k)
(m) Fi(x; p, k + j),(2.23)

where Υ(n,k)
(m) := (−1)j

(
n
k

)(
n−k

j

)
and Fi(x; p, k + j) =

[
1−

(
3− 2px+1

)
p2(x+1)

]k+j

represents the cdf of the exponentiated DBL distribution with power parameter k + j.
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The corresponding pmf to (2.23) is given by

fi:n(x; p) = Fi:n(x; p)− Fi:n(x− 1; p)

=
n∑

k=i

n−k∑
j=0

Υ(n,k)
(m) fi(x; p, k + j),(2.24)

where fi(x; p, k + j) represents the pmf of the exponentiated DBL distribution with power
parameter k + j. Thus, the b-th moments of Xi:n can be written as

(2.25) E(Xb
i:n) =

∞∑
x=0

n∑
k=i

n−k∑
j=0

Υ(n,k)
(m) xbfi(x; p, k + j).

3. ESTIMATION METHODS

We use two estimation methods to estimate the unknown parameter of the DBL distri-
bution. These methods are maximum likelihood estimation (MLE) and method of moments
(MM).

3.1. Maximum likelihood estimation

Let X1, X2, ..., Xn be random variables from the DBL distribution. The log-likelihood
function (L) of the DBL distribution is

(3.1) L(x; p) = n ln(p− 1) + 2 ln p

n∑
i=1

xi +
n∑

i=1

ln
[
2pxi

(
p2 + p + 1

)
− 3p− 3

]
.

By differentiating (3.1) with respect to the parameter p, we have the following equation:

(3.2)
n

p− 1
+

2
p

n∑
i=1

xi +
n∑

i=1

2pxi (2p + 1) + 2xip
xi−1

(
p2 + p + 1

)
− 3

2pxi (p2 + p + 1)− 3p− 3
= 0.

The solution of the above equation gives MLE of the parameter p. However, it is not possible
to obtain the exact form of the MLE of the parameter p since the equation has non-linear
functions. For this reason, it has to be solved numerically. The other possible way to obtain
the MLE of the parameter p is to direct minimization of the negative log-likelihood function.
To do this, we use the constrOptim function of R software.

3.2. Moment estimation

The MM estimator of the parameter p is obtained by solving

(3.3)
p2(p2 + p + 3)

(p2 + p + 1)(p2 − 1)
− x̄ = 0,

where x̄ =
n∑

i=1
xi/n. We use nleqslv to solve (3.3).
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4. INAR(1) PROCESS WITH DBL INNOVATIONS

Time series of counts arise in different fields such as econometrics, actuarial and medical
sciences. For instance, yearly incidents of terrorism, daily number of doctor visits, yearly
number of traffic accidents and among others. McKenzie (1985) [20] and Al-Osh and Alzaid
(1987) [1] introduced the INAR(1) process with Poisson innovations to analyze these kind of
data sets. It is said that {Xt}t∈Z follows a stable INAR(1) process if

(4.1) Xt = α ◦Xt−1 + εt, t ∈ Z,

where 0 ≤ α < 1. The innovation process, {εt}t∈Z, constitutes a sequence of the independent
and identically distributed (iid) discrete random variables. The mean and variance of the
innovation process are E (εt) = µε and Var (εt) = σ2

ε , respectively. This model was shortly
denoted as INAR(1)P process. Note that the innovations, {εt}t∈Z, are independent from
Xt−k, k ≥ 1. The binomial thinning operator, ◦, is defined by

(4.2) α ◦Xt−1 :=
Xt−1∑
j=1

Wj ,

where {Wj}j≥1 is a sequence of iid Bernoulli random variables with probabilities Pr (Wj = 1) =
1− Pr (Wj = 0) = α. The one-step transition probability of the INAR(1) process is

(4.3) Pr (Xt = k|Xt−1 = l) =
min(k,l)∑

i=1

Pr (Bα
l = i) Pr (εt = k − i) , k, l ≥ 0,

where Bα
n ∼ Binomial(α, n) and α ∈ [0, 1). According to the works of Al-Osh and Alzaid

(1987) [1] and McKenzie (1985) [20], we introduce a new INAR(1) model with a more flexible
innovation distribution. We assume that the innovations follow a DBL distribution with
parameter p. We call this process as INAR(1)DBL. Since the dispersion of the DBL can
be under or over the value 1, the INAR(1)DBL can be used to model both under-dispersed
and over-dispersed time series of counts. Using (4.3), the one-step transition probability of
INAR(1)DBL process is given by

γi,j = Pr (Xt = k|Xt−1 = l)

=
min(k,l)∑

i=1

(
l
i

)
αi(1− α)l−i

[
2
(
p3 − 1

)
p3(k−i) − 3

(
p2 − 1

)
p2(k−i)

]
.(4.4)

The equation in (4.4) represents the one-step transition probability of the process from state
l to state k. The marginal probability function of the INAR(1)DBL process is

γj = Pr (Xt = k)

=
∞∑
l=0

γij Pr (Xt−1 = l)

=
∞∑
l=0

min(k,l)∑
i=1

(
l
i

)
αi(1− α)l−i

[
2
(
p3 − 1

)
p3(k−i) − 3

(
p2 − 1

)
p2(k−i)

]
γi,(4.5)
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where k = 0, 1, 2, ..., (see Jazi et al., 2012 [14]). Following the results given in Al-Osh and
Alzaid (1987) [1], we obtain the mean, variance and DI of the INAR(1)DBL process and
given, respectively, by

µX =
p2
(
p2 + p + 3

)
(p2 + p + 1) (1− p2) (1− α)

,(4.6)

σ2
X =

α

α2 − 1

(
3p2

(
p2 − 1

)
(p2 − 1)2

−
2p2

(
p2 − 1

)
(p3 − 1)2

)
−

p2
(
3p4 + 4p3 − p2 + 4p + 3

)
(α2 − 1) (p4 + p3 − p− 1)2

,(4.7)

DIX =
(

α− 3 p4 + 4 p3 − p2 + 4 p + 3
p6 + 2 p5 + 4 p4 + 2 p3 − 2 p2 − 4 p− 3

)
(α + 1)−1 .(4.8)

According to Al-Osh and Alzaid (1987) [1], the conditional expectation and variance of
INAR(1)DBL process are given, respectively, by

E (Xt|Xt−1) = αXt−1 +
p2(p2 + p + 3)

(p2 + p + 1)(1− p2)
,(4.9)

Var (Xt|Xt−1) = α (1− α) Xt−1 +
p2(3p4 + 4p3 − p2 + 4p + 3)

(p2 + p + 1)2(p2 − 1)2
.(4.10)

4.1. Estimation of INAR(1)DBL process

Bourguignon et al. (2019) [5] and Ĺıvio et al. (2018) [19] used three estimation methods
to obtain the parameters of INAR(1) process defined under different innovation distributions.
These methods are conditional least squares (CLS), Yule-Walker (YW) and the conditional
maximum likelihood (CML) estimation methods. They compared the finite sample per-
formance of these estimation methods for different sample sizes and parameter settings and
concluded that CML estimation method provides better results than CLS and YW estimation
methods. Here, we use these three estimation methods to obtain the unknown parameters
of the INAR(1)DBL process. However, there are no explicit forms for the CLS and YW
estimators of the INAR(1)DBL process because of the non-linearity of the equations.

Conditional maximum likelihood

The conditional log-likelihood function of the INAR(1)DBL process is

` (ΘΘΘ) =
T∑

t=2

ln [Pr (Xt = k|Xt−1 = l)]

=
T∑

t=2

ln

 min(xt,xt−1)∑
i=0

(
xt−1

i

)
αi(1− α)xt−1−i

×
{
2
(
p3 − 1

)
p3(xt−i) − 3

(
p2 − 1

)
p2(xt−i)

}
 ,(4.11)

where Θ = (αcml, pcml) is the unknown parameter vector. The CML estimator of Θ, say Θ̂
can be obtained by maximizing the equation (4.11). It is well-known that the maximization
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of (4.11) is equivalent to minimization of the negative of (4.11). Minimization of the negative
of (4.11) could be done by using different software such as R, MATLAB, C++ or S-Plus. Here,
we prefer constrOptim function of R software to minimize the negative of (4.11). Note that
the CML estimators are asymptotically normal and consistent under the regularity conditions
(Bourguignon et al., 2019 [5]).

Yule-Walker

The YW estimators are obtained by simultaneous solution of the equations for the
theoretical and empirical moments of the INAR(1)DBL process. The autocorrelation function
(ACF) of the INAR(1) process at lag h is ρX (h) = αh, and ρX (1) = α for h = 1. Therefore,
the YW estimator of the parameter α is

(4.12) α̂Y W =

T∑
t=2

(
Xt − X̄

) (
Xt−1 − X̄

)
T∑

t=1

(
Xt − X̄

)2 .

The YW estimator of the parameter p, say p̂Y W , can be obtained by solving

(4.13)
p2
(
p2 + p + 3

)
(p2 + p + 1) (1− p2) (1− α̂Y W )

= X̄,

where X̄ =
T∑

t=1
Xt

/
T . However, it is not possible to obtain the explicit forms of the YW

estimators of the parameter p. Therefore, (4.13) has to solved numerically by using the
software such as R or MATLAB. We use the uniroot function of the R software to obtain p̂Y W .

Conditional least squares

The CLS estimators of the parameters α and p can be obtained by minimizing

(4.14) S (η) =
T∑

t=2

(Xt − E (Xt|Xt−1))
2,

where η = (αcls, pcls) and E (Xt|Xt−1) is given in (4.9). Replacing E (Xt|Xt−1) with (4.9)
in (4.14), we have

(4.15) S (η) =
T∑

t=2

(
Xt − αXt−1 −

p2
(
p2 + p + 3

)
(p2 + p + 1) (1− p2)

)2

.
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The derivatives of (4.15) with respect to the parameters α and p and equating them to zero,
we have

∂S (η)
∂p

=
T∑

t=2

−
12 p

(
Xt − α Xt−1 +

p2 (p2+p+3)
(p2−1) (p2+p+1)

) (
p4 + p3 + p2 + p + 1

)
(−p4 − p3 + p + 1)2

= 0,(4.16)

∂S (η)
∂α

=
T∑

t=2

−2 Xt−1

(
Xt − α Xt−1 +

p2
(
p2 + p + 3

)
(p2 − 1) (p2 + p + 1)

)
= 0.(4.17)

The simultaneous solutions of (4.16) and (4.17) give the CLS estimators of the parameter α

and p. However, since the mean of the DBL distribution has non-linear functions, it is not
possible to obtain the pcls in explicit form. However, when the parameter p is known, the
CLS estimator of the parameter α is

(4.18) α̂cls =
T∑

t=2

(Xt + 1)
(
p4 + p3

)
−Xt (p + 1) + 3p2

(p4 + p3 − p− 1) Xt−1
,

where p can be replaced with p̂cml (see, Bourguignon et al., 2019 [5]).

5. SIMULATION STUDIES

Here, two simulation studies are given to evaluate the parameter estimation perfor-
mance of proposed models.

5.1. Simulation of DBL model

The finite-sample performances of the MLE and MM methods are compared for small
and large sample sizes based on the simulation study. The below simulation steps are used
for this goal:

1. Generate N = 10,000 samples of size n = 20, 50, 100, 200 and 500 from DBL(0.1),
DBL(0.5) and DBL(0.7), respectively.

2. Using each generated sample, compute the MLE and MM estimator of the param-
eter p, say p̂j where j = 1, 2, ..., 10,000.

3. Compute the biases, mean-squared errors (MSEs) and mean relative errors (MREs)
using the following equations:

Bias(p) =
1
N

N∑
j=1

(p̂j − p) , MSE(p) =
1
N

N∑
j=1

(p̂j − p)2 and MRE =
1
N

N∑
j=1

p̂j

pj
.
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The simulation results are reported in Table 1. The following remarks are obtained
according to the results in Table 1:

1. The estimated biases always decrease and near the zero when n →∞.

2. The estimated MSEs decrease and near the zero when n →∞.

3. The estimated MREs are near the desired value, 1, especially for large sample sizes.

4. Both estimation methods work well for estimating the parameter p and produce
similar results.

Similar results can be obtained for different values of the parameter p.

Table 1: The simulation results of DBL distribution.

Parameter
Sample

size
Bias MSE MRE

MLE MM MLE MM MLE MM

20 −0.036585 −0.036506 0.006924 0.006926 0.634153 0.634937
50 −0.016756 −0.016717 0.003237 0.003238 0.832445 0.832833

p = 0.1 100 −0.006808 −0.006800 0.001424 0.001424 0.931918 0.932002
200 −0.002833 −0.002825 0.000523 0.000523 0.971665 0.971747
500 −0.002338 −0.002341 0.000196 0.000196 0.976622 0.976590

20 −0.008975 −0.008716 0.003892 0.003873 0.982050 0.982567
50 −0.002803 −0.002843 0.001605 0.001610 0.994394 0.994314

p = 0.5 100 −0.001900 −0.001884 0.000682 0.000682 0.996201 0.996231
200 −0.000803 −0.000765 0.000317 0.000317 0.998394 0.998470
500 −0.000145 −0.000146 0.000150 0.000151 0.999101 0.999089

20 −0.004901 −0.004959 0.001647 0.001647 0.992999 0.992915
50 −0.001908 −0.001971 0.000700 0.000702 0.997275 0.997184

p = 0.7 100 −0.000833 −0.000854 0.000330 0.000329 0.998810 0.998780
200 −0.000734 −0.000764 0.000170 0.000170 0.998952 0.998909
500 −0.000856 −0.000859 0.000075 0.000075 0.998777 0.998773

5.2. Simulation of INAR(1)DBL process

We carry out a simulation study to evaluate the asymptotic behaviours of the CML,
YW and CLS estimators of INAR(1)DBL process for small and sufficiently large sample
sizes. The number of simulation replications is N = 10,000 and three sample sizes are used:
n = 25, 50 and 100. Four parameter vectors are also used. These are (α = 0.3, p = 0.9),
(α = 0.5, p = 0.5), (α = 0.2, p = 0.3) and (α = 0.7, p = 0.6). The biases, MSEs and MREs
are used to evaluate the simulation results.

We expect that when the sample size is sufficiently large, the biases and MSEs near the
zero and MREs are near the one. The simulation results are summarized in Table 2. As seen
from the simulation results, the results of the CML and YW estimation methods are very
near each other. However, the CML estimation method approaches to the desired values of
the biases, MSEs and MREs more faster than those of the CLS and YW estimation methods.
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The performance of the CML method is better than the CLS and YW estimation methods
for both small and sufficiently large sample sizes. Therefore, we suggest to use the CML
estimation to obtain the unknown parameters of the INAR(1)DBL process.

Table 2: Simulation results of INAR(1)DBL process.

Sample
size

Parameters
CML YW CLS

Bias MSE MRE Bias MSE MRE Bias MSE MRE

α = 0.3, p = 0.9

n = 25
α −0.0020 0.0092 0.9959 −0.1239 0.0469 0.7620 −0.1198 0.0494 0.7768
p −0.0055 0.0016 0.9931 0.0209 0.0028 1.0261 0.0187 0.0030 1.0234

n = 50
α −0.0032 0.0042 0.9936 −0.0686 0.0195 0.8629 −0.0685 0.0203 0.8631
p −0.0010 0.0007 0.9987 0.0140 0.0014 1.0175 0.0132 0.0016 1.0165

n = 100
α −0.0003 0.0023 0.9993 −0.0270 0.0088 0.9461 −0.0257 0.0090 0.9487
p −0.0016 0.0004 0.9980 0.0038 0.0008 1.0048 0.0035 0.0009 1.0043

α = 0.5, p = 0.5

n = 25
α −0.0295 0.0257 0.9409 −0.1326 0.0533 0.7444 −0.1286 0.0579 0.7524
p 0.0002 0.0049 1.0003 0.0356 0.0079 1.0713 0.0333 0.0087 1.0665

n = 50
α −0.0122 0.0112 0.9756 −0.0623 0.0207 0.8754 −0.0616 0.0218 0.8768
p 0.0014 0.0024 1.0029 0.0196 0.0035 1.0392 0.0193 0.0039 1.0386

n = 100
α −0.0025 0.0054 0.9950 −0.0310 0.0095 0.9380 −0.0310 0.0100 0.9381
p −0.0010 0.0013 0.9979 0.0096 0.0020 1.0192 0.0098 0.0021 1.0197

α = 0.2, p = 0.3

n = 25
α −0.0285 0.0304 0.9661 −0.0910 0.0513 0.9550 −0.0814 0.0599 1.0285
p −0.0076 0.0046 0.9924 0.0033 0.0047 1.0111 −0.0007 0.0064 1.0053

n = 50
α −0.0276 0.0222 0.9762 −0.0502 0.0290 0.8860 −0.0493 0.0298 0.8980
p −0.0049 0.0023 0.9838 −0.0009 0.0023 0.9969 −0.0014 0.0024 0.9954

n = 100
α −0.0141 0.0116 0.9896 −0.0206 0.0135 0.9221 −0.0198 0.0134 0.9253
p −0.0017 0.0011 0.9944 −0.0006 0.0012 0.9980 −0.0007 0.0011 0.9976

α = 0.7, p = 0.6

n = 25
α −0.0134 0.0082 0.9808 −0.1689 0.0591 0.7590 −0.1657 0.0637 0.7649
p −0.0073 0.0047 0.9878 0.0667 0.0119 1.1112 0.0610 0.0141 1.1017

n = 50
α −0.0058 0.0036 0.9917 −0.0855 0.0216 0.8779 −0.0856 0.0227 0.8777
p −0.0014 0.0021 0.9977 0.0401 0.0063 1.0669 0.0396 0.0069 1.0660

n = 100
α −0.0051 0.0019 0.9928 −0.0433 0.0079 0.9381 −0.0434 0.0083 0.9380
p −0.0006 0.0011 0.9990 0.0208 0.0029 1.0346 0.0207 0.0031 1.0345

6. EMPIRICAL STUDIES

This section is devoted to illustrate the importance of the DBL distribution by analyzing
the three real data sets with proposed and competitive models. The performance of fitted
models are compared using goodness-of-fit criteria, Kolmogorov-Smirnov (K-S) test with its
corresponding p-value.
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6.1. Number of fires in Greece

The first data set deals with the number of fires in Greece for the period from
1 July 1998 to 31 August 1998. This data set was reported by Karlis and Xekalaki (2001) [16]
and also is given in the Appendix. The performance of the DBL distribution is compared
with competitive models listed in Table 3.

Table 3: The competitive models of the DBL distribution.

Distribution Abbreviation Author(s)

Geometric Geo —
Discrete Lindley DLi Gómez-Déniz and Caldeŕın-Ojeda (2011) [12]
Discrete Rayleigh DR Roy (2004) [28]
Discrete inverse Rayleigh DIR Hussain and Ahmad (2014) [13]
Discrete Pareto DPa Krishna and Pundir (2009) [17]
Poisson Poi Poisson (1837) [27]
Discrete generalized exponential type II DGE-II Nekoukhou et al. (2013) [22]
Discrete Weibull DW Nakagawa and Osaki (1975) [21]
Discrete inverse Weibull DIW Jazi et al. (2010) [15]
Discrete Burr type II DB-XII Para and Jan (2016a) [24]
Exponentiated discrete Lindley EDLi El-morshedy et al. (2019) [10]
Discrete log-logistic DLog-L Para and Jan (2016b) [25]
Exponentiated discrete Weibull EDW Nekoukhou and Bidram (2015) [23]

Tables 4 and 5 contain the MLEs of the parameters for each fitted distribution with
their standard errors (std-er). The asymptotic confidence intervals (CI) and the results of
the goodness-of-fit test are also reported in these tables.

Table 4: The MLEs, CIs, K-S and p-values of fitted models with one-parameter
for the number of fires in Greece.

Statistic
Model

DBL Geo DLi DR DIR DPa Poi

MLEp 0.867 0.844 0.741 0.980 0.018 0.546 5.398
Std-erp 0.008 0.013 0.014 0.023 0.007 0.029 0.209

95% CI
Lowerp 0.852 0.818 0.712 0.935 0.004 0.488 4.988
Upperp 0.883 0.869 0.769 1.00 0.033 0.605 5.809

K-S 0.096 0.164 0.097 0.183 0.429 0.355 0.854
p-value 0.202 0.003 0.198 < 0.001 0 < 0.001 0

According to Tables 4 and 5, two model provide the sufficient results for analyzing
the number of fires in Greece since the p-values of these models are greater than 0.05.
These are DBL and DLi distributions. However, DBL distribution has the smallest value of
K-S statistic and the largest p-value among all competitive models as well as DLi distribution.
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Table 5: The MLEs, CIs, K-S and p-values of fitted models with two and more parameters
for the number of fires in Greece.

Statistic
Model

DGE-II DW DIW DB-XII EDLi DLog-L EDW

MLEp 0.822 0.879 0.079 0.761 0.766 4.226 0.860
Std-erp 0.019 0.023 0.022 0.043 0.021 0.389 0.099

95% CI
Lowerp 0.785 0.835 0.035 0.677 0.725 3.462 0.665
Upperp 0.859 0.924 0.123 0.845 0.808 4.989 1.055

MLEα 1.255 1.131 1.035 2.503 0.797 1.717 1.081
Std-erα 0.175 0.082 0.079 0.487 0.113 0.138 0.238

95% CI
Lowerα 0.912 0.969 0.881 1.548 0.575 1.446 0.615
Upperα 1.598 1.292 1.189 3.457 1.018 1.988 1.549

MLEθ — — — — — — 1.092
Std-erθ — — — — — — 0.448

95% CI
Lowerθ — — — — — — 0.214
Upperθ — — — — — — 1.969

K-S 0.130 0.123 0.208 0.299 0.124 0.149 0.125
p-value 0.031 0.047 < 0.001 < 0.001 0.046 0.009 0.042

Figures 6 and 7 show the estimated cdfs and probability-probability (PP) plots. These figures
support the results reported in Tables 4 and 5.
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Figure 6: The estimated CDFs of fitted models.

Figure 8 shows the log-likelihood profile of p̂ where L = −346.902. It is found that the
log-likelihood profile of p̂ is unimodal-shaped. Thus, this estimator is a unique and considered
the best for the used data set.

Table 6 shows the results of MM method for the DBL parameter. It is clear that MM
method works well for estimating the parameter p.
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Figure 7: The PP plots of fitted models.

Figure 8: The log-likelihood profile of p̂ for the number of fires in Greece data set.

Table 6: The estimated parameter of DBL distribution with MM method.

Method
Measure

bp K-S p-value

MM 0.868 0.095 0.220
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Using the MM estimator of the parameter of p, the statistical properties of DBL distri-
bution such as mean, mode, variance, DI, MD, CV, skewness and kurtosis values are listed
in Table 7.

Table 7: The statistical properties of DBL distribution for the number of fires in Greece.

Method
Measure

Mean Mode Variance DI MD CV Skewness Kurtosis

MM 5.3867 2.3936 18.1002 3.3601 3.2218 0.7897 1.4837 6.4127

6.2. Failure times

The data used represents the failure times for a sample of 15 electronic components in
an acceleration life test (see Lawless, 2003 [18]). The performance of the DBL distribution
is compared with discrete flexible model with one parameter (DFx-I), Geo, DR, DIR, DPa,
DGE-II, DIW, DLog-L, DB-XII and discrete Lomax (DLo) distributions. The results of the
fitted models with goodness-of-fit test are given in Tables 8 and 9.

Table 8: The MLEs, CIs, K-S and p-values of fitted models with one-parameter
for the failure times data.

Statistic
Model

DBL DFx-I Geo DR DIR DPa

MLEp 0.971 0.973 0.965 0.999 1.8×10−7 0.720
Std-erp 0.005 0.006 0.009 2.58×10−4 0.055 0.061

95% CI
Lowerp 0.960 0.961 0.948 0.998 0 0.600
Upperp 0.981 0.985 0.982 0.999 0.107 0.839

K-S 0.114 0.146 0.177 0.216 0.698 0.405
p-value 0.978 0.864 0.673 0.433 9.1×10−7 0.009

Table 9: The MLEs, CIs, K-S and p-values of fitted models with two-parameters
for the failure times data.

Statistic
Model

DGE-II DIW DLog-L DB-XII DLo

MLEp 0.956 2.2×10−4 21.463 0.975 0.012
Std-erp 0.013 7.75×10−4 5.387 0.051 0.039

95% CI
Lowerp 0.930 0 10.904 0.874 0
Upperp 0.981 0.001 32.021 1 0.088

MLEα 1.491 0.875 1.791 13.367 104.506
Std-erα 0.535 0.164 0.388 27.785 84.409

95% CI
Lowerα 0.441 0.554 1.031 0 0
Upperα 2.540 1.196 2.551 67.824 269.947

K-S 0.129 0.209 0.136 0.388 0.205
p-value 0.937 0.482 0.913 0.015 0.491
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It is found that the DFx-I, Geo, DR, DGE-II, DIW, DLog-L and DLo distributions
work quite well besides the DBL distribution. But the DBL distribution is the best among
all tested models because it has the smallest value of K-S as well as it has the highest p-value.
Figures 9 and 10 show the estimated cdfs and PP plots for the failure times data.
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Figure 9: The estimated cdfs for the failure times data.
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Figure 10: The PP plots for the failure times data.
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It is clear that the DBL, DFx-I, Geo, DR, DGE-II, DIW, DLog-L and DLo distributions
are suitable choices for this data set. However, the DBL distribution is the best choice since
it has lowest value of the K-S test statistic. Figure 11 shows the TTT plot and log-likelihood
profile of p̂, where L = −64.784.
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Figure 11: The TTT plot (left panel) and log-likelihood profile of p̂ (right panel)
for the failure times data.

Regarding Figure 11, it is clear that the shape of the hrf can be increasing and the
log-likelihood profile of p̂ is unimodal-shaped. Table 10 shows the estimation of the proposed
model using the MM for the failure times data.

Table 10: Estimation and goodness of fit test for the failure times data.

Method
Statistic

p K-S p-value

MM 0.971 0.109 0.994

According to the p-value of the K-S test, MM method works quite well besides the
MLE method for estimating the unknown parameter. But the MM is the best. Using the
MM estimator of the parameter p, some statistics of the DBL distribution are reported in
Table 11.

Table 11: Some descriptive statistics for data set II.

Method
Statistic

Mean Mode Variance DI MD CV Skewness Kurtosis

MM 27.816 13.284 417.044 14.992 15.533 0.734 1.493 6.442

The data herein is suffering from over dispersion phenomena as DI > 1. Furthermore, it is
moderately skewed right with leptokurtic.
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6.3. Burglary crimes

The performance of the INAR(1)DBL process is compared with the INAR(1)P,
INAR(1)PL and INAR(1)G processes. The one-step translation probabilities of the com-
petitive INAR(1) models are given below:

1. INAR(1)P

Pr (Xt = k|Xt−1 = l) =
min(k,l)∑

i=0

(
l
i

)
αi(1− α)l−i exp (−λ) λk−i

(k − i)!
, λ > 0.

2. INAR(1)PL

Pr (Xt = k|Xt−1 = l) =
min(k,l)∑

i=0

(
l
i

)
αi(1− α)l−i θ

2 (k − i + θ + 2)

(θ + 1)k−i+3
, θ > 0,

3. INAR(1)G

Pr (Xt = k|Xt−1 = l) =
min(k,l)∑

i=1

(
l
i

)
αi(1− α)l−i

[
p(1− p)k−i

]
, 0 < p < 1.

The CML estimation method is used to obtain unknown parameters of INAR(1)DBL,
INAR(1)PL, INAR(1)G and INAR(1)P models. To decide the best model, two information
criteria are used: Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC).
The smallest values of AIC and BIC and indicate the best fitted model on the data set.

The series of monthly counts of burglary crimes in the 22th police car beat in Pittsburgh
is used to compare the performance of INAR(1)DBL, INAR(1)PL, INAR(1)G and INAR(1)P
processes. The data set consists of 144 monthly observations between the date of January 1990
and December 2001 and is given in the Appendix. The data set can be also found in
http://www.forecastingprinciples.com/index.php/crimedata. The mean, variance and
DI values of the used data set are 6.111, 13.372 and 2.188, respectively. It is clear that
monthly counts of burglary crimes exhibit over-dispersion. So, the innovation distribution of
INAR(1) process should be able to model over-dispersion. Therefore, INAR(1) process with
DBL innovations could be a good choice to model these data set.

The autocorrelation function (ACF) and partial ACF plots of the used data set are
displayed in Figure 12. As seen from these plots, ACF has clear cut-off after the first lag.
Therefore, AR(1) process could be a good choice for analyzing these data set.

The estimated parameters of the fitted INAR(1) process and model selection criteria
are listed in Table 12. Since the INAR(1)DBL model has the smaller values of AIC and BIC
statistics than those of INAR(1)P, INAR(1)PL and INAR(1)G processes, the INAR(1)DBL
process provides better fits than other competitive INAR(1) processes. More importantly,
the obtained DI value of INAR(1)DBL process is very near the empirical one. It is obvious
that INAR(1)DBL astoundingly explains the characteristics of the data set.

http://www.forecastingprinciples.com/index.php/crimedata
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Figure 12: The plots of monthly counts of burglary crimes
and its corresponding ACF and PACF plots.

Table 12: The CML estimates of INAR(1)DBL and INAR(1)P process
and goodness-of-fit statistics.

Model Parameters Estimate Std-er AIC BIC µX σ2
X DI

INAR(1)DBL
α 0.3032 0.0467

733.1232 739.0628 6.1505 14.6336 2.3792
p 0.8402 0.0121

INAR(1)PL
α 0.3842 0.0365

739.8960 745.8356 6.1731 17.4559 2.8277
θ 0.4451 0.0147

INAR(1)G
α 0.4319 0.0376

747.7226 753.6622 6.1649 21.2445 3.4460
p 0.2221 0.0192

INAR(1)P
α 0.1952 0.0194

778.3730 784.3126 6.1381 6.1381 1
λ 4.9402 0.0537

Empirical 6.1111 13.3722 2.1882
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Additionally, the residual analysis is conducted to evaluate the accuracy of the fitted
INAR(1)DBL model for the data used. The Pearson residuals of the INAR(1)DBL process
are given by

(6.1) rt =
Xt − E (Xt|Xt−1)

Var(Xt|Xt−1)
1/2

where E (Xt|Xt−1) and Var (Xt|Xt−1) are defined in (4.9) and (4.10), respectively. When the
fitted INAR(1) process is valid for the modeled data, the Pearson residuals should have zero
mean and unit variance as well as uncorrelated. The Pearson residuals of the INAR(1)DBL
process are calculated by using (6.1). The mean and variance of these residuals are obtained
as 0.0005 and 0.9917, respectively. The obtained values of the mean and variance of the
Pearson residuals are very closed to the desired values. Moreover, the predicted values of the
burglary crimes and the ACF plot of the Pearson residuals are displayed in Figure 13 which
ensures that the residuals are uncorrelated.
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Figure 13: The predicted values of the burglary crimes (left)
and the ACF plot of the Pearson residuals (right).

7. CONCLUSIONS

A new one-parameter discrete model is introduced. The statistical properties of pro-
posed model are studied extensively. Two parameter estimation method are used. These are
the maximum likelihood and method of moments estimation methods. The relative efficiency
of parameter estimation methods are discussed via simulation study. Three applications to
three real data sets are given to convince the readers in favour of DBL model. Empirical
findings show that the DBL model is an attractive model and produce more reliable results
than other its counterparts. More importantly, INAR(1) process with DBL innovations pro-
duce better results than INAR(1)P model in case of over-dispersion. We hope that DBL
distribution gains much more attention and is applied to wider range of application fields.
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A. APPENDIX

The data set used in Section 6.1:

Number of fires: 0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 20 43
Observed values: 16 13 14 9 11 13 8 4 9 6 3 4 6 4 1 1 1

The data set used in Section 6.2:

1.0, 5.0, 6.0, 11.0, 12.0, 19.0, 20.0, 22.0, 23.0, 31.0, 37.0, 46.0, 54.0, 60.0, 66.0

The data set used in Section 6.3:

4 4 16 12 11 12 20 7 4 5 5 6 8 3 5 3 4 5 19 7
12 9 6 3 9 4 4 4 10 3 5 10 9 12 15 8 9 9 9 8
3 3 7 6 2 5 6 5 10 7 5 2 8 1 8 4 5 8 6 13
9 9 6 11 9 2 5 4 2 1 6 4 3 7 5 2 8 8 4 3
4 2 5 10 2 14 16 3 3 4 4 3 7 4 14 5 9 5 5 7
4 7 8 12 9 2 4 5 2 7 6 5 4 1 3 5 3 3 6 6

10 4 2 4 2 2 2 1 7 6 4 2 2 4 7 7 3 3 7 4
7 3 8 11
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en Matiére Civile, Précédées des Régles Générales du Calcul des Probabilitiés, Paris, France:
Bachelier, pp. 206–207.

[28] Roy, D. (2004). Discrete Rayleigh distribution, IEEE Transactions on Reliability, 53(2),
255–260.



REVSTAT-Statistical journal 

Aims and Scope 

The aim of REVSTAT-Statistical Journal is to publish articles of high scientific content, 
developing Statistical Science focused on innovative theory, methods, and applications 
in different areas of knowledge. Important survey/review contributing to Probability 
and Statistics advancement is also welcome. 

 

Background 

Statistics Portugal started in 1996 the publication of the scientific statistical journal 
Revista de Estatística, in Portuguese, a quarterly publication whose goal was the 
publication of papers containing original research results, and application studies, 
namely in the economic, social and demographic fields. Statistics Portugal was aware of 
how vital statistical culture is in understanding most phenomena in the present-day 
world, and of its responsibilities in disseminating statistical knowledge. 

In 1998 it was decided to publish papers in English. This step has been taken to achieve 
a larger diffusion, and to encourage foreign contributors to submit their work. At the 
time, the editorial board was mainly composed by Portuguese university professors, and 
this has been the first step aimed at changing the character of Revista de Estatística from 
a national to an international scientific journal. In 2001, the Revista de Estatística 
published a three volumes special issue containing extended abstracts of the invited and 
contributed papers presented at the 23rd European Meeting of Statisticians (EMS). 
During the EMS 2001, its editor-in-chief invited several international participants to join 
the editorial staff. 

In 2003 the name changed to REVSTAT-Statistical Journal, published in English, with a 
prestigious international editorial board, hoping to become one more place where 
scientists may feel proud of publishing their research results. 

 

Editorial policy 

REVSTAT-Statistical Journal is an open access peer-reviewed journal published 
quarterly, in English, by Statistics Portugal. 

The editorial policy of REVSTAT is mainly placed on the originality and importance of the 
research. The whole submission and review processes for REVSTAT are conducted 
exclusively online on the journal’s webpage revstat.ine.pt based in Open Journal System 
(OJS). The only working language allowed is English. Authors intending to submit any 
work must register, login and follow the guidelines. 

There are no fees for publishing accepted manuscripts that will be made available in 
open access. 

https://revstat.ine.pt/index.php/REVSTAT/index


All articles consistent with REVSTAT aims and scope will undergo scientific evaluation by 
at least two reviewers, one from the Editorial Board and another external. Authors can 
suggest an editor or reviewer who is expert on the paper subject providing her/his 
complete information, namely: name, affiliation, email and, if possible, personal URL or 
ORCID number. 

All published works are Open Access (CC BY 4.0) which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source 
are credited. Also, in the context of archiving policy, REVSTAT is a blue journal welcoming 
authors to deposit their works in other scientific repositories regarding the use of the 
published edition and providing its source. 

Journal prints may be ordered at expenses of the author(s), and prior to publication. 

Abstract and Indexing services 

REVSTAT-Statistical Journal is covered by Journal Citation Reports - JCR (Clarivate); 
Current Index to Statistics; Google Scholar; Mathematical Reviews® (MathSciNet®); 
Zentralblatt für Mathematic; Scimago Journal & Country Rank; Scopus 

 

Author guidelines 

The whole submission and review processes for REVSTAT are conducted exclusively 
online on the journal’s webpage https://revstat.ine.pt/ based in Open Journal System 
(OJS). Authors intending to submit any work must register, login and follow the 
indications choosing Submissions. 

REVSTAT - Statistical Journal adopts the COPE guidelines on publication ethics. 

Work presentation 

 the only working language is English; 
 the first page should include the name, ORCID iD (optional), Institution, 

 country, and mail-address of the author(s); 
 a summary of fewer than one hundred words, followed by a maximum of six 

keywords and the MSC 2020 subject classification should be included also in 
the first page; 

 manuscripts should be typed only in black, in double-spacing, with a left margin 
of at least 3 cm, with numbered lines, and a maximum of 25 pages; 

 the title should be with no more than 120 characters (with spaces); 
 figures must be a minimum of 300dpi and will be reproduced online as in the 

original work, however, authors should take into account that the printed 
version is always in black and grey tones; 

 authors are encouraged to submit articles using LaTeX which macros are 
available at REVSTAT style; 

 citations in text should be included in the text by name and year in 
parentheses, as in the following examples: § article title in lowercase (Author 
1980); § This theorem was proved later by AuthorB and AuthorC (1990); § This 



subject has been widely addressed (AuthorA 1990; AuthorB et al. 1995; 
AuthorA and AuthorB 1998). 

 references should be listed in alphabetical order of the author's scientific 
surname at the end of the article; 

 acknowledgments of people, grants or funds should be placed in a short section 
before the References title page. Note that religious beliefs, ethnic background, 
citizenship and political orientations of the author(s) are not allowed in the 
text; 

 authors are welcome to suggest one of the Editors or Associate Editors or yet 
other reviewer expert on the subject providing a complete information, 
namely: name, affiliation, email and personal URL or ORCID number in the 
Comments for the Editor (submission form). 

Accepted papers 

After final revision and acceptance of an article for publication, authors are requested 
to provide the corresponding LaTeX file, as in REVSTAT style. 

Supplementary files may be included and submitted separately in .tiff, .gif, .jpg, .png 
.eps, .ps or .pdf format. These supplementary files may be published online along with 
an article, containing data, programming code, extra figures, or extra proofs, etc; 
however, REVSTAT is not responsible for any supporting information supplied by the 
author(s). 

Copyright Notice  

Upon acceptance of an article, the author(s) will be asked to transfer copyright of the 
article to the publisher, Statistics Portugal, in order to ensure the widest possible 
dissemination of information. 

According to REVSTAT's archiving policy, after assigning the copyright form, authors may 
cite and use limited excerpts (figures, tables, etc.) of their works accepted/published in 
REVSTAT in other publications and may deposit only the published edition in scientific 
repositories providing its source as REVSTAT while the original place of publication. The 
Executive Editor of the Journal must be notified in writing in advance. 

 

 



EDITORIAL BOARD 2019-2023

Isabel FRAGA ALVES, University of Lisbon, Portugal

Giovani L. SILVA, University of Lisbon, Portugal

Marília ANTUNES, University of Lisbon, Portugal
Barry ARNOLD, University of California, USA

Narayanaswamy BALAKRISHNAN, McMaster University, Canada
Jan BEIRLANT, Katholieke Universiteit Leuven, Belgium

Graciela BOENTE, University of Buenos Aires, Argentina
Paula BRITO, University of Porto, Portugal

Valérie CHAVEZ-DEMOULIN, University of Lausanne, Switzerland
David CONESA, University of Valencia, Spain

Charmaine DEAN, University of Waterloo, Canada
Fernanda FIGUEIREDO, University of Porto, Portugal

Jorge Milhazes FREITAS, University of Porto, Portugal
Alan GELFAND, Duke University, USA

Stéphane GIRARD, Inria Grenoble Rhône-Alpes, France
Marie KRATZ, ESSEC Business School, France

Victor LEIVA, Pontificia Universidad Católica de Valparaíso, Chile
Artur LEMONTE, Federal University of Rio Grande do Norte, Brazil

Shuangzhe LIU, University of Canberra, Australia
Maria Nazaré MENDES-LOPES, University of Coimbra, Portugal

Fernando MOURA, Federal University of Rio de Janeiro, Brazil
John NOLAN, American University, USA

Paulo Eduardo OLIVEIRA, University of Coimbra, Portugal
Pedro OLIVEIRA, University of Porto, Portugal

Carlos Daniel PAULINO, University of Lisbon, Portugal
Arthur PEWSEY, University of Extremadura, Spain

Gilbert SAPORTA, Conservatoire National des Arts et Métiers, France
Alexandra M. SCHMIDT, McGill University, Canada

Julio SINGER, University of Sao Paulo, Brazil
Manuel SCOTTO, University of Lisbon, Portugal

Lisete SOUSA, University of Lisbon, Portugal
Milan STEHLÍK, University of Valparaìso, Chile and LIT-JK University Linz, Austria

María Dolores UGARTE, Public University of Navarre, Spain

José A. PINTO MARTINS, Statistics Portugal

José CORDEIRO, Statistics Portugal
Olga BESSA MENDES, Statistics Portugal

Editor-in-Chief

Co-Editor

Associate Editors

Executive Editor

Assistant Editors


	REVSTAT_v20-n4_Editorial
	REVSTAT_v20-n4-00_Index
	REVSTAT_v20-n4-01
	"Time Series Analysis for Longitudinal Survey Data under Informative Sampling and Nonignorable Missingness"
	1 INTRODUCTION
	2 TIME SERIES MODEL FOR LONGITUDINAL SURVEY DATA
	3 INFORMATIVE SAMPLING AND NONIGNORABLE MISSINGNESS IN LONGITUDINAL SURVEYS
	3.1 Informative sampling
	3.2 Nonignorable missingness

	4 SAMPLE LIKELIHOOD AND ESTIMATION UNDER INFORMATIVE SAMPLING AND NONIGNORABLE MISSINGNESS
	4.1 Sample likelihood under informative sampling
	4.2 Sample likelihood under informative sampling and nonignorable missingness
	4.3 Computations of the likelihood function

	5 SIMULATION STUDIES
	6 REAL DATA ANALYSIS
	A APPENDIX
	ACKNOWLEDGMENTS
	REFERENCES

	REVSTAT_v20-n4-02
	"Impact of Academic Authorship Characteristics on Article Citations"
	1 INTRODUCTION
	2 CITATION CRITERIA AND POSTULATED DEPENDENCIES
	2.1 Structural regularities
	2.2 Authorship characteristics

	3 EMPIRICAL DATA ANALYSIS
	3.1 Data and descriptive statistics
	3.2 Model
	3.3 Results
	3.3.1 Structural regularities
	3.3.2 Authorship characteristics


	4 DISCUSSION AND CONCLUSION
	A DATA SOURCE
	B MODEL SELECTION
	C MODEL EXTENSIONS
	REFERENCES

	REVSTAT_v20-n4-03
	"On Uniform and alpha-Monotone Discrete Distributions"
	1 INTRODUCTION
	2 DISCRETE KHINTCHINE'S THEOREM
	3 MULTIVARIATE DISCRETE UNIFORM DISTRIBUTIONS
	4 DISCRETE alpha-MONOTONICITY
	5 MULTIVARIATE DISCRETE DISTRIBUTIONS WITH alpha-MONOTONE UNIVARIATE MARGINALS
	5.1 When M_1,...,M_d are mutually independent
	5.2 When M_1,...,M_d are equal or most strongly dependent

	ACKNOWLEDGMENTS
	REFERENCES

	REVSTAT_v20-n4-04
	"Smooth PLS Regression for Spectral Data"
	1 INTRODUCTION
	2 PLS REGRESSION
	3 SMOOTH PLS REGRESSION ON WAVELET TRANSFORMED DATA
	4 PLS REGRESSION ON SMOOTH LOADINGS
	5 THEORETICAL ASPECTS OF SMOOTH PLS REGRESSION
	6 EXPERIENCE WITH NIR DATA
	7 CONCLUSIONS
	A APPENDIX
	ACKNOWLEDGMENTS
	REFERENCES

	REVSTAT_v20-n4-05
	"Rényi Entropy of k-Records: Properties and Applications"
	1 INTRODUCTION
	2 BACKGROUND OF k-RECORDS
	3 RÉNYI ENTROPY OF k-RECORDS
	4 PROPERTIES OF RÉNYI ENTROPY OF k-RECORDS
	5 APPLICATIONS OF RÉNYI ENTROPY OF k-RECORDS
	5.1 Characterization of exponential distribution
	5.2 Rényi divergence of k-records
	5.3 Numerical illustration

	6 CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

	REVSTAT_v20-n4-06
	"A Study on Discrete Bilal Distribution with Properties and Applications on Integer-Valued Autoregressive Process"
	1 INTRODUCTION
	2 THE DISCRETE-BILAL DISTRIBUTION
	2.1 Mode
	2.2 Moments, skewness and kurtosis
	2.3 Dispersion index and coefficient of variation
	2.4 Mean deviation
	2.5 Stress-strength reliability
	2.6 Order statistics

	3 ESTIMATION METHODS
	3.1 Maximum likelihood estimation
	3.2 Moment estimation

	4 INAR(1) PROCESS WITH DBL INNOVATIONS
	4.1 Estimation of INAR(1)DBL process

	5 SIMULATION STUDIES
	5.1 Simulation of DBL model
	5.2 Simulation of INAR(1)DBL process

	6 EMPIRICAL STUDIES
	6.1 Number of fires in Greece
	6.2 Failure times
	6.3 Burglary crimes

	7 CONCLUSIONS
	A APPENDIX
	ACKNOWLEDGMENTS
	REFERENCES

	Blank Page
	Blank Page
	Blank Page
	Blank Page

