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1. INTRODUCTION

Almost all applied sciences including, biomedical science, engineering, finance, demog-
raphy, environmental and agricultural sciences, there is a need of statistical analysis and
modeling of the data. A number of continuous distributions for modeling lifetime data have
been introduced in statistical literature such as Exponential, Lindley, Gamma, Lognormal
and Weibull. Among these Gamma and Lognormal distributions are less popular because
their survival functions cannot be expressed in closed forms and both require numerical inte-
gration. Researchers in probability distribution theory often use a probability distributions
based on either their mathematical simplicity or because of their flexibility. Several paramet-
ric models are used in the analysis of lifetime data and in the problems associated with the
modeling of the failure process. The Exponential distribution is often used to model the time
interval between successive random events but Gamma and Weibull distribution is the most
widely used model for lifetime distribution due to its flexibility. The exponential distribution
is a particular case of the Gamma and Weibull distribution. In order to increase the suitabil-
ity of the well-known distributions, many authors have proposed different transformations
to generate new distributions, it has been an increased interest in defining new generators
for univariate continuous distributions by introducing one or more additional shape param-
eter(s) to the baseline model. This improves the goodness-of-fit of the proposed generated
distribution.

In the context of increasing flexibility in distribution, many generalization or transfor-
mation methods are available in the literature based on baseline distribution. Ghitany et al. [6]
developed a two-parameter weighted Lindley distribution and discussed its applications to
survival data. Zakerzadeh and Dolati [26] obtained a generalized Lindley distribution and
discussed its various properties and applications. Shaw and Buckley [23] proposed a new
transformation method by adding one extra parameter and Kumaraswamy [9] gives another
method of proposing new distribution by taking baseline distribution. A families of distri-
butions for the median of a random sample drawn from an arbitrary lifetime distribution is
introduced by Abd-Elrahman [1]. Since its failure rate function is monotonically increasing
with finite limit for this they generalize distribution by making transformation X =

(
Y−δ

θ

)λ
,

the parameter δ is a threshold parameter, θ and λ are the scale and the shape parameters,
respectively. Gupta et al. [7] proposed an exponentiated type distribution by adding one
more shape parameter. A new generalization of Lindley distribution, i.e. SSD distribution,
appear in Singh et al. [25]. In very recent compounded exponential lindley distribution (CEL)
has been studied by Singh et al. [24]. A new class of distribution by adding two additional
shape parameters is found (see Cordeiro et al. [4]). Also some well-known generators are
the beta-G by Eugene et al. [5], gamma-G by Zografos and Balakrishnan [27], the Zografos-
Balakrishnan-G family by Nadarajah et al. [13].
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2. GENESIS OF THE DISTRIBUTION

In this study, an attempt has been made to develop a new continuous distribution using
concept discussed by Gupta and Kirmani [8]. Let X be a continuous random variable with
the cumulative distribution function (cdf) F (x) and expectation E(X). It is worthwhile to
mention here that the E(X) can be defined in terms of cdf of any distribution as follows:

E(X) =

∞∫
0

[1− F (x)]dx.

Let us have, for positive x,

∞∫
0

[1− F (x)]dx = lim
k→∞

k∫
0

1.[1− F (x)]dx.

Now, integrating by parts, we have

lim
k→∞

[{1− F (k)}k] + lim
k→∞

k∫
0

xf(x)dx, where
d

dx
[F (x)] = f(x).(2.1)

Since F (∞) = 1, lim
k→∞

[{1− F (k)}k] = 0, then

(2.2)

∞∫
0

[1− F (x)]dx = lim
k→∞

k∫
0

xf(x)dx =

∞∫
0

xf(x)dx = E(X).

Keeping the above concept into mind we define a pdf g∗(x) as

g∗(x) =
1− F (x)

E(X)
, x > 0.(2.3)

If g∗(x) is a pdf then its integration over the range should be equal to 1. Now we have

∞∫
0

g∗(x)dx =

∞∫
0

[1− F (x)]
E(X)

dx =
1

E(X)

∞∫
0

[1− F (x)]dx =
E(X)
E(X)

= 1.

Therefore the generated pdf using the above transformation technique will be a valid pdf.
This g∗(x) may be called an induced or equilibrium distribution. Actually this distribution
is a particular case of weighted distribution defined by Patil and Rao [14]. According to the
Patil and Rao [14], if f(x; θ) be the probability distribution function of random variable X
and the unknown parameter θ the weighted distribution is defined as:

f∗(x; θ) =
w(x)f(x; θ)

E[w(x)]
, x ∈ R, θ > 0,

where w(x) is the weight function, and f(x; θ) is the base line distribution. We know that
1− F (x) = S(x) = f(x)

h(x) , i.e. if we take w(x) = h(x)−1, we can get the induced distribution
defined above in equation number (2.3). This distribution is well connected to its parent
distribution and many of the statistical properties can be easily studied.
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2.1. Proposed distribution

We consider cdf of one parameter Lindley distribution and using the idea of induced
distribution given in the equation (2.3), the pdf and cdf of transformed distribution is given
in equations (2.4) and (2.5) respectively:

f(x; θ) =
θ

θ + 2
(1 + θ + θx)e−θx,(2.4)

F (x; θ) = 1−
[
1 +

θx

θ + 2

]
e−θx, x > 0, θ > 0.(2.5)

In fact this distribution is Garima distribution and already discussed by Shanker [20], which
is a mixture of Exponential (θ) and Gamma (2, θ) distribution with mixing proportion θ+1

θ+2 .
Also he discussed its various statistical properties.

Therefore in this paper, we consider cdf F (x) of Garima distribution as a base line
distribution and try to develop a new distribution. The pdf and cdf of the new distribution
is as follows:

g(x; θ) =
θ

θ + 3
(2 + θ + θx)e−θx, x > 0, θ > 0,(2.6)

and the corresponding cdf is

G(x; θ) = 1−
[
1 +

θx

θ + 3

]
e−θx, x > 0, θ > 0.(2.7)

The above distribution is similar to the base line distribution and develop using concept of
induced distribution thus named as induced Garima (i-Garima) distribution. This distribu-
tion can also be consider as second order induced Lindley distribution. The cdf of i-Garima
distribution is displayed in Figure (1).
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Figure 1: Cumulative distribution function of i-Garima distribution.

The proposed distribution, i.e. i-Garima distribution, can be easily expressed as a
mixture of Exponential (θ) and Gamma (2, θ) as

f(x; θ) = pg1(x) + (1− p)g2(x),(2.8)

where p = θ+2
θ+3 , g1(x) = θe−θx, and g2(x) = θ2xe−θx.
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3. PROPERTIES

The r-th order moments about origin is given by

E(Xr) =

∞∫
0

xrg(x)dx =
θ

θ + 3

∞∫
0

xre−θx(2 + θ + θx)dx.

Hence,

µ′r =
r!
θr

(θ + r + 3)
(θ + 3)

, r = 1, 2, 3, ...(3.1)

First four moments about origin are obtained as:

µ′1 =
1
θ

(θ + 4)
(θ + 3)

, µ′2 =
2
θ2

(θ + 5)
(θ + 3)

, µ′3 =
6
θ3

(θ + 6)
(θ + 3)

, µ′4 =
24
θ4

(θ + 7)
(θ + 3)

.

Using the above expression we get the four moments about mean, i.e. central moments of the
proposed distribution are given by

µ1 =
θ + 4

θ(θ + 3)
, µ2 =

θ2 + 8θ + 14
θ2(θ + 3)2

,

µ3 =
2
(
θ3 + 12θ2 + 42θ + 46

)
θ3(θ + 3)3

, µ4 =
3
(
3θ4 + 48θ3 + 260θ2 + 592θ + 488

)
θ4(θ + 3)4

.

The coefficient of variation (CV), coefficient of skewness
√

β1, coefficient of kurtosis β2 and
index of dispersion γ of proposed distribution are obtained as:

CV =
σ

µ1
=
√

θ2 + 8θ + 14
θ + 4

,
√

β1 =
µ3

µ
3
2
2

=
2
(
θ3 + 12θ2 + 42θ + 46

)
(θ2 + 8θ + 14)

3
2

,

β2 =
µ4

µ2
2

=
3
(
3θ4 + 48θ3 + 260θ2 + 592θ + 488

)
(θ2 + 8θ + 14)2

, γ =
µ2

µ1
=

(
θ2 + 8θ + 14

)
θ(θ + 3)(θ + 4)

.

The coefficient of variation (CV), index of dispersion (γ), coefficient of skewness (
√

β1) and
kurtosis (β2) are calculated for different values of θ. Coefficient of variation (CV) is observed
less than 1 for all values of θ. Coefficient of skewness (

√
β1) and kurtosis (β2) are found

more than 1 and 3 respectively for different values of θ, therefore the proposed distribution
is positively skewed and leptokurtic. The index of dispersion (γ) shows that the proposed
distribution is under-dispersed as well as over-dispersed. It is observed that for θ= 1.1474,
the value of γ is 1. For θ > 1.1474, the distribution is under-dispersed and for θ < 1.1474,
it is over-dispersed. The graph for CV, γ,

√
β1 and β2 for different values of θ are shown in

Figure 2.
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Figure 2: Graph of the CV, γ, β1 and β2 for different values of θ.

3.1. Generating functions

The moment generating function Mx(t), characteristic function Φx(t) and cumulant
generating function κx(t) of proposed distribution are given by:

Mx(t) =
[
1− (2 + θ)t

(3 + θ)θ

](
1− t

θ

)−2

,

∣∣∣∣ t

θ

∣∣∣∣ < 1,(3.2)

Φx(t) =
[
1− (2 + θ)it

(3 + θ)θ

](
1− it

θ

)−2

, i =
√
−1,(3.3)

κx(t) = log
(

1− (2 + θ)it
(3 + θ)θ

)
− 2 log

(
1− it

θ

)
.(3.4)

By series expansion of log(1− x) = −
∞∑

r=0

xr

r , we get

κx(t) = −
∞∑

r=0

(
(2 + θ)
(3 + θ)θ

)r (it)r

r
+ 2

∞∑
r=0

(
it
θ

)r

r

= 2
∞∑

r=0

(r − 1)!
θr

(it)r

r!
−

∞∑
r=0

(r − 1)!
[

θ + 2
θ(θ + 3)

]r (it)r

r!
.

Hence r-th cumulant of i-Garima distribution is given by

κr = coefficient of
(it)r

r!
in κx(t)

= 2
(r − 1)!

θr
− (r − 1)!(θ + 2)r

[θ(θ + 3)]r
, r = 1, 2, 3, ...

From the above equation we have four moments, that are the same as obtained earlier by
equation (3.1):

µ1 = κ1 =
θ + 4

θ(θ + 3)
, µ2 = κ2 =

θ2 + 8θ + 14
θ2(θ + 3)2

,

µ3 = κ3 =
2
(
θ3 +12θ2 + 42θ + 46

)
θ3(θ + 3)3

, µ4 = κ4 + 3κ2
2 =

3
(
3θ4 + 48θ3 + 260θ2 + 592θ+488

)
θ4(θ + 3)4

.
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3.2. Hazard rate and mean residual life function

Let X be a random variable with pdf g(x) and cdf G(x). The hazard function is given
as

h(x) = lim
∆x→∞

P (X < x + ∆x|X > x)
∆x

=
g(x; θ)

1−G(x; θ)
.(3.5)

After using pdf and cdf of i-Garima distribution in above expression we get the hazard rate
function h(x) of i-Garima distribution as

h(x) =
θ(2 + θ + θx)
(3 + θ + θx)

,(3.6)

taking limit as x → 0 in (3.6), we get

lim
x→0

h(x) = lim
x→0

θ

[
1− 1

(3 + θ + θx)

]
= θ

[
1− 1

(3 + θ)

]
> 0, θ ∈ R+,

and for x →∞ we get

lim
x→∞

h(x) = lim
x→∞

θ

[
1− 1

(3 + θ + θx)

]
= θ > 0, θ ∈ R+.

Hence, h(x) > 0 for x > 0, θ > 0. Therefore, h(x) is an increasing function. The figure of
hazard function is displayed in the Figure (3).
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Figure 3: Hazard function of i-Garima distribution.

Now the mean residual life function (MRLF) is given as (3.7). We know that if a
component of age t, the remaining lifetime after age t will be random. The expected value of
the random life time is called the mean residual life and the mathematical form is known as
MRLF. This may be more relevant than the hazard rate function in the study of repairable
or replacement time. The MRLF provide idea about the entire residual life distribution or
life expectancy, whereas the hazard rate is related only to the risk of immediate failure.
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We have

m(x) = E[X − x|X > x] =
1

1−G(x; θ)

∞∫
x

[1−G(t; θ)]dt,

m(x) =
(4 + θ + θx)
θ(3 + θ + θx)

.(3.7)

If x = 0, we get, m(0) = θ+4
θ(θ+3) which is E(X) of the proposed distribution and also m(x) is

decreasing function for all x > 0 and θ > 0. The graph of MRLF of i-Garima distribution is
given in the Figure (4), which is decreasing type.
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Figure 4: Mean residual life function (MRLF) of i-Garima distribution.

3.3. Quantile function

Theorem 3.1. If X∼ i-Garima(θ), then Quantile function of X is defined as

Q(p) = −1− 3
θ
− 1

θ
W−1

(
−(1− p)(θ + 3)e−(−θ+3)

)
,

where p ∈ (0, 1) and W−1 is the negative branch of the Lambert W function.

Proof: Let

Q(p) = F−1(p), p ∈ (0, 1).

The quantile function, say q(p), defined by G(Q(p)) = p is the root of the equation

1−
(

1 +
θQ(p)
θ + 3

)
e−θQ(p) = p,

[3 + θ + θQ(p)]e−θQ(p) = (1− p)(θ + 3).
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Multiplying both sides by −e−(θ+3) we get

−[3 + θ + θQ(p)]e−(3+θ+θQ(p)) = −(1− p)(θ + 3)e−(3+θ).

Now (3 + θ + θQ(p)) > 1, ∀θ > 0, Q(p) > 0. By applying W-function defined as the solution
of the equation w(z)eW (z) = z, the above equation can be written as

W−1

(
−(1− p)(θ + 3)e−(−θ+3)

)
= −(3 + θ + θQ(p)),

where and W−1(·) is the negative branch of the Lambert W function and we get the required
result:

Q(p) = −1− 3
θ
− 1

θ
W−1

(
−(1− p)(θ + 3)e−(−θ+3)

)
.(3.8)

3.4. Stochastic ordering

Stochastic ordering of a continuous random variable is an important tool to judging
their comparative behaviour. A random variable X is said to be smaller than a random
variable Y , when:

(i) Stochastic order X ≤st Y if FX(x) ≥ FY (x) for all x;

(ii) Hazard rate order X ≤hr Y if hX(x) ≥ hY (x) for all x;

(iii) Mean residual life order X ≤mrl Y if mX(x) ≥ mY (x) for all x;

(iv) Likelihood ratio order X ≤lr Y if fX(x)
fY (x) decreases in x.

The following results by Shaked and Shanthikumar [16] are well known for introducing
stochastic ordering of distributions:

X ≤lr Y =⇒ X ≤hr Y =⇒ X ≤mrl Y

⇓
X ≤st Y.

With the help of the following theorem we claim that i-Garima distribution is ordered with
respect to strongest likelihood ratio ordering.

Theorem 3.2. Let X∼ i-Garima(θ1) distribution and Y ∼ i-Garima(θ2) distribution.

If θ1 > θ2 then X ≤lr Y and therefore X ≤hr Y , X ≤mrl Y and X ≤st Y .

Proof: We have

fX(x)
fY (x)

=
θ1(θ2 + 3)
θ2(θ1 + 3)

(
2 + θ1 + θ1x

2 + θ2 + θ2x

)
e−(θ1−θ2)x, x > 0.

Now taking log both sides we get

log
[
fX(x)
fY (x)

]
= log

[
θ1(θ2 + 3)
θ2(θ1 + 3)

]
log

[
2 + θ1 + θ1x

2 + θ2 + θ2x

]
−(θ1 − θ2)x.
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By differentiating both sides we get

d

dx
log

[
fX(x)
fY (x)

]
=

2(θ1 − θ2)
(2 + θ1 + θ1x)(2 + θ2 + θ2x)

−(θ1 − θ2).

Thus, for θ1 > θ2, d
dx log

[
fX(x)
fY (x)

]
< 0. This means that X ≤lr Y and hence X ≤hr Y , X ≤mrl Y

and X ≤st Y .

3.5. Order statistics

Let X1, X2, ..., Xm be a random sample of size m from i-Garima distribution and also
let X(1), X(2), ..., X(m) be the corresponding order statistics. The pdf and cdf of r-th order
statistics, say Y =X(r), are given by

f(r:m)(y) =
m!

(r − 1)!(m− r)!
F r−1(y)[1− F (y)]m−rf(y)

=
m!

(r − 1)!(m− r)!

m−r∑
l=0

(
m− r

l

)
(−1)lF r+l−1(y)f(y)(3.9)

and

F(r:m)(y) =
m∑

j=r

(
m

j

)
F j(y)[1− F (y)]m−j

=
m∑

j=r

m−j∑
l=0

(
m

j

)(
m− j

l

)
(−1)lF j+l(y)(3.10)

respectively, for r = 1(1)m.

Based on equations (3.9) and (3.10) the pdf and cdf of r-th order statistics of i-Garima
distribution is given in equations (3.11) and (3.12):

f(r:m)(y) =
m!θ(3 + θ + θx)e−θx

(θ + 3)(r − 1)!(m− r)!

m−r∑
l=0

(
m− r

l

)[
1− θx + (θ + 3)

(θ + 3)
e−θx

]r+l−1

(3.11)

and

F(r:m)(y) =
m∑

j=r

m−j∑
l=0

(
m

j

)(
m− j

l

)[
1− θx + (θ + 3)

(θ + 3)
e−θx

]j+l

.(3.12)

3.6. Bonferroni and Lorenz curves

Let the random variable X is non-negative with a continuous and twice differentiable
cumulative function. The Bonferroni [3] curve of the random variable X is defined as

B(p) =
1
pµ

q∫
0

xg(x)dx =
1
pµ

 ∞∫
0

xg(x)dx−
∞∫
q

xg(x)dx

 =
1
pµ

µ−
∞∫
q

xg(x)dx

(3.13)
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and the Lorenz curve (see Lorenz [12]) is defined by

L(p) =
1
µ

q∫
0

xg(x)dx =
1
µ

 ∞∫
0

xg(x)dx−
∞∫
q

xg(x)dx

 =
1
µ

µ−
∞∫
q

xg(x)dx

(3.14)

where q = G−1(p) and µ = E(X), p ∈ (0, 1].

The Gini index is given by

G = 1− 1
µ

∞∫
0

(1−G(x))2dx =
1
µ

∞∫
0

G(x)(1−G(x))dx.(3.15)

The Bonferroni, Lorenz curve and Gini index have application not only in economics
to study income and poverty, but also in other fields like reliability, population studies,
insurance, and medicine. Using the equations (3.13), (3.14) and (3.15) we get the Bonferroni
curve, Lorenz curve and the Gini index as:

B(p) =
1
p

[
1− {θ2q2 + (θ2 + 4θ)q + (θ + 4)}e−θq

θ + 4

]
,(3.16)

L(p) = 1− {θ2q2 + (θ2 + 4θ)q + (θ + 4)}e−θq

θ + 4
,(3.17)

G =
2θ2 + 16θ + 29
4(θ + 3)(θ + 4)

.(3.18)

4. ENTROPIES

Entropy, measures the variation in uncertainties associated with a random variable of
a probability distributions. Rényi’s and Shannon entropy are widely used to understand the
uncertainty involved in random variables.

4.1. Rényi entropy

If X is a continuous random variable having probability density function g(·), then the
Rényi Entropy (see Rényi [15]) is defined as

e(η) =
1

1− η
log

 ∞∫
0

gη(x)dx

,(4.1)

where η > 0 and η = 0.
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The Rényi entropy for the i-Garima distribution is defined as

e(η) =
1

1− η
log

 ∞∫
0

(
θ

θ + 3

)η

(2 + θ + θx)ηe−ηθxdx


=

1
1− η

log

 ∞∫
0

θη(θ + 2)η

(θ + 3)η

(
1 +

θx

θ + 2

)η

e−ηθxdx

.(4.2)

Now from the above equation (4.2), applying binomial expansion (1 + x)n =
n∑

k=0

(
n

k

)
xk,

we get

1
1− η

log

 ∞∫
0

θη(θ + 2)η

(θ + 3)η

η∑
j=0

(
η

j

)(
θx

θ + 2

)j

e−ηθxdx

,

i.e.
1

1− η
log

 η∑
j=0

(
η

j

)
θη+j(θ + 2)η−j

(θ + 3)η

∞∫
0

xje−ηθxdx

.(4.3)

After solving equation (4.3), we get the required results in equation (4.4):

=
1

1− η
log

 η∑
j=0

(
η

j

)
θη−1(θ + 2)η−j

(θ + 3)η

Γ(j + 1)
(η)j+1

,(4.4)

since
∞∫
0

xn−1e−θxdx = Γ(n)
θn .

4.2. Shannon entropy

The Shannon entropy (see Shannon [22]) of i-Garima distribution is given as

Ω = E(− log x) = −
∞∫
0

log(f(x))f(x)dx

= − log
(

θ

θ + 3

) ∞∫
0

f(x)dx−
∞∫
0

log(2 + θ + θx)f(x)dx +

∞∫
0

θxf(x)dx

= − log
(

θ

θ + 3

)
− log(θ + 2)−

∞∫
0

log
(

1 +
θx

θ + 2

)
f(x)dx + θE(x).(4.5)

Here, E(X) = θ+4
θ(θ+3) , mean of the distribution. Applying log(1+x) =

∞∑
n=1

(−1)n+1 xn

n , |x| < 1,

in equation (4.5), we get

= − log
(

θ(θ + 2)
θ + 3

)
+

(
θ + 4
θ + 3

)
− θ

θ + 3

∞∫
0

∞∑
k=1

(−1)k+1

k

(
θx

θ + 2

)k

(2 + θ + θx)e−θxdx

= − log
(

θ(θ + 2)
θ + 3

)
+

(
θ + 4
θ + 3

)
− θ

θ + 3

∞∑
k=1

(−1)k+1

k

(
θ

θ + 2

)k
∞∫
0

xk(2 + θ + θx)e−θxdx.
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After the simplification above, we obtained Shannon entropy as

Ω =
(

θ + 4
θ + 3

)
− log

(
θ(θ + 2)
θ + 3

)
− 1

θ + 3

∞∑
k=1

(−1)k+1

k

k!(θ + k + 3)
(θ + 2)k

.(4.6)

5. STRESS-STRENGTH RELIABILITY

Stress-strength model describes the life of a system of component having a random
strength X and random stress Y . If stress is more than strength, the system of component
fails immediately. The measure of system reliability R = P (Y < X) is also known as stress-
strength parameter. It is used in engineering science such as deterioration of any structures,
motors, static fatigue of ceramic components and aging of concrete pressure vessels.

Let X and Y be independently distributed, with X∼ i-Garima(θ1) and Y ∼ i-Garima(θ2).
The CDF F1 of X and pdf f2 of Y are obtained from equations (2.7) and (2.6), respectively.
Then stress-strength reliability R is obtained as

R = P (Y < X) =

∞∫
0

P (Y < X|X = x)fx(X)dx =

∞∫
0

f(x; θ1)F (x; θ2)dx

= 1−
θ1

[
(θ1θ2 + 3θ1 + 2θ2 + 6)(θ1 + θ2)2 + (2θ1θ2 + 3θ1 + 2θ2)(θ1 + θ2) + 2θ1θ2

]
(θ1 + 3)(θ2 + 3)(θ1 + θ2)3

.(5.1)

6. MAXIMUM LIKELIHOOD ESTIMATION

Let (x1, x2, ..., xn) be a random sample from X∼ i-Garima(θ). The likelihood function,
L, is obtained as

L =
(

θ

θ + 3

)n n∏
i=1

(2 + θ + θxi)e
−θ

nP

i=1
xi

.(6.1)

Taking log both sides of equation (6.1) we get

log L = n log
(

θ

θ + 3

)
+

n∑
i=1

log(2 + θ + θxi)− θ
n∑

i=1

xi.(6.2)

Now differentiating both sides of (6.2) by θ we get

d(log L)
dθ

=
3n

θ2 + 3θ
+

n∑
i=1

1 + xi

2 + θ + θxi
− nx̄ = 0,(6.3)

where x̄ is the sample mean. The maximum likelihood estimate (θ̂) of θ is the solution of the
equation (6.3). Since this is a non-linear equation, thus we solve this by numerical method.
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7. EMPIRICAL ILLUSTRATIONS AND GOODNESS OF FIT

In this section, we present applications of the proposed distribution and their competent
models for two real data sets to illustrate their potentiality. We estimate the unknown parame-
ters of themodel by themaximum likelihood estimation (MLE)usingNewton–Raphsonmethod.
First data is about vinyl chloride obtained from clean up gradient monitoring wells in mg/l,
provided by Bhaumik et al. [2], and second data set represents completed remission times (in
months) of a random sample of 128 bladder cancer patients reported in Lee and Wang [10].
The summary measures of the two data sets are given below in Table 1.

Table 1: Summary measures of two data sets.

Datasets n mean sd median skewness kurtosis min max

1st data set 34 1.953 1.879 1.150 1.604 5.005 0.10 8.000
2nd data set 128 9.209 10.40 6.280 3.399 19.39 0.08 79.05

Table 1 reveals that both data sets are positively skewed and leptokurtic. First data
set is under-dispersed however second data set is over-dispersed. We applied the i-Garima
distributions for the above data sets and compared the results with some other competent
distributions (see Lindley [11], Shanker [17, 18, 19, 20, 21]).

The goodness of fit of the i-Garima distribution has been explained for two real data
sets using −2LL (−2log likelihood), AIC (Akaike Information Criterion), BIC (Bayesian
Information Criterion) and K-S Statistic (Kolmogorov-Smirnov Statistic). The estimate of
these have been computed and shown in Tables 2 and 3, respectively. Smaller values of the
AIC and BIC indicates better model fittings. The formulae for computing AIC, BIC, and
K-S Statistics are as follows:

AIC = −2LL + 2k, BIC = −2LL + k log n, D = sup
x
|Fn(x)− F0(x)|,

where k = the number of parameters, n = the sample size, and Fn(x) = empirical distri-
bution function.

Table 2 and 3 reveals that i-Garima distribution provides closer fit for both data sets as
it has lower −2LL, AIC, BIC, K-S values and higher p-values corresponding to K-S statistics
than the other competitor models. Therefor, the proposed distribution i-Garima will consider
as a potential alternative in modeling life time data and can be recommended for modelling
data from engineering, medical, biological science and other applied sciences.
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Table 2: MLE’s, −2LL, AIC, BIC, K-S and p-values of the fitted distributions
for the vinyl chloride dataset given by Bhaumik et al. [2].

Distribution Estimate −2LL AIC BIC K-S p-value

i-Garima 0.674 111.18 113.18 114.71 0.1039 0.8567
Garima 0.723 111.50 113.50 115.03 0.1135 0.7731
Aradhana 1.133 116.06 118.06 119.59 0.1695 0.2826
Sujatha 1.146 115.54 117.54 119.07 0.1640 0.3196
Akash 1.166 115.15 117.15 118.68 0.1564 0.3762
Shanker 0.853 112.91 114.91 116.44 0.1308 0.6062
Lindley 0.199 112.61 114.61 116.13 0.1326 0.5881

Table 3: MLE’s, −2LL, AIC, BIC, K-S and p-values of the fitted distributions
for the bladder cancer patients data given by Lee and Wang [10].

Distribution Estimate −2LL AIC BIC K-S p-value

i-Garima 0.143 825.57 827.57 830.42 0.0768 0.4374
Garima 0.158 826.49 828.49 831.34 0.0873 0.2835
Aradhana 0.295 868.28 870.28 873.13 0.1713 0.0011
Sujatha 0.303 873.22 875.22 878.08 0.1792 0.0005
Akash 0.315 881.04 883.04 885.89 0.1904 0.0002
Shanker 0.214 841.68 843.68 846.53 0.1243 0.0382
Lindley 0.199 833.79 835.79 838.64 0.1114 0.0832

8. CONCLUSION

Better modeling of the survival data is a major concern for statisticians and applied
researchers. As a consequence, a significant progress has been made towards the extension
of lifetime models and their application to various data sets. The present study suggests
a technique for developing new probability distribution. A Single parameter distribution
named i-Garima, is suggested and investigated in this study. Different statistical properties
have been derived and studied for the proposed model. Moments about origin and mean have
been obtained. The nature of pdf, cdf, hazard rate function and mean residual life function
have been measured. The expression of stress-strength reliability is obtained, we can calculate
system reliability when stress and strength parameter is known. Bonferroni, Lorenz curves
and Gini index of the i-Garima are also measured. Maximum likelihood estimator of the
model parameter is derived and obtained through Newton-Raphson method. The Rényi
and Shannon entropies, order statistics and stochastic ordering are derived. An application
of i-Garima distribution is given using two real lifetime data sets to show the suitability
and the goodness of fit. Although the second data set have some censored cases but here
we use only completed cases for the analysis. i-Garima provides a better fit over Garima,
Aradhana, Sujatha, Akash, Shanker and Lindley distributions. It is realized that the proposed
distribution in this study will consider some data sets in view of different censored mechanisms
when specific interest comes into survival or reliability aspects. The article also opens a
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scope for studying under Bayesian paradigm of the parameters under different loss functions.
The work in this direction will perform in near future.

ACKNOWLEDGMENTS

Authors extend their appreciation to the associated editor and anonymous referees for
their productive suggestions to improve the quality of manuscript.

REFERENCES

[1] Abd-Elrahman, A.M. (2013). Utilizing ordered statistics in lifetime distributions produc-
tion: a new lifetime distribution and applications, Journal of Probability and Statistical Sci-
ence, 11(2), 153–164.

[2] Bhaumik, D.K.; Kapur, K. and Gibbons, R.D. (2009). Testing parameters of a gamma
distribution for small samples, Technometrics, 51(3), 326–334.

[3] Bonferroni, C.E. (1936). Statistical theory of classification and calculation of the proba-
bility, Publication of the R Institute Superiore of the Science of Economy and Commerce of
Florence, 8, 3–62.

[4] Cordeiro, G.M.; Castellares, F.; Montenegro, L.C. and de Castro, M. (2013).
The beta generalized gamma distribution, Statistics, 47(4), 888–900.

[5] Eugene, N.; Lee, C. and Famoye, F. (2002). Beta-normal distribution and its applications,
Communications in Statistics – Theory and Methods, 31(4), 497–512.

[6] Ghitany, M.E.; Alqallaf, F.; Al-Mutairi, D.K. and Husain, H.A. (2011). A two-
parameter weighted Lindley distribution and its applications to survival data, Mathematics
and Computers in Simulation, 81(6), 1190–1201.

[7] Gupta, R.C.; Gupta, P.L. and Gupta, R.D. (1998). Modeling failure time data by Lehman
alternatives, Communications in Statistics – Theory and Methods, 27(4), 887–904.

[8] Gupta, R.C. and Kirmani, S.N.U.A. (1990). The role of weighted distributions in stochastic
modeling, Communications in Statistics – Theory and Methods, 19(9), 3147–3162.

[9] Kumaraswamy, P. (1980). A generalized probability density function for double-bounded
random processes, Journal of Hydrology, 46(1-2), 79–88.

[10] Lee, E.T. and Wang, J.W. (2003). Statistical Methods for Survival Data Analysis, 3rd ed.,
Hoboken, NJ, Wiley.

[11] Lindley, D.V. (1958). Fiducial distributions and Bayes’ theorem, Journal of the Royal Sta-
tistical Society. Series B (Methodological), 102–107.

[12] Lorenz, M.O. (1905). Methods of measuring the concentration of wealth, Publications of the
American Statistical Association, 9(70), 209–219.

[13] Nadarajah, S.; Cordeiro, G.M. and Ortega, E.M. (2015). The Zografos–Balakrishnan-
G family of distributions: mathematical properties and applications, Communications in
Statistics – Theory and Methods, 44(1), 186–215.



On an induced distribution and its statistical properties 319

[14] Patil, G.P. and Rao, C.R. (1977). The weighted distributions: a survey of their applica-
tions, Applications of Statistics, 383–405.
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1. INTRODUCTION

Assume that X is a Z+-valued random variable (rv) and α ∈ (0, 1). The binomial
thinning operator (Steutel and van Harn ([22])) of X, denoted by α�X, is defined by

(1.1) α�X =
X∑

i=1

Yi,

where {Yi} is a sequence of independent identically distributed (iid) Bernoulli(α) (Ber(α))
rv’s independent of X. The operation � acts as the analogue of the standard multiplication
used in standard time series models.

The main results of this paper use the two facts below without further reference. For
α and β in (0, 1),

α� (β �X) d= β � (α�X) d= (αβ)�X

and for X and Y independent Z+-valued rv’s,

α� (X + Y ) d= α�X + α� Y.

Assume that {εt} is a sequence of iid Z+-valued rv’s. A sequence {Xt} of Z+-valued
rv’s is said to be an INAR (1) process if

(1.2) Xt = α�Xt−1 + εt (t ≥ 1),

where {εt} is the innovation sequence and α is the coefficient of the process. The binomial
thinning α�Xt−1 in (1.2) is performed independently for each t. More precisely, we assume
the existence of an array (Yi,t, i ≥ 1, t ≥ 0) of iid Ber(α) rv’s, independent of {εt}, such that

α�Xt−1 =
Xt−1∑
i=1

Yi,t−1.

Let ϕXt(z) be the pgf of Xt of (1.2) and Ψ(z) be the pgf εt. Then we have by (1.2)

ϕXt(z) = ϕXt−1(1− α + αz)Ψ(z).

If one further assumes that {Xt} is stationary with ϕX(z) as the pgf of its marginal distri-
bution, then the following functional equation holds

(1.3) ϕX(z) = ϕX(1− α + αz)Ψ(z).

It is a well known result that if α ∈ (0, 1) and ϕX(z) and Ψ(z) are pgf’s that satisfy
(1.3), then there exists a stationary INAR (1) process {Xt} on some probability space such
that ϕX(z) and Ψ(z) are respectively the pgf of its marginal distribution and the pgf of its
innovation sequence {εt}.

In the backward approach, one starts out with the pgf Ψ(z) of the innovation sequence and
solve (1.3) for the pgf ϕX(·) of the marginal distribution of the INAR (1) process. In this case

ϕX(z) = lim
n−→∞

n∏
i=0

Ψ(1− αi + αiz),

provided that the limit exists and is a pgf (see [2]).
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The main focus of the present paper is on the development of stationary INAR (1)
models driven by (1.2) with an infinitely divisible (Compound Poisson) innovation whose
mean is finite. In Section 2, we prove a number of basic results in the context of the backward
approach for these models. The results of Section 2 are used in Sections 3–9 to obtain in
detail key distributional properties of the marginal distributions of some important INAR (1)
processes. We discuss models whose innovations follow the Polya–Aeppli distribution, the
non-central Polya–Aeppli distribution, the negative binomial distribution, the noncentral
negative binomial distribution, the Poisson–Lindley distribution, and the Euler-type and
Euler distributions.

The above INAR (1) models are necessarily overdispersed. An example of a data set
which is empirically overdispersed is presented and analyzed in [4]. This data set gives the
monthly claim counts by workers in the heavy manufacturing industry who were collecting
benefits due to a burn related injury. The same data set was further analyzed in [23] and
[18] and shown to have an INAR (1)-like autocorrelation structure. Another example of an
overdispersed data set was introduced in [11] and was further analyzed in [12]. This data
set involves the number of publications produced by Ph.D. biochemists. Several examples of
underdispersed data sets are reported and analyzed in [20].

In the rest of this paper we will assume that α ∈ (0, 1) and a = 1− a for a ∈ (0, 1).
We will also use the notation µ

(u)
r (κ(u)

r ) and µ
(u)
[r] (κ(u)

[r] ) to designate the r-th moment (cumu-
lant) and the r-th factorial moment (factorial cumulant) of the pmf {ur}, respectively.

The backward approach rests heavily on the following important result found in [2].

Theorem 1.1. Assume that Ψ′(1) < ∞. The function

(1.4) ϕ(z) =
∞∏
i=0

Ψ(1− αi + αiz)

is a pgf. Moreover, the convergence of the infinite product is uniform over the interval [0, 1]
and ϕ(z) satisfies (1.3).

2. PROCESSES WITH COMPOUND POISSON INNOVATIONS

2.1. Basic Results

We start out by specializing Theorem 1.1 to infinitely divisible distributions with finite
mean. Recall that a distribution on Z+ is infinitely divisible if and only if it is a discrete
compound Poisson distribution with pgf

(2.1) Ψ(z) = exp{λ(H(z)− 1)},

for some λ > 0 and some unique pgf H(z) =
∑∞

r=1 hrz
r with pmf {hr} and H(0) = h0 = 0.

We will refer to such distributions as DCP (λ, H) distributions.

First, we need a lemma.
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Lemma 2.1. Assume that Ψ(z) is the pgf of a DCP (λ, H) distribution. Then for

each i ≥ 0,Ψ(1−αi + αiz) is the pgf of a DCP (λ′i,Hi) distribution which is described below:

(i) For every i ≥ 0,

(2.2) λ′i = λmi, mi = 1−H(1− αi),

and

(2.3) Hi(z) = 1− 1
mi

(
1−H(1− αi + αiz)

)
.

(ii) The pmf {h(i)
r } with pgf Hi(z) is

(2.4) h(i)
r =

αir

mi

∞∑
n=r

(
n

r

)
(1− αi)n−rhn (r ≥ 1).

Note that H0(z) = H(z) and {h(0)
r } = {hr}.

(iii) If the factorial moment generating function (fmgf) H(1+ t) of the pmf {hr} exists

for |t| < ρ0 for some ρ0 > 0, then for every i ≥ 0, the pmf {h(i)
r } has finite factorial

moments {µ(h(i))
[r] } for all r ≥ 1, and

(2.5) µ
(h(i))
[r] =

αir

mi
µ

(h)
[r] .

Proof: By (2.1), we have lnΨ(1− αi + αiz) = λ(H(1− αi + αiz)− 1), i ≥ 0, which
can be rewritten as

lnΨ(1− αi + αiz) = λ(1−H(1− αi))
(H(1− αi + αiz)−H(1− αi)

1−H(1− αi)
− 1
)
.

Letting mi and λ′i be as in (2.2), we have

lnΨ(1− αi + αiz) = λ′i

(H(1− αi + αiz) + mi − 1
mi

− 1
)
,

which leads to (2.3). The identity (a + b)n =
∑n

r=0

(
n
r

)
arbn−r implies

H(1− αi + αiz)−H(1− αi) =
∞∑

r=1

( ∞∑
n=r

(
n

r

)
αir(1− αi)n−rhn

)
zr.

Hence, Hi(z) is the pgf of {h(i)
r } of (2.4). This establishes (i)–(ii). To prove (iii), we note

that since the fmgf H(1 + t) of the pmf {hr} exists, then {hr} has finite factorial moments
µ

(h)
[r] of all orders r ≥ 1. It follows by equation (1.274), p. 59, in [6] and (2.3) that

(2.6) Hi(1 + t) = 1 +
1

mi

∞∑
r=1

µ
(h)
[r] αir tr

r!
(|t| < ρ0),

which in turn leads to (2.5).

Next, we study the pgf ϕ(·) of (1.4) when Ψ(z) is the pgf of a DCP (λ, H) distribution.
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Theorem 2.1. Let ϕ(·) and Ψ(·) be as in (1.4). If Ψ(z) is the pgf of a DCP (λ, H)
distribution with Ψ′(1) < ∞, then the following assertions hold:

(i) ϕ(z) is the pgf of the infinite convolution of the distributions (DCP (λmi,Hi), i≥ 0),
as described in Lemma 2.1.

(ii) ϕ(z) is the pgf of a DCP (λ̃, G) distribution, where

(2.7) λ̃ = λM > 0, M =
∞∑
i=0

mi =
∞∑
i=0

(1−H(1− αi)),

and

(2.8) G(z) =
∞∑
i=0

mi

M
Hi(z) (G(0) = 0).

Moreover, the pmf {gr} with pgf G(z) is the infinite countable mixture

(2.9) gr =
∞∑
i=0

mi

M
h(i)

r (r ≥ 1),

with
(
{h(i)

r }, i ≥ 0
)

of (2.4) and mixing probabilities
(

mi
M , i ≥ 0

)
.

Proof: By Theorem 1.1, ϕ(z) is a pgf. Part (i) follows directly from Lemma 2.1.
To prove (ii), first we note Ψ(z) is the pgf of an infinitely divisible distribution. There-
fore, there exists a pgf Ψn(z) such that Ψ(z) = (Ψn(z))n for every n ≥ 1. Since Ψ′(z) =
n(Ψn(z))n−1Ψ′

n(z) and Ψ′(1) < ∞, we have Ψ′
n(1) < ∞. Applying Theorem 1.1 to Ψn, it

follows that
∞∏
i=0

Ψn(1− αi + αiz) is a pgf. Note that

ϕ(z) =
∞∏
i=0

Ψ(1− αi + αiz) =

{ ∞∏
i=0

Ψn(1− αi + αiz)

}n

(n ≥ 1).

Hence, ϕ(z) is the the pgf of an infinitely divisible distribution, or a DCP (λ̃, G) distribution
for some λ̃ > 0 and pgf G(z). We have by Theorem 1.1 and (2.1)

ϕ(z) =
∞∏
i=0

Ψ(1− αi + αiz) = exp

{
λ

∞∑
i=0

(H(1− αi + αiz)− 1)

}
.

It is clear that ϕ′(1) < ∞ implies H ′(1) < ∞. Let QH(z) = 1−H(z)
1−z (z 6= 1) be the generating

function of the tail probabilities qr =
∞∑

i=r+1
hi of {hr}. It follows that 1−H(1− αi + αiz) ≤

αiH ′(1) (recall QH(1) = H ′(1)) and thus
∑∞

i=0(1−H(1−αi +αiz)) converges uniformly over
[0, 1]. This implies that M =

∑∞
i=0 mi < ∞ (see (2.2)). The fact that λ̃ = λM follows by

setting z = 0 in the equation λ
∑∞

i=0(H(1− αi + αiz)− 1) = λ̃(G(z)− 1). Solving for G(z)
and using (2.3) leads to (2.8) and (2.9) follows from (2.4) and (2.8).

The following result is a direct consequence of Theorem 2.1 and equation (9.43), p. 390,
in [6], for infinitely divisible distributions.
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Corollary 2.1. Under the assumptions and notation of Theorem 2.1, the pmf {pr}
with pgf ϕ(z) can be derived via the recurrence formula

(2.10) (r + 1)pr+1 = λ
r∑

j=0

(r + 1− j)gr+1−jpj with p0 = e−λM (r ≥ 0).

Remark 2.1. A distribution on Z+ with pgf Ψ(z) is discrete self-decomposable (DSD)
(cf. Steutel and van Harn [22]) if for any β ∈ (0, 1),

(2.11) Ψ(z) = Ψ(1− β + βz)Ψβ(z),

for some pgf Ψβ(z). If Ψ(z) is the pgf of a DSD distribution with finite mean, then ϕ(z) of
(1.4) is the pgf of a DSD distribution. Indeed, basic properties of infinite products and the
fact that Ψ′

β(1) < ∞ lead to

ϕ(z) = ϕ(1− β + βz)
∞∏
i=0

Ψβ(1− αi + αiz).

We conclude by Theorem 1.1 applied to Ψβ(z) that
∞∏
i=0

Ψβ(1− αi + αiz) is a pgf.

We proceed to discuss the case of INAR (1) processes with a DCP (λ, H) innovation.
We will add to results obtained in [18], [19] and [24]. These papers deal mainly with DCP (λ, H)
innovation when the compounding distribution has a pgf of the form H(z) =

∑n
i=1 hiz

i,
n < ∞. For example, on page 355 in [24], it is mentioned, quoting, “Let (Xt) be a station-
ary CP∞ − INAR(1) process. In general, a closed-form expression for the observations’ pmf
is not available”. In addition, on page 624 in [19], it is mentioned that “the structural impli-
cations of Theorem 2.1 can be extended to the case of compound Poisson arrival distributions
with an infinite compounding structure. The stationary distribution in this general case is
again compound Poisson distributed with infinite compounding structure. However, a way
to explicitly calculate the stationary distribution in this case is not known”.

The next result asserts the existence of a stationary INAR (1) process whose innovation
is DCP with infinite compounding structure. It is a consequence of Theorem 2.1 and the
standard result on the existence of stationary INAR (1) processes recalled in the introduction.
The proof is omitted.

Theorem 2.2. Any DCP (λ,H) distribution with pgf Ψ(z) of (2.1) such that H ′(1) <∞
gives rise to a stationary INAR (1) process {Xt} defined on some probability space and driven

by equation (1.2). Its innovation has pgf Ψ(z) and its marginal distribution is the DCP (λ̃, G)
distribution described by (2.7)–(2.10).

Next, we list key distributional properties of a stationary INAR (1) process {Xt} with
a DCP (λ, H) innovation:

1. The 1-step transition probabilities of {Xt} are given by

(2.12) P (Xt = k|Xt−1 = l) =
min(l,k)∑

j=0

(
l

j

)
αj(1− α)l−jfk−j ,
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where

(2.13) fx = P (ε = x) =


e−λ, if x = 0,

∞∑
n=1

e−λ λn

n!
h∗nx , if x > 0,

and {h∗nx } is the n-fold convolution of the pmf {hr} with pgf H(z). Similarly to
(2.10), fx can be obtained by the recurrence formula

(2.14) (x + 1)fx+1 = λ

x∑
j=0

(x + 1− j)hx+1−jfj , with f0 = e−λ (x ≥ 0).

2. The k-step-ahead version of (1.2) for k ≥ 1 is given by

(2.15) Xt+k
d= αk �Xt +

k∑
j=1

αj−1 � εt+k−j+1.

Consequently, the conditional pgf of Xt+k given Xt satisfies

(2.16) ϕXt+k|Xt
(z) =

(
1− αk + αkz

)Xt

×
k−1∏
i=0

Ψ(1− αi + αiz).

3. It follows by Lemma 2.1 and (2.16) that the conditional distribution of Xt+k given
Xt = n results from the convolution of a binomial distribution, Bin(n, αk), and the
distributions (DCP (λmi,Hi), 0 ≤ i ≤ k − 1) with characteristics (2.2)–(2.4).

4. Assume the fmgf H(1 + t) of the pmf {hr} exists for |t| < ρ0 for some ρ0 > 0. By
Lemma 2.1-(iii), the fmgf Hi(1 + t) of the pmf {h(i)

r } admits the representation
(2.6), for every i ≥ 0 and |t| < ρ0. Using (2.8) and a standard argument, one can
show that G(1 + t) =

∑∞
i=0

mi
M Hi(1 + t) converges uniformly in the interval |t| ≤ ρ

for every 0 < ρ < ρ0. Therefore, by Weierstrass Theorem, p. 430 in [8], we have

G(1 + t) = 1 +
∞∑

r=1

[ ∞∑
i=0

mi

M
µ

(h(i))
[r]

]
tr

r!
(|t| < ρ0),

which implies

(2.17) µ
(g)
[r] =

∞∑
i=0

mi

M
µ

(h(i))
[r] .

By (2.5), (2.17) and equation (1.246), p. 53, in [6], the factorial moments and the
moments of {gr} are

(2.18) µ
(g)
[r] =

µ
(h)
[r]

M(1− αr)
and µ(g)

r =
1
M

r∑
j=1

S(r, j)
µ

(h)
[j]

1− αj
(r ≥ 1),

where {S(r, j)} are the Stirling numbers of the second kind defined as

S(r, j) =
1
j!

j∑
k=0

(−1)j−k

(
j

k

)
kr (S(0, 0) = 1, S(0, k) = S(r, 0) = 0).
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5. By (2.18), equations (9.49), p. 391, and (1.257), p. 55, in [6], the factorial cumulants
and cumulants of Xt are:

(2.19) κ
(p)
[r] =

λ

1− αr
µ

(h)
[r] and κ(p)

r = λ
r∑

j=1

S(r, j)
µ

(h)
[j]

1− αj
(r ≥ 1).

6. The first and second cumulants of a pmf are its mean and variance, respectively.
The mean µ

(p)
1 and the variance (σ(p))2 of Xt follow from the above formulas:

(2.20) µ
(p)
1 =

λµ
(h)
1

1− α
and (σ(p))2 =

λ(µ(h)
2 + αµ

(h)
1 )

1− α2
.

7. The moments and factorial moments of Xt can be computed recursively by a for-
mula in [21] for the former and equation (1.244) in [6] for the latter:

(2.21) µ(p)
r =

r−1∑
i=0

(
r − 1

i

)
κ

(p)
r−iµ

(p)
i and µ

(p)
[r] =

r∑
j=0

s(r, j)µ(p)
j ,

where {s(r, j)} are the Stirling numbers of the first kind satisfying the recurrence
relation

s(r + 1, j) = s(r, j − 1)− rs(r, j) (s(n, 0) = 0, s(1, 1) = 1).

We note that the moments and factorial moments of the marginal distributions of the
INAR (1) models we introduce here are only obtainable through (2.21). Except for a couple
of instances, we will make no further reference to these moments.

2.2. Processes whose innovations are convolutions of DCP distributions

We consider stationary INAR (1) processes whose innovation is the finite convolution
of DCP distributions with finite means.

Let ν be a positive integer. We assume throughout the section that (H̃k, 1 ≤ k ≤ ν) is a
collection of pgf’s such that H̃k(0) = 0, H̃ ′

k(1) < ∞ and (λk, 1 ≤ k ≤ ν) are positive constants.
We denote by {h(k)

r } the pmf of H̃k(z).

Lemma 2.2. Let Ψk(z) be the pgf of a DCP (λk, H̃k) distribution, 1 ≤ k ≤ ν. The

following assertions hold:

(i) The convolution of the DCP (λk, H̃k) distributions, 1 ≤ k ≤ ν, is DCP (λ, H),
where

(2.22) λ =
ν∑

k=1

λk and H(z) =
ν∑

k=1

λk

λ
H̃k(z).

(ii) For each k = 1, 2, ..., ν, Ψk(1− αi + αiz) is the pgf of a DCP (λkm
(k)
i , H̃ki(z))

distribution, where m
(k)
i = 1− H̃k(1− αi) and H̃ki(z) is the pgf of a pmf we

denote {h(k,i)
r }, with H̃ki(0) = 0 and H̃ ′

ki(1) < ∞.
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(iii) Ψ(1− αi + αiz) is the pgf of a DCP (λmi,Hi) distribution, where mi = 1−
H(1− αi) =

∑ν
k=1

λk
λ m

(k)
i , with λ and H of (2.22), and

(2.23) Hi(z) =
ν∑

k=1

λkm
(k)
i

λmi
H̃ki(z) and h(i)

r =
ν∑

k=1

λkm
(k)
i

λmi
h(k,i)

r (r ≥ 1).

(iv) For every i ≥ 0, the DCP (λmi,Hi) distribution admits the following represen-

tation, with λ
(k)
i = λkm

(k)
i (1 ≤ k ≤ ν),

(2.24) DCP (λmi,Hi) ∼ DCP (λ(1)
i , H̃1i) ∗DCP (λ(2)

i , H̃2i) ∗ ··· ∗DCP (λ(ν)
i , H̃νi).

Proof: (i) is clear and (ii) follows from Lemma 2.1. For (iii), mi follows from (2.22)
by Theorem 2.1. We have by (i) Ψk(1− αi + αiz) = exp{λkm

(k)
i (H̃ki(z)− 1)}, which implies

ϕ(z) = exp
{ ν∑

k=1

λkm
(k)
i (H̃ki(z)− 1)

}
= exp

{( ν∑
k=1

λkm
(k)
i H̃ki(z)

)
− λmi

}

and (2.23), as
∑ν

k=1
λkm

(k)
i

λmi
= 1. (iv) follows from (iii) and (2.23).

Next, we present key distributional properties of a stationary INAR (1) with an inno-
vation that is the convolution of DCP distributions. The proofs are omitted as the results
are a direct consequence of Lemma 2.2 and Theorem 2.1.

Theorem 2.3. Let {Xt} be a stationary INAR (1) process driven by (1.2) with the

DCP (λ, H) innovation that results from the convolution of the DCP (λk, H̃k) distributions,

1 ≤ k ≤ ν (as described in Lemma 2.2). Let Mk =
∞∑
i=0

m
(k)
i , 1 ≤ k ≤ ν. The following asser-

tions hold:

(i) The marginal distribution of {Xt} is the infinite convolution of the sequence of

distributions
(
DCP (λmi,Hi), i ≥ 0

)
with the representation (2.24).

(ii) The marginal distribution of {Xt} is DCP (λ̃, G), where

(2.25) M =
ν∑

k=1

λk

λ
Mk; λ̃ = λM =

ν∑
k=1

λkMk

and G(z) admits the representation (2.8).

(iii) The pmf {gr} is the infinite mixture of the pmf’s ({h(i)
r }, i ≥ 0) of (2.23) with

mixing probabilities (mi
M , i ≥ 0).

We discuss additional properties of the process {Xt} of Theorem 2.3.

The 1-step transition probabilities of {Xt} can be obtained from equations (2.12)–
(2.14). By (2.16), the conditional distribution of Xt+k given Xt = n results from the convo-
lution of a Bin(n, αk) distribution and the distributions

(
DCP (λmi,Hi), 0 ≤ i ≤ k − 1

)
of

(2.24).
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If we assume that for each k = 1, 2, ..., ν, the fmgf H̃k(1 + t) of the pmf {h(k)
r } exists

for |t| < ρ
(k)
0 for some ρ

(k)
0 > 0, then it is easily seen that the fmgf H(1 + t) of (2.22) exists

for |t| < min1≤k≤ν ρ
(k)
0 . It follows by Lemma 2.1-(iii), Theorem 2.1, and (2.18) applied to λ

and H(z) of (2.22) that the r-th factorial moment of {gr} is

(2.26) µ
(g)
[r] =

1
M(1− αr)

ν∑
k=1

λk

λ
µ

(h(k))
[r] .

By (2.19), the factorial cumulants and the cumulants of Xt are (for r ≥ 1)

(2.27) κ
(p)
[r] =

1
1− αr

ν∑
k=1

λkµ
(h(k))
[r] and κ(p)

r =
ν∑

k=1

λk

[ r∑
j=1

S(r, j)
1− αj

µ
(h(k))
[j]

]
.

The mean and variance of Xt can be obtained from (2.20). We omit the details.

3. PROCESSES WITH POLYA-AEPPLI INNOVATIONS

A Z+-valued random variable with pgf Ψ(z) = exp
(
−λ 1−z

1−θz

)
and pmf

(3.1) fr =


e−λ, if r = 0,

e−λθr
r∑

j=1

(
r − 1
j − 1

)
(λθ/θ)j

j!
, if r > 0,

is said to have a Polya–Aeppli (or Poisson Geometric) distribution (PA(λ, θ)) with parameters
(λ, θ), λ > 0 and θ ∈ (0, 1). The PA(λ, θ) is DCP (λ, H), where H(z) is the pgf of the shifted
geometric (Geo1(θ)) distribution with pmf {hr}:

(3.2) H(z) =
θz

1− θz
and hr = θθr−1 (r ≥ 1).

Theorem 3.1. Let {Xt} be a stationary INAR (1) process with a PA(λ, θ) innovation.

The following assertions hold:

(i) The sequence {mi} of (2.2) satisfies

mi =
αi

1− θ(1− αi)
and 0 < mi ≤ 1 (i ≥ 0).

(ii) The pmf {h(i)
r } of (2.4), i ≥ 0, is a Geo1(miθ) distribution, and

(3.3) DCP (λmi,Hi) ∼ PA(λmi,miθ) (i ≥ 0).

(iii) The distribution of {Xt} is the infinite convolution of the PA(λmi,miθ) distri-

butions (i ≥ 0).

(iv) The distribution of {Xt} is DCP (λ̃, G), where λ̃ = λM , M =
∞∑
i=0

mi, and G is

the pgf of the infinite mixture of Geo1(miθ) distributions with respective mixing

probabilities mi
M , i≥ 0.
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Proof: Part (i) and the first part of (ii) follow from Lemma 2.1, (2.4), (3.2), and the
result (1− t)−r−1 =

∑∞
n=r

(
n
r

)
tn−r. In turn, the first part of (ii) implies (3.3). Part (iii) ensues

from Theorem 2.1-(i). Part (iv) is a direct consequence of Theorem 2.1.

We state some additional properties of the process {Xt} of Theorem 3.1.

The 1-step transition probability of {Xt} can be computed from (2.12)–(2.14) with
P (ε = x) = fx of (3.1). By (2.16) and (3.3), the conditional distribution of Xt+k given Xt = n

arises as the convolution of a Bin(n, αk) distribution and the PA(λmi,miθ) distributions,
0 ≤ i ≤ k − 1.

The fmgf H(1+ t) of the Geo1(θ) distribution with pmf {hr} of (3.2) exists for |t| < θ/θ.
Its power series expansion yields the factorial moments of {hr},

(3.4) µ
(h)
[r] =

r!
θ

(θ/θ)r (r ≥ 1).

Formulas for the moments of {gr} and the cumulants, mean and variance of Xt are given
below. They are derived from (2.18)–(2.20) and (3.4):

µ
(g)
[r] =

r!(θ/θ)r

Mθ(1− αr)
and µ(g)

r =
1

Mθ

r∑
j=1

S(r, j)
j!(θ/θ)j

1− αj
,

κ
(p)
[r] =

λr!(θ/θ)r

θ(1− αr)
and κ(p)

r =
λ

θ

r∑
j=1

S(r, j)
j!(θ/θ)j

1− αj
,

and

µ
(p)
1 =

λ

αθ
and (σ(p))2 =

λ(2− αθ)

(1− α2)θ2 .

Remark 3.1.

(i) The PA(λ, 0) distribution is Poisson (λ) and the corresponding stationary INAR(1)
process simplifies to the Poisson (λ

α) INAR (1) process discussed in [1], [13], and
[14].

(ii) One can extend the model discussed in this section to INAR (1) processes whose
innovations are finite convolutions of Polya–Aeppli distributions. The extension
can be established in fairly straightforward fashion by combining the results in
this section with those in Subsection 2.2.

4. PROCESSES WITH NONCENTRAL POLYA-AEPPLI INNOVATIONS

A noncentral Polya–Aeppli distribution (NPA(λ1, λ2, θ)) with parameters λ1, λ2 > 0
and θ ∈ (0, 1), as introduced in [9], results from the convolution of a Poisson(λ1) distribution
and a PA(λ2, θ) distribution. Its pmf is

(4.1) fr =


e−λ, if r = 0,

e−λθr
r∑

j=1

1
j!

( j∑
k=0

(
j

k

)(
r − j + k − 1

k − 1

)
(λ2θ/θ)k(λ1/θ)j−k

)
, if r > 0.
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An NPA(λ1, λ2, θ) distribution is DCP (λ, H), where λ = λ1 + λ2 and H(z) is the pgf
of a mixture of a Dirac measure δ1 sitting at 1, i.e., δ1({1}) = 1, and a Geo1(θ) distribution,
with respective mixing probabilities λ1/λ and λ2/λ, or

(4.2) H(z) =
λ1

λ
z +

λ2

λ

θz

1− θz
, h1 =

λ1 + θλ2

λ
and hr =

λ2

λ
θθr−1 (r ≥ 2).

Theorem 4.1. Let {Xt} be a stationary INAR (1) process with an NPA(λ1, λ2, θ)
innovation. The following assertions hold:

(i) The sequence {mi} of (2.2) satisfies

mi =
λ1

λ
· αi +

λ2

λ
· αi

1− θ(1− αi)
and 0 < mi ≤ 1 (i ≥ 0).

(ii) The pmf {h(i)
r } of (2.4), i ≥ 0, is a mixture of a Dirac measure δ1 sitting at 1 and

a Geo1(βi) distribution, with mixing probabilities bi1 and bi2, where

βi =
θαi

1− θ(1− αi)
, bi1 =

λ1α
i

λmi
, bi2 =

λ2

λmi

αi

1− θ(1− αi)
,

h
(i)
1 = 1− bi2βi and h(i)

r = bi2βiβi
r−1 (r ≥ 2).

Moreover,

(4.3) DCP (λmi,Hi) ∼ NPA(λ1α
i, λ2βi/θ, βi) (i ≥ 0).

(iii) The marginal distribution of {Xt} is the infinite convolution of the NPA(λ1α
i,

λ2βi/θ, βi) distributions (i ≥ 0).

(iv) The marginal distribution of {Xt} is DCP (λ̃, G), where λ̃ = λM,M = λ1
λ(1−α) +

λ2
λθ

∑∞
i=0 βi and G is the pgf of the infinite countable mixture of the sequence of

pmf’s ({h(i)
r }, i ≥ 0), described in (ii) above, with respective mixing probabilities

(mi
M , i≥ 0).

Proof: Parts (i) and (ii) follow essentially from (3.3), (4.2), Lemma 2.2, and Theorem 2.3
(for k = 2). Part (iii) ensues from Theorem 2.1-(i) and part (iv) is a direct consequence of
Theorem 2.1-(ii).

We obtain additional properties of the process {Xt} of Theorem 4.1.

The 1-step transition probability of {Xt} is obtained from (2.12)–(2.14) with P (ε = x)
= fx of (4.1). By (2.16), Lemma 2.1, and Theorem 4.1-(ii), the conditional distribution of
Xt+k given Xt= n is the convolution of a Bin(n,αk) distribution and the NPA(λ1α

i,λ2βi/θ,βi)
distributions (0 ≤ i ≤ k − 1).

The fcmgf H(1 + t) of the pmf {hn} of (4.2) exists for |t| < θ/θ. Its power series
expansion, (2.18) and (3.4), lead to the factorial moments of {gr}:

µ
(g)
[r] =


1

λM(1− α)
(
λ1 + λ2/θ)

)
, if r = 1,

1
λM(1− αr)

(
λ2r!/θ

)(
θ/θ
)r

, if r ≥ 2.
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Factorial cumulants and cumulants of Xt follow from (2.19):

κ
(p)
[r] =


1

1− α
(λ1 + λ2/θ), if r = 1,

1
1− αr

(
λ2r!/θ

)(
θ/θ
)r

, if r ≥ 2,

and

κ(p)
r =

λ1θ + λ2

αθ
+

λ2

θ

r∑
j=2

S(r, j)
j!
(
θ/θ
)j

1− αj
.

By (2.20), the mean and variance of Xt are

µ
(p)
1 =

λ1θ + λ2

αθ
and (σ(p))2 =

λ1θ
2(1 + α) + λ2(2− αθ)

(1− α2)θ2 .

5. PROCESSES WITH NEGATIVE BINOMIAL INNOVATIONS

The negative binomial (NB) distribution with parameters s > 0 and θ ∈ (0, 1), denoted
by NB(s, θ)), has pgf and pmf

(5.1) Ψ(z) =
{

θ

1− θz

}s

and fr =
(

s + r − 1
r

)
θ

s
θr (r ≥ 0).

The NB(s, θ) distribution is DCP (λ, H), where λ = −s ln θ and H(z) is the pgf of the
logarithmic distribution with pmf {hr} described below:

(5.2) H(z) =
ln(1− θz)

ln θ
and hr = − θr

n ln θ
, (r ≥ 1).

Theorem 5.1. Let {Xt} be a stationary INAR (1) process with an NB(s, θ) innova-

tion. The following assertions hold:

(i) The sequence {mi} of (2.2) is

(5.3) mi =
ln(1− θ̃i)

ln θ
with θ̃i =

θαi

1− θ(1− αi)
(i ≥ 0).

Note 0 < θ̃i ≤ θ and 0 < mi ≤ 1 (i ≥ 0). Moreover,

M =
∞∑
i=0

mi =
ln p(α, θ)

ln θ
, where p(α, θ) =

∞∏
i=0

(1− θ̃i).

(ii) The pmf {h(i)
r } of (2.4), i ≥ 0, is logarithmic(θ̃i) (cf. (5.2)) and

(5.4) DCP (λmi,Hi) ∼ NB(s, θ̃i) (i ≥ 0).

(iii) The marginal distribution of {Xt} is the infinite convolution of the NB(s, θ̃i)
distributions, i ≥ 0.

(iv) The marginal distribution of {Xt} is DCP (λ̃, G), where λ̃ = −s ln p(α, θ) and G

is the pgf of an infinite countable mixture of logarithmic(θ̃i) distributions with

mixing probabilities
(

ln(1−θ̃i)
ln p(α,θ) , i≥ 0

)
.
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Proof: By (5.2), mi = 1−H(1− αi) = (ln θ − ln(1− θ(1− αi))/ ln θ, which implies
(5.3), since 1− θ̃i = θ/(1− θ(1−αi)). Thus (i) holds. Straightforward calculations show that

Hi(z) = 1− 1
mi

(
1−H(1− αi + αiz)

)
=

ln(1− θ̃iz)
ln(1− θ̃i)

,

where H(z) is as in (5.2). This establishes the first part of (ii), which in turn implies (5.4).
Clearly, (iii) follows from Theorem 2.1-(i). Part (iv) is a direct consequence of (i)–(ii) and
Theorem 2.1-(ii).

We give additional proprerties of the process {Xt} of Theorem 5.1.

The 1-step transition probability of {Xt} can be computed from (2.12)–(2.14) with
P (ε = x) = fx of (5.1). By (2.16), Lemma 2.1, and Theorem 5.1 (i)–(ii), the conditional
distribution of Xt+k given Xt = n results from the convolution of a Bin(n, αk) distribution
and the NB(s, θ̃i) distributions (0 ≤ i ≤ k − 1).

The fmgf H(1 + t) of the logarithmic(θ) distribution with pgf H(z) and pmf {hr} of
(5.2) exists for |t| < θ/θ. The factorial moments of {hr} are given by (see equation 7.11,
p. 305, in [6])

(5.5) µ
(h)
[r] = −

(r − 1)!
(
θ/θ
)r

ln θ
(r ≥ 1).

Formulas for the moments of {gr} and the cumulants, mean and variance of Xt are
given below. They are derived from (2.18)–(2.20) and (5.5):

µ
(g)
[r] = −

(r − 1)!
(
θ/θ
)r

(1− αr) ln p(α, θ)
and µ(g)

r = − 1
ln p(α, θ)

r∑
j=1

S(r, j)
(j − 1)!(θ/θ)j

1− αj
,

κ
(p)
[r] =

s(r − 1)!
(
θ/θ
)r

1− αr
and κ(p)

r = s
r∑

j=1

S(r, j)
(j − 1)!(θ/θ)j

1− αj
,

µ
(p)
1 =

sθ

αθ
and (σ(p))2 =

sθ(1 + αθ)

(1− α2)θ2 .

Remark 5.1.

(i) Note that the special case of s = 1 of Theorem 5.1 covers the important special
case of the unshifted geometric(θ), or Geo0(θ), innovation. These results can be
seen as extensions of some of the work in [5].

(ii) One can extend the model discussed in this section to INAR (1) processes whose
innovations are finite convolutions of negative binomial distributions. The exten-
sion can be established in fairly straightforward fashion by combining the results
in this section with those in Subsection 2.2.
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6. PROCESSES WITH NONCENTRAL NEGATIVE BINOMIAL INNOVA-
TIONS

Assume that θ ∈ (0, 1), s > 0 and λ2 > 0. Ong and Lee ([16]) introduced the noncentral
NB distribution, NNB(λ2, s, θ), as the mixture of NB(v, θ) distributions, where v is a value
of the random variable V = Y + s and Y is Poisson(λ2). The pgf of NNB(λ2, s, θ) is Ψ(z) =(

θ
1−θz

)s
exp
(
−λ2

1−z
1−θz

)
, and

(6.1) fr =


θ

s
e−λ2 , if r = 0,

e−λ2θrθ
s

r∑
k=0

k∑
j=1

(
k − 1
j − 1

)(
s + r − k − 1

r − k

)
λ2(θ/θ)j

j!
, if r > 0.

The NNB(λ2, s, θ) distribution is the convolution of an NB(s, θ) distribution and a PA(λ2, θ)
distribution. Hence, by Lemma 2.2 (for k=2), NNB(λ2, s, θ) ∼ DCP (λ, H), where λ = λ2 −
s ln θ > 0 and

(6.2) H(z) =
1
λ

(
−s ln(1− θz) + λ2

θz

1− θz

)
and hr =

θr

λ

(
s

r
+ λ2

θ

θ

)
(r ≥ 1).

We note that {hr} is a mixture of a logarithmic(θ) distribution and a Geo1(θ) distri-
bution with respective mixing probabilities −s ln θ/λ and λ2/λ.

Theorem 6.1. Let {Xt} be a stationary INAR (1) process with an NNB(λ2, s, θ)
innovation of (6.1)–(6.2). Let

θ̃i =
θαi

1− θ(1− αi)
and p(α, θ) =

∞∏
i=0

(1− θ̃i).

The following assertions hold:

(i) For {mi} of (2.2) we have

mi =
1
λ

(
−s ln(1− θ̃i) + λ2

θ̃i

θ

)
and M =

1
λ

(
−s ln p(α, θ) +

λ2

θ

∞∑
i=0

θ̃i

)
.

(ii) The pmf {h(i)
r } of (2.4), i ≥ 0, is a mixture of a logarithmic(θ̃i) distribution and

a Geo1(θ̃i) distribution, with respective mixing probabilities bi1 =
(
−s ln(1− θ̃i)/

(λmi)
)

and bi2 = (λ2θ̃i)/(λmiθ). Moreover,

(6.3) DCP (λmi,Hi) ∼ NB(s, θ̃i) ∗ PA

(
λ2

θ̃i

θ
, θ̃i

)
.

(iii) The marginal distribution of {Xt} is the infinite convolution of the(
DCP (λmi,Hi), i ≥ 0

)
of (6.3).

(iv) The marginal distribution of {Xt} is DCP (λ̃, G), where λ̃ = λM and G is the pgf

of an infinite countable mixture of the sequence of pmf’s ({h(i)
r }, i ≥ 0) (described

in (ii) above) with mixing probabilities
(

mi
M , i≥ 0

)
.
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Proof: The proof is similar to that of Theorem 4.1. The results follow from Lemma 2.2,
Theorem 2.3 (with k = 2), Theorem 3.1 and Theorem 5.1. We omit the details.

We give some additional properties of the process {Xt} of Theorem 6.1.

The 1-step transition probability of {Xt} can be computed from (2.12)–(2.14) with
P (ε = x) = fx of (6.1). By (2.16), the conditional distribution of Xt+k given Xt = n results
from the convolution of a Bin(n, αk) distribution and the distributions

(
DCP (λmi,Hi),

0 ≤ i ≤ k − 1
)

of (6.3).

As a mixture of a logarithmic(θ) distribution and a Geo1(θ) distribution, the pmf {hr}
of (6.2) has a finite fmgf H(1 + t) for |t| < θ/θ. Therefore, the factorial moments of {gr} are,
by (2.26), (3.4) and (5.5),

µ
(g)
[r] =

(r − 1)!(θ/θ)r

λMθ(1− αr)
(sθ + λ2r).

Combining (2.27) with the moment and cumulant formulas derived in Section 6 yields the
factorial cumulants and the cumulants of Xt:

κ
(p)
[r] =

(r − 1)!(θ/θ)r

θ(1− αr)
(sθ + λ2r)(6.4)

and

κ(p)
r =

1
θ

r∑
j=1

S(r, j)
(j − 1)!(θ/θ)j

1− αj
(sθ + λ2j).(6.5)

By (2.20), the mean and variance of {Xt} are

µ
(p)
1 =

λ2 + sθ

αθ
and (σ(p))2 =

λ2(2− αθ) + sθ(1 + αθ)
(1− α2)θ

.

7. PROCESSES WITH POISSON-LINDLEY INNOVATIONS

In this section, we revisit the INAR (1) model with Poisson–Lindley innovation intro-
duced in [10] (see also [17]) and expand on their results. The Poisson–Lindley distribution
(PL(φ)) with parameter φ > 0 is the mixture of a Geo1( 1

1+φ) distribution and an NB(2, 1
1+φ)

distribution with respective mixing probabilities φ
1+φ and 1

1+φ . Its pgf and pmf are

(7.1) Ψ(z) =
φ2

1 + φ
· 2 + φ− z

(1 + φ− z)2
and fr =

φ2

(1 + φ)r+2

(
1 +

r + 1
1 + φ

)
(r ≥ 0).
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For additional details and references on the PL(φ) distribution, we refer to [15].
A PL(φ) distribution is DCP (λ, H) with

(7.2) λ = ln
[

(1 + φ)3

φ2(2 + φ)

]
, H(z) = 1 +

1
λ

ln
[

φ2(2 + φ− z)
(1 + φ)(1 + φ− z)2

]
,

and

(7.3) hr =
1
λr

(
2

(1 + φ)r
− 1

(2 + φ)r

)
(r ≥ 1).

We introduce the Modified Poisson–Lindley distribution (MPL(φ, β)) with parameters
φ > 0 and β ∈ (0, 1] as the distribution of β�X, where X∼ PL(φ). The pgf of the MPL(φ, β))
distribution is Ψ(1− β + βz), with Ψ(z) of (7.1). Note that, MPL(φ, 1) ∼ PL(φ).

Lemma 7.1. An MPL(φ, β) distribution arises as a mixture of a Geo1(β/(β + φ))
distribution and an NB(2, β/(β + φ)) distribution with resp. mixing probabilities φ

1+φ and
1

1+φ . Moreover, MPL(φ, β) ∼ DCP (λβ ,Hβ), where

(7.4) λβ = ln
[
(1 + φ)(β + φ)2

φ2(1 + β + φ)

]
, Hβ(z) = 1 +

1
λβ

ln
[

φ2(1 + β + φ− βz)
(1 + φ)(β + φ− βz)2

]
.

Moreover, the pmf {h(β)
r } of Hβ(z) is

(7.5) h(β)
r =

1
λβr

[
2
(

β

β + φ

)r

−
(

β

1 + β + φ

)r
]

(r ≥ 1).

Proof: If X is Geo1(1/(1+φ)) (resp. NB(2, 1/(1+φ)), then β�X is Geo1(β/(β +φ))
(resp. NB(2, β/(β + φ)). By (7.1), we obtain

Ψ(1− β + βz) =
φ2

1 + φ
· 1 + β + φ− βz

(β + φ− βz)2
.

A standard argument leads to the representation

Ψ(1− β + βz) = exp
{
λβ(Hβ − 1)

}
,

where λβ and Hβ and its pmf are as in (7.4)–(7.5).

Theorem 7.1. Let {Xt} be a stationary INAR (1) process with a PL(φ) innovation

with characteristics (7.1)–(7.3). The following assertions hold:

(i) For every i ≥ 0,

mi =
1
λ

ln
[
(1 + φ)(φ + αi)2

φ2(1 + φ + αi)

]
and M =

1
λ

ln
∞∏
i=0

(1 + ai),

where ai =
αi(φ2 + 2φ + αiφ + αi)

φ2(1 + φ + αi)
.
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(ii) The pmf {h(i)
r } of (2.4), i ≥ 0, is given in (7.5) with β = αi and λβ = λmi, and

(7.6) DCP (λmi,Hi) ∼ MPL(φ, αi).

(iii) The marginal distribution of {Xt} is the infinite convolution of the distributions(
MPL(φ, αi), i ≥ 0

)
.

(iv) The marginal distribution of {Xt} is DCP (λ̃, G), where λ̃ = ln
∞∏
i=0

(1 + ai), and

G is the pgf of the infinite countable mixture of the pmf’s
(
{h(i)

r }, i ≥ 0
)

with

respective mixing probabilities
(

mi
M , i≥ 0

)
.

Proof: (i) follows from Lemma 2.1, (7.1)–(7.2), and the formula M =
∑∞

i=0 mi. Part
(ii) is a direct consequence of Lemma 9.1 by setting β = αi. Part (iii) and (iv) result from
(ii) and Theorem 2.1-(ii), respectively.

We give additional properties of the process {Xt} of Theorem 7.1.

The 1-step transition probability of {Xt} can be computed from (2.12)–(2.14) with
P (ε = x) = fx of (7.1). By (2.16) and Theorem 7.1-(ii), the conditional distribution of Xt+k

given Xt = n results from the convolution of a Bin(n, αk) distribution and the MPL(φ, αi)
distributions, 0 ≤ i ≤ k − 1.

The fcmgf H(1 + t) of the pmf {hr} of (7.2)–(7.3) exists for |t| < φ/2. Its power series
expansion yields the factorial moments of {hr}:

µ
(h)
[r] =

(r − 1)!
λ

(
2
φr

− 1
(1 + φ)r

)
.

Formulas for the factorial moment of {gr} and the cumulants, mean and variance of Xt are
given below. They are derived from (2.18)–(2.20):

µ
(g)
[r] =

(r − 1)!
λM(1− αr)

(
2
φr

− 1
(1 + φ)r

)
,

κ
(p)
[r] =

(r − 1)!
(1− αr)

(
2
φr

− 1
(1 + φ)r

)
and κ(p)

r =
r∑

j=1

S(r, j)
(j − 1)!
(1− αj)

(
2
φj

− 1
(1 + φ)j

)
,

and

µ
(p)
1 =

2 + φ

αφ(1 + φ)
and (σ(p))2 =

(1 + α)φ3 + (4 + 3α)φ2 + 2(3 + α)φ + 2
(1− α2)φ2(1 + φ)2

.

8. PROCESSES WITH EULER-TYPE INNOVATIONS

Let l(0, 1) be the set of sequences Θ = (θk, k ≥ 0) such that θk ∈ (0, 1) for every k ≥ 0
and

(8.1)
∞∑

k=0

θk

1− θk
< ∞.
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Define

(8.2) Sr(Θ) =
∞∑

k=0

θr
k and Tr(Θ) =

∞∑
k=0

(
θk

1− θk

)r

(r ≥ 1).

Note that the condition (8.1) implies Sr(Θ) < ∞ and Tr(Θ) < ∞ for all r ≥ 1.

A Z+-valued rv is said to have an Euler-type distribution (Euler−T (Θ)), Θ ∈ l(0, 1),
if it is an infinite convolution of Geo0(θk) rv’s. Its pgf is

(8.3) Ψ(z) =
∞∏

k=0

(
1− θk

1− θkz

)
.

We gather a few basic properties of an Euler−T (Θ) distribution.

Lemma 8.1. Let {qr} be the pmf of an Euler−T (Θ) for some Θ ∈ l(0, 1). The

following assertions hold:

(i) {qr} is the pmf of a DCP (λ, H) with

(8.4) λ =
∞∑

k=0

(− ln(1− θk)) and H(z) =
∞∑

k=0

− ln(1− θk)
λ

Hk(z),

where, for each k ≥ 0, Hk(z) is the pgf of a logarithmic(θk) distribution. The

pmf {hr} with pgf H(z) is an infinite countable mixture of logarithmic(θk) dis-

tributions (k ≥ 0) with respective mixing probabilities
(− ln(1−θk

)
λ , k ≥ 0

)
, or

hr = Sr(Θ)/(λr), r ≥ 1.

(ii) {qr} satisfies the following recurrence relation:

(8.5) (r + 1)qr+1 =
r∑

k=0

qkSr+1−k(Θ) and q0 =
∞∏

k=0

(1− θk).

(iii) There exists 0 < ρ0 ≤ 1 such that the fcmgf H(1 + t) of the pmf {hr} of part (i)

is finite for |t| < ρ0. Consequently, {hr} has finite factorial moments of all orders:

(8.6) µ
(h)
[r] =

(r − 1)!
λ

Tr(Θ) (r ≥ 1).

(iv) {qr} has finite factorial cumulants of all orders:

(8.7) κ
(q)
[r] = (r − 1)!Tr(Θ) (r ≥ 1).

Proof: Since − ln(1− x) ∼ x, as x → 0, the two infinite series with respective positive
summands − ln(1− θk) and − ln(1− θkz), z ∈ (0, 1), are convergent. Therefore, lnΨ(z) =∑∞

k=0 ln(1− θk)−
∑∞

j=0 ln(1− θkz). Letting λ be as in (8.4), we have

lnΨ(z) = λ

(
− 1 +

∞∑
k=0

− ln(1− θk)
λ

ln(1− θkz)
ln(1− θk)

)
.



340 E.-E. A.A. Aly and N. Bouzar

The function Hk(z) = ln(1−θkz)
ln(1−θk) is the pgf of a logarithmic(θk) for each k ≥ 0 (see (5.2)).

Therefore, lnΨ(z) = λ(H(z)− 1), with H(z) of (8.4). Again by (8.4), {hr} is an infi-
nite countable mixture of logarithmic(θk) distributions with the stated mixing probabilities.
We have by (8.4) and (5.2)

hr =
∞∑

k=0

− ln(1− θk)
λ

θr
k

−r ln(1− θk)
(r ≥ 1),

which establishes (i), via (8.2). Note that q0 = e−λ and, similarly to (2.10), qr satisfies the
recurrence formula (8.5). We now prove (iii). By (8.1), there exists k0 > 1 such that θk/θk < 1
for k ≥ k0. Therefore, infk≥k0 θk/θk ≥ 1. Let ρ0 = min

(
1,min0≤k<k0 θk/θk

)
. Since ρ0 ≤ θk/θk

for every k ≥ 0, the fmgf Hk(1 + t) of the logarithmic(θk) distribution exists for |t| < ρ0.
We have by (5.5) and equation (1.274), p. 59, in [6],

Hk(1 + t) = 1 +
∞∑

r=1

(r − 1)!
(
θk/θk

)r
− ln θk

tr

r!
(|t| < ρ0).

A standard argument shows that H(1 + t) =
∑∞

k=0
− ln θk

λ Hk(1 + t) converges uniformly over
the interval |t| ≤ ρ for every 0 < ρ < ρ0. By Weierstrass Theorem, p. 430, in [8], we have

H(1 + t) = 1 +
∞∑

r=1

[ ∞∑
k=0

− ln θk

λ

(r − 1)!
(
θk/θk

)r
− ln θk

]
tr

r!
(|t| < ρ0),

which implies (8.6). Finally, by equation 9.49, p. 391, in [6], we have κ
(q)
[r] = λµ

(h)
[r] which leads

to (8.7).

One can conclude from (8.7) and (2.21) that an Euler−T (Θ) has finite moments {µ(q)
r }

of all orders, and thus finite factorial moments {µ(q)
[r] } of all orders.

Theorem 8.1. Let {Xt} be a stationary INAR (1) process with an Euler−T (Θ)
innovation for some Θ ∈ l(0, 1). For i, k ≥ 0, let

(8.8) θ
(k)
i =

θkα
i

1− θk(1− αi)
and pi(α, Θ) =

∞∏
k=0

(
1 +

θkα
i

1− θk

)
.

The following assertions hold:

(i) The sequence {mi} of (2.2) is

(8.9) mi =
1
λ

∞∑
k=0

(− ln(1− θ
(k)
i )) =

1
λ

ln pi(α, Θ) (i ≥ 0).

Note that 0 < θ
(k)
i ≤ θk and 0 < mi ≤ 1. Moreover,

(8.10) M =
∞∑
i=0

mi =
1
λ

ln

[ ∞∏
i=0

pi(α, Θ)

]
.

(ii) The pmf {h(i)
r } of (2.4), i ≥ 0, is an infinite countable mixture of logarithmic(θ

(k)
i )

distributions, k ≥ 0, with mixing probabilities
(
− ln(1−θ

(k)
i )

pi(α,Θ) , k ≥ 0
)
, and

(8.11) DCP (λmi,Hi) ∼ Euler−T (Θi), Θi = (θ(k)
i , k ≥ 0).
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(iii) The marginal distribution of {Xt} is the infinite convolution of the Euler−T (Θi)

distributions (i ≥ 0) of (8.11).

(iv) The marginal distribution of {Xt} is DCP (λ̃, G), where λ̃ = ln
[∏∞

i=0 pi(α, Θ)
]

and G is the pgf of an infinite countable mixture of the pmf’s (h(i)
r , i ≥ 0) of (ii)

with mixing probabilities
(
ln pi(α, Θ)

/
ln
[∏∞

j=0 pj(α, Θ)
]
, i ≥ 0

)
.

Proof: For (i), we have by (8.4),

mi = 1−H(1− αi) =
∞∑

k=0

− ln(1− θk)
λ

(1−Hk(1− αi)).

Since Hk(z) is the pgf of a logarithmic(θk) distribution, it follows that 1−Hk(1− αi) =
ln(1−θ

(k)
i )

ln(1−θk) , from which we deduce the first equation in (8.9). The second equation as well as
(8.10) are easily seen to hold. The convergence of the infinite products in part (i) stems from∑∞

i=0

∑∞
k=0

θkαi

1−θk
< ∞. This leads to

1−Hk(1− αi + αiz) =
ln(1− θ

(k)
i )

ln(1− θk)
(1−Hki(z)),

where Hki(z) is the pgf of a logarithmic(θ(k)
i ). We conclude by (2.3) and (8.4)

(8.12) Hi(z) =
∞∑

k=0

− ln(1− θ
(k)
i )

λmi
Hki(z).

Now, by (5.2),

h(i)
r =

∞∑
k=1

− ln(1− θ
(k)
i )

λmi

[θ(k)
i ]r

−r ln(1− θ
(k)
i )

=
Sr(Θi)

rpi(α, θ)
.

which proves the first part of (ii). Let Ψ(z) be as in (8.3). By Lemma 2.1, (8.9) and (8.12),
the pgf, Ψ(1− αi + αiz), of DCP (λmi,Hi) is shown to be

Ψ(1− αi + αiz) = exp
{
λmi(Hi(z)− 1)

}
=

∞∏
k=0

(
1− θ

(k)
i

1− θ
(k)
i z

)
.

It is easily seen that Θi = (θ(k)
i , k ≥ 0) belongs to l(0, 1). Therefore, (8.11) holds, thus com-

pleting the proof of (ii). Part (iii) follows from (8.11) and Theorem 2.1-(i). Part (iv) is a
direct consequence of (i)–(ii) and Theorem 2.1-(ii).

We discuss additional properties of the process {Xt} of Theorem 8.1.

The 1-step transition probability of {Xt} can be computed from (2.12)–(2.14) where
the probabilities P (ε = x) = qx, x ≥ 0, can be obtained using (8.5). By (2.16), Lemma 8.1,
and Theorem 8.1 (i)–(ii), the conditional distribution of Xt+k given Xt = n arises as the
convolution of a Bin(n, αk) distribution and the Euler−T (Θi) distributions (0 ≤ i ≤ k − 1)
of (8.11).
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Formulas for the moments of {gr} and the factorial moments, mean and variance of Xt

are obtained from (2.18)–(2.20) and (8.6):

µ
(g)
[r] =

(r − 1)!
λM(1− αr)

Tr(Θ) and µ(g)
r =

1
λM

r∑
j=1

S(r, j)
(j − 1)!
(1− αj)

Tj(Θ),

κ
(p)
[r] =

(r − 1)!
(1− αr)

Tr(Θ) and κ(p)
r =

r∑
j=1

S(r, j)
(j − 1)!
(1− αj)

Tj(Θ).,

and
µ

(p)
1 =

T1(Θ)
1− α

and (σ(p))2 =
(1 + α)T1(Θ) + T2(Θ)

1− α2
.

9. PROCESSES WITH EULER INNOVATIONS

The Euler distribution (Euler(η, q)) introduced by Benkherouf and Bather ([3]) (see
[6]) is an Euler−T (Θ) distribution with Θ = (ηqk, k ≥ 0) for 0 < η < 1 and 0 < q < 1.
An application of the ratio test shows that indeed Θ ∈ l(0, 1). We also note that Sr(Θ) = ηr

1−qr ,
r ≥ 1. We use the notation Tr(η, q) in lieu of Tr(Θ).

We recall a few basic properties of the Euler(η, q) distribution (cf., for example, [7]).
Its pmf {qx} is

(9.1) q0 =
∞∏

j=0

(1− ηqj) and qx =
ηx

x∏
l=1

(1− ql)
q0 (x ≥ 1).

Its mean and variance are

µ =
∞∑

x=0

ηqx

1− ηqx
and σ2 =

∞∑
x=0

ηqx

(1− ηqx)2
.

The following result is known. We refer to Lemma 8.1 for convenience.

The Euler(η, q) distribution is DCP (λ, H) with λ = − ln
(∏∞

k=0(1− ηqk)
)

and H(z)
is the pgf of an infinite countable mixture of logarithmic(ηqk) distributions, k ≥ 0, with
respective mixing probabilities

(− ln(1−ηqk)
λ , k ≥ 0

)
. Its pmf is hr = ηk/(λk(1− qk)), r ≥ 1.

The main result of the section is stated without proof as it is a particular case of
Theorem 8.1.

Theorem 9.1. Let {Xt} be a stationary INAR (1) process with an Euler(η, q) inno-

vation for some η, q ∈ (0, 1). For i, k ≥ 0, let

(9.2) θ
(k)
i =

ηqkαi

1− ηqk(1− αi)
and pi(α, η, q) =

∞∏
k=0

(
1 +

ηqkαi

1− ηqk

)
.

The following assertions hold:
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(i) The sequence {mi} of (2.2) and M =
∑∞

i=0 mi are as follows:

(9.3) mi =
1
λ

ln pi(α, η, q) and M =
1
λ

ln

[ ∞∏
i=0

pi(α, η, q)

]
.

Note that 0 < θ
(k)
i ≤ ηqk and 0 < mi ≤ 1 (i ≥ 0).

(ii) The pmf {h(i)
r } of (2.4), i ≥ 0, is an infinite countable mixture of logarithmic(θ

(k)
i )

distributions, k ≥ 0, with mixing probabilities
(− ln(1−θ

(k)
i )

pi(α,η,q) , k ≥ 0
)
, and

(9.4) DCP (λmi,Hi) ∼ Euler−T (Θi), Θi = (θ(k)
i , k ≥ 0).

(iii) The marginal distribution of {Xt} is the infinite convolution of the Euler−T (Θi)
distributions (i ≥ 0) of (9.4).

(iv) The marginal distribution of {Xt} is DCP (λ̃, G), where λ̃ = ln
[∏∞

i=0 pi(α, Θ)
]

and G is the pgf of an infinite countable mixture of the pmf’s (h(i)
r , i ≥ 0) of (ii)

with mixing probabilities
(
ln pi(α, η, q)

/
ln
[∏∞

j=0 pj(α, η, q)
]
, i ≥ 0

)
.

Additional properties of the process {Xt} of Theorem 9.1 are given next.

The 1-step transition probability of {Xt} can be computed from (2.12)–(2.14) where
the probabilities P (ε = x) = qx, x ≥ 0, are as in (9.1). By (2.16) and Theorem 8.1 (i)–(ii), the
conditional distribution of Xt+k given Xt = n arises as from the convolution of a Bin(n, αk)
distribution and the Euler−T (Θi) distributions (0 ≤ i ≤ k − 1) of (9.4).

Formulas for the moments of {gr} and the factorial moments, mean and variance of Xt

are as follows:

µ
(g)
[r] =

(r − 1)!
λM(1− αr)

Tr(α, η, q) and µ(g)
r =

1
λM

r∑
j=1

S(r, j)
(j − 1)!
(1− αj)

Tj(α, η, q),

κ
(p)
[r] =

(r − 1)!
(1− αr)

Tr(α, η, q) and κ(p)
r =

r∑
j=1

S(r, j)
(j − 1)!
(1− αj)

Tj(α, η, q),

and

µ
(p)
1 =

T1(α, η, q)
1− α

and (σ(p))2 =
(1 + α)T1(α, η, q) + T2(α, η, q)

1− α2
.
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1. INTRODUCTION

RSS is developed as an alternative to SRS in order to estimate population parameters
more efficiently where the measurement of sampling units is difficult or costly but the units
are easier to rank. McIntyre [12] was the first to propose the use of RSS in the pasture
research to estimate the mean amount of crops. Afterwards, Halls and Dell [11] used this
method to estimate the mean weights of trees and plant leaves in pine forests located in
the east of Texas. In order to compare the variances of the means obtained from RSS and
SRS methods Evans [7] carried out a study on long leaf pine trees. The first mathematical
theory of RSS in infinite population was developed by Takahasi and Wakimoto [24]. They
also demonstrated that the estimator of the population mean obtained by RSS is unbiased
and its variance is smaller than SRS when the errors in the ranking are ignored. Dell and
Clutter [6] examined errors of ranking in RSS. They showed that the mean estimator of RSS
is an unbiased estimator of population mean when ranking is imperfect. David and Levine [5]
conducted a study to determine the effects of the errors in the ranking in RSS. The concept of
concomitant variable for RSS which is an effective way to increase the accuracy of ranking was
proposed by Stokes [22]. This variable should be highly correlated with the variable of interest.
Also, Stokes [23] suggested RSS based variance estimator which is asmptotically unbiased
and more efficient compared to SRS based variance estimator. In order to review other
results and examples for RSS see these studies, Patil et al. [20] and Al-Omari and Bouza [1].
Also detailed information regarding theoretical and applicational studies based on RSS can
be found in Chen et al. [4].

Ranking of the units in a set is made on the basis of the visual judgement of the
researcher or a concomitant variable which has a strong correlation with the variable of in-
terest. These ranking methods are defined as ranking error models. There are many studies
in the literature that are focused on the modelling of ranking errors. Primarily, Dell and
Clutter [6] developed a model including a term of random error for the observations. Later,
Bohn and Wolfe [3] proposed a ranking error model based on the expected value of the
difference between two order statistics. Fligner and MacEachern [9] used the principle of
monotone likelihood ratio to model the ranking information in RSS. New class of models is
presented for imperfect rankings, in a study carried out by Frey [10]. A calibration model is
developed by Ozturk [17] to reduce the errors in the ranking for RSS. Besides, Ozturk [18]
suggested inference techniques for ranked set sample data in the presence of judgement rank-
ing errors. Alexandridis and Ozturk [2] developed robust statistical inference against imper-
fect ranking in a ranked set sample data obtained from a family of discrete distributions.
By taking the ranking errors in RSS into account, Ozturk [19] obtained non-parametric max-
imum likelihood estimators.

The motivation of this study is to see the effects of ranking error models on the mean
estimators of RSS and some of its modified methods and compare them with the mean
estimator of SRS. For this purpose, a simulation study is conducted. In addition, an abalone
data set is used to support the results of the simulation study.

This study consists of six sections. The first section includes the aim of the study
and literarure review on RSS. The second section contains methodological background
and detailed information about RSS, extreme RSS (ERSS) and percentile RSS (PRSS).
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Ranking error models in RSS literature such as visual ranked set sampling (VRSS) and con-
comitant ranked set sampling (CRSS) are defined in section 3. In addition, a Monte Carlo
simulation study is conducted to determine the effects of ranking error models on the MSE
of the mean estimators based on RSS and some of its modified methods. Besides, abalone
data set is used for comparing the results obtained from the simulation study in section 5.
The final section contains the conclusions.

2. RANKED SET SAMPLING AND SOME OF ITS MODIFIED METHODS

2.1. Ranked Set Sampling

In recent years, RSS is a commonly used sampling method in literature. RSS was
introduced by McIntyre [12] as an alternative sampling method to SRS in order to estimate
the population parameters more efficiently. It is useful and preferable method due to several
important factors. Set size and the relative costs of various operations such as sampling,
ranking and measurement are the most important ones among these factors. Also RSS
provides advantages due to its features such as the ability to work with finite or infinite
populations and it does not require to measure all units in the selected sample in RSS.

There are two important parameters in RSS. These are the set size and the number of
cycles which are denoted by n and m, respectively. The set size in RSS usually ranges from
2 to 5. Also, there are many studies available in the literature in which more sets are used.
On the other hand, there is no limit for the number of cycles. RSS procedure is applied in 5
steps which are described as below:

1. Select a sample of size n2 from the population of interest using SRS.

2. Divide this randomly chosen sample of size n2 into n sets with size n.

3. Rank the units within each set via cost effective and straightforward measurement.
This ranking can be made by using visual ranking method, a concomitant variable
or other methods.

4. Select the smallest ranked unit from the first set, the second smallest ranked unit
from the second set and the n-th smallest ranked unit from the n-th set for actual
measurement of units.

5. This process is repeated m times, until maintaining the required sample size.

The following expression represents the RSS procedure for one cycle:
X1[1:n] ≤ X1[2:n] ≤ X1[3:n] ≤ ··· ≤ X1[n:n]

X2[1:n] ≤ X2[2:n] ≤ X2[3:n] ≤ ··· ≤ X2[n:n]

X3[1:n] ≤ X3[2:n] ≤ X3[3:n] ≤ ··· ≤ X3[n:n]
...

Xn[1:n] ≤ Xn[2:n] ≤ Xn[3:n] ≤ ··· ≤ Xn[n:n]

 .

Here, X(i[k:n]j) represents the unit which has the rank of k in the i-th set and j-th cycle
where i = 1, 2, ..., n and j = 1, 2, ...,m. The obtained ranked set sample for n set and m cycle
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can be shown as 
X[1]1 X[2]1 X[3]1 ··· X[i]1

X[1]2 X[2]2 X[3]2 ··· X[i]2

X[1]3 X[2]3 X[3]3 ··· X[i]3
...

...
...

X[1]j X[2]j X[3]j ··· X[i]j

 ,

where X[i]j denotes the i-th ranked observation in the j-th cycle for i and j changing from
1 to n and m, respectively. The sets in RSS are random samples that are elements of the
i-th set X[i]1,X[i]2, ...,X[i]j and each set has the same distribution function F (x; θ) and same
probability density function f(x; θ), where i = 1, 2, 3, ..., n and j = 1, 2, 3, ...,m.

The sample mean estimator of the population mean for RSS can be shown as

(2.1) X̄RSS =
1

mn

m∑
j=1

n∑
i=1

X[i]j .

Also the variance of the mean estimator for RSS can be shown as

(2.2) Var(X̄RSS) =
σ2

x

mn

[
1−

n∑
i=1

(E(X[i]j)− µx)2

nσ2
x

]
,

where, µx and σ2
x are the mean and the variance of the population of interest, respectively.

2.2. Extreme Ranked Set Sampling

ERSS is developed by Samawi et al. [21] to estimate the population parameters more
efficiently than SRS with the same number of units by only using the minimum and maximum
ranked units for n when it is even and, the median ranked unit when it is odd.

For example, when n = 6, extreme ranked set sample is given below:



X1[1:6] ≤ X1[2:6] ≤ X1[3:6] ≤ X1[4:6] ≤ X1[5:6] ≤ X1[6:6]

X2[1:6] ≤ X2[2:6] ≤ X2[3:6] ≤ X2[4:6] ≤ X2[5:6] ≤ X2[6:6]

X3[1:6] ≤ X3[2:6] ≤ X3[3:6] ≤ X3[4:6] ≤ X3[5:6] ≤ X3[6:6]

X4[1:6] ≤ X4[2:6] ≤ X4[3:6] ≤ X4[4:6] ≤ X4[5:6] ≤ X4[6:6]

X5[1:6] ≤ X5[2:6] ≤ X5[3:6] ≤ X5[4:6] ≤ X5[5:6] ≤ X5[6:6]

X6[1:6] ≤ X6[2:6] ≤ X6[3:6] ≤ X6[4:6] ≤ X6[5:6] ≤ X6[6:6]

 .

Since the set size n = 6 is even, the actual measurement of units is made over the
smallest ranked units (X1[1:6], X2[1:6], X3[1:6]) from the first three sets and the largest ranked
units (X4[6:6], X5[6:6], X6[6:6]) from the last three sets, where Xi[m:n] represents the m-th
ranked unit in the i-th set for i = 1, 2, ..., n, m = 1, 2, ..., n. On the other hand, an example
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for odd set size, n = 7, is given below:

X1[1:7] ≤ X1[2:7] ≤ X1[3:7] ≤ X1[4:7] ≤ X1[5:7] ≤ X1[6:7] ≤ X1[7:7]

X2[1:7] ≤ X2[2:7] ≤ X2[3:7] ≤ X2[4:7] ≤ X2[5:7] ≤ X2[6:7] ≤ X2[7:7]

X3[1:7] ≤ X3[2:7] ≤ X3[3:7] ≤ X3[4:7] ≤ X3[5:7] ≤ X3[6:7] ≤ X3[7:7]

X4[1:7] ≤ X4[2:7] ≤ X4[3:7] ≤ X4[4:7] ≤ X4[5:7] ≤ X4[6:7] ≤ X4[7:7]

X5[1:7] ≤ X5[2:7] ≤ X5[3:7] ≤ X5[4:7] ≤ X5[5:7] ≤ X5[6:7] ≤ X5[7:7]

X6[1:7] ≤ X6[2:7] ≤ X6[3:7] ≤ X6[4:7] ≤ X6[5:7] ≤ X6[6:7] ≤ X6[7:7]

X7[1:7] ≤ X7[2:7] ≤ X7[3:7] ≤ X7[4:7] ≤ X7[5:7] ≤ X7[6:7] ≤ X7[7:7]


.

In this case, the actual measurement of units is made over the smallest ranked units (X1[1:7],
X2[1:7], X3[1:7]) from the first three sets and the largest ranked units (X4[7:7], X5[7:7], X6[7:7])
from the following three sets. In addition, the fourth ranked unit (X7[4:7]) is selected from the
remaining set for the measurement where Xi[m:n] represents the m-th ranked unit in the i-th
set for i = 1, 2, ..., n, m = 1, 2, ..., n. For this case, the last unit corresponds to the median
value of the last set in the sample.

For even set size, the mean estimator of ERSS is given by

(2.3) X̄ERSS =
1
n

[
n/2∑
i=1

X2i−1[1:n] +
n/2∑
i=1

X2i[n:n]

]
.

Also, the variance of the mean estimator based on ERSS is given by

(2.4) Var(X̄ERSS) =
1
n2

[
n/2∑
i=1

Var(X2i−1[1:n]) +
n/2∑
i=1

Var(X2i[n:n])

]
.

For odd set size, the mean estimator of ERSS is given by

(2.5) X̄ERSS =
1
n

[
(n−1)/2∑

i=1

X2i−1[1:n] +
(n−1)/2∑

i=1

X2i[n:n] + Xn[(n−1/2):n]

]
.

Also, the variance of the mean estimator based on ERSS is given by

(2.6) Var(X̄ERSS) =
1
n2

[
(n−1)/2∑

i=1

Var(X2i−1[1:n]) +
(n−1)/2∑

i=1

Var(X2i[n:n]) + Var(Xn[((n+1)/2):n])

]
.

2.3. Percentile Ranked Set Sampling

PRSS is suggested by Muttlak [13] to estimate the population parameters more effi-
ciently than SRS with the same number of units by only using the [p(n+1)]-th and [q(n+1)]-th
ranked units for n when it is even and, the median ranked unit when it is odd.

In this sampling method, p is denoted as the percentile value and takes value between
0 and 1, (0 < p < 1). On the other hand, q = 1− p and [p(n + 1)] and [q(n + 1)] are rounded
to the nearest integer. PRSS procedures are presented in the following examples.
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Let the set size be n = 6, p = 0.35 and q = 0.65. Following the ranking process of units,
the second ranked units from the first half of the sets (X1[2:6], X2[2:6], X3[2:6]) and the fifth
ranked units from the following three sets (X4[5:6], X5[5:6], X6[5:6]) are selected:



X1[1:6] ≤ X1[2:6] ≤ X1[3:6] ≤ X1[4:6] ≤ X1[5:6] ≤ X1[6:6]

X2[1:6] ≤ X2[2:6] ≤ X2[3:6] ≤ X2[4:6] ≤ X2[5:6] ≤ X2[6:6]

X3[1:6] ≤ X3[2:6] ≤ X3[3:6] ≤ X3[4:6] ≤ X3[5:6] ≤ X3[6:6]

X4[1:6] ≤ X4[2:6] ≤ X4[3:6] ≤ X4[4:6] ≤ X4[5:6] ≤ X4[6:6]

X5[1:6] ≤ X5[2:6] ≤ X5[3:6] ≤ X5[4:6] ≤ X5[5:6] ≤ X5[6:6]

X6[1:6] ≤ X6[2:6] ≤ X6[3:6] ≤ X6[4:6] ≤ X6[5:6] ≤ X6[6:6]

 .

This time, let n = 7, p = 0.4 and q = 0.6. Following the ranking process of units, the
third ranked units from the first three sets (X1[3:7], X2[3:7], X3[3:7]), the fifth ranked units
from the following three sets (X4[5:7], X5[5:7], X6[5:7]) and the median unit (X7[4:7]) of the last
set are selected:

X1[1:7] ≤ X1[2:7] ≤ X1[3:7] ≤ X1[4:7] ≤ X1[5:7] ≤ X1[6:7] ≤ X1[7:7]

X2[1:7] ≤ X2[2:7] ≤ X2[3:7] ≤ X2[4:7] ≤ X2[5:7] ≤ X2[6:7] ≤ X2[7:7]

X3[1:7] ≤ X3[2:7] ≤ X3[3:7] ≤ X3[4:7] ≤ X3[5:7] ≤ X3[6:7] ≤ X3[7:7]

X4[1:7] ≤ X4[2:7] ≤ X4[3:7] ≤ X4[4:7] ≤ X4[5:7] ≤ X4[6:7] ≤ X4[7:7]

X5[1:7] ≤ X5[2:7] ≤ X5[3:7] ≤ X5[4:7] ≤ X5[5:7] ≤ X5[6:7] ≤ X5[7:7]

X6[1:7] ≤ X6[2:7] ≤ X6[3:7] ≤ X6[4:7] ≤ X6[5:7] ≤ X6[6:7] ≤ X6[7:7]

X7[1:7] ≤ X7[2:7] ≤ X7[3:7] ≤ X7[4:7] ≤ X7[5:7] ≤ X7[6:7] ≤ X7[7:7]


.

For even set size, the mean estimator of PRSS is obtained as

(2.7) X̄PRSS =
1
n

[
n/2∑
i=1

Xi[a:n] +
n∑

i=(n/2)+1

Xi[b:n]

]
.

Also, the variance of the mean estimator based on PRSS is obtained as

(2.8) Var(X̄PRSS) =
1
n2

[
n/2∑
i=1

Var(Xi[a:n]) +
n∑

i=(n/2)+1

Var(Xi[b:n])

]
.

For odd set size, the mean estimator of PRSS is obtained as

(2.9) X̄PRSS =
1
n

[
(n−1/2)∑

i=1

Xi[a:n] +
n−1∑

i=((n−1)/2)+1

Xi[b:n] + Xi[((n−1)/2):n])

]
.

Also, the variance of the mean estimator based on PRSS is obtained as

(2.10) Var(X̄PRSS) =
1
n2

[
(n−1)/2∑

i=1

Var(Xi[a:n])
n−1∑

i=((n−1)/2)+1

Var(Xi[b:n]) + Var(Xi[(n+1/2):n])

]
,

where a = [p(n + 1)] and b = [q(n + 1)].
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3. RANKING ERROR MODELS

3.1. Visual Ranked Set Sampling

Visual judgement ranking is firstly noted by McIntyre [12] to estimate the mean amount
of products. This ranking method is a subjective ranking method since the ranking of units
in the set is based on the personal judgement of the researcher. The reliability of visual
ranking depends on the knowledge and experience of the researcher based on the subject of
study and also on the materials used to rank the units.

Modelling the i-th visual score Vi was suggested by Dell and Clutter [6]. This model is
given as follows:

(3.1) Vi = Xi + τi ,

where

Vi : i-th visual judgement order statistic,

Xi : i-th true order statistic,

τi : i-th random error term where τi ∼ iid(0, σ2
τ ) and Xi ’s are mutually independent

of τi’s.

In RSS, visual ranking process can be defined as follows:

1. Generate Vi = Xi + τi with τi ∼ iid(0, σ2
τ ) where Xi’s and τi’s are mutually inde-

pendent.

2. Rank the visual scores ( V1, V2, ..., Vn) from the lowest to the highest.

3. In the last step select the sampling unit corresponding to the r-th visual score (Vr)
and measure the X[r] value for this unit.

This method is called Visual Ranked Set Sampling (VRSS). The correlation between
visual judgement order statistic (V ) and true order statistic (X) is computed by the following
equation proposed by Nahhas et al. [14, 15]:

(3.2) ρxv =
σx√

σ2
x + σ2

τ

.

3.2. Concomitant Ranked Set Sampling

In RSS, another method used to rank the units in the set is concomitant variable (Y )
based ranking which is suggested by Stokes [22]. The concomitant variable (Y ) is a variable
that has a high correlation with the variable of interest (X). The accuracy of the ranking is
increased by using this variable. As an example, to estimate the mean weight of a certain
number of fish belonging to a population, a researcher may use a concomitant variable, such
as fish size, which has a high correlation with the fish weight.
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David and Levine [5] were the first to study concomitant variable (Y ). Detailed in-
formation and some limiting assumptions for concomitant variable (Y ) were developed by
Stokes [22] in order to determine its effects on RSS. These assumptions are given as follows:

• There is a linear relationship between concomitant variable (Y ) and the variable of
interest (X).

• Standardized concomitant variable (Y ) and the standardized variable of interest (X)
have identical distribution.

Concomitant based ranking can be modelled as

(3.3) Xi = µx +
ρxyσx

σy
(Yi − µy) + τi ,

where

µx : the mean of the variable of interest (X),

σx : the standard deviation of the variable of interest (X),

µy : the mean of the concomitant variable (Y ),

σy : the standard deviation of the concomitant variable (Y ),

ρxy : the correlation between the variable of interest (X) and concomitant variable (Y ),

Xi : the i-th observation on the variable of interest (X),

Yi : the i-th observation on the concomitant variable (Y ),

τi : i-th random error term.

The random error term is independent identically distributed (iid) with mean 0 and
variance σ2

τ and τi’s and Yi’s are mutually independent. The stepwise period of ranking the
units in the set with respect to the concomitant variable is given below:

1. Generate Equation (3.3) where τi’s and Yi’s are mutually independent.

2. The Yi’s are ranked from the lowest to the highest to obtain the Yi order statictics
Y1 ≤ ··· ≤ Yn.

3. Select the r-th correctly ranked order statistic Yr and measure the r-th true order
statistic X = Xr from the sampling unit.

This method is defined as Concomitant Ranked Set Sampling (CRSS) method.

4. A MONTE CARLO SIMULATION STUDY

Our basic goal in this simulation study is to investigate the effects of ranking error
models on the mean estimators based on RSS, ERSS and PRSS. For this reason, bias and
MSE of the mean estimators are computed and compared with MSE of mean estimator based
on SRS for different set and cycle sizes, distributions and ranking error models such as VRSS
and CRSS in infinite population. The simulation study is performed via R Project with 10000
repetitions. In the simulation study:
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• The population of the variable of interest (X) and concomitant variable (Y ) are gen-
erated from N(0, 1) (symmetric), Uniform(0, 1) (symmetric), Exp(1) (right skewed)
and Gamma(4, 2) (right skewed) distributions with size (N) 10000.

• Set sizes (n) are determined to be 2, 3, 4 and 5. Also cycle sizes (m) are determined
to be 5 and 10.

• Four sampling methods are used. These sampling methods are SRS, RSS, ERSS
and PRSS. (In this study, p and q value for PRSS is determined as 0.4 and 0.6,
respectively. p = 0.4 and q = 0.6 values were used in the simulation study since
they offer the best results for PRSS.)

• For CRSS, the correlation values between the variable of interest (X) and concomi-
tant variable (Y ) ρxy are determined as 0.95, 0.75, 0.50 and 0.25. (The same values
for ρxv and ρxy were used in the simulation study.)

• For VRSS, the random error term τi ∼ N(0, σ2
τ ). For the distributions used in the

simulation study, the ρxv values corresponding to σ2
τ were calculated by Equation

(3.2). These values are given in the table below.

Table 1: The values of σ2
τ corresponding to ρxv for N(0, 1), Uniform(0, 1),

Exp(1) and Gamma(4, 2).

σ2
τρxv

N(0, 1) Uniform(0, 1) Exp(1) Gamma(4, 2)

0.95 0.108 0.009 0.108 1.7285
0.75 0.778 0.0649 0.778 12.4444
0.50 3 0.25 3 48
0.25 15 1.25 15 240

The bias and mean squared error (MSE) of an estimator θ̂ of a parameter θ formulas
given below are used in the simulation study:

Bias(θ̂) = θ̂ − θ ,(4.1)

MSE (θ̂) = E(θ̂ − θ)2 .(4.2)

Note that, θ represents the population mean (µ) and θ̂ represents the mean estimators of
population mean based on SRS (X̄SRS), RSS (X̄RSS), ERSS (X̄ERSS) and PRSS (X̄PRSS),
respectively. The performance of the mean estimators of RSS, ERSS and PRSS is compared
with respect to SRS in terms of relative efficiency criteria. The relative efficiency formulas
given below are used:

RE1(X̄RSS, X̄SRS) =
MSE (X̄SRS)
MSE (X̄RSS)

,(4.3)

RE2(X̄ERSS, X̄SRS) =
MSE (X̄SRS)
MSE (X̄ERSS)

,(4.4)

RE3(X̄PRSS, X̄SRS) =
MSE (X̄SRS)
MSE (X̄PRSS)

.(4.5)
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The comparisons of the mean estimators are constructed in terms of bias, mean squared
error and relative efficiency for different correlation levels, variances of the random error term,
set and cycle sizes. The results of the simulation study with 10000 repetitions are presented
in tables.

Table 2 and Table 3 show bias values of mean estimators in VRSS and CRSS.
The results indicate that:

• For symmetric distributions, the bias values obtained from mean estimators of RSS,
ERSS and PRSS are close to 0. This means the mean estimators of RSS, ERSS and
PRSS are unbiased estimators of population mean for symmetric distributions.

• For right skewed distributions, the bias values obtained from the mean estimator
of RSS are close to symmetric distributions. On the other hand, for right skewed
distributions, the bias values obtained from mean estimators of ERSS and PRSS
are far from 0 when the set size increases. This means the mean estimators of ERSS
and PRSS are biased estimators of population mean when the set size increases.

Table 2: Bias values for N(0, 1), Uniform(0, 1), Exp(1) and Gamma(4, 2) in VRSS
based on RSS, ERSS and PRSS.

ρxv = 0.95 ρxv = 0.75 ρxv = 0.50 ρxv = 0.25
Distribution m n

RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS

N(0, 1)

5

2 −0.001−0.001 0.003 −0.001 0.000−0.006 −0.003 0.002 0.000 0.002−0.003 0.000
3 0.003−0.001 0.002 0.000−0.003−0.004 0.000 0.000 0.001 −0.003 0.000 0.000
4 0.001 0.003−0.001 0.001−0.001 0.002 −0.001−0.001−0.001 0.002 0.002−0.004
5 0.000 0.000 0.001 0.000 0.001−0.001 −0.004−0.001−0.001 −0.004−0.002 0.002

10

2 −0.003 0.000 0.003 −0.003 0.002−0.001 0.004 0.001−0.004 −0.002 0.001 0.001
3 −0.002−0.002 0.000 0.001−0.001 0.001 0.000−0.003 0.000 0.000 0.001 0.001
4 0.000 0.000 0.002 0.000−0.001 0.000 0.002 0.001 0.000 0.002−0.002 0.000
5 0.000 0.001 0.001 0.000 0.001−0.001 0.000−0.002−0.001 0.001 0.001 0.000

Uniform(0, 1)

5

2 −0.002 0.000−0.001 −0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000−0.001
3 0.000 0.000 0.000 −0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.001 0.001
4 0.000 0.000−0.001 0.000−0.001−0.001 0.001 0.000 0.000 0.001 0.001−0.001
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001

10

2 0.000 0.000 0.000 −0.002 0.000−0.001 0.001 0.000 0.001 0.000 0.000−0.001
3 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000−0.001 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 −0.001−0.001 0.000 0.000 0.000 0.000

Exp(1)

5

2 −0.004 0.006 0.005 −0.002−0.002 0.006 0.005 0.004−0.001 −0.001−0.003 0.004
3 0.000 0.002−0.178 −0.003 0.001−0.149 −0.002−0.003−0.094 −0.002−0.001−0.033
4 −0.002 0.179−0.177 −0.001 0.150−0.154 0.001 0.092−0.092 −0.001 0.032−0.028
5 −0.004 0.159−0.160 −0.001 0.136−0.139 0.001 0.082−0.087 0.002 0.029−0.024

10

2 0.003 0.001−0.001 0.000−0.002 0.003 0.001 0.002 0.002 0.000−0.001−0.001
3 −0.001−0.001−0.176 0.000−0.002−0.152 −0.001 0.000−0.091 0.001 0.000−0.028
4 −0.001 0.177−0.178 0.000 0.150−0.153 0.000 0.092−0.091 0.000 0.032−0.027
5 0.000 0.158−0.159 0.000 0.137−0.137 0.000 0.084−0.082 0.000 0.027−0.026

Gamma(4, 2)

5

2 0.001 0.005−0.032 0.000−0.025 0.004 −0.016−0.010 0.013 −0.018−0.012 0.005
3 0.005−0.003−0.399 0.000−0.002−0.371 0.006−0.005−0.239 0.014 0.009−0.064
4 0.006 0.401−0.392 0.005 0.359−0.375 0.014 0.230−0.205 0.001 0.062−0.061
5 −0.003 0.347−0.350 0.005 0.320−0.319 −0.012 0.205−0.201 −0.003 0.055−0.064

10

2 0.009−0.008 0.011 −0.009−0.003−0.002 0.002−0.006 0.011 0.016−0.008−0.005
3 0.009 0.002−0.380 0.007−0.001−0.365 0.005−0.002−0.222 −0.008−0.005−0.060
4 0.002 0.387−0.390 0.005 0.354−0.371 −0.006 0.227−0.221 0.003 0.060−0.064
5 −0.003 0.350−0.349 −0.001 0.329−0.325 −0.002 0.186−0.194 0.001 0.062−0.053
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Table 3: Bias values for N(0, 1), Uniform(0, 1), Exp(1) and Gamma(4, 2) in CRSS
based on RSS, ERSS and PRSS.

ρxy = 0.95 ρxy = 0.75 ρxy = 0.50 ρxy = 0.25
Distribution m n

RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS

N(0, 1)

5

2 0.001 0.003 0.001 0.004−0.004 0.000 −0.006−0.005 0.003 −0.001 0.001 0.002
3 0.000 0.001−0.006 0.001−0.001 0.005 −0.004−0.003−0.002 −0.002 0.002−0.002
4 0.002−0.003−0.003 0.002−0.001 0.000 0.000 0.001 0.005 0.001 0.001 0.004
5 0.001 0.005−0.002 −0.002 0.004 0.000 −0.001 0.000−0.004 −0.002 0.005−0.001

10

2 0.000−0.002 0.000 0.003 0.001−0.001 −0.003−0.002 0.001 0.000 0.002−0.007
3 0.001 0.001 0.003 0.003 0.001−0.001 0.000 0.001−0.005 −0.003 0.000−0.004
4 0.000 0.001 0.002 0.003−0.001−0.002 0.001 0.003 0.001 0.000 0.000 0.001
5 0.001 0.003 0.005 0.000 0.003 0.004 0.000 0.008−0.002 0.000 0.005 0.003

Uniform(0, 1)

5

2 −0.002 0.000 0.000 0.001 0.000 0.000 −0.001 0.001 0.000 0.000 0.000−0.001
3 0.000−0.001 0.001 −0.001−0.001 0.001 0.001 0.000 0.000 0.000 0.000−0.001
4 0.000 0.001−0.001 −0.001−0.001−0.001 0.000−0.001 0.001 −0.001 0.000 0.000
5 0.000 0.000 0.000 0.000 0.001−0.001 0.001 0.000−0.001 0.000 0.000 0.002

10

2 −0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000−0.001 0.000−0.002−0.001
3 0.000 0.001−0.001 0.000 0.000 0.001 0.000 0.000 0.000 −0.001 0.000−0.002
4 0.000−0.001 0.000 0.000 0.000 0.002 0.000−0.001 0.000 0.000 0.001−0.001
5 0.000 0.000 0.000 −0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000

Exp(1)

5

2 −0.002 0.001 0.001 0.001 0.001 0.004 −0.001−0.001−0.002 −0.002 0.000−0.001
3 0.002 0.003−0.152 0.002 0.002−0.094 0.001 0.002−0.046 −0.003 0.002 0.001
4 0.002 0.152−0.149 −0.003 0.094−0.099 0.001 0.045−0.039 −0.004 0.006 0.001
5 0.000 0.134−0.135 0.000 0.086−0.081 −0.001 0.029−0.032 −0.001 0.012 0.002

10

2 −0.003−0.002 0.001 0.000−0.001 0.003 −0.001 0.000 0.001 −0.002 0.003 0.000
3 0.001 0.000−0.148 −0.002 0.002−0.096 0.000 0.002−0.045 0.001 0.002−0.002
4 0.000 0.151−0.153 0.002 0.045−0.088 −0.001 0.040−0.047 0.001 0.007−0.002
5 0.000 0.143−0.133 0.000 0.029−0.079 0.002 0.034−0.038 −0.001 0.009 0.000

Gamma(4, 2)

5

2 0.005−0.004−0.001 0.010 0.010 0.011 0.003 0.003 0.005 −0.018 0.002 0.016
3 0.010 0.003−0.324 0.003 0.008−0.193 0.001 0.002−0.110 0.007 0.005−0.054
4 0.004 0.320−0.330 0.008 0.203−0.235 0.007 0.104−0.043 −0.003−0.004−0.023
5 0.002 0.278−0.285 0.006 0.180−0.182 0.003 0.064−0.068 0.015 0.010−0.013

10

2 −0.005 0.009−0.003 −0.014−0.007 0.005 −0.013 0.006 0.001 −0.004 0.009−0.006
3 0.002−0.001−0.346 −0.007 0.006−0.205 0.008−0.015−0.095 −0.009 0.011−0.014
4 −0.004 0.335−0.334 0.003 0.209−0.199 −0.007 0.079−0.098 0.005 0.014−0.030
5 0.004 0.275−0.301 −0.005 0.195−0.185 −0.006 0.086−0.081 −0.004 0.022−0.014



358 S. Akdeniz and T.O. Yildiz

Table 4 and Table 5 show MSE values of the mean estimators in VRSS and CRSS.
The results indicate that:

• Based on Table 4 and Table 5, the smallest and the highest MSE values were ob-
tained from Uniform(0, 1) and Gamma(4, 2), respectively.

• MSE values obtained from N(0, 1) are less than Exp(1).

Table 4: MSE values for N(0, 1), Uniform(0, 1), Exp(1) and Gamma(4, 2) in VRSS
based on RSS, ERSS and PRSS.

ρxv = 0.95 ρxv = 0.75 ρxv = 0.50 ρxv = 0.25
Distribution m n

RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS

N(0, 1)

5

2 0.072 0.072 0.071 0.085 0.082 0.082 0.092 0.092 0.091 0.096 0.099 0.099
3 0.038 0.038 0.033 0.048 0.049 0.046 0.058 0.059 0.057 0.065 0.064 0.066
4 0.025 0.028 0.021 0.034 0.036 0.033 0.044 0.044 0.041 0.048 0.049 0.049
5 0.017 0.019 0.015 0.026 0.027 0.024 0.033 0.034 0.033 0.039 0.039 0.039

10

2 0.035 0.036 0.036 0.041 0.041 0.041 0.045 0.046 0.046 0.048 0.048 0.048
3 0.019 0.019 0.017 0.024 0.024 0.023 0.029 0.030 0.028 0.032 0.033 0.032
4 0.012 0.014 0.011 0.017 0.018 0.016 0.021 0.021 0.021 0.024 0.024 0.024
5 0.008 0.010 0.007 0.013 0.013 0.012 0.017 0.017 0.016 0.019 0.019 0.019

Uniform(0, 1)

5

2 0.006 0.006 0.006 0.007 0.007 0.007 0.008 0.008 0.008 0.008 0.008 0.008
3 0.003 0.003 0.004 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005
4 0.002 0.001 0.002 0.003 0.002 0.003 0.004 0.003 0.004 0.004 0.004 0.004
5 0.001 0.001 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003

10

2 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004
3 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003
4 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002
5 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002

Exp(1)

5

2 0.077 0.077 0.079 0.084 0.085 0.087 0.095 0.095 0.092 0.096 0.096 0.100
3 0.045 0.044 0.058 0.052 0.052 0.057 0.061 0.058 0.054 0.063 0.065 0.060
4 0.029 0.071 0.049 0.037 0.072 0.048 0.044 0.063 0.042 0.048 0.055 0.045
5 0.020 0.053 0.039 0.028 0.054 0.038 0.034 0.047 0.034 0.038 0.043 0.036

10

2 0.040 0.039 0.039 0.043 0.043 0.044 0.046 0.047 0.046 0.049 0.050 0.048
3 0.021 0.022 0.045 0.026 0.026 0.041 0.030 0.030 0.031 0.033 0.033 0.030
4 0.014 0.052 0.041 0.018 0.047 0.036 0.022 0.035 0.025 0.024 0.027 0.023
5 0.010 0.039 0.032 0.014 0.037 0.029 0.017 0.028 0.020 0.019 0.021 0.019

Gamma(4, 2)

5

2 1.166 1.181 1.161 1.348 1.360 1.370 1.494 1.456 1.480 1.576 1.572 1.578
3 0.629 0.622 0.661 0.802 0.803 0.834 0.942 0.952 0.911 1.066 1.035 1.010
4 0.412 0.672 0.480 0.556 0.750 0.634 0.692 0.801 0.672 0.758 0.784 0.742
5 0.291 0.460 0.350 0.416 0.579 0.463 0.544 0.618 0.536 0.606 0.624 0.605

10

2 0.599 0.583 0.590 0.659 0.670 0.664 0.737 0.738 0.761 0.786 0.778 0.770
3 0.321 0.319 0.403 0.401 0.402 0.481 0.479 0.475 0.477 0.511 0.515 0.503
4 0.207 0.390 0.315 0.274 0.448 0.372 0.347 0.438 0.360 0.385 0.402 0.372
5 0.145 0.299 0.238 0.213 0.344 0.291 0.269 0.324 0.279 0.308 0.326 0.302
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Table 5: MSE values for N(0, 1), Uniform(0, 1), Exp(1) and Gamma(4, 2) in CRSS
based on RSS, ERSS and PRSS.

ρxy = 0.95 ρxy = 0.75 ρxy = 0.50 ρxy = 0.25
Distribution m n

RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS RSS ERSS PRSS

N(0, 1)

5

2 0.073 0.071 0.072 0.081 0.082 0.081 0.091 0.090 0.091 0.101 0.096 0.097
3 0.038 0.039 0.032 0.047 0.050 0.045 0.059 0.059 0.056 0.064 0.064 0.063
4 0.024 0.026 0.021 0.034 0.036 0.032 0.043 0.042 0.041 0.050 0.048 0.047
5 0.016 0.020 0.014 0.026 0.026 0.024 0.033 0.033 0.032 0.038 0.037 0.037

10

2 0.035 0.036 0.032 0.040 0.039 0.040 0.045 0.046 0.045 0.050 0.048 0.049
3 0.018 0.018 0.016 0.024 0.023 0.022 0.029 0.028 0.028 0.032 0.032 0.030
4 0.011 0.013 0.010 0.016 0.018 0.015 0.021 0.022 0.020 0.024 0.024 0.023
5 0.008 0.009 0.007 0.013 0.013 0.011 0.016 0.017 0.016 0.018 0.018 0.018

Uniform(0, 1)

5

2 0.006 0.006 0.006 0.007 0.007 0.007 0.008 0.007 0.008 0.008 0.008 0.008
3 0.003 0.003 0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.006 0.005 0.005
4 0.002 0.002 0.002 0.003 0.003 0.003 0.004 0.003 0.004 0.004 0.004 0.004
5 0.001 0.001 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003

10

2 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004
3 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003
4 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002
5 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002

Exp(1)

5

2 0.074 0.076 0.075 0.088 0.085 0.089 0.092 0.087 0.088 0.091 0.101 0.007
3 0.044 0.041 0.049 0.052 0.052 0.051 0.065 0.061 0.054 0.065 0.066 0.005
4 0.028 0.061 0.040 0.035 0.054 0.038 0.044 0.051 0.042 0.004 0.004 0.003
5 0.019 0.045 0.031 0.027 0.041 0.029 0.034 0.036 0.033 0.003 0.003 0.003

10

2 0.037 0.038 0.039 0.042 0.041 0.042 0.045 0.048 0.047 0.004 0.004 0.004
3 0.021 0.021 0.035 0.024 0.025 0.030 0.030 0.030 0.028 0.002 0.002 0.002
4 0.013 0.042 0.032 0.018 0.030 0.021 0.022 0.024 0.021 0.002 0.002 0.002
5 0.010 0.035 0.024 0.013 0.025 0.017 0.018 0.021 0.017 0.001 0.001 0.001

Gamma(4, 2)

5

2 1.173 1.138 1.165 1.363 1.317 1.313 1.453 1.490 1.415 1.579 1.564 1.624
3 0.638 0.630 0.618 0.804 0.775 0.768 0.940 0.950 0.901 1.037 1.062 1.054
4 0.413 0.587 0.418 0.555 0.660 0.549 0.700 0.709 0.677 0.776 0.742 0.737
5 0.290 0.408 0.312 0.423 0.483 0.425 0.525 0.562 0.543 0.589 0.586 0.617

10

2 0.590 0.571 0.605 0.681 0.633 0.667 0.719 0.724 0.751 0.788 0.782 0.796
3 0.304 0.308 0.375 0.396 0.399 0.400 0.468 0.478 0.465 0.508 0.510 0.498
4 0.203 0.363 0.277 0.277 0.343 0.292 0.343 0.365 0.330 0.391 0.395 0.363
5 0.145 0.246 0.210 0.209 0.270 0.226 0.276 0.287 0.277 0.302 0.316 0.308
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Table 6 and Table 7 show RE values of mean estimators in VRSS and CRSS. RE values
obtained from the simulation study which are greater than 1 mean that RSS, ERSS or PRSS
are more efficient than SRS:

• RE values obtained from symmetric distributions give better results than right
skewed distributions.

Table 6: RE values for N(0, 1), Uniform(0, 1), Exp(1) and Gamma(4, 2) in VRSS
based on RSS, ERSS and PRSS.

ρxv = 0.95 ρxv = 0.75 ρxv = 0.50 ρxv = 0.25
Distribution m n

RE1 RE2 RE3 RE1 RE2 RE3 RE1 RE2 RE3 RE1 RE2 RE3

N(0, 1)

5

2 1.422 1.387 1.412 1.146 1.223 1.236 1.077 1.101 1.119 1.044 1.010 1.020
3 1.746 1.754 1.975 1.356 1.398 1.464 1.165 1.146 1.178 1.036 1.026 1.006
4 1.989 1.819 2.381 1.453 1.401 1.484 1.118 1.131 1.194 1.027 1.036 1.011
5 2.323 2.028 2.646 1.587 1.461 1.626 1.214 1.195 1.197 1.006 1.020 1.009

10

2 1.417 1.386 1.389 1.212 1.185 1.225 1.153 1.079 1.076 1.057 1.033 1.012
3 1.750 1.764 1.940 1.377 1.385 1.453 1.137 1.109 1.228 1.024 1.005 1.020
4 2.086 1.881 2.361 1.448 1.407 1.622 1.162 1.191 1.173 1.062 1.052 1.038
5 2.379 2.111 2.673 1.509 1.471 1.589 1.184 1.152 1.218 1.064 1.028 1.011

Uniform(0, 1)

5

2 1.417 1.394 1.455 1.257 1.228 1.232 1.099 1.104 1.101 1.009 1.027 1.032
3 1.830 1.879 1.521 1.458 1.429 1.193 1.140 1.160 1.081 1.050 1.044 1.029
4 2.181 2.928 1.852 1.524 1.876 1.314 1.164 1.303 1.105 1.055 1.052 0.990
5 2.511 3.119 2.112 1.636 1.922 1.419 1.246 1.325 1.134 1.067 1.036 1.037

10

2 1.477 1.447 1.411 1.242 1.224 1.240 1.081 1.060 1.062 1.016 0.992 1.031
3 1.857 1.785 1.492 1.426 1.442 1.157 1.128 1.176 1.072 1.072 1.015 1.013
4 2.218 2.801 1.755 1.530 1.879 1.318 1.162 1.257 1.045 1.046 1.085 1.050
5 2.474 3.067 2.052 1.670 2.000 1.417 1.187 1.275 1.152 1.044 1.007 1.009

Exp(1)

5

2 1.296 1.229 1.278 1.188 1.190 1.168 1.031 1.074 1.121 1.071 1.017 1.005
3 1.539 1.550 1.140 1.267 1.306 1.203 1.111 1.136 1.298 1.066 1.008 1.126
4 1.692 0.701 1.022 1.384 0.696 1.044 1.134 0.793 1.193 1.060 0.910 1.159
5 1.953 0.778 1.066 1.422 0.757 1.068 1.158 0.839 1.193 1.036 0.946 1.114

10

2 1.266 1.272 1.270 1.174 1.135 1.188 1.068 1.076 1.101 1.022 1.028 1.058
3 1.596 1.594 0.737 1.221 1.279 0.811 1.119 1.106 1.081 1.019 1.001 1.088
4 1.780 0.479 0.621 1.370 0.537 0.688 1.142 0.735 0.994 1.010 0.917 1.078
5 1.968 0.515 0.625 1.430 0.548 0.694 1.228 0.724 0.994 1.027 0.962 1.088

Gamma(4, 2)

5

2 1.391 1.344 1.371 1.186 1.179 1.152 1.073 1.107 1.067 1.046 1.038 1.006
3 1.718 1.718 1.595 1.307 1.342 1.306 1.141 1.098 1.198 0.984 1.016 1.066
4 1.953 1.188 1.624 1.469 1.075 1.255 1.154 1.004 1.208 1.036 1.036 1.091
5 2.211 1.420 1.840 1.555 1.094 1.365 1.179 1.035 1.194 1.048 1.039 1.096

10

2 1.344 1.384 1.355 1.191 1.186 1.222 1.119 1.065 1.043 1.046 1.020 1.076
3 1.630 1.666 1.339 1.352 1.342 1.084 1.126 1.110 1.102 1.041 1.013 1.057
4 1.923 1.019 1.273 1.456 0.884 1.078 1.137 0.930 1.105 1.004 0.999 1.067
5 2.221 1.071 1.328 1.486 0.942 1.097 1.207 1.012 1.129 1.026 0.991 1.044
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Table 7: RE values for N(0, 1), Uniform(0, 1), Exp(1) and Gamma(4, 2) in CRSS
based on RSS, ERSS and PRSS.

ρxy = 0.95 ρxy = 0.75 ρxy = 0.50 ρxy = 0.25
Distribution m n

RE1 RE2 RE3 RE1 RE2 RE3 RE1 RE2 RE3 RE1 RE2 RE3

N(0, 1)

5

2 1.351 1.398 1.361 1.188 1.236 1.180 1.115 1.060 1.072 1.024 1.020 0.993
3 1.739 1.728 2.028 1.401 1.360 1.449 1.118 1.147 1.144 1.061 0.998 1.044
4 2.050 1.890 2.302 1.452 1.388 1.511 1.166 1.185 1.220 1.048 1.043 1.041
5 2.395 2.074 2.676 1.509 1.562 1.620 1.194 1.154 1.206 1.040 1.033 1.064

10

2 1.405 1.402 1.511 1.213 1.222 1.224 1.082 1.062 1.107 0.999 1.043 1.038
3 1.740 1.726 1.962 1.345 1.382 1.430 1.147 1.149 1.152 1.043 1.019 1.061
4 2.127 1.882 2.372 1.558 1.317 1.588 1.188 1.138 1.223 1.029 0.995 1.041
5 2.349 2.062 2.735 1.559 1.529 1.686 1.182 1.137 1.216 1.065 1.068 1.041

Uniform(0, 1)

5

2 1.474 1.408 1.442 1.193 1.251 1.208 1.079 1.106 1.093 1.022 1.000 1.047
3 1.804 1.789 1.509 1.388 1.386 1.233 1.116 1.163 1.085 0.994 1.035 1.022
4 2.202 2.670 1.844 1.497 1.648 1.340 1.186 1.206 1.101 1.043 1.025 1.029
5 2.470 2.921 2.153 1.559 1.698 1.374 1.168 1.254 1.120 1.053 1.056 1.015

10

2 1.447 1.414 1.416 1.214 1.197 1.225 1.097 1.094 1.102 1.008 1.022 1.022
3 1.752 1.866 1.545 1.393 1.369 1.275 1.108 1.092 1.104 1.055 1.021 0.992
4 2.177 2.755 1.802 1.417 1.601 1.308 1.132 1.214 1.117 1.031 1.044 1.067
5 2.513 2.923 2.182 1.569 1.693 1.415 1.208 1.199 1.158 1.041 1.022 0.995

Exp(1)

5

2 1.323 1.284 1.297 1.167 1.186 1.182 1.099 1.077 1.102 1.017 1.010 1.040
3 1.526 1.501 1.347 1.288 1.293 1.387 1.018 1.110 1.221 1.034 1.027 1.009
4 1.705 0.802 1.286 1.362 0.944 1.312 1.101 1.009 1.197 1.028 1.011 1.017
5 1.912 0.882 1.271 1.381 0.986 1.324 1.112 1.079 1.182 1.021 0.991 1.050

10

2 1.384 1.281 1.232 1.165 1.177 1.145 1.097 1.064 1.040 1.023 0.998 0.998
3 1.539 1.551 0.912 1.321 1.224 1.077 1.097 1.102 1.138 0.997 1.070 1.042
4 1.801 0.586 0.754 1.313 0.810 1.150 1.166 0.970 1.087 1.039 1.028 0.996
5 1.939 0.614 0.818 1.480 0.826 1.077 1.143 0.979 1.162 1.054 0.961 1.023

Gamma(4, 2)

5

2 1.370 1.364 1.374 1.180 1.198 1.231 1.121 1.063 1.053 1.022 0.999 0.967
3 1.681 1.688 1.773 1.300 1.357 1.371 1.122 1.120 1.147 1.024 1.007 1.053
4 1.926 1.373 1.907 1.427 1.259 1.471 1.180 1.097 1.116 1.018 1.075 1.052
5 2.201 1.530 2.040 1.481 1.284 1.505 1.204 1.138 1.175 1.043 1.062 1.068

10

2 1.336 1.366 1.338 1.190 1.227 1.198 1.086 1.089 1.066 1.041 1.017 0.988
3 1.741 1.729 1.442 1.358 1.371 1.330 1.103 1.145 1.146 1.067 1.047 1.032
4 1.989 1.081 1.510 1.443 1.171 1.356 1.143 1.097 1.220 1.001 1.020 1.087
5 2.165 1.260 1.573 1.532 1.204 1.380 1.111 1.104 1.199 1.047 1.000 1.016

According to the results obtained from the simulation study:

For VRSS:

• When the number of set size increases, relative efficiency increases.

• When the variance of random error term (σ2
τ ) increases, the relative efficiency de-

creases. On the other hand, when the correlation between visual judgement order
statistic (V ) and true order statistic (X) decreases, the relative efficiency decreases.

For CRSS:

• When the number of set size increases, relative efficiency increases.

• When the correlation between the variable of interest (X) and the concomitant
variable (Y ) increases, relative efficiency increases.
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For VRSS and CRSS:

• The number of cycles didn’t cause a regular increase or decrease in relative efficiency
for VRSS and CRSS. For this reason, exact comment can not be made about the
effect of number of cycles on relative efficiency.

• In both visual and concomitant based ranking methods MSE decreases when set
size and number of cycles increase.

• MSE increases as the variance of the error term increases in visual ranking and as
the correlation between the concomitant variable (Y ) and the variable of interest
(X) variable decreases in concomitant based ranking.

• In both visual and concomitant based ranking methods MSE values obtained from
right skewed distributions are greater than the MSE values obtained from symmetric
distributions.

• In both visual and concomitant based ranking methods, the bias, MSE and RE
values from mean estimators based on RSS, ERSS and PRSS for symmetric distri-
butions and right skewed distributions are similar.

5. REAL DATA APPLICATION

Abalone is a common name given to a group of small to very large sea snails, marine
gastropod molluscs which are the member of Haliotidae family [8]. Age of an abalone can be
determined by making some physical measurements which, in advance, include cutting and
staining of the shell. After the staining process, the rings become clear and they are counted
under a microscope to obtain age information. Estimating the age of abalone includes difficult,
costly and time-consuming physical measurements. Therefore, it forces us to use alternative
measurement techniques. A new physical measurement method which is easier than the
others in estimating the age of abalone is proposed by Nash et al. [16]. This data set is taken
from https://archive.ics.uci.edu/ml/datasets/abalone [25]. Abalone dataset includes 4177
samples with 9 variables. Information about these variables are given in the table below:

Table 8: Descriptions of abalone dataset.

Variable Data Type Measurament Unit of Data Description

Length Continuous mm Longest shell measurement
Diameter Continuous mm Perpendicular to length
Height Continuous mm With meat in shell
Whole weight Continuous gr Whole abalone
Shucked weight Continuous gr Weight of meat
Viscera weight Continuous gr Gut weight (after bleeding)
Shell weight Continuous gr After being died
Rings Integer — +1.5 gives the age in years
Sex Nominal — Male, Female and Infant

Rings variable is selected as the variable of interest (X). For concomitant based ranking,
Shell weight (Y1) and Shucked weight (Y2) are determined as concomitant variables. The
correlations between variable of interest and concomitant variables are given in table below:

https://archive.ics.uci.edu/ml/datasets/abalone
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Table 9: Correlations between variable of Interest (X) and concomitant variables (Y ’s)
in abalone dataset for CRSS.

Variable of Interest (X) Concomitant Variable (Y ) Correlations

Rings
Shell Weight 0.627

Shucked Weight 0.420

The results obtained from abalone dataset using CRSS are given in Table 10 and
Table 11, respectively.

Table 10: MSE(bias) values for CRSS based on RSS, ERSS and PRSS.

ρxy m n RSS ERSS PRSS

0.627

5

2 0.891 (−0.029) 0.887 (−0.023) 0.909 (−0.013)
3 0.558 (−0.019) 0.554 (−0.000) 0.543 (−0.113)
4 0.395 (−0.004) 0.433 (0.127) 0.383 (−0.119)
5 0.306 (−0.009) 0.329 (−0.103) 0.295 (0.099)

10

2 0.443 (−0.002) 0.449 (0.003) 0.453 (−0.015)
3 0.279 (0.001) 0.278 (−0.001) 0.273 (0.120)
4 0.201 (0.001) 0.219 (0.119) 0.202 (0.116)
5 0.152 (−0.002) 0.173 (−0.107) 0.152 (0.093)

0.420

5

2 0.979 (0.064) 0.951 (0.009) 0.981 (−0.006)
3 0.610 (−0.008) 0.624 (−0.010) 0.751 (0.320)
4 0.440 (−0.001) 0.518 (−0.314) 0.571 (0.309)
5 0.346 (−0.004) 0.403 (−0.271) 0.450 (0.269)

10

2 0.485 (−0.000) 0.467 (−0.013) 0.479 (0.003)
3 0.305 (−0.008) 0.306 (−0.004) 0.429 (0.329)
4 0.236 (0.003) 0.313 (0.324) 0.342 (0.319)
5 0.176 (−0.040) 0.242 (−0.276) 0.258 (0.270)

Table 11: RE values for CRSS based on RSS, ERSS and PRSS.

ρxy m n RE1 RE2 RE3

0.627

5

2 1.181 1.153 1.180
3 1.215 1.266 1.280
4 1.298 1.192 1.384
5 1.358 1.268 1.425

10

2 1.203 1.150 1.118
3 1.245 1.242 1.278
4 1.269 1.163 1.268
5 1.334 1.178 1.320

0.420

5

2 1.062 1.081 1.058
3 1.135 1.086 0.900
4 1.158 1.006 0.889
5 1.193 1.020 0.885

10

2 1.050 1.119 1.063
3 1.104 1.133 0.800
4 1.095 0.810 0.756
5 1.138 0.855 0.822
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Suppose that the ρxv values are 0.627 and 0.420, respectively. For VRSS, we need to find
the value of standard deviation of the Rings variable (X). This value is

√
σ2

x = σx =
√

10.395
= 3.224. Then, we need to find the values of σ2

τ corresponding to ρxv. We use Equation (3.2)
to obtain the values of σ2

τ corresponding to ρxv. These values are given in the table below:

Table 12: The values of σ2
τ corresponding to ρxv for Rings variable in abalone dataset.

ρxv σ2
τ

0.627 16.048
0.420 48.536

Table 13: MSE(bias) values for VRSS based on RSS, ERSS and PRSS.

ρxv m n RSS ERSS PRSS

0.627

5

2 0.921 (−0.008) 0.939 (0.001) 0.934 (−0.004)
3 0.567 (0.011) 0.573 (−0.021) 0.537 (−0.256)
4 0.415 (0.002) 0.560 (0.247) 0.398 (−0.247)
5 0.321 (0.005) 0.421 (0.219) 0.318 (−0.231)

10

2 0.463 (−0.009) 0.456 (−0.001) 0.450 (−0.001)
3 0.287 (0.002) 0.291 (−0.004) 0.299 (0.250)
4 0.205 (−0.001) 0.305 (0.247) 0.224 (−0.251)
5 0.156 (−0.004) 0.235 (0.224) 0.188 (−0.231)

0.420

5

2 0.973 (−0.002) 0.986 (−0.005) 0.986 (−0.016)
3 0.635 (−0.003) 0.639 (0.004) 0.583 (−0.152)
4 0.480 (0.010) 0.536 (0.142) 0.441 (−0.143)
5 0.375 (0.005) 0.423 (0.131) 0.350 (−0.122)

10

2 0.511 (0.005) 0.496 (−0.017) 0.481 (0.007)
3 0.328 (0.006) 0.325 (0.002) 0.310 (−0.140)
4 0.234 (0.003) 0.279 (0.145) 0.231 (−0.138)
5 0.179 (−0.002) 0.216 (0.127) 0.181 (−0.124)

Table 14: RE values for VRSS based on RSS, ERSS and PRSS.

ρxv m n RE1 RE2 RE3

0.627

5

2 1.128 1.093 1.093
3 1.247 1.293 1.293
4 1.286 0.954 1.312
5 1.293 0.994 1.277

10

2 1.108 1.144 1.178
3 1.176 1.204 1.119
4 1.259 0.842 1.128
5 1.291 0.865 1.095

0.420

5

2 1.067 1.044 1.056
3 1.067 1.088 1.201
4 1.059 0.952 1.183
5 1.104 0.968 1.224

10

2 0.994 1.010 1.106
3 1.036 1.074 1.114
4 1.098 0.914 1.122
5 1.152 0.971 1.145
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6. CONCLUSION

In this study, we aimed to use ranking error models (VRSS and CRSS) to compare the
bias and MSE of the mean estimators based on RSS and some of its modified methods such
as ERSS and PRSS.

For this reason the effects of ranking errors in RSS and in some of its modified methods
are examined in the simulation study. In this study, it is deduced that ranking errors may
occur depending on the ranking method used. In VRSS, σ2

τ and ρxv change depending on the
researcher’s knowledge, experience and materials used in the study. The greater knowledge
of researcher involved in the study and the use of more appropriate materials would yield a
higher accuracy in the ranking. On the other hand, for CRSS, the accuracy of the ranking
depends on the correlation between the variable of interest (X) and the concomitant variable
(Y ) and the distribution of (X, Y ). Generally, when ρxy ≥ 0.5, the error in the ranking
decreases and the accuracy of the ranking increases. Thus, better results can be achieved
by minimizing the error in the ranking. The application is performed using abalone data set
in order to support the simulation study performed in the section 5. It is seen that similar
results were obtained in real data application and simulation study. It is observed that, RSS
and some of its modified methods such as ERSS and PRSS methods show better results than
SRS.
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1. INTRODUCTION

Generalized Pareto distributions (GPDs), along with the generalized extreme value
distributions (GEV), play a central role in the theory and applications of the statistics of
extremes. Important (monographic) references include Gumbel (1958) [29], Leadbetter et al.

(1983) [35], Castillo (1988) [9], Beirlant et al. (2004) [4], Embrechts et al. (1997) [23], Kotz and
Nadarajah (2000) [33], Reiss and Thomas (2001) [44], Finkenstädt and Rootzén (2003) [24],
Coles (2004) [19], Castillo et al. (2005) [11], de Haan and Ferreira (2006) [21], Chavez et

al. (2016) [18], and Dey and Yan (2016) [22]. In this work, we revisit the important issue of
statistical inference for the tail index α within the class of the GPD. In particular, we develop
sound, simulation-enabled testing and interval estimation procedures for α with the focus on
small samples.

Recall that a GP random variable X can be described through the stochastic represen-
tation

(1.1) X
d=

1
β

1
α

(eαE − 1), α ∈ R, β > 0,

where E is a standard exponential random variable, β is the scale parameter, and α is the
index parameter (tail index for α > 0). The corresponding survival function (SF) of X in
(1.1) is of the form

(1.2) S(x) = P(X > x) = (1 + αβx)−1/α.

For α > 0 we get Pareto II (Lomax) distributions with power law tails of order α while for
α = 0, understood in the limiting sense, the variable X in (1.1) reduces to an exponential
random variable with mean 1/β, and the probability density function (PDF)

(1.3) f(x) = βe−βx, for x ∈ R+ = (0,∞).

Both, Lomax and exponential distributions are supported on the positive half-line R+.
For α < 0, GPDs are re-scaled beta distributions with compact support on the interval
(0,−1/(αβ)), and include, for instance, the uniform distribution for α = −1. The impor-
tance of this family comes from the Peak Over Threshold (POT) theory (see, e.g., Balkema
and de Haan, 1974 [3]; Pickands, 1975 [42]), where the GPDs provide natural approximations
for the excess (or exceedence) random variables X = Y − d|Y > d for large classes of random
variables Y, where d is a high threshold. This approximation property, coupled with their
power-law tail behavior for α > 0, make GPDs very relevant and commonly used in insur-
ance mathematics, hydrology, climate science and other areas where the observations over
high thresholds are of primary importance.

Our main contribution is a mathematically rigorous procedure for testing and con-
structing confidence intervals (CIs) for the index α within the GPD family, with the focus on
small samples. Our methodology is based on the Greenwood statistic,

(1.4) Tn =
∑n

i=1 X2
i

(
∑n

i=1 Xi)2
,

where the {Xi} are the underlying data. Since its introduction in Greenwood (1946) [28], this
statistic appeared in many different contexts and application areas, and it is closely related
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to several other common statistics, such as the sample coefficient of variation

(1.5) CVn =

√
1
n

∑n
i=1(Xi −X)2

X
=

√
nTn − 1,

the reciprocal of CVn known as the Sharpe’s ratio in finance and insurance applications, the
self-normalized sum Sn = T

−1/2
n , (see, e.g., Albrecher et al., 2010 [1] and references therein),

and the student t-statistic, STn =
√

(n− 1)/(nTn − 1). Since tests and confidence intervals
are often based on estimates of parameters, the correctness and practical execution of the
estimation procedures is of primary importance for many tests, including the commonly used
likelihood ratio procedure. However, for the GPDs there are serious theoretical and com-
putational problems with the standard, likelihood-based inference for α. Indeed, in general,
the maximum likelihood estimates (MLEs) for α may not exist or may not be well defined,
because without artificial restrictions on the parameter space, the likelihood function is infi-
nite along one of its boundaries. In addition, even when an MLE does exist, the question of
uniqueness is still open. The problems with the likelihood function lead to practical issues
with numerical calculations of the MLEs and thus implementation of standard likelihood
ratio tests for α (see, e.g., Neves et al., 2006 [40]). Further, we noted several errors and
inaccuracies in the estimation literature, and we include a review and discussion of the se-
lected key papers on estimation for the GPD family in Appendix A (in the Supplementary
Material). The challenges of finding the MLE of α suggest a need for test procedures that
do not require estimation of α. Our test based on the Greenwood statistic is an example of
such a procedure.

Further, for reliable inference on small samples we need the test statistic to be stochasti-
cally monotone (increasing or decreasing) with respect to α in order to be useful for derivation
of the critical regions and construction of confidence intervals (CIs) via “inversion of the test”
method. Again, the Greenwood statistic satisfies this requirement, as it is stochastically
increasing with respect to α within the GPD family (see Arendarczyk et al., 2021 [2]).

The challenges with ML estimation and the need for stochastic order of the test statistic
with respect to the parameter of interest are our main motivation for deriving a test based
on the Greenwood statistic. In addition, there is a long history of using Tn in testing for
exponentiality, where tests based on Tn (or related CVn) have been shown to be locally most
powerful within the GPD family (see, e.g., Marohn, 2000 [37]). Further, the statistic Tn

comes up naturally in estimation within the GPD and Lomax (Pareto II) families, as shown
in Appendix A.

While tests based on the coefficient of variation (or other statistics equivalent to Tn)
have already been used for the GPD, most of them focused on testing exponentiality and had
rejection regions based on the asymptotic distributions of the test statistics (see, for example,
Hasofer and Wang, 1992 [30], Gomes and van Monfort, 1986 [27], Marohn, 2000 [37], Reiss
and Thomas, 2001 [44]). In contrast, our approach uses the exact distribution of the test
statistic, obtained by straightforward simulations, and is similar in spirit to that of Chaouche
and Bacro (2004, 2006) [16, 17] and Tajvidi (2003) [49]. Chaouche and Bacro (2004, 2006)
[16, 17] noticed that the population value of their statistic S used for testing exponentiality
is increasing in α, and that its empirical distribution shifts to the right with increasing α.
Our results formalize these observations and show that the probability distribution of the
S statistic computed on a random sample from GPD is stochastically increasing in α over
the entire range of its values. Castillo et al. (2014) [13] considered testing exponentiality
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within GPD using a test statistic incorporating several sample CVs computed on different
sets of exceedances of varying high thresholds. The power of the proposed test was compared
with those of several other tests, including one based on the sample CV, for two alternatives:
absolute value of student-t distribution as well as GPD with shape parameter larger than 0
(Pareto). It appeared that tests based on the CV performed best. The paper is not very clear
however about the derivation of the critical values, whether these were done by simulations
or using the asymptotic distribution of the test statistic. Castillo and Padilla (2015) [14]
extended these ideas to the full GPD case with a similar test statistic, based on the asymptotic
distribution of the sample CV for GPD samples. Castillo and Serra (2015) [15] focused on
the MLEs (see also Castillo and Daoudi, 2009 [12]) and offered brief remarks about testing
and interval estimation for α, but no details were provided in this regard. Tajvidi (2003) [49]
considered several methods for constructing confidence intervals for the index α in the GPD
family using bootstrapping, likelihood ratio (LR) test, and profiling the likelihood function,
concluding that the likelihood based methods perform better than the bootstrapping in small
to moderate size samples. However, in view of the considerable theoretical and computational
difficulties with the MLEs of the GPD parameters, likelihood based inference may not be
effective for many data sets. In summary, although substantial work was done towards
testing for the GPD tail index, to date, we have not found any test for α that works well on
small samples without any restrictions of the values of α.

There is also a rich body of literature on the problem of testing for a GEV domain of
attraction (DoA), which is equivalent to testing for a GPD domain of attraction. The impor-
tance of this problem is well understood in the extreme value literature. In particular, testing
for Gumbel DoA (α = 0) is a common need (see, e.g., Fraga Alves and Gomes, 1996 [25];
Gomes and Alpuin, 1986 [26]). When checking domain of attraction, the estimation (or test-
ing) is usually carried out using the excesses of the sample values over a high threshold, taken
to be either a predetermined value (see, e.g., Davison and Smith, 1990 [20]) or a particular
order statistic (see, e.g., Neves and Fraga Alves, 2007 [39] and the references therein). In the
latter case the size of the resulting data set available for inference may be moderate to quite
small. Neves and Fraga Alves (2007) [39] considered tests for GEV domain of attraction,
particularly the Gumbel DoA. Both of their tests are related to the Greenwood statistic. The
main result of the paper is the limiting distribution of (normalized) test statistics, assuming
that α < 1/4. Recently, Schluter and Trede (2018) [46] used one of the test statistics of Neves
and Fraga Alves (2007) [39] for testing Gumbel domain of attraction (α = 0) against heavy
tailed GPD alternatives. Our results on the properties of the statistic Tn and its version
computed on the exceedences (Section 2) show that Tn can be used for the DoA tests on the
small samples, which are common in the problems considering exceedences.

Next, we note the tests based on the statistic Rn, involving the ratio of the maximum
and the sum of the sample values,

(1.6) Rn =
∨n

i=1 Xi∑n
i=1 Xi

,

when the underlying sample {Xi} is from a GPD or its domain of attraction (see Neves et al.,
2006 [40]). Our interest in this statistic stems from its properties that are similar to those of
Tn, which makes Rn a major competitor of Tn in testing. As discussed in Bryson (1974) [6],
a test based on Rn is the most powerful for testing exponentiality against uniformity (both
special cases of GPDs). The statistic Rn is also mentioned in Chaouche and Bacro (2004) [16]
in connection with testing for α within the class of GPDs, and was proposed by Neves et al.
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(2006) [40] for testing maximum DoA. A simulation study in Neves et al. (2006) [40] showed
that their test based on Rn, along with the test of Hasofer and Wang (1992) [30],
which in essence is based on the Tn, compared very favorably in terms of power with several
other tests for α = 0 within the GPDs. However, the rejection regions of both tests were
based on the asymptotic distributions of the test statistics, which may not work well for
small samples. We shall revisit the test based on Rn in Section 3, where we present new
results on its properties.

We selected the test based on statistic Rn to perform power comparison with our test
based on the Greenwood statistic. However, instead of using the asymptotic distribution of
Rn, we use essentially the same numerical procedure to compute (simulated) p-values as in
our test. We selected the test based on Rn for the power comparison for the following reasons:

(1) A test based on Rn was shown as more powerful than several other tests (Neves
et al., 2006 [40]);

(2) The Rn statistic is stochastically increasing with respect to α which makes it
appropriate for small sample testing;

(3) We did not find another test applicable to one- and two-sided hypotheses for α

within the entire GPD family.

All other tests have (or should have) some restriction on the range of α where they are
applicable.

Our paper is organized as follows. We start with Section 2, where we review the key
properties of the statistic Tn. New properties of the statistic Rn are presented in Section 3.
The main contribution is Section 4, containing rigorous development of tests and confidence
intervals for the index α within the GPD family. This is followed by a limited power compari-
son between tests based on Tn and Rn in Section 5. Illustrative data examples are presented in
Section 6. Proofs are collected in Section 7. Appendix T contains power tables. A review and
discussion of the main works on the estimation for GPD family is presented in Appendix A.
Both appendixes are available in the Supplementary Material.

2. FUNDAMENTAL PROPERTIES OF THE GREENWOOD STATISTIC Tn

Let X1, ..., Xn be a random sample from a probability distribution supported on the
non-negative real line R+ = [0,∞). It is widely recognized that within the GPD family the
distribution of Tn is rather complicated (even under exponentiality) with no closed form ex-
pressions for the PDF or the CDF for general n. However, its distribution is scale-invariant
and bounded ( 1

n ≤ Tn ≤ 1 for all n), and so all the moments of the Greenwood statistic
are finite, even when the distributional moments of the underlying sequence {Xi} do not
exist. The moments of Tn under exponentiality were derived by Moran (1947) [38], who also
established an asymptotic (normal) distribution of Tn for general distributions of {Xi} with
finite first four moments, noting that the convergence to the limiting normal distribution is
rather slow. In particular, under exponentiality, for large n, the Greenwood statistic is ap-
proximately normal with mean 2/n and variance 4/n3. Going beyond light-tail distributions,
Albrecher et al. (2010) [1] provided exact asymptotic distributions of Tn as n goes to infinity
for distributions of {Xi} with regularly varying tail.
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2.1. Stochastic ordering of Tn

Recall that if X and Y are two random variables with respective CDFs FX and FY and
quantile functions (QFs) QX = F−1

X and QY = F−1
Y , X is said to be stochastically smaller

than Y , denoted by X ≤st Y , whenever FY (x) ≤ FX(x) for each x ∈ R. This is the ordinary
stochastic order (dominance). On the other hand, X is smaller than Y in the star-shaped
order, denoted by X ≤∗ Y , whenever QY (u1)/QX(u1) ≤ QY (u2)/QX(u2) for all u1 ≤ u2, so
that the function QY (u)/QX(u) is non-decreasing in u. For more information on stochastic
orders, see, e.g., Belzunce et al. (2016) [5].

An important result established in Arendarczyk et al. (2021) [2], which is fundamental
to this work, shows that:

1. When the underlying distribution of the {Xi} is stochastically increasing with
respect to the star-shaped order ≤∗ then the distribution of Tn is stochastically
increasing with respect to the ordinary stochastic order ≤st.

2. The GPDs given by the SF (1.2) are star-shaped ordered with respect to the
parameter α.

Therefore, the Greenwood statistic Tn is stochastically increasing with respect to the
parameter α within the GPD family. As discussed in Section 4, this key property of Tn plays
crucial role in setting up testing and developing confidence intervals for α within this family.

2.2. Symmetry of Tn within the GPD family

In applications, the Greenwood statistic Tn and its functions are often applied to the
exceedences X(j) −X(k), where X(1) < ··· < X(n) are the (ascending) order statistics based
on the random sample X1, ..., Xn and j = k + 1, ..., n. This leads to the statistic

(2.1) Tn,k =

∑n−k
i=1

(
X(k+i) −X(k)

)2[∑n−k
i=1

(
X(k+i) −X(k)

)]2 , k ∈ {0, 1, ..., n− 1},

where X(0) = 0, so that Tn,0 reduces to Tn. By POT theory, when k is relatively large,
then (under appropriate scaling) these n− k exceedences behave as if they were n− k order
statistics (based on the sample of size n− k) from a GPD (see, e.g., Neves et al., 2006 [40]).
This crucial property plays a fundamental role in testing for the extreme domain of attraction
(see, e.g., Marohn, 2000 [37]; Neves et al., 2006 [40]; Neves and Fraga Alves, 2007 [39] and the
references therein). Since the statistic Tn,k is scale invariant, when the underlying distribution
of the sample belongs to the domain of attraction of a GPD with index α given by (1.2), the
distribution of the Tn,k in (2.1) is approximately the same as that of Tn−k based on a sample
of size n− k from the GPD itself. In other words, we would have an approximate equality in
distribution

(2.2) Tn,k
d∼

∑n−k
i=1 W 2

i

(
∑n−k

i=1 Wi)2
,

where the {Wi} follow GP (α, β). We show below that if the data are generated by a GPD
in the first place, then the the distributions of Tn,k and Tn−k are exactly the same.
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Proposition 2.1. Let n ∈ N with n ≥ 2 and let k ∈ {0, ..., n− 1}. Suppose that

X1, ..., Xn are IID and let Tn,k be defined by (2.1). Let Y1, ..., Yn−k be another random

sample, and let Tn−k be the Greenwood statistic computed on the Yi
′s. Suppose that both

random samples are coming from a GPD with the same index α. Then, we have Tn,k
d= Tn−k.

Remark 2.1. This new result complementsProposition5 inArendarczyk etal. (2021) [2],
as it shows that the latter also holds with k = 0.

2.3. Limiting behavior of the Greenwood statistic within the GPD family

Another key property of Tn we use in this work is its limiting behavior as the parameter
α approaches ±∞ within the GPD family while the sample size n stays fixed (Arendarczyk
et al., 2021 [2]). We include the result here for convenience of the reader.

Proposition 2.2. Suppose that n ∈ N and X1, ..., Xn are IID and GP (α, β) dis-

tributed. Then

(2.3) Tn
d→ 1/n as α → −∞ and Tn

d→ 1 as α →∞.

In fact, the distribution of the Greenwood statistic Tn on a GPD sample changes con-
tinuously within the interval (1/n, 1) as α increases within the interval (−∞,∞).

Remark 2.2. It can be shown that as α increases within the range (−∞,∞) then,
for each γ ∈ (0, 1), the (1− γ)× 100% percentiles of the distribution of Tn within the GPD
family continuously increase from their limiting values of tγ = 1/n at α = −∞ to tγ = 1 at
α = ∞.

This monotone behavior of the quantiles of Tn is important for constructing confidence
intervals and testing for α, as discussed in Section 4.

3. FUNDAMENTAL PROPERTIES OF THE STATISTIC Rn

Since we shall use the statistic Rn in the power comparisons in Section 5, we developed
new results that facilitate Rn — based testing for α within the class of GPDs. As shown
below, Tn and Rn share their key properties.

3.1. Stochastic ordering of Rn

It turns out that Rn computed on a sample from GPD is stochastically increasing with
respect to α. This is due to the fact that the GPDs are star-shaped ordered with respect to
α and the following new result concerning Rn, whose proof can be found in Section 7.
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Theorem 3.1. Let {Pθ, θ ∈ Θ ⊂ R} be a family of absolutely continuous probability

distributions on R+, where for each θ1 ≤ θ2 we have X(θ1) ≤∗ X(θ2), with X(θi) ∼ Pθi
, i = 1, 2.

Then, for each n ≥ 2, we have

(3.1) R(θ1)
n ≤st R(θ2)

n whenever θ1 ≤ θ2, θ1, θ2 ∈ Θ,

where R
(θ)
n is given by (1.6) with the {Xi} having a common distribution Pθ.

3.2. Symmetry of Rn within the GPD family

Let X(1) ≤ ··· ≤ X(n) be the (ascending) order statistics based on a random sample of
size n from a GPD (1.2). In analogy with Tn,k, define

(3.2) Rn,k =
X(n) −X(k)∑n−k

i=1 (X(k+i) −X(k))
, k ∈ {0, 1, ..., n− 1},

where for k = 0 we set X(0) = 0. This is essentially the statistic Rn−k evaluated on the exceed-
ences X(j)−X(k), with j=k+1, ...,n, which has been used in this form for testing the extremeDoA
(see Neves etal., 2006 [40]). In turn, when the statistic Rn−k+1,1 is evaluated on the set of n−k+1
observations X1, ..., Xn−k+1, then we essentially get the statistic Rn−k computed on the n− k

exceedences X(j) −X(1), with j = 2, ..., n− k + 1. The following new result, whose proof is
provided in Section7, shows that the statistics Rn,k and Rn−k+1,1 have the same distributions.

Proposition 3.1. Let n ∈ N with n ≥ 2 and let k ∈ {0, 1, ..., n− 1}. Suppose that

X1, ..., Xn are IID and let Rn,k be defined by (3.2). Let Y1, ..., Yn−k+1 be another random

sample, and set

(3.3) Rn−k+1,1 =
Y(n−k+1) − Y(1)∑n−k
i=1

(
Y(1+i) − Y(1)

) .

Then, if the two samples are coming from a GPD with the same α, we have Rn,k
d= Rn−k+1,1.

Remark 3.1. The above result implies that if the data are generated by a GPD, then
the distributions of Rn,k and Rn−k are exactly the same, similarly to Tn,k and Tn−k as shown in
Proposition 2.1. Thus, if n and k are large and the statistic Rn,k is evaluated on a set of order
statistics X(1) ≤ ··· ≤ X(n) of an IID sample from a distribution in the GPD (with index α)
domain of attraction then standard arguments from POT theory (see, e.g., Neves et al., 2006
[40]) show that this Rn,k behaves as if computed on a sample from the GPD (with the same α).

3.3. Limiting behavior of Rn within the GPD family

As shown below, the statistic Rn behaves very similarly to the Greenwood statistic Tn

as the parameter α approaches ±∞ within the GPD family. The proof of the following new
result is included in Section 7.

Proposition 3.2. Suppose that n ∈ N and X1, ..., Xn are IID and GP (α, β) dis-

tributed with the SF (1.2). Then

(3.4) Rn
d→ 1/n as α → −∞ and Rn

d→ 1 as α →∞.
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4. TESTING AND INTERVAL ESTIMATION FOR α WITHIN THE GPD
FAMILY

In this section we develop exact tests and provide a rigorous derivation of confidence
intervals for the parameter α within the GPD family based on the Greenwood statistic. The
CIs are constructed using the standard “inversion of the test” method. In particular, our
methodology is very convenient to test for exponential distribution (GPD with α = 0) versus
Pareto II distribution (GPD with α > 0), and has essentially the same power as the likelihood
ratio test developed for this special case in Kozubowski et al. (2009) [34].

Let X1, ..., Xn be a random sample from the GPD model (1.2). Since the test statistic
Tn is scale-invariant, we can assume for convenience that β = 1. We start with one-sided
tests, followed by two-sided tests, and conclude with procedures for constructing confidence
intervals for α.

4.1. One-sided tests for α within the GPD family

Consider the problem of testing

(4.1) H0 : α ≤ α0 vs. H1 : α > α0,

where α ∈ R is the (unknown) index of the GPD and α0 ∈ R is a known constant. We
denote the corresponding partition of the parameter space by Ω0 = {α : −∞ < α ≤ α0} and
Ω1 = {α : α > α0}.

Our objective is a test δ of size γ ∈ (0, 1) for the hypotheses specified in (4.1). Note
that when α0 = 0 this test is a test of a light-tail versus a heavy-tail (Pareto II) distribution
within the GPD class. Let Tn be the test statistic for δ. Since the statistic Tn is stochastically
increasing with respect to α, the values of α larger than α0 will be indicated by relatively
large values of Tn computed from the sample. Consider the following decision rule for the
test δ: Reject H0 when Tn > cn, where cn is such that P(Tn(α0) > cn) = γ, and P(Tn(α) ∈ A)
denotes the probability of the event {Tn ∈ A} assuming the true value of the parameter is α.
That is, the critical number cn is the (1− γ)× 100% percentile of the distribution of Tn when
α = α0.

Proposition 4.1. The test δ described above has size γ and is unbiased for the

hypotheses specified in (4.1).

Remark 4.1. The same decision rule δ can also be used for testing the hypotheses

(4.2) H0 : α = α0 vs. H1 : α > α0,

with the test being unbiased as well.
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Next, we consider the problem of testing

(4.3) H0 : α ≥ α0 vs. H1 : α < α0 or H0 : α = α0 vs. H1 : α < α0

with decision rule to reject H0 when Tn < dn, where dn is such that

(4.4) P(Tn(α0) < dn) = γ.

These tests are also of size γ and unbiased.

Proposition 4.2. The test δ for the hypotheses in (4.3) that rejects H0 whenever

Tn < dn with dn such that P(Tn(α0) < dn) = γ, has size γ and is unbiased.

Since the computation of the p-values is straightforward, we chose to implement our
tests using the p-value method. We note that the p-value approach we describe is equivalent
to the critical number approach. For the hypotheses in (4.1) and (4.2), the p-value is given
by

(4.5) p-value = P(Tn(α0) > tn),

where tn is the observed value of the test statistic Tn. This can be easily seen from the
stochasticity of Tn. Similarly, the p-value for the hypotheses in (4.3) is given by

(4.6) p-value = P(Tn(α0) < tn).

In practice, one can approximate the p-values for these tests via Monte-Carlo simulation of
the probabilities on the right-hand-side in (4.5) or (4.6).

4.2. Two-sided test for α

We now consider the problem of testing

(4.7) H0 : α = α0 vs. H1 : α 6= α0.

Because of the stochastic increasing of Tn with respect to α, the critical region CR for a
test δ of the hypotheses in (4.7) should consist of two sections: CR = [1/n, CL) ∪ (CR, 1].
To build a test of size γ, we have a choice of the portion of γ covered by each part of the
CR. In general, we can choose any 0 < r < 1 and assign the following probabilities to the two
parts of the critical region:

(4.8) P(1/n < Tn(α0) < CL) = (1− r)γ and P(CR < Tn(α0) < 1) = rγ.

Thus, the two critical numbers are: CL equal to the (1− r)γ100% percentile, and CR equal
to the (1− rγ)100% percentile of the distribution of Tn under the null hypothesis. To build
the test, consider R ∈ (1/n, 1) such that P(Tn(α0) < R) = 1− r and P(Tn(α0) > R) = r.
We will consider two cases of the observed value tn of the test statistic Tn in relation to R.
Again, we use the p-value approach to make decisions.
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Case 1: The observed value of Tn satisfies 1/n < tn < R. Then, P(Tn(α0) < tn) =
(1− r)γp for some γp ∈ (0, 1). We claim that this γp is actually the p-value, so that

(4.9) p-value =
P(Tn(α0) < tn)

1− r
.

Indeed, if the right-hand-side in (4.9) is less than γ, then we must have P(Tn(α0) < tn) <

γ(1− r), so that by (4.8) we have tn < CL. Since the value of the test statistic is in the
rejection region, the null hypothesis is rejected. On the other hand, if the right-hand-side in
(4.9) is greater than γ, so that P(Tn(α0) < tn) > γ(1− r), then we must have tn > CL. At
the same time, since tn < R and P(Tn(α0) < R) = 1− r, we clearly have tn < CR. Thus, the
observed value of the test statistic is not in the CR, and we fail to reject H0. Consequently,
the p-value is indeed given by (4.9).

Remark 4.2. Many standard tests use r = 0.5 in a similar setting, and in practice we
recommend that standard choice of r.

Case 2: The observed value of Tn satisfies R < tn < 1. Then, using an argument
similar to that used in Case 1, we obtain the following expression for the p-value:

(4.10) p-value =
P(Tn(α0) > tn)

r
.

Again, one can easily approximate the above p-values via Monte-Carlo simulation of the
probabilities on the right-hand-side in (4.9) or (4.10). Sample R-codes that return p-values
described above are available from the authors upon request.

4.3. Construction of the confidence intervals

We now turn to the derivation of confidence intervals for the index α of the GPD
family. We use the classical procedure of “inverting the test” to derive confidence regions, see
for example Casella and Berger (2002) [8], Section 9.2.1. We start with one-sided confidence
intervals, also known as upper and lower confidence bounds. First, consider the size-γ test δ

for the hypotheses in (4.1). Then, a (1− γ)100% confidence set for α is the set of all α0 for
which the null hypothesis is not rejected for a given value tn of the test statistic Tn. The null
hypothesis is not rejected when the p-value given in (4.5) is greater than γ, so that

(4.11) P(Tn(α0) > tn) > γ.

By the stochasticity of the test statistic Tn with respect to the parameter α, the set of all
α0 that satisfy this condition is an interval of the form (α,∞), where the quantity α = α(tn)
satisfies the condition

(4.12) P(Tn(α) > tn) = γ.

Note that in view of Proposition 2.2 and the remark following it, the quantity α(tn) can always
be found for any tn ∈ (1/n, 1) and any γ ∈ (0, 1). In fact, α(·) is a well defined function on
the interval (1/n, 1) onto the real line R. This discussion leads to the following result, which
provides a lower confidence bound (LCB) for the parameter α within the GPD family.
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Proposition 4.3. Let tn be the observed value of the test statistic Tn based on the

random sample X1, ..., Xn from a generalized Pareto distribution GP (α0, β). Then we have

(4.13) P(α0 > α(Tn(α0))) = 1− γ,

so that (α(tn),∞) is a (1− γ)× 100% LCB for the parameter α.

Next, consider a size-γ test δ for the hypotheses in (4.3). We can obtain the upper
confidence bound (UCB) using similar methods to those employed to find the LCB.

Proposition 4.4. Let tn be the observed value of the test statistic Tn based on the

random sample X1, ..., Xn from a generalized Pareto distribution GP (α0, β). Then we have

(4.14) P(α0 < α(Tn(α0))) = 1− γ,

so that (−∞, α(tn)) is a (1− γ)× 100% UCB for the parameter α.

Finally, we derive a two-sided (1− γ)100% confidence set for the parameter α by in-
verting the two-tail test δ for the hypotheses in (4.7). To determine the p-value, we first find
the value α∗ such that P(Tn(α∗) < tn) = 1− r. Then, by the stochasticity of Tn, whenever
α0 ≥ α∗ we have P(Tn(α0) < tn) ≤ 1− r, so that the p-value is given by (4.9). Thus, the null
hypothesis is not rejected whenever

(4.15) P(Tn(α0) < tn) > (1− r)γ.

Since P(Tn(α∗) < tn) = 1− r and the probability on the left-hand-side of (4.15) is mono-
tonically decreasing from 1− r to zero as α0 is increasing from α∗ to ∞, we can find an
α ∈ (α∗,∞) such that

(4.16) P(Tn(α) < tn) = (1− r)γ.

Moreover, for all α0 ∈ [α∗, α) the condition (4.15) will be fulfilled. Thus, for these values of
α0 the null hypothesis in (4.7) will not be rejected and consequently the interval [α∗, α) is
part of the confidence set. Similar analysis shows that the interval (α, α∗], where the quantity
α satisfies the condition

(4.17) P(Tn(α) < tn) = 1− rγ,

is part of the confidence set as well. Indeed, when α0 ≤ α∗ we have Pα0(Tn < tn) ≥ 1− r,
so that the p-value is given by (4.10). Thus, the null hypothesis is not rejected whenever

(4.18) P(Tn(α0) > tn) > rγ.

Since P(Tn(α∗) > tn) = r and the probability on the left-hand-side of (4.18) is monotonically
increasing from zero to r as α0 increases from −∞ to α∗, we can find an α ∈ (−∞, α∗) such
that P(Tn(α) > tn) = rγ, which is equivalent to (4.17). Moreover, for all α0 ∈ (α, α∗] the
condition (4.18) will be fulfilled. Thus, for these values of α0 the null hypothesis in (4.7) will
not be rejected. At the same time, the above analysis shows that for the values α0 < α and
α0 > α the null hypothesis is rejected, so these are not part of the confidence set. In summary,
the confidence set obtained by inverting the test is indeed an interval. The following result
summarizes this discussion.
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Proposition 4.5. Let tn be the observed value of the test statistic Tn based on the

random sample X1, ..., Xn from a generalized Pareto distribution GP (α0, β). Then we have

(4.19) P(α(Tn(α0))) < α0 < α(Tn(α0))) = 1− γ,

so that (α(tn), α(tn)) is a (1− γ)× 100% confidence interval for the parameter α.

5. SIMULATION EXPERIMENTS

To assess the performance of our testing procedures discussed in Section 4, we performed
two simulation experiments. First, we did power analysis of the testing procedure based on
the statistic Tn in the context of testing H0 : α = 0 vs. H1 : α > 0 (exponentiality against
Lomax), which is an important practical problem of detecting a power tail in the context of
the GPDs (see, e.g., Kozubowski et al., 2009 [34]). The results are reported in subsection 5.1.
In addition, we compared the power functions of tests for α based on Tn and its major
competitor Rn within the GPD family. The results are discussed in subsection 5.2.

5.1. Power analysis: Exponential vs. Pareto test

Kozubowski et al. (2009) [34] discussed testing exponentiality vs. Pareto distribution,
finding the likelihood ratio (LR) approach to be superior (in terms of power) to several other
common tests. To compare the performance of the test based on the statistic Tn with that
of the LR test, we ran power analysis for the Greenwood test using the same values of α and
sample sizes as those used in Kozubowski et al. (2009) [34]. The results are shown in Table 1
in Appendix T, which should be compared with Table 4 in Kozubowski et al. (2009) [34]. As
it turns out, the power of the test based on Tn is very similar as that of the LR test across
all values of the parameters, with the LR test having a slight edge. However, it should be
noted that the test based on Tn is easier to implement, as it avoids calculating the MLE of
the parameter α. In addition, it leads to a confidence interval for α, which is not guaranteed
when inverting the LR test.

Remark 5.1. The expected loss of power as the sample size goes down is clearly
visible in Table 1 of Appendix T. This fact is important for practical consideration of formal
test results as well as other measures of fit. In particular, when deciding whether a data set
has exponential or Pareto-type tails, it is a common practice to consider a large threshold
and perform the analysis on the resulting exceedances of the data over the threshold. As
one increases the threshold, the number of exceedances used in model fitting and testing
decreases, and the test looses power. This may lead to not rejecting exponentiality, when
in fact the data have Pareto tails. While the “best” choice of the threshold remains one
of the most difficult albeit important problems in analysis of data from the GPD domain
of attraction, there are many methods already available for threshold selection, including
automatic procedures. Excellent reviews of the existing methods and new methodologies can
be found in the following works and the references therein: Kiran and Srinivas (2021) [32],
Schneider et al. (2021) [47], Silva Lomba and Fraga Alves (2020) [48], and Caeiro and Gomes
(2016) [7].
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5.2. Power analysis: Tests based on Tn and Rn

Below we provide the results of a limited simulation study of the power of the tests
based on Tn and Rn. Note that the process of calculating the p-values is essentially the same
for tests based on the Rn and Tn, and it was described in Section 4.

Before presenting the results of the comparison, let us note one slight advantage of the
test based on Rn: the probability density function of the test statistic Rn has an explicit form
when sampling from the exponential distribution (see, e.g., Qeadan et al., 2012 [43]). In our
numerical experiments, we considered four different sets of one-sided hypotheses as follows:

(1) H0 : α ≤ 0 vs. H1 : α > 0;

(2) H0 : α ≥ 0 vs. H1 : α < 0;

(3) H0 : α ≤ 1 vs. H1 : α > 1;

(4) H0 : α ≥ 1 vs. H1 : α < 1.

For the selected combinations of α and n = 5, 10, 20, 50, 100, we generated 1000 samples
from the GPD(α, n) and tested the four sets of hypotheses using the statistics Tn and Rn.
We then calculated the proportion of times the null hypothesis was rejected in each case, as
an approximation of the value of the power function for that α. The results are presented
in Tables 2, 3, 5, and 6 in Appendix T. While the two procedures have very similar power
overall, the test based on the Rn performs slightly better when testing left-sided alternatives,
and the test based on Tn performs a bit better for the right-sided alternatives. We conclude
that in practice one may select Rn or Tn based on the alternative hypothesis.

6. ILLUSTRATIVE DATA EXAMPLES

We applied our test and built confidence intervals for α for two commonly used data sets.
The purpose of this data analysis is checking if the results from the literature are confirmed
by our test. We did not study the fit of the GPD models to the data, as that was beyond the
scope of this work. The first data set contains 154 exceedances over 65 m3/s flow threshold
of river Nidd at Hunsingore Weir between 1934 and 1969. This data set was analyzed by
Hosking and Wallis (1987) [31], Davison and Smith (1990) [20], Papastahopoulos and Tawn
(2012) [41] and Castillo and Serra (2015) [15]. We obtained the data set “nidd.thresh” from
R package “evir”. The second data set contains 197 exceedances above 7s of zero-crossing
hourly mean periods (in seconds) of the waves measured at Bilbao Bay in Spain. This data
set was also used in the literature. Notably, it was first used by Castillo and Hadi (1997) [10],
and then by Luceño (2006) [36], and Zhang and Stephens (2009) [50]. One can obtain the data
“bilbao” from the R package “ercv”. Since the data sets were analyzed by many researchers in
the past, we only report on the results of the new analysis using the exact methods presented
in this paper: test results and CIs. For computation of the p-values we used 10,000 simulations
of the values of Tn from data with the distribution specified in the null hypothesis.
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6.1. Analysis of the Nidd data

In search for the answer to the question whether the Nidd exceedances are Pareto or
exponential, we performed our exact test on exceedances over the same threshold as those
reported on p. 126 of Castillo and Serra (2015) [15], that is 65 m3/s, 75 m3/s, 85 m3/s, 95 m3/s,
100 m3/s, 110 m3/s, and 120 m3/s. We tested the null hypothesis H0: α ≤ 0 versus a one
sided alternative of Pareto, H1: α > 0. We also computed exact 90% and 95% confidence
intervals for α for exceedances over each threshold. We report the value of the number of
exceedances used, the test statistic Tn, the p-value of the test, decision (P for Pareto, E for
exponential), and the CIs in Table 1. Our conclusion is that the exponential model for the
Nidd exceedances can not be rejected.

Table 1: The table contains results of analysis of the Nidd data. Column labeled T
contains the threshold, column labeled D contains the decision.

T (m3/s) n Tn p-value D 90% CI for α 95% CI for α

65 154 0.0165 0.0041 P (0.0679, 0.4446) (0.0456, 0.4916)
75 117 0.0248 0.0006 P (0.1217, 0.6212) (0.0941, 0.6859)
85 72 0.0349 0.0255 P (0.0330, 0.6035) (0.0021, 0.6999)
95 49 0.0458 0.1282 E (−0.0634, 0.5863) (−0.0973, 0.6927)

100 39 0.0514 0.3539 E (−0.1886, 0.4900) (−0.2422, 0.6007)
110 31 0.0622 0.4388 E (−0.2658, 0.5322) (−0.3323, 0.6533)
120 24 0.0729 0.6509 E (−0.4920, 0.4334) (−0.5787, 0.5682)

6.2. Analysis of Bilbao waves data

The question in the literature regarding Bilbao waves data was whether the exceedances
are uniform or not. This is equivalent to testing null hypothesis of uniformity, H0: α = −1,
versus a two sided alternative of Pareto, H1: α 6= −1, within the GPD family. We also
computed exact 90% and 95% confidence intervals for α for exceedances over each threshold.
We report the value of the number of exceedances used, test statistic Tn, p-value of the test,
decision (P for Pareto, U for uniform), and the CIs in Table 2. Our conclusion is that the
uniform model for the Bilbao waves’ exceedances can not be rejected.

Table 2: The table contains results of analysis of the Bilbao waves data. Column labeled T
contains the threshold, column labeled D contains the decision.

T (s) n Tn p-value D 90% CI for α 95% CI for α

7 179 0.0074 0.74 U (−1.3813, −0.8014) (−1.4534, −0.759)
7.5 154 0.0094 0.006 P (−0.8304, −0.4208) (−0.8788, −0.3890)
8 106 0.0135 0.054 U (−0.9373, −0.4188) (−1.0060, −0.3771)
8.5 69 0.0203 0.232 U (−1.1346, −0.4274) (−1.2420, −0.3755)
9 41 0.0333 0.632 U (−1.4806, −0.4232) (−1.6507, −0.3596)
9.5 17 0.0714 0.298 U (−4.4557, −0.7056) (−5.4287, −0.5671)

In summary, our results confirm the conclusions in Castillo and Serra (2015) [15] that
the distribution of Nidd exceedances is likely exponential (for large thresholds) and the dis-
tribution of the Bilbao waves exceedances is likely uniform.
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7. PROOFS

7.1. Proof of Proposition 2.1

Since for k = 0 the result is trivial, we shall assume that k ≥ 1. We assume further that
the two random samples are from a GPD with the same index α. By proceeding as in the
proof of Proposition 5 in Arendarczyk et al. (2021) [2], we can express the statistic Tn,k as

(7.1) Tn,k
d=

∑n−k
j=1

[
eαZj − 1

]2(∑n−k
j=1

[
eαZj − 1

])2 ,

where

(7.2) Zj =
En−k

n− k
+

En−k−1

n− k − 1
+ ···+

En−k−j+1

n− k − j + 1
, j = 1, ..., n− k,

and the {Ei} are IID standard exponential variables. A similar calculation shows that the
distribution of Tn−k coincides with that of the right-hand-side in (7.1) with the same {Zj}.
This proves the result.

7.2. Proof of Theorem 3.1

For i = 1, 2, let Qi(·) be the quantile function of X(θi). By standard probability transfer
theorem, we have

R(θi)
n

d=
Qi(U(n))∑n

k=1 Qi(U(k))
, n ≥ 2, i = 1, 2,

where the {U(k)} are the (ascending) standard uniform order statistics based on a sample of

size n. To establish (3.1), we need to prove that P(R(θ1)
n > x) ≤ P(R(θ2)

n > x) for all x > 0.
We establish this by showing that for each choice of 0 < u1 ≤ u2 ≤ ··· ≤ un < 1 we have

(7.3) r(1)
n (u1, ..., un) ≤ r(2)

n (u1, ..., un),

where

(7.4) r(i)
n (u1, ..., un) =

Qi(un)∑n
k=1 Qi(uk)

, n ≥ 2, i = 1, 2.

We proceed by induction to establish (7.3). First, assume that n = 2. Straightforward calcu-
lations show that in this case the inequality (7.3) is equivalent to

Q1(u2)
Q1(u1)

≤ Q2(u2)
Q2(u1)

, 0 < u1 ≤ u2 < 1.

However, the above is true by the assumption that X(θ1) ≤∗ X(θ2). Next, we assume that the
inequality (7.3) holds for n ≥ 2 and show its validity for n + 1 where

(7.5) 0 < u1 ≤ u2 ≤ ··· ≤ un+1 < 1.
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To see this, write

(7.6) r
(i)
n+1(u1, ..., un+1) = H

(
r(i)
n (u2, ..., un+1), wi(u1, ..., un+1)

)
,

where H(x, y) = x/(1 + y), x, y ∈ R+, and

(7.7) wi(u1, ..., un+1) =
Qi(u1)∑n+1

k=2 Qi(uk)
, i = 1, 2.

Since by the induction step we have r
(1)
n (u2, ..., un+1) ≤ r

(2)
n (u2, ..., un+1) and the function

H(x, y) is increasing in x and decreasing in y, the inequality

(7.8) r
(1)
n+1(u1, ..., un+1) ≤ r

(2)
n+1(u1, ..., un+1)

would follow by (7.6) if we could show that

(7.9) w2(u1, ..., un+1) ≤ w1(u1, ..., un+1).

However, it is easy to see that the inequality in (7.9) is equivalent to

n+1∑
k=2

Q1(uk)
Q1(u1)

≤
n+1∑
k=2

Q2(uk)
Q2(u1)

,

which holds in view of (7.5) since we have

Q1(uk)
Q1(u1)

≤ Q2(uk)
Q2(u1)

, k = 2, ..., n + 1,

due to X(θ1) ≤∗ X(θ2). This completes the induction argument, and the proof.

7.3. Proof of Proposition 3.1

As in the proof of Proposition 5 in Arendarczyk et al. (2021) [2], we express Rn,k and
Rn−k+1,1 in terms of exponential spacings using the stochastic representation (1.1). We first
assume that k > 0 and start with Rn,k. By (1.1), we have

(7.10) Rn,k
d=

1
α

(
eαEn:n − 1

)
− 1

α

(
eαEk:n − 1

)∑n−k
i=1

[
1
α

(
eαEk+i:n − 1

)
− 1

α(eαEk:n − 1)
] ,

where the E1:n ≤ ··· ≤ En:n are the order statistics based on a random sample of size n from
standard exponential distribution. Further simplifications produce

(7.11) Rn,k
d=

eα(En:n−Ek:n) − 1∑n−k
j=1

[
eα(Ek+j:n−Ek:n) − 1

] .

We now write Ek+j:n − Ek:n =
∑j

i=1 Dk+i:n, where Di:n = Ei:n − Ei−1:n, i = 2, ..., n (with
D1:n = E1:n) are the associated exponential spacings. Since these are independent and ex-
ponentially distributed with parameter n− i + 1 (see, e.g., Rényi, 1953 [45]), we can express
Rn,k as

(7.12) Rn,k
d=

eαZn−k − 1∑n−k
j=1

[
eαZj − 1

] ,
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where

(7.13) Zj =
En−k

n− k
+

En−k−1

n− k − 1
+ ···+

En−k−j+1

n− k − j + 1
, j = 1, ..., n− k,

and the {Ei}, i = 1, ..., n− k, are independent standard exponential random variables. A
similar approach shows that the Rn−k+1,1 in (3.3) has the same distribution as the right-
hand-side in (7.12) with the {Zj} given by (7.13). This proves the result for k > 0. The case
k = 0 can be established along the same lines.

7.4. Proof of Proposition 3.2

Since Rn does not depend on the scale parameter, we shall assume that β = 1. We start
wit the limit at−∞. Since 1/n ≤ Rn ≤ X(n)/(nX(1)), it is enough to show that X(n)/X(1)

d→ 1
as α → −∞. By (1.1), we have

(7.14)
X(n)

X(1)

d=
eαE(n) − 1
eαE(1) − 1

,

where the E(1) ≤ ··· ≤ E(n) are the order statistics based on a random sample of size n from
standard exponential distribution. Since the two exponential terms on the right-hand-side
in (7.14) both converge in distribution to zero as α → −∞, the right-hand-side in (7.14)
converges to 1 by continuous mapping and Slutsky’s theorems.

Next, we consider the limit at ∞. Straightforward algebra shows that(
1 + (n− 1)

X(n−1)

X(n)

)−1

≤ Rn ≤ 1.

Thus, it is enough to show that X(n−1)/X(n)
d→ 0 as α →∞. Again, by (1.1), we have

(7.15)
X(n−1)

X(n)

d=
1− e−αE(n−1)

eα(E(n)−E(n−1)) − e−αE(n−1)
,

where the {E(i)} are as before. It is easy to see that, as α →∞, the exponential term
e−αE(n−1) in the expression above converges to zero while the term eα(E(n)−E(n−1)) converges
to ∞. Consequently, the expression in (7.15) converges to 0 as desired.

7.5. Proof of Proposition 4.1

To show the test δ has size γ, note that

size(δ) = sup
α≤α0

P(Tn(α) > cn) ≤ P(Tn(α0) > cn) = γ,

since Tn is stochastically increasing in α. Thus, the test δ has size γ. Next, we show that δ is
also unbiased. Let π(α) be the power function of δ. We shall show that the power function
is at least equal to the size for all α ∈ Ω1. Indeed, for any α ∈ Ω1 we have

π(α) = P(Tn(α) > cn) ≥ P(Tn(α0) > cn) = γ,

since Tn is stochastically increasing in α. This shows that δ is unbiased, as desired.
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7.6. Proof of Proposition 4.3

The probability in (4.13) concerns all the values tn of the statistic Tn for which we have
α0 > α(tn). By the definition of the function α and the stochasticity of Tn, this is equivalent to
the condition S(tn|α0) > γ, where S(·|α0) is the SF of Tn when the true value of the parameter
is α0. Equivalently, the event α0 > α(Tn) in (4.13) can be stated as F (Tn|α0) ≤ 1− γ, where
F (·|α0) is the CDF of Tn when the true value of the parameter is α0. However, the quantity
F (Tn|α0) has standard uniform distribution, so that

Pα0(α0 > α(Tn)) = Pα0(F (Tn|α0) ≤ 1− γ) = 1− γ,

as desired.

7.7. Proof of Proposition 4.5

The probability in (4.19) concerns all the values tn of the statistic Tn for which we have
α(tn) < α0 < α(tn). By the definition of the quantities α and α and the stochasticity of Tn,
this is equivalent to the condition γ− rγ < F (tn|α0) < 1− rγ, where F (·|α0) is the CDF of Tn

when the true value of the parameter is α0. Equivalently, the event α(Tn)) < α0 < α(Tn) in
(4.19) can be stated as γ − rγ < F (Tn|α0) < 1− rγ. Since the quantity F (Tn|α0) is standard
uniform, we have

Pα0(α(Tn) < α0 < α(Tn)) = Pα0(γ − rγ < F (Tn|α0) < 1− rγ) = 1− γ,

as desired.
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1. INTRODUCTION

It is known that the one-way analysis of variance (ANOVA) is one of the most frequently
used tests to explore the differences among several treatment means; see, for example, Kutner
et al. [15], Yigit and Mendes [28] and Nguyen et al. [19]. The homoscedasticity plays an
important role in ANOVA test since the large deviations from the homoscedasticity can
affects the results of F-test for equal means; see Fox and Weisberg [9] and Wang et al. [27].
The Levene test [17] and its robust extension Brown–Forsythe test [5] had been used to
assess homogeneity of variances or homoscedasticity for several groups. These tests depend
on transforming the ANOVA test of means into a test of variances based the absolute values
of the differences between observations and a location measure (mean, trimmed mean and
median). The assumption of homoscedasticity can be written as

H0 : σ2
1 = ··· = σ2

k

versus
Ha : σ2

i 6= σ2
j for at least one pair (i, j),

where k is the number of groups.

The assumption of homoscedasticity can also use on its own to compare the dispersion
among several groups in a study. Kvamme et al. [16] used Levene test and Brown–Forsythe
robust version of Levene test to compare the dispersion of the holes of the chalupa pots from
the 3 different locations. The null hypothesis was that the dispersion or variation of each
characteristic is the same in the three locations. Plourde and Watkins [22] utilized Levene’s
test to month-to-month price fluctuates to investigate whether the conduct of oil costs changed
within the 1980s and got to be more like that of other goods, which head to have big cost
vacillations, they utilized both the nonparametric Fligner–Killeen [8] test and the Brown–
Forsythe modified of Levene test in an arrangement of post hoc pairs comparisons to evaluate
the relative variations of the price fluctuates. Sant and Cowan [24] considered the effect of a
privation of a profit by a company on the changeability of both the estimates of future profit
and the real profit. They compared the profit and predicted of companies that excluded
a profit amid the period 1963–1984 by comparing the fluctuations of the real or forecasted
profit per share 2 years after the omission and 2 years before. They utilized Brown–Forsythe
robust version of Levene test. Berger et al. [4] used a database of 6026 “echocardiograms”
that perused by one of 3 similarly capable perusers to survey the contrasts in recurrence
of many analyzes and related measurements. The numbers of “echocardiograms” examined
by the pursuers (one, two, three) were 2702, 2101 and 1223, respectively. Levene’s test was
utilized to evaluate the variation in the measurements of many continuous characteristics.
Nordstokke and Zumbo [20] had developed a nonparametric version of Levene test by pooling
the observations from all sets, ranking the scores with taking ties in consideration, return the
ranks into their original sets, and apply the Levene test on the ranks; for more details; see
Nordstokke et al. [21] and Shear et al. [25]. In analytical methods Aslam and Khan [2] used
Levene test to modify Chochran test to be applied for detecting outliers in the data. The goal
of this paper is threefold. The first goal is to develop an expression that assist in plotting
Levene–Brown–Forsythe tests. The second goal is to obtain the sampling distribution of the
suggested expression as a beta prime distribution of the second type that can be used in
creating a decision limit. The third goal is to provide deep insight and understanding where
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the dispersion effects occur. Simulation study is carried out to study the level of significance
and power of the proposed test in comparison with the original Levene–Brown–Forsythe
tests. The results are of great value since the proposed method provides visual and deep
insight where the variation occurs and does not need to post hoc pairwise comparisons. Two
applications are studied to show the usage of the proposed method.

Levene–Brown–Forsythe approach is explained in Section 2. The proposed method is
introduced in Section 3. The empirical type I error and test power is presented in Section 4.
The usage of the proposed method in the analysis of data from two applications is described
in Section 5. Section 6 is devoted for conclusion.

2. LEVENE–BROWN–FORSYTHE APPROACH

Suppose there are k groups each follows a normal distribution with means µi, standard
deviation σi, ni the number of observations in each group, and Xij the response value and n

the total number of observations in all groups, i = 1, ..., k, j = 1, ..., ni. Levene [17] proposed
test to assess the equality of variances for two groups or more. The test was depending on
the idea of analysis of variance (ANOVA) for the absolute deviation about mean, |Xij −Xi ·|.
Levene’s test is based on the classical ANOVA method that can be written as

(2.1) W =
∑k

i=1 ni(Zi · − Z··)
2/(k − 1)∑k

i=1

∑ni
j=1(Zij − Zi ·)

2/(n− k)
,

where k is the number of groups, ni the number of observations in group i, i = 1, ..., k,
n = n1 + ···+ nk is the total number, Zij =

∣∣Xij − X̄i ·
∣∣ is the absolute deviation about group

mean, Xij is the observation for j-th case from group i, Zi · = 1
ni

∑ni
j=1 Zij is the mean of Zij

for group i, Z·· = 1
n

∑k
i=1

∑ni
j=1 Zij is the mean of all Zij .

Although Levene noticed that
∣∣Xij − X̄i ·

∣∣ are not independent within each group, he
proved that the correlation is of order 1/n2

i and considered that this is small dependency
within each group and would not be seriously impact the distribution of W ; see Gastwirth et

al. [11]. Therefore, the test statistic W is approximated by F-distribution with k−1 and n−k

degrees of freedom, i.e., F (α; k − 1, n− k) where F is the quantile for F-distribution and α

is prechosen level of significant. In practice it may be concluded that there is heterogeneity if
W > F (α; k − 1, n− k). Brown and Forsythe [11] proposed revised version to Levene test by
using median or trimmed mean rather than mean, i.e., Zij =

∣∣∣Xij − X̃i ·

∣∣∣ or Zij =
∣∣Xij − X̌i ·

∣∣,
X̃i · median and X̌i · trimmed mean, with the same approximated distribution F (α; k−1, n−k).
Brown and Forsythe carried out simulation study that indicated that median and trimmed
mean performed better in heavy-tailed symmetric and skewed distributions while mean is
performed best in case of normal and moderate-tailed symmetric distribution; see Brown
and Forsythe [5] and Gastwirth et al. [11]. Although different underlying distributions give
different optimal choice for location parameter, the optimal choice based on median is a rec-
ommended one as it provides a good robustness for many types of non-normal data while hold
a good power in normal and symmetric distributions; see Gastwirth et al. [12], Wang et al. [27]
and Nguyen et al. [19].
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3. THE PROPOSED METHOD

The Levene–Brown–Forsythe test can be rewritten as

(3.1) W =
∑k

i=1 ni(Zi ·−Z··)
2/(k−1)∑k

i=1

∑ni
j=1(Zij −Zi ·)

2/(n−k)
=

k∑
i=1

ni(Zi ·−Z··)
2/(k−1)∑k

i=1

∑ni
j=1(Zij −Zi ·)

2/(n− k)
=

k∑
i=1

Ui .

Hence,

(3.2) Ui =
ni(Zi · − Z··)

2/(k − 1)∑k
i=1

∑ni
j=1(Zij − Zi ·)

2/(n− k)
, i = 1, 2, ..., k.

This is the ratio for each between square and all treatments squares or contribution of each
between squares to mean square error. Therefore, the Levene–Brown–Forsythe tests could
be plotted as

xaxis = i versus yaxis = Ui with DL, for i = 1, 2, ..., k,

where DL is the decision limit obtained from the sampling distribution of Ui.

3.1. The sampling distribution of Ui

Under the assumptions of one-way ANOVA:

(a) Xi1, ..., Xkni
is a random sample of size ni from a normal population, i = 1, ..., k;

(b) the random samples from different populations are independent;

see Johnson and Wichern [14]. Furthermore, Gastwirth et al. ([11], page 4) had written that
“Zij =

∣∣Xij − X̄i ·
∣∣ are treated as independent, identically distributed, normal variables, and

the usual ANOVA statistic is utilized”. Since Zij =
∣∣Xij − X̄i ·

∣∣ is not normally distributed,
the Levene’s method takes usefulness of the reality that the ANOVA procedures for comparing
means are robust to infraction of the assumption that the data follows a normal distribution;
see Gastwirth et al. ([11], page 4) and Miller ([18], page 80). Therefore, if the null hypothesis
of homogeneity of variance is true, hence, the sampling distribution of Ui can be derived as

(3.3) ni(Zi · − Z··)
2/(k − 1) ∼ σ2

(
n− ni

n(k − 1)

)
χ2(1)

and

(3.4)
k∑

i=1

ni∑
j=1

(Zij − Zi ·)
2/(n− k) ∼ σ2χ2(n− k)/(n− k).

Hence,

(3.5) Ui ∼
((n− ni)/n(k − 1))χ2(1)

χ2(n− k)/(n− k)
=

gamma
(

1
2 , n(k−1)

2(n−ni)

)
gamma

(
n−k

2 , n−k
2

) .
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The sampling distribution of Ui can be obtained as

(3.6) fUi(u) =
[((n− ni)(n− k))/n(k − 1)]−1/2

B
(

1
2 , n−k

2

) (
1 +

n(k − 1)
(n− ni)(n− k)

u

)−(n−k+1)/2

u−1/2,

where k > 0, i = 1, ..., k, and B: Beta; see Coelho and Mexia [6] and Elamir [7]. This
distribution has parameters k, ni and n and is a special type from generalized beta prime
distribution with a = 1, b = ((n−ni)(n−k))

(n(k−1)) , p = 1/2, q = (n − k)/2, x = u; see Coelho and
Mexia [6], R Core Team [23] and GB2 package, Graf and Nedyalkova [13]. As one of the
reviewers has pointed out that the distribution of Ui may also be written in terms of a scaled
F-distribution. Note that Ui can be rewritten in terms of scaled F-distribution as

Ui ∼
((n− ni)/n(k − 1))χ2(1)

χ2(n− k)/(n− k)
=

n− ni

n(k − 1)
F (v1 = 1, v2 = (n− k)).

From Smyth ([26], page 9), the density function for scaled F-distribution (x = (a/b)F (v1, v2))
can be written as

f(x) =
av2/2bv1/2x

v1
2
−1

β
(

v1
2 , v2

2

)
(a + bx)

v1+v2
2

, x > 0.

The sampling distribution of Ui can be obtained from scaled F-distribution by replacing
v1 = 1, v2 = n− k, a = 1, b = (n− ni)/(n(k − 1)).

The moments of Ui can be obtained as

E(Ui
h) =

[
(n− ni)(n− k)

n(k − 1)

]h Γ(0.5 + h)Γ
(

n−k
2 − h

)
Γ(0.5)Γ

(
n−k

2

) , h = 1, 2, ...

For example,

E(Ui) =
[
(n− ni)(n− k)

n(k − 1)

]
Γ
(

n−k
2 − 1

)
2Γ

(
n−k

2

) =
(n− ni)(n− k)
n(n− k − 2)

and

V (Ui) = E
(
Ui

2
)
− E2(Ui) =

[
(n− ni)(n− k)

n(k − 1)

]2 3Γ
(

n−k
2 − 2

)
4Γ

(
n−k

2

) −
[
(n− ni)(n− k)
n(n− k − 2)

]2

.

When sample sizes are equal in each group n1 = ··· = nk = ne, the sampling distribution of Ui

can be simplified to

fUi(u) =
[1/(ne − 1)]−1/2

B
(

1
2 , k(ne−1)

2

) (
1 +

1
(ne − 1)

v

)−(k(ne−1)+1)/2

u−1/2.

This distribution has parameters k and ne. The moments for Ui can be derived as

E(Ui
h) = (ne − 1)h

Γ(0.5 + h)Γ
(

k(ne−1)
2 − h

)
Γ(0.5)Γ

(
k(ne−1)

2

) ;

see Coelho and Mexia [6].
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3.2. The empirical moments of Ui

To inspect how well the beta prime distribution for Ui in different setting, a simulation
study is conducted to obtain the first four empirical moments of Ui at k = 3 and 8, ni = 10
and 25 from normal distribution, Laplace distribution (symmetric heavy-tail) and chi square
distribution with 2 degrees of freedom (asymmetric heavy tail) using mean, trimmed mean
(0.25) and median as a measure of location. The steps for empirical study are:

1. Select the required design for example k = 3, ni = 10, normal distribution and mean
as location measure;

2. Simulate data from a selected distribution with equal variance;

3. Calculate Ui, i = 1, ..., k, for each group;

4. Calculate the first four moments for each Ui, i = 1, ..., k;

5. Repeat this R times and calculate the mean for every design.

Table 1 gives the first four empirical moments for mean of Ui from normal, Laplace
and chi square (df = 2) in addition to the theoretical value from the beta prime distribution.

Table 1: Mean of the first four empirical and theoretical (theo.) moments of mean of Ui using dif-
ferent setting and location measures (mean, Tri: trimmed mean (0.25) and Med:median).

Mean Tri Med
k ni

mean Var. Sk. Ku. mean Var. Sk. Ku. mean Var. Sk. Ku.

3

10

N 0.386 0.314 3.18 19.45 0.368 0.287 3.19 20.49 0.315 0.211 3.08 21.75
Laplace 0.443 0.396 3.24 20.02 0.377 0.302 3.44 23.51 0.34 0.237 3.22 22.35
χ2 (df =2) 0.708 1.043 3.24 20.53 0.539 0.675 3.73 23.61 0.364 0.276 3.81 24.62
Theo. 0.36 0.293 3.42 23.02 0.36 0.293 3.42 23.02 0.36 0.293 3.42 23.02

25

N 0.359 0.265 3.24 20.96 0.351 0.256 3.23 18.28 0.313 0.204 3.3 21.23
Laplace 0.377 0.278 2.82 15.02 0.346 0.24 2.69 14.01 0.334 0.219 2.79 15.23
χ2 (df =2) 0.617 0.762 3.13 16.05 0.471 0.472 3.47 17.63 0.338 0.233 2.99 18.28
Theo. 0.342 0.245 3.02 17.29 0.342 0.245 3.02 17.29 0.342 0.245 3.02 17.29

8

10

N 0.141 0.041 3.24 21.16 0.133 0.036 3.12 18.43 0.111 0.025 3.24 20.6
Laplace 0.161 0.056 3.65 30.77 0.135 0.039 3.92 28.59 0.122 0.034 3.65 26.38
χ2 (df =2) 0.249 0.164 4.09 29.14 0.182 0.086 4.69 33.9 0.125 0.04 4.33 30.29
Theo. 0.128 0.034 3.02 17.29 0.128 0.034 3.02 17.29 0.128 0.034 3.02 17.29

25

N 0.128 0.033 2.94 15.43 0.13 0.034 2.74 16.08 0.117 0.027 2.81 15.98
Laplace 0.137 0.039 3.11 18.29 0.126 0.033 3.11 18.49 0.121 0.03 3.1 19.12
χ2 (df =2) 0.221 0.114 3.56 25.74 0.164 0.065 3.72 26.1 0.123 0.033 3.55 22.76
Theo. 0.126 0.032 2.89 15.78 0.126 0.032 2.89 15.78 0.126 0.032 2.89 15.78

This table illustrates that:

1. When the mean is the location measure, the best results (empirical is very close to
theoretical) are obtained from normal distribution;

2. When the trimmed mean is the location measure, the best results (empirical is very
close to theoretical) are obtained from Laplace distribution, followed by normal;

3. When the median is the location measure, the best results (empirical is very close
to theoretical) are obtained from chi square distribution, followed by Laplace dis-
tribution then normal.
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3.3. Decision limit

To create decision limit (DL), it must take into account k tests that required making
difference between two sorts of level of significant α:

1. test-wise alpha (alpha per test α[PT ]) when working with a specific test;

2. family-wise (alpha per family or experiment alpha α[PF ]) when working with the
whole experiment.

The probability of committing first error for k tests can be defined from Abdi [1] as

(3.7) α(PF ) = 1− (1− α(PT ))k.

Hence,

(3.8) α(PT ) = 1− (1− α(PF ))1/k.

Simpler form can be obtained using Bonferroni approximation as

(3.9) α(PT ) ≈ α(PF )
k

.

As an example, to perform k = 8, and the α per family (PF ) = 0.05, based on Bonferroni
approximation, the null hypothesis will be rejected its related probability is less than α(PT ) ≈
0.05/8 = 0.00625. Although the Sidak and Bonferroni corrections are closely similar, the
Bonferroni correction is more conservative than Sidak and control of the expected number
of type I error (Per-family error rate (PFER)) which Sidak does not. Frane [10] stated that
“However, it is important to note that the Bonferroni procedure controls not only the FWER
(family-wise error rate) but also the PFER (Per-family error rate (PFER))”.

In addition to Bonferroni approximation, there is a good method called Benjamini–
Hochberg that controls the false discovery rate (the likelihood of an incorrect rejection of a
hypothesis occurs) using sequential modified Bonferroni correction for several testing rather
than the family wise error rate. Benjamini and Hochberg [3] defined the false discovery rate
(FDR) as the number of false discoveries in an experiment divided by the total number of
discoveries in that experiment where the discovery is a test that passes one acceptance thresh-
old. In other words, it represents one believe the result is true, but when they are accepted
it is never known how many of discoveries are right or wrong. According to Benjamini and
Hochberg [3], if q-value is an estimate of FDR from p-values, it may be written as qi = Npi/i,
N: total p-values, pi: i-th smallest p-value (likelihood of accepting a false result by chance),
Npi: expected value of false results if one accepts all results which have p-values of pi or
smaller, and i the number of results one accepts at i-th p-value threshold. The steps are:

(a) rank the p-values from all multiple hypothesis tests in an experiment;

(b) compute qi;

(c) to ensure monotonically decreasing q-values, replace qi with the lowest value
among all lower-rank q-values that computed.
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In R-software under the function “p.adjust(p; method = " "; n = length(p))” one of the
methods is BH (Benjamini–Hochberg); see R Core Team [23]. Therefore, the decision line
could be proposed by using the quantile function of beta prime distribution and the Bonferroni
approximation as

DL = qgb2
(

1− α

k
, a = 1, b =

(n− ni)(n− k)
n(k − 1)

, p = 0.5, q =
(n− k)

2

)
.

Moreover, the Bonferroni approximation could be replaced by BH using R-function as follows:
p.adjust(p = 1−α/k; method="BH"; n=length(p)); see GB2 package Graf and Nedyalkova [13].
Hence,

if any Ui > DL, for i = 1, ..., k, H0 is rejected.

The U-plot can be plotted as

xaxis = 1 : k versus yaxis = Ui, with decision limit DL.

H0 is rejected if any point outside DL and this will identify where the differences occur.

4. SIMULATION STUDY

The proposed method using Bonferroni (Bonf.) approximation and Benjamini–Hochberg
(BH) method is compared with Levene–Brown–Forsythe methods in terms of type I error
p(reject H0 |H0 is true) and power of the test p(reject H0 |H0 is false) = 1 − p(acceptH0 |
H0 is false) = 1− type II error.

With respect to type I error, the following steps are used in simulation:

1. Construct the desired design k = 3, 8, ni = 10, 20, 50 and nominal α = 0.05.

2. Simulate data from a required distribution with equal variances. The normal dis-
tribution as original distribution, Laplace distribution as symmetric heavy-tailed
distribution and χ2 (df =2) as asymmetric heavy-tailed distributions are used.

3. Calculate Ui-Bonf., Ui-BH, Levene–Brown–Forsythe for each design.

4. Compute the decision limit for Ui-Bonf., Ui-BH and p-values for Levene–Brown–
Forsythe.

5. Create a dummy variable by giving 1 for reject and 0 else.

6. Repeat R times and compute the mean for each design.

The results for these procedures are given in Table 2. It can be concluded about type I error
that:

1. Levene test and Ui-Bonferroni using mean as location are giving a good empirical
type I error in the case of normal distribution;

2. Brown–Forsythe and Ui-BH using median as location are giving a good empirical
type I error in the case of chi square distribution;

3. Brown–Forsythe and Ui-Bonferroni using trimmed mean as location are giving a
good empirical type I error in the case of Laplace distribution.
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In general, Brown–Forsythe and Ui-BH using median as location tend to have adequate type I
error control across all used distribution shapes and this is consistent with results of Wang
et al. [27] and Nguyen et al. [19].

Table 2: Empirical type I error using Ui -Bonferroni (Bonf.), Ui -BH,
Levene–Brown–Forsythe (LBF) methods, nominal α = 0.05
from normal, χ2 and Laplace distributions based on 10000
replications.

k ni Bonf. BH LBF Bonf. BH LBF Bonf. BH LBF

Mean, Normal (100,5) Mean, Chisq (df =2) Mean, Laplace (0,4)

10 0.056 0.06 0.064 0.176 0.185 0.195 0.065 0.067 0.074
3 20 0.05 0.053 0.056 0.166 0.172 0.181 0.056 0.058 0.065

50 0.048 0.051 0.053 0.16 0.168 0.178 0.047 0.05 0.054

10 0.071 0.073 0.074 0.314 0.322 0.37 0.103 0.094 0.101
8 20 0.055 0.059 0.059 0.271 0.28 0.34 0.081 0.082 0.08

50 0.053 0.058 0.058 0.255 0.263 0.31 0.061 0.063 0.06

Median, Normal (100,5) Median, Chisq (df =2) Median, Laplace (0,4)

10 0.03 0.032 0.032 0.042 0.047 0.048 0.03 0.03 0.031
3 20 0.034 0.037 0.036 0.041 0.044 0.044 0.037 0.04 0.043

50 0.039 0.043 0.044 0.041 0.046 0.048 0.04 0.042 0.043

10 0.034 0.035 0.032 0.064 0.065 0.045 0.056 0.056 0.036
8 20 0.036 0.037 0.034 0.056 0.056 0.044 0.051 0.051 0.042

50 0.044 0.046 0.044 0.051 0.052 0.046 0.048 0.049 0.046

Trimmed, Normal (100,5) Trimmed, Chisq (df =2) Trimmed, Laplace (0,4)

10 0.04 0.045 0.048 0.075 0.078 0.082 0.041 0.044 0.045
3 20 0.044 0.046 0.049 0.059 0.062 0.066 0.038 0.042 0.043

50 0.041 0.043 0.045 0.055 0.058 0.063 0.042 0.046 0.047

10 0.053 0.055 0.054 0.115 0.116 0.104 0.075 0.073 0.048
8 20 0.046 0.048 0.047 0.08 0.082 0.072 0.064 0.061 0.046

50 0.047 0.048 0.048 0.064 0.065 0.068 0.056 0.056 0.045

With respect to power of the test, the following steps are used in simulation:

1. Construct the desired design k = 3, 8, ni = 10, 20, 50 and nominal α = 0.05.

2. Simulate data from a required distribution with unequal variances. The used dis-
tributions are the normal distribution with variances 5, 5 and 10 (k = 3) and
5, 5, 5, 5, 10, 10, 25 and 25 (k = 8), Laplace distribution with df = 2, 2, 10 (k = 3)
and df = 2, 2, 2, 2, 1, 1, 5, 5 (k = 8) and χ2 with df = 2, 2, 4 (k = 3) and df = 2, 2, 2, 2,

1, 1, 4, 4 (k = 8).

3. Calculate Ui-Bonf., Ui-BH, Levene–Brown–Forsythe for each design.

4. Compute the decision limit for Ui-Bonf., Ui-BH and p-values for Levene–Brown–
Forsythe.

5. Create a dummy variable by giving 1 for reject and 0 else.

6. Repeat R times and compute the mean for each design.
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The results of these procedures are given in Table 3. It can be concluded that:

1. As k and ni increase, the power becomes larger. If data is from normal and k = 3,
ni needs to be at least 20 to obtain good power while it will be much less if k = 8.

2. Ui are giving nearly power similar to Levene–Brown–Forsythe tests using the mean,
trimmed mean and median.

3. Ui-BH gives slightly better results than Ui-Bonf. in terms of power.

4. With increasing the number of groups, Ui will be slightly better than Levene–
Brown–Forsythe tests especially with using trimmed mean and median.

Table 3: Empirical power using Ui -Bonferroni (Bonf.), Ui-BH, Levene–Brown–Forsythe
(LBF) methods, nominal α = 0.05 from normal, χ2 and Laplace distributions
based on 10000 replications.

k ni Bonf. BH Levene Bonf. BH Levene Bonf. BH Levene

Mean, Normal Mean, Chisq Mean, Laplace
var=5,5,10 df =2, 2, 4 scale = 5,5,10

10 0.475 0.488 0.493 0.272 0.278 0.289 0.342 0.35 0.36
3 20 0.835 0.847 0.832 0.378 0.387 0.399 0.604 0.612 0.622

50 0.997 0.997 0.997 0.63 0.64 0.648 0.95 0.952 0.954

var=5,5,5,5,10,10,25,25 df =2, 2, 2, 2, 1, 1, 4, 4 scale = 5,5,5,5,10,10,20,20

10 0.997 0.997 0.999 0.575 0.598 0.695 0.907 0.924 0.968
8 20 1 1 1 0.771 0.789 0.869 0.995 0.997 0.999

50 1 1 1 0.978 0.981 0.993 1 1 1

Median, Normal Median, Chisq Median, Laplace
var=5,5,10 df =2, 2, 4 scale= 5,5,10

10 0.348 0.355 0.361 0.114 0.116 0.121 0.225 0.228 0.236
3 20 0.765 0.769 0.774 0.204 0.209 0.22 0.533 0.541 0.552

50 0.998 0.998 0.998 0.518 0.526 0.538 0.943 0.945 0.947

var=5,5,5,5,10,10,25,25 df =2, 2, 2, 2, 1, 1, 4, 4 scale= 5,5,5,5,10,10,20,20

10 0.988 0.989 0.997 0.255 0.261 0.282 0.822 0.829 0.878
8 20 1 1 1 0.492 0.513 0.639 0.991 0.993 0.999

50 1 1 1 0.945 0.956 0.986 1 1 1

Trimmed mean, Normal Trimmed mean, Chisq Trimmed mean, Laplace
var=5,5,10 df = 2, 2, 4 scale= 5,5,10

10 0.42 0.43 0.435 0.162 0.168 0.177 0.272 0.277 0.285
3 20 0.78 0.786 0.791 0.25 0.26 0.265 0.559 0.57 0.575

50 0.997 0.997 0.997 0.561 0.57 0.579 0.945 0.948 0.95

var=5,5,5,5,10,10,25,25 df =2, 2, 2, 2, 1, 1, 4, 4 scale= 5,5,5,5,10,10,20,20

10 0.994 0.995 0.998 0.335 0.344 0.401 0.854 0.86 0.891
8 20 1 1 1 0.566 0.588 0.704 0.992 0.995 0.999

50 1 1 1 0.956 0.966 0.989 1 1 1
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5. APPLICATION

Kvamme et al. [16] used Levene test and Brown–Forsythe robust version of Levene
test to compare the dispersion of the apertures of the chalupa pots that vary in the method
they arrange ceramic production from 3 locations, Dalupa (ApDg), Dangtalan (ApDg) and
Paradijon (ApP). The data consists of 343 observations: ApDg that has 55 observations,
ApDl that has 171 observations and ApP: that has 117 observations; see Gastwirth et al. [12].

Table 6 shows the mean, median and standard deviation (st. deviation) for pot data.
The largest standard deviation is 12.73 (ApDg) followed by 8.13 (ApP) while the smallest
standard deviation is 5.83 (ApP). Table 4 gives the results of Levene–Brown–Forsythe tests
for pot data. The p-values of three tests are showing that the dispersion in every of 3 measured
characteristics of the pots in different areas are statistically significant at 0.01 and 0.05.

Table 4: Levene–Brown–Forsythe tests for pot data.

Mean Trimmed mean median

Test statistics 7.716 6.567 6.794
p-value 0.0005 0.0016 0.0013

On the other hand, Figure 1 illustrates the results of U-plot at both significance levels
0.01 and 0.05. Since the number of observations are not equal, the height of DL will be different.
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Figure 1: U plot for pot data using mean, trimmed mean and median as location measure.
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For example, by using the quantile function of beta prime distribution of the second type,
median as location measure and α = 0.05, the decision limit is

DL = qgb2
(

1− 0.05
3

, p = 1, q =
(343− (55, 171, 117))(340)

343(2)
, α =

1
2
, β =

340
2

)
.

This gives
DL = (2.43, 1.45, 1.91).

At 0.05, the values of U1 and U3 are outside the DL while the value of U3 is outside DL for 0.01
based on mean, trimmed mean and median as location measures. Therefore, the dispersion
in each of the three measured characteristics of the pots in different regions are statisti-
cally significant at 0.01 and 0.05 and the most different in dispersion comes from group 3.

The data for the second application is shown in Table 5 where these data are simulated
from chi square distribution with df =1, 2, 2, 2, 2, 2, 2, 2. The data consists of 8 groups and in
every group, there are 20 observations.

Table 5: Simulated data from χ2 (df =1, 2, 2, 2, 2, 2, 2, 2) distribution.

k1 k2 k3 k4 k5 k6 k7 k8

0.27 6.14 3.73 1.13 3.22 1.93 1.07 0.83
1.46 0.1 3.48 0.39 6.28 0.46 2.25 3.89
0.6 1.75 8.23 0.47 1.89 2.35 0.86 0.66
0.49 0.82 1.09 1.53 0.41 2.1 0.92 1.89
0.78 1.7 0.04 5.22 5.78 1.14 1.73 3.27
1.92 0.35 7.03 1.09 2.5 0.94 3.26 4.75
0.11 3.76 8.03 2 0.89 4.12 2.92 5.46
4.9 3.04 0.51 2.6 4.2 5.52 4.31 0.43
1.47 1.68 4.07 0.73 2.2 3.36 1.11 6.3
0.08 3.44 3.5 2.02 0.95 2.75 4.84 5.47
0.64 2.95 0.42 0.44 7.2 0.12 1.38 7.63
0.48 0.1 0.4 0.92 3.45 0.33 0.5 3.25
0.4 0.53 0.63 0.93 2.37 2.18 0.4 4.51
5.37 0.15 2.8 2.73 3.74 1.75 2.24 1.11
0.05 2.16 0.14 3.34 1.29 2.93 1.25 1.4
1.18 0.07 9.48 3.32 0.35 3.45 5.39 2.93
0.01 1.27 0.49 0.47 0.67 1.47 0.48 1.36
0.18 0.67 2.98 3.33 1.68 0.07 0.43 0.32
1.09 2.17 0.2 2.13 0.44 2.25 1.89 1.98
5.07 2.91 2.26 0.82 1.67 0.53 0.26 6.12

Table 6 shows the mean, median and standard deviation (st. deviation) for χ2 simulated
data. The largest standard deviation is 3.02 (k3) followed by 1.24 (k8) while the smallest
standard deviation is 1.31 (k4) followed by second smallest 1.54 (k7).

Table 7 gives the results of Levene–Brown–Forsythe tests for simulated data from chi
square distribution. The p-values of Levene–Brown–Forsythe tests are showing that the
variances in each of the eight groups are statistically significant at 0.01 and 0.05.

With respect to U plot, Figure 2 displays the results of U-plot at both significance
levels 0.01 and 0.05 and using mean, trimmed and median as location measures. Since the
number of observations are equal, the height of DL will be the same. For example, by using
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the quantile function of beta prime distribution of the second type and α = 0.01, the decision
limit can be computed as

DL = qgb2
(

1− 0.01
8

, p = 1, q =
(160− 20)(160− 8)

160(7)
, α =

1
2
, β =

160
2

)
= 1.35.

At 0.05 and 0.01, the value of U1 is outside the DL using mean, trimmed mean and median
as location measures. Therefore, the assumption of homogeneity of variances is rejected and
the most different in dispersion comes from group 3.

Table 6: Summary statistics for Pot and simulation data.

Pot data Simulation data

ApDg ApDl ApP k1 k2 k3 k4 k5 k6 k7 k8

# 55 171 117 20 20 20 20 20 20 20 20
Mean 170.5 163 128.6 1.33 1.79 2.98 1.78 2.56 1.99 1.87 3.18
median 170 165 130 0.62 1.69 2.53 1.33 2.04 2.02 1.31 3.09
st. devation 12.739 8.127 5.829 1.72 1.58 3.02 1.31 2.02 1.44 1.54 2.24

Table 7: Levene–Brown–Forsythe tests for simulated data.

Mean Trimmed mean median

Test statistics 3.316 2.876 2.859
p-value 0.0026 0.0075 0.0078
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Figure 2: U plot for simulated data from chi square distribution using mean,
trimmed mean and median as location measure.



402 Elsayed Elamir

6. DISCUSSION

The Levene–Brown–Forsythe test can be rewritten as

W =
k∑

i=1

ni(Zi · − Z··)
2/(k − 1)∑k

i=1

∑ni
j=1(Zij − Zi ·)

2/(n− k)
.

This can be interpreted as an aggregate way to test whether the level factor mean absolute
deviations differ from the overall mean absolute deviation. In terms of the null hypothesis,
it tests for the equality of the mean absolute deviations for different factor levels. In terms
of alternative hypothesis, it tests that at least two mean absolute deviations for factor levels
are not equal. The Ui tests can be rewritten as

Ui =
ni(Zi · − Z··)

2/(k − 1)∑k
i=1

∑ni
j=1(Zij − Zi ·)

2/(n− k)
, i = 1, 2, ..., k.

These are simultaneous tests that show every level mean absolute deviation and the decision
limit on the graph. If a value of any factor level mean absolute deviation is outside the
decision limit, there is evidence that the level factor mean absolute deviation represented
by that value is significantly different from the overall mean absolute deviation. In other
words, these plots show whether there is statistically significant evidence of each group mean
absolute deviation from centre differing from the overall mean absolute deviation from centre.
In terms of alternative hypothesis, it tests at least one mean absolute deviation for factor
levels is not equal the overall mean absolute deviation.

7. CONCLUSION

Assessing the homogeneity of variance is a prevalent question in many statistical anal-
yses such as regression and analysis of variance. A graphical Ui test for homoscedasticity is
proposed as the ratio for the contribution of each between squares treatment to mean square
error of all treatments where the sum of the Ui is Levene–Brown–Forsythe tests. The sam-
pling distribution of Ui is derived as beta prime distribution of the second type. By using
Bonferroni approximation and Benjamini–Hochberg method, the decision line had been ob-
tained to decide about homogeneity of variances when all values of Ui are less than decision
limit or heterogeneity of variances when any value of Ui lies outside the decision line.

Overall, the simulation results showed that the performance of Ui plot is similar to
Levene–Brown–Forsythe tests using different designs of number of groups and the number
of observations in terms of type I error and test power. Therefore, it can be concluded that
Ui plot using mean and trimmed means as a location is suited to symmetric distributions
and Ui plot using median as a location was suited to asymmetric distribution. Moreover, if
there are no ideas about the shape of the data, the Ui based on median should be used as
a general test where it gives a good control for type I error and reasonable power in case
of asymmetric distributions while hold a reasonable type I error control and test power in
symmetric distributions.
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There are many advantages of using Ui plot:

(a) provides a powerful visual tool for testing homogeneity of variances;

(b) keeps the size and power of the test like Levene–Brown–Forsythe tests;

(c) does not need to pairwise comparisons where it could be considered as a comple-
ment method to original test.
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1. INTRODUCTION

The Burr type XII distribution was first introduced in the literature by Burr ([5]).
It has gained special attention in the last two decades and applied in different fields including
the area of reliability, failure time modeling and acceptance sampling plan and so on. The
two-parameter Burr type XII distribution has the following probability density function

f(x;α, β) = αβxα−1(1 + xα)−(β+1), x > 0, α > 0, β > 0,(1.1)

where α and β represent the shape parameters. It is easy to see that when α = 1, the Burr
type XII reduces to the log-logistic distribution. Maximum likelihood and Bayesian inferential
issues for the unknown parameters of Burr type XII distribution with different types of
data were considered by several authors. See, for example, Wang et al. ([35]), Moore and
Papadopoulos ([21]), Ghitany and Al-Awadhi ([11]), Mousa and Jaheen ([22]), Wahed ([34]),
Li et al. ([17]), Jaheen and Okasha ([13]), Panahi and Asadi ([29]), Al-Baldawi et al. ([1]),
Rao et al. ([31]), Belaghi et al. ([3]) and Hakim et al. ([12]).

All the earlier works on the estimation of the parameters of the Burr type XII distribu-
tion have been done under the assumption of precise data. In the classical estimation theory,
we consider only one source of uncertainty available, namely randomness. However, in many
practical situations, in addition to the randomness, we may face other source of uncertainties,
namely, vague uncertainty. Vagueness occurs as a result of imprecisely recording or measuring
the observations due to, for example, machine errors, human errors, etc. For instance, the
lifetime of a specific electric device may be recorded as vague statements like “about 3 years”,
“approximately less than 2 years”, “approximately 3 years”, “approximately between 3 and 4
years” and so on.

In recent years, many papers extended the statistical methods to analysis of fuzzy data
for different distributions. Among others, Denœux ([8]), for a general parametric statistical
model, showed that the EM algorithm may be used for analyzing statistical problems involv-
ing fuzzy data. Pak et al. ([27]) investigated different classical and Bayesian methods for
estimating the parameters of Weibull distribution when the available data are in the form of
fuzzy numbers. Pak et al. ([28]) discussed different procedures for estimating the parameter
of Rayleigh distribution under doubly type II censoring when the available observations are
described by means of fuzzy information. They computed the maximum likelihood, highest
posterior density and method of moments estimators. Makhdoom et al. ([20]) estimated the
parameter of exponential distribution on the basis of type II censoring scheme when the avail-
able data are in the form of fuzzy numbers. The Bayes estimate of the unknown parameter
was also obtained under the assumption of gamma prior. Khoolenjani and Shahsanaie ([15])
derived the maximum likelihood estimator of the mean of exponential distribution under type
II censoring scheme when the lifetime observations are in the form of fuzzy numbers. They
also obtained the estimate, via Bayesian method, of the unknown parameter. Pak ([23]) ob-
tained the maximum likelihood estimation and Bayesian estimation for Lindley distribution
when the available observations are reported in the form of fuzzy data. The classical and
Bayesian inferences for the Pareto distribution of life time fuzzy observations was studied
by Shafiq ([32]). Chaturvedi et al. ([6]) presented procedures of parameter estimation of
the Rayleigh distribution based on type II progressively hybrid censored fuzzy lifetime data.
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Classical as well as the Bayesian procedures for the estimation of unknown parameters were
investigated. Pak and Mahmoudi ([26]) estimated the parameters of Lomax distribution
when the available observations are described by means of fuzzy information. They com-
puted the maximum likelihood and the Bayesian estimators. Basharat et al. ([2]) derived
the distribution of a linear combination of two independent exponential random variables.
The parameter estimates of the proposed distribution were obtained by using the maximum
likelihood estimation method and the method of moments from fuzzy data. Finally, Pak et

al. ([25]) provided Bayesian inference for the parameters of the generalized exponential model
under asymmetric and symmetric loss functions when the observations are described in terms
of fuzzy numbers.

To the best of our knowledge, there are no studies focused on the analysis of fuzzy
data on the parameter estimation of two-parameter Burr type XII distribution. The main
purpose of this paper is to investigate the inferential procedures for the distribution of the
two parameters of Burr type XII, where the available data is in the form of fuzzy data. In
Section 2, we review the basic notations and definitions of fuzzy set theory. In Section 3,
we address the estimation of the unknown parameters of the maximum likelihood estimates
using the Newton–Raphson and expectation-maximization (EM) algorithm. In Section 4,
the Bayes estimates of the unknown parameters are obtained via Lindley’s approximation,
Tierney–Kadane approximation and highest posterior distribution estimation method under
the assumption of Gamma priors. A Monte Carlo simulation study is conducted in Section
5, to assess the performance of the proposed estimators. For illustration, analyses of three
datasets are provided. Finally, some conclusions are provided in Section 6.

2. BASIC DEFINITION OF FUZZY SETS

In this section, we review some basic definitions and notations of fuzzy sets and fuzzy
probability theory used in this paper. Suppose a random experiment with a probability space
(Rm,Bm, Pθ), where Rm is an m-dimensional Euclidean space, Bm is the smallest Borel σ-field
defined on Rm and Pθ, θ ∈ Θ, is a probability measure defined on Bm. In many applications,
we have a situation that the outcome of the experiment cannot be observed exactly and only
partial information is available. For example, the lifetime of a specific electric device may
be recorded as “about 3 years”, “approximately less than 2 years”, “approximately 3 years”,
“approximately between 3 and 4 years” and so on. These lifetimes can be modeled and
described in the form of fuzzy subset. A fuzzy set Ã in Rm is characterized by a membership
function µÃ : Rm → [0, 1], where µÃ(x), x ∈ Rm, represents the degree of membership of x

in Ã. A fuzzy event is a fuzzy set whose membership function is Borel measurable function.
According to Zadeh ([36]) the probability of a fuzzy event Ã is computed by

P (Ã) =
∫

µÃ(x)dPθ.(2.1)

The most common fuzzy subsets that are frequently encountered in fuzzy statistical analysis
are the fuzzy numbers and among them, the triangular fuzzy numbers are the most common
type. A triangular fuzzy number, written as x̃ = (a, b, c), has the following membership
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function

µ
ex(x) =


x− a

b− a
, if a ≤ x ≤ b,

c− x

c− b
, if b ≤ x ≤ c,

0, otherwise.

In particular, assume X to be a random variable with a probability density function (p.d.f.)
g(x; θ) that is absolutely continuous with probability measure Pθ. The conditional probability
of a crisp (non-fuzzy) set A given a fuzzy set B̃ is given by (see Denœux ([8]))

P (A|B̃) =

∫
A µB̃(x)g(x; θ)dx∫
µB̃(x)g(x; θ)dx

.

Consequently, the conditional density of X given B̃ can thus be computed by

g(x|B̃) =
µB̃(x)g(x; θ)∫
µB̃(x)g(x; θ)dx

.

3. MAXIMUM LIKELIHOOD ESTIMATION

Let X1, X2, ..., Xn denote a random sample of size n from Burr type XII distribution
with p.d.f. given in (1.1). Let X = (X1, X2, ..., Xn) denote the corresponding random vector.
If a realization x of X was exactly observed, the likelihood function can be written as

L(α, β|x) =(αβ)n
n∏

i=1

xα−1
i (1 + xα

i )−β−1.(3.1)

Suppose now x is not observed precisely, and only partial information about x is available
in form of fuzzy observation x̃ = (x̃1, ..., x̃n) with Borel measurable membership function
µx̃(x) = (µx̃1(x), ..., µx̃n(x)). Then, based on fuzzy observation x̃, the log-likelihood function
reduces to

l(α, β|x̃) = n log α + n log β +
n∑

i=1

log
∫

xα−1(1 + xα)−β−1µx̃i(x)dx

= n log α + n log β +
n∑

i=1

log
∫

A(x)µx̃i(x)dx,(3.2)

where

A(x) = xα−1(1 + xα)−β−1.(3.3)

The maximum likelihood estimate of the parameters α and β can be obtained by maximizing
the log-likelihood l(α, β|x̃) with respect to α and β. First we need to prove the following
result.

Theorem 3.1. The MLEs of α and β for α > 0 and β > 0 exist and unique.

Proof: The detailed proof of the theorem is deferred in the Appendix.
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By taking the partial derivatives of the log-likelihood l(α, β|x̃) with respect to α and β

and equating the resulted equations to zero, we get the following two normal equations

∂l(α, β|x̃)
∂α

≡ lα =
n

α
+

n∑
i=1

∫
Aα(x)µx̃i(x)dx∫
A(x)µx̃i(x)dx

= 0(3.4)

and

∂l(α, β|x̃)
∂β

≡ lβ =
n

β
+

n∑
i=1

∫
Aβ(x)µx̃i(x)dx∫
A(x)µx̃i(x)dx

= 0,(3.5)

where

Aα(x) ≡ ∂A(x)
∂α

= (1 + xα)−β−2xα−1 log(x)[1− βxα],

Aβ(x) ≡ ∂A(x)
∂β

= −xα−1(1 + xα)−β−1 log(1 + xα).

Since there are no closed forms to the normal equations (3.4) and (3.5), iterative numerical
methods can be used to obtain the MLEs. In this section, we propose two methods to compute
the MLEs of α and β, namely; Newton–Raphson method and EM method.

3.1. Newton–Raphson algorithm

The Newton–Raphson (NR) method is a numerical approach that is commonly used to
compute MLEs of the unknown parameters. In this method, the solution of the likelihood
function is obtained through an iterative procedure. First, we obtain the second-order deriva-
tives of the log-likelihood with respect to α and β in order to implement the NR method:

lαα =
−n

α2
+

n∑
i=1

∫
A(x)µx̃i(x)dx

∫
Aαα(x)µx̃i(x)dx− (

∫
Aα(x)µx̃i(x)dx)2

(
∫

A(x)µx̃i(x)dx)2
,(3.6)

lββ =
−n

β2
+

n∑
i=1

∫
A(x)µx̃i(x)dx

∫
Aββ(x)µx̃i(x)dx− (

∫
Aβ(x)µx̃i(x)dx)2

(
∫

A(x)µx̃i(x)dx)2
,(3.7)

lαβ =
n∑

i=1

∫
A(x)µx̃i(x)dx

∫
Aαβ(x)µx̃i(x)dx−

∫
Aα(x)µx̃i(x)dx

∫
Aβ(x)µx̃i(x)dx

(
∫

A(x)µx̃i(x)dx)2
,(3.8)

where

Aαα(x) = xα−1(log(x))2(1 + xα)−β−3
[
x2α(β + 1)(β + 2)− 3xα(β + 1)(1 + xα) + (1 + xα)2

]
,

Aββ(x) = xα−1(1 + xα)−β−1(log(1 + xα))2

Aαβ(x) = x2α−2(1 + xα)−β−2 log(x)[(β + 1)x log(1 + xα)− (1 + xα) log(1 + xα)− x].



410 A.A. Hussein and R. Al-Mosawi

Assume α(k) and β(k) are the values of α and β at the k-th iteration. Then at (k + 1)-th
iteration, the updated values of α and β are obtained as(

α(k+1)

β(k+1)

)
=

(
α(k)

β(k)

)
−

(
lαα lαβ

lαβ lββ

)−1

α=α(k),β=β(k)

(
lα
lβ

)
α=α(k),β=β(k)

,

which is equivalent to

α(k+1) = α(k) −
lαlββ − lβlαβ

lααlββ − l2αβ

∣∣∣
α=α(k),β=β(k)

,(3.9)

β(k+1) = β(k) −
lβlαα − lαlαβ

lααlββ − l2αβ

∣∣∣
α=α(k),β=β(k)

.(3.10)

The iteration process then continues until convergence, i.e., |α(k+1)−α(k)|+ |β(k+1)−β(k)|< ε,
for some pre-specified ε > 0.

To estimate the standard error of maximum likelihood estimators, α̂ and β̂, we use the
observed information matrix method. The variance-covariance matrix of the MLEs of α and β

is defined as

Σ =
[

var(α̂) cov(α̂, β̂)
cov(α̂, β̂) var(β̂)

]
,

and can be estimated by using the inverse of the observed information matrix

I(α̂, β̂) =
(
−lαα −lαβ

−lαβ −lββ

)
α=α̂,β=β̂

,(3.11)

where lαα, lββ and lαβ are given in (3.6),(3.7) and (3.8), respectively. Then the 100(1− γ)%
Wald confidence intervals of α and β using the observed information matrix can be con-
structed, respectively, as

α̂± zγ/2

√
var(α̂) and β̂ ± zγ/2

√
var(β̂),

where zp is the upper p-th percentile of the standard normal distribution.

It is known that Newton–Raphson method is very sensitive to the initial values of
parameters. In addition, the calculation of the second-order derivatives of the log-likelihood
based on fuzzy data sometimes can be rather tedious. So we propose to use an alternative
method to the Newton–Raphson method which is the EM algorithm.

3.2. EM Algorithm

In this subsection, we propose to use the EM algorithm to calculate the MLEs of the
unknown parameters.

The EM algorithm, proposed by Dempster et al. ([7]), is a very powerful technique
used in parameter estimation based on incomplete or missing information data. As stated by
Pradhan and Kundu ([30]), the EM algorithm is an iterative method and each iteration con-
sists of two main steps; Expectation(E)-step and Maximization(M)-step. In E-step, we form
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the “pseudo-likelihood” function by replacing the incomplete or missing observations in the
likelihood function with their corresponding expected values. In the M-step, we maximize the
“pseudo-likelihood” function with respect to the parameters. Let us denote the observed data
set by X̃ = (X̃1, ..., X̃n) and let the complete data denoted by X = (X1, ..., Xn). Define Z =
(Z1, ..., Zn) where Zi represents the conditional expectation of the complete observation Xi

given the corresponding fuzzy observation X̃i with membership function µx̃i(x). Observe that

Zi = E(Xi|X̃i) =
∫

xf(x;α, β)µx̃i(x)dx∫
f(x;α, β)µx̃i(x)dx

, i = 1, ..., n.(3.12)

Then the pseudo likelihood function takes the form

Lc(α, β|z) =(αβ)n
n∏

i=1

zα−1
i (1 + zα

i )−β−1,(3.13)

with pseudo log-likelihood function

lc(α, β|z) = n log α + n log β + (1− α)
n∑

i=1

log(zi)− (β + 1)
n∑

i=1

log(1 + zα
i ).(3.14)

By taking the partial derivatives of lc with respect to α and β, respectively, and equating the
resulted equations to zero we obtain the following equations:

n

α
+

n∑
i=1

log(zi)− (β + 1)
n∑

i=1

zα
i log(zi)
(1 + zα

i )
= 0,(3.15)

n

β
−

n∑
i=1

log(1 + zα
i ) = 0.(3.16)

Therefore the EM algorithm is given by the following iterative process:

Step 1. Given starting values of α and β, say α(0) and β(0), and take k=0.

Step 2. At the (k + 1)-th iteration,

Step 2.1. E-step. Evaluate Z = (Z1, ..., Zn), where Zi ≡ Zi(α(k), α(k)) is
computed using the expression (3.12) with α and β are replaced
by α(k) and β(k), respectively.

Step 2.2. M-step. Solve the equations (3.15) and (3.16) and obtain the
next values α(k+1) and β(k+1) of α and β, respectively.

Step 3. If |α(k+1)−α(k)|+ |β(k+1)−β(k)| < ε, for some pre-specified value ε > 0, then
set α(k+1) and β(k+1) as the maximum likelihood estimators of α and β,

otherwise, set k = k + 1 and go to Step 2.

Estimating the standard errors and constructing the confidence intervals in this section are
similar to that given in Section 2 with NR estimates are replaced by EM estimates.
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4. BAYESIAN ESTIMATION

In this section, we estimate the unknown parameters of Burr type XII distribution
using Bayesian method under squared error loss function. The Bayes estimators are obtained
using three different methods; Lindley’s approximation, Tierney–Kadane approximation and
highest posterior density methods. Assume that the parameters α and β have independent
gamma priors such that α ∼ π1(α) = Gamma(a, b) and β ∼ π2(β) = Gamma(c, d). Based on
the above priors, the joint posterior density function of α and β given the data can be written
as follows

π(α, β|x̃) =
αn+a−1βn+c−1e−bα−dβ

n∏
i=1

∞∫
0

xα−1(1 + xα)−β−1µx̃i(x)dx

∞∫
0

∞∫
0

αn+a−1βn+c−1e−bα−dβ
n∏

i=1

∞∫
0

xα−1(1 + xα)−β−1µx̃i(x)dxdαdβ

.(4.1)

Then, under a squared error loss function, the Bayes estimate of any function of α and β,
say g(α, β), is given by

E(g(α, β)|x̃) =
∫ ∞

0

∫ ∞

0
g(α, β)π(α, β|x̃)dαdβ.(4.2)

Note that Equation (4.2) cannot be obtained analytically; therefore, in the following, we pro-
pose to use three methods, namely; Lindley’s approximation and Tierney–Kadane approxi-
mation and highest posterior density methods to solve it and compute the Bayes estimators.

4.1. Lindley’s Approximation

Lindley’s approximation was proposed by Lindley ([18]) to approximate the integrals
involved in Bayes estimator. Lindley proposed a ratio of integrals of the form

E(g(α, β)|x̃) =

∫∞
0

∫∞
0 g(α, β)eQ(α,β)dαdβ∫∞
0

∫∞
0 eQ(α,β)dαdβ

(4.3)

that can be approximated by

ĝ(α, β) = g(α̂, β̂) +
1
2

[
(ĝαα + 2ĝαρ̂α)σ̂αα + (ĝαβ + 2ĝβ ρ̂α)σ̂αβ + (ĝαβ + 2ĝαρ̂β)σ̂αβ

+ (ĝββ + 2ĝβ ρ̂β)σ̂ββ

]
+

1
2

[
(ĝασ̂αα + ĝβσ̂αβ)(lααασ̂αα + 2l̂ααβσ̂αβ + l̂αββσ̂ββ)(4.4)

+ (ĝασ̂αβ + ĝβσ̂ββ)(l̂ααβσ̂αα + 2l̂αββσ̂αβ + l̂βββσ̂ββ)
]
,

where
Q(α, β) = log[π1(α)π2(β)] + log L(α, β|x̃) ≡ ρ(α, β) + `(α, β|x̃).

The expressions l̂, ĝ, ρ̂ and σ̂ denote, respectively, the functions l, g, ρ and σ evaluated at α̂

and β̂, the MLEs of α and β. Here, the expressions ĝα, ĝβ, ĝαα, ĝαβ and ĝββ denote the first
and the second order partial derivatives of g with respect α and β evaluated at the MLEs of
α and β. First note that, the expressions of lα, lβ, lαα, lββ and lαβ are given in (3.4), (3.5),
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(3.6), (3.7) and (3.8), respectively. The third order of partial derivatives of the log-likelihood
function with respect to α and β are given by

lααα =
2n

α3
+

n∑
i=1

C2
i Ci,ααα − 3CiCi,αCi,αα + 2C3

i,α

C3
i

,

lβββ =
2n

β3
+

n∑
i=1

C2
i Ci,βββ − 3CiCi,βCi,ββ + 2C3

i,β

C3
i

,

lαββ =
n∑

i=1

C2
i Ci,αββ − 2CiCi,βCi,αβ − CiCi,αCi,ββ + 2Ci,αC2

i,β

C3
i

,

lααβ =
n∑

i=1

C2
i Ci,ααβ − 2CiCi,αCi,αβ − CiCi,ααCi,β + 2C2

i,αCi,β

C3
i

,

where

Ci =
∫

A(x)µx̃i(x)dx,

Ci,α =
∫

Aα(x)µx̃i(x)dx,Ci,αα =
∫

Aαα(x)µx̃i(x)dx, Ci,ααα =
∫

Aααα(x)µx̃i(x)dx,

Ci,β =
∫

Aβ(x)µx̃i(x)dx,Ci,ββ =
∫

Aββ(x)µx̃i(x)dx,Ci,βββ =
∫

Aβββ(x)µx̃i(x)dx,

Ci,αβ =
∫

Aαβ(x)µx̃i(x)dx,Ci,ααβ =
∫

Aααβ(x)µx̃i(x)dx,Cαββ =
∫

Aαββ(x)µx̃i(x)dx,

and

Aααα(x) = x2α−1(β + 1)(log(x))3(1 + xα)−β−4
[
− x2α(β + 2)(β + 3)

+ 6xα(1 + xα)(β + 2)− 7(1 + xα)2
]

+ xα−1(log(x))3(1 + xα)−β−1,

Aβββ(x) = − xα−1(log(1 + xα))3(1 + xα)−β−1,

Aαββ(x) = xα−1 log(1 + xα) log(x)(1 + xα)−β−2
[
− xα(β + 1) log(1 + xα),

+ 2xα + log(1 + xα)(1 + xα)
]
,

Aααβ(x) = (β + 1)(log(x))2x2α−1(1 + xα)−β−3
[
− xα(β + 2) log(1 + xα) + xα

+ 3(1 + xα) log(1 + xα)
]

+ (log(x))2x2α−1(1 + xα)−β−3
[
xα(β + 2)

− 3(1 + xα)
]
− (log(x))2xα−1(1 + xα)−β−1 log(1 + xα).

The function ρ given by

ρ(α, β) = (a− 1) log(α)− bα + (c− 1) log(β)− dβ

has the following partial derivatives:

ρα =
∂ρ(α, β)

∂α
=

a− 1
α

− b,

ρβ =
∂ρ(α, β)

∂β
=

c− 1
β

− d.
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In addition (
σαα σαβ

σαβ σββ

)
=

(
−lαα −lαβ

−lαβ −lββ

)−1

.

If g(α, β) = α, we obtain gα = 1 and gαα = gβ = gββ = gαβ = 0. Thus the Bayes estimator
using Lindley’s approximation is given by

α̂ = α̂MLE + ρ̂ασ̂αα + ρ̂βσ̂βα +
1
2

[
σ̂αα(l̂ααασ̂αα + l̂ααβσ̂αβ + l̂ααβσ̂βα + l̂αββσ̂ββ)

+ (σ̂βα)(l̂ααβσ̂αα + l̂αββσ̂αβ + l̂αββ ˆσβα + l̂βββσ̂ββ)
]
.

If g(α, β)=β, we obtain gβ = 1 and gαα = gα = gββ = gαβ = 0. Then the Bayes estimates of
β is given by

β̂ = β̂MLE + ρ̂ασ̂βα + ρ̂βσ̂ββ +
1
2

[
σ̂αβ(l̂ααασ̂αα + l̂ααβσ̂αβ + l̂ααβσ̂βα + l̂αββσ̂ββ)

+ (σ̂ββ)(l̂ααβσ̂αα + l̂αββσ̂αβ + l̂αββσ̂βα + l̂βββσ̂ββ)
]
.

4.2. Tierney–Kadane approximation

In this subsection, we utilize another approximation of the integral (4.2) to compute
the Bayes estimators. Using Laplace transformation, Tierney and Kadane [33] proposed an
alternative method to approximate the ratio of integrals. The advantage of using Tierney–
Kadane method is that it requires only the first and the second derivatives of the posterior
density. The posterior expectation of a g(α, β) can be written as

E(g(α, β|˜̃x)) =

∫∞
0

∫∞
0 enH∗(α,β)dαdβ∫∞

0

∫∞
0 enH(α,β)dαdβ

,(4.5)

where

H(α, β) =
1
n

[
(a− 1) log(α)− bα + (c− 1) log(β)− dβ + l(α, β|x̃)

]
,

H∗(α, β) = H(α, β) +
1
n

log(g(α, β)).

Then the integral given in Equation (4.5) can be approximated by

ĝ(α, β) =
(det

∑∗

det
∑ ) 1

2 exp{n[H∗(ᾱ∗, β̄∗)−H(ᾱ, β̄)]},(4.6)

where (ᾱ∗, β̄∗) and (ᾱ, β̄) maximize H∗ and H, respectively,
∑∗ and

∑
are the negatives

of the inverse Hessian matrix of H∗ and H evaluated at (ᾱ∗, β̄∗) and (ᾱ, β̄), respectively.
Therefore (ᾱ, β̄) can be obtained by solving the following two equations

Hα =
∂H(α, β)

∂α
=

a− 1
α

− b + lα(α, β|x̃) = 0,

Hβ =
∂H(α, β)

∂β
=

c− 1
β

− d + lβ(α, β|x̃) = 0,
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and from the second derivatives of H(α, β), the determinant of the negative of the inverse
Hessian of H (α, β) at (ᾱ, β̄) is given by

det
∑

=
(
H̄ααH̄ββ − H̄2

αβ

)−1
,

where

H̄αα ≡ ∂H̄α

∂α
= −a− 1

ᾱ2
+ lαα(ᾱ, β̄|x̃),

H̄ββ ≡
∂H̄β

∂β
= −a− 1

β̄2
+ lββ(ᾱ, β̄|x̃),

H̄αβ ≡ ∂H̄α

∂β
= lαβ(ᾱ, β̄|x̃).

Similarly, for the function H∗(α, β), the determinant of the negative of the inverse Hessian
of H∗(α, β) evaluated at (ᾱ∗, β̄∗) is given by

det
∑∗

= (H̄∗
ααH̄∗

ββ − H̄∗2
αβ)−1.

For g(α, β) = α, we get

H∗
α(α, β) = H(α, β) +

1
n

log(α)

and consequently, we have

H∗
α,α =

∂H∗(α, β)
∂α

= Hα +
1

nα
,

H∗
α,β =

∂H∗(α, β)
∂β

= Hβ,

H∗
α,αβ =

∂H∗(α, β)
∂αβ

= Hαβ ,

H∗
α,αα =

∂H∗
1

∂α
= Hαα −

1
nα2

,

H∗
α,ββ =

∂H∗
2

∂β
= Hββ.

For g(α, β) = β, we have

H∗
β(α, β) =

1
n

log(β) + H(α, β)

and

H∗
β,α =

∂H∗(α, β)
∂α

= Hα,

H∗
β,β =

∂H∗(α, β)
∂β

= Hβ +
1

nβ
,

H∗
β,αβ =

∂H∗(α, β)
∂αβ

= Hαβ ,

H∗
β,αα =

∂D∗1
∂α

= Hαα,

H∗
β,αα =

∂D∗2
∂β

= Hββ −
1

nβ2
.

Finally, substituting the above expressions in (4.6), we obtain the Bayes estimates of α and β.
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4.3. Highest posterior density estimation

The highest posterior density estimation is another popular method used to compute
the Bayes estimates. The highest posterior density (HPD) estimate represents the mode of
the posterior density. The Bayes estimates using HPD method can be obtained by solving
the equations

∂π(α, β|x̃)
∂α

=
n + a− 1

α
− b +

∫
Aα(x)µx̃i(x)dx∫
A(x)µx̃i(x)dx

= 0,(4.7)

∂π(α, β|x̃)
∂β

=
n + c− 1

β
− d +

∫
Aβ(x)µx̃i(x)dx∫
A(x)µx̃i(x)dx

= 0.(4.8)

It can be seen that, the solutions of the above two equation cannot be obtained explicitly
and, similar to the maximum likelihood method, numerical methods like Newton–Raphson
can be used to solve them.

5. SIMULATION EXPERIMENTS

In this section, we conduct Monte-Carlo simulation experiments to show how the various
approaches work with different sample sizes. The performance of the proposed approaches
was compared on the basis of their expected biases, root mean square error, average of
standard errors and of 95% confidence intervals. The true values of the parameters (α, β) are
assumed to be (1.25, 1.5), (1.5, 0.5) and (0.5, 0.75), respectively. The sample sizes are chosen
as n = 25, 50 and 100 to represent small, moderate and large samples, respectively. Each
observation from Burr type XII, xi, was then fuzzified with the corresponding membership
function µ

exi
(x), where

µ
exi

(x) =



x− (xi − ai)
ai

, if xi − ai ≤ x ≤ xi,

(xi + ai)− x

ai
, if xi ≤ x ≤ xi + ai,

0, otherwise,

(5.1)

and ai = 0.05xi (see, for example, Pak and Chatrabgoun ([24]), Pak et al. ([27]), Chaturvedi
([6])). That is the observer is unable to provide exact value of observation and an interval
of plausible values [xi − ai, xi + ai] is provided. For example the triangular fuzzy number
(0.1805, 0.1995) represents the observed value 0.19 i.e. the interval of plausible values of 0.19
is [0.1805, 0.1995]. Then, we compute the MLEs of α and β for the fuzzy sample via Newton–
Raphson (NR) and Expectation-Maximization (EM) algorithm. The process is replicated
1000 times. In each replication, we compute the average of biases (Bias), sample standard
error (SSE) and the root mean squared error (RMSE) using the expressions

Bias(θ) =
1
k

k∑
i=1

(θi − θ0),
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SSE(θ) =

√√√√1
k

k∑
i=1

(θi − θ̄)2

and

RMSE(θ) =

√√√√1
k

k∑
i=1

(θi − θ0)2,

where θ represents α or β, θ0 is the true value of θ, θ̄ is the mean of the estimates of θ and k is
the number of replications. Moreover, to compute the estimated standard error (ESE) for the
MLEs, we use the observed information matrix given in (3.11). Approximated 95% confidence
intervals for the MLE are constructed using the observed information matrix. Moreover, in
each iteration, we compute the Bayes estimators using Lindley’s approximation, Tierney–
Kadane approximation and highest posterior density (HP) methods. At the end, we compute
the averages of the absolute biases, sample standard deviation, estimated standard deviation,
root mean squared error and 95% confidence intervals. For computing Bayes estimators, we
consider gamma priors for α and β with hyperparameters (a, b) and (c, d) , respectively. To
make the comparison meaningful, it is assumed that the priors are non-informative a = b =
c = d = 0 but these priors are improper priors hence we have tried a = b = c = d = 0.001 to
get proper priors. However, these results are same as those obtained for improper priors. The
simulation results of the MLEs and Bayes estimators are reported in Tables 1–2. We have
utilized R-4.0.3 software to compute the proposed estimators. The stopping criteria for the
algorithms is based on the sum of the absolute differences between two consecutive values of
parameters estimates less than 10−4.

From Table 1, we observe that the biases for all estimators, in general, are reasonably
small which indicate that the estimated values are close to the true parameter values. As
expected, the biases of all estimators become better when the sample size increases. The
values of sample standard error (SSE) of the MLEs are approximately close to estimated
standard error (ESE) for all the cases and hence the estimated standard error can be used
to estimate the standard error of the estimators. In addition, the Bias, SSE, ESE, RMSE
and the length of 95% confidence inetrvals of all MLEs are decreasing when sample sizes
increasing for all the cases. The estimated coverage probabilities of 95% confidence intervals
(CP) are very close to the nominal level for all the cases. Hence, the performance of the
MLEs are satisfactory in terms of the biases, standard errors and coverage probabilities of
the estimates. Moreover, the Bias of the computed MLEs estimators using EM algorithm for
most of the cases are slightly higher than that of the MLEs computed using EM-algorithm.
In addition, the central processing time CPU required for NR per iteration is shorter than
that of EM algorithm. Figure 1 demonstrates the histograms for the MLEs of α and β when
n = 100 for the three sets of values. The histograms show approximately normal distribution
of the MLEs of α and β.

From Table 2, the biases of the Bayesian estimates of all three methods are also rea-
sonably small. It is clear that the Bias and RMSE are decreasing for increasing values of
sample sizes. Moreover, the Bias and RMSE of the Bayes estimates obtained under highest
posterior density (HP) are smaller than that of Lindley’s method (LN) and Tierney–Kadane
approximation (TK). Hence we recommend to use HP method for computing Bayes estima-
tor. From the above results, we conclude that the estimation methods proposed in the article
to compute the MLEs and Bayes estimators perform very well.
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Table 1: Simulation results for MLEs of α and β.

n Bias RMSE ESE SSE 95% CI Length CP

25

α = 1.25
NR 0.068 0.258 0.218 0.249 (0.95, 1.82) 0.87 93.6
EM 0.069 0.255 0.218 0.245 (0.93, 1.81) 0.88 93.8

β = 1.50
NR 0.072 0.353 0.321 0.345 (1.05, 2.35) 1.30 94.1
EM 0.075 0.350 0.320 0.342 (1.01, 2.30) 1.29 94.8

50

α = 1.25
NR 0.029 0.162 0.150 0.159 (1.02, 1.61) 0.59 94.5
EM 0.031 0.160 0.152 0.160 (1.04, 1.60) 0.56 94.6

β = 1.50
NR 0.027 0.226 0.220 0.224 (1.15, 2.03) 0.88 95.0
EM 0.029 0.225 0.218 0.222 (1.11, 1.98) 0.87 95.0

100

α = 1.25
NR 0.013 0.106 0.104 0.105 (1.07, 1.48) 0.41 94.9
EM 0.015 0.108 0.103 0.105 (1.08, 1.46) 0.38 94.8

β = 1.50
NR 0.012 0.153 0.154 0.153 (1.24, 1.85) 0.61 95.0
EM 0.012 0.155 0.156 0.155 (1.24, 1.83) 0.59 95.1

25

α = 1.50
NR 0.155 0.511 0.415 0.484 (1.01, 2.72) 1.71 93.8
EM 0.157 0.515 0.413 0.486 (1.02, 2.72) 1.70 93.6

β = 0.50
NR 0.007 0.143 0.135 0.146 (0.29, 0.87) 0.58 94.8
EM 0.007 0.144 0.138 0.144 (0.30, 0.87) 0.57 94.3

50

α = 1.50
NR 0.062 0.290 0.270 0.291 (1.12, 2.19) 1.07 94.7
EM 0.067 0.297 0.269 0.290 (1.12, 2.19) 1.07 94.5

β = 0.50
NR 0.002 0.098 0.098 0.097 (0.34, 0.73) 0.39 95.0
EM 0.003 0.097 0.097 0.097 (0.34, 0.73) 0.39 95.0

100

α = 1.50
NR 0.026 0.188 0.182 0.186 (1.21, 1.93) 0.72 95.2
EM 0.027 0.187 0.180 0.185 (1.20, 1.93) 0.73 95.4

β = 0.50
NR 0.002 0.069 0.069 0.070 (0.38, 0.66) 0.28 94.9
EM 0.001 0.071 0.072 0.071 (0.38, 0.65) 0.27 94.9

25

α = 0.50
NR 0.080 0.280 0.211 0.267 (0.51, 1.37) 0.86 93.4
EM 0.082 0.270 0.210 0.265 (0.51, 1.38) 0.87 93.8

β = 0.75
NR 0.006 0.140 0.140 0.143 (0.30, 0.86) 0.56 94.4
EM 0.007 0.145 0.138 0.145 (0.30, 0.86) 0.56 94.2

50

α = 0.50
NR 0.033 0.149 0.134 0.145 (0.56, 1.10) 0.54 94.5
EM 0.034 0.150 0.132 0.143 (0.56, 1.10) 0.56 94.6

β = 0.75
NR 0.002 0.096 0.095 0.095 (0.34, 0.73) 0.39 95.0
EM 0.002 0.097 0.097 0.097 (0.34.0.73) 0.39 95.2

100

α = 0.50
NR 0.013 0.094 0.096 0.093 (0.60, 0.97) 0.37 95.2
EM 0.013 0.092 0.091 0.094 (0.60, 0.96) 0.36 95.5

β = 0.75
NR 0.003 0.069 0.070 0.069 (0.38, 0.66) 0.28 94.9
EM 0.002 0.070 0.069 0.070 (0.38, 0.65) 0.27 94.6
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Figure 1: Histograms of the estimated values of the MLEs, α̂ and β̂, for n = 100.
The first line for (α = 1.25, β =1.5), the second line for (α =1.5, β = 0.5)
and the third line for (α = 0.5, β = 0.75).
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Table 2: Simulation results for Bayesian estimates of α and β.

n LN TK HPD LN TK HPD

α = 1.25 β = 1.5

25
Bias 0.068 0.065 0.040 0.068 0.067 0.014
RMSE 0.259 0.264 0.247 0.348 0.345 0.328

50
Bias 0.029 0.029 0.016 0.025 0.022 0.003
RMSE 0.162 0.160 0.158 0.224 0.220 0.218

100
Bias 0.013 0.012 0.006 0.011 0.009 −0.001
RMSE 0.106 0.105 0.105 0.153 0.152 0.151

α = 1.5 β = 0.5

25
Bias 0.191 0.199 0.140 0.015 0.015 −0.009
RMSE 0.529 0.556 0.504 0.141 0.143 0.140

50
Bias 0.084 0.080 0.058 0.006 0.004 −0.006
RMSE 0.309 0.309 0.295 0.096 0.096 0.095

100
Bias 0.030 0.034 0.022 0.007 0.004 −0.002
RMSE 0.191 0.190 0.187 0.069 0.071 0.068

α = 0.5 β = 0.75

25
Bias 0.103 0.105 0.075 0.014 0.015 −0.009
RMSE 0.298 0.306 0.276 0.142 0.144 0.141

50
Bias 0.042 0.040 0.029 0.005 0.006 −0.006
RMSE 0.152 0.154 0.147 0.096 0.092 0.095

100
Bias 0.018 0.017 0.011 0.004 0.002 −0.002
RMSE 0.095 0.092 0.093 0.069 0.070 0.068

6. APPLICATION EXAMPLES

In this section, we analyze three real data sets to explain how the proposed approaches
can be applied in real data analysis. We are assuming that each observation in any of these
datasets, xi, is reported as a fuzzy numbers with membership function given in (5.1). For
computing Bayes estimators in this section, we assume gamma priors with hyperparameters
a = b = c = d = 0.001. This choice of hyperparameters will make the priors proper. However,
we have tried to consider different values of hyperparameters, for example, we have considered
the cases a = b = c = d = 1, and a = 2, b = 1, c = 2, d = 1 and the results are not much
different than that we have obtained from that case, and are not reported due to the space.

Example 1. The first data set was considered and analyzed by Zimmer et al. ([37])
and Lio et al. ([19]). The dataset contains the 19 times in minutes to oil breakdown
of an insulating fluid under high test voltage (34 kV). The data set is listed as follows:
0.19, 0.78, 0.96, 0.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06, 31.75, 32.52,
33.91, 36.71, 72.89. Lio et al. ([19]) showed that the two-parameters Burr type XII fits the
data set very well. The MLEs of (α, β) using Newton–Raphson method are (1.440, 0.354) with
standard errors (0.435, 0.126) and 95% confidence intervals (0.588, 2.292) and (0.106, 0.601),
respectively, and MLEs using EM algorithm are (1.436, 0.357) with estimated standard error
(0.431, 0.127) and 95% confidence intervals (0.590, 2.281) and (0.108, 0.606). In addition, the
Bayes estimates of (α, β) are (1.427, 0.338) using Lindley’s approximation, (1.507, 0.364) using
Tierney–Kadane approximation and (1.427, 0.338) using highest posterior density method.
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Example 2. Lawless ([16]) reported the time between failure of air conditioning
equipment in a particular type of aircraft. These observations are:

0.500, 0.875, 1.083, 1.125, 1.208, 1.208, 2.00, 2.375,

2.458, 2.917, 3.083, 6.375, 13.583, 16.083, 20.917.

Kayal et al. ([14]) concluded that Burr type XII model fits the data set quite good. The MLEs
of (α, β) using Newton–Raphson method are (3.571, 0.275) with standard errors (1.488, 0.127)
and 95% confidence intervals (0.654, 6.487) and (0.026, 0.524), respectively, and MLEs using
EM algorithm are (3.500, 0.284) with estimated standard error (1.434, 0.129) and 95% con-
fidence intervals (0.690, 6.311) and (0.031, 0.537), respectively. In addition, the Bayes esti-
mates of (α, β) are (3.519, 0.260) using Lindley’s approximation, (3.921, 0.289) using Tierney–
Kadane approximation and (3.519, 0.260) using highest posterior density method.

Example 3. In this example, we analyze a dataset that represents the survival time
of animals observed due to different dosage of poison administered (see Box and Cox ([4])).
The observations are listed as:

0.18, 0.21, 0.22, 0.22, 0.23, 0.23, 0.23, 0.24, 0.25, 0.29, 0.29, 0.30,

0.30, 0.31, 0.31, 0.31, 0.33, 0.35, 0.36, 0.36, 0.37, 0.38, 0.38, 0.40,

0.40, 0.43, 0.43, 0.44, 0.45, 0.45, 0.45, 0.46, 0.49, 0.56, 0.61, 0.62,

0.63, 0.66, 0.71, 0.71, 0.72, 0.76, 0.82, 0.88, 0.92, 1.02, 1.10, 1.24.

Kayal et al. ([14]) analyzed the above data and they concluded that the data might have
come from a two-parameter Burr type XII distribution. The MLEs of (α, β) using Newton–
Raphson method are (2.346, 4.938) with standard errors (0.231, 0.822) and 95% confidence
intervals (1.893, 2.798) and (1.887, 2.785), respectively, and MLEs using EM algorithm are
(2.336, 5.075) with estimated standard error (0.229, 0.850) and 95% confidence intervals
(3.326, 6.550) and (3.408, 6.742), respectively. In addition, the Bayes estimates of (α, β) are
(2.373, 4.928) using Lindley’s approximation, (2.338, 4.923) using Tierney–Kadane approxi-
mation and (2.304, 4.761) using highest posterior density method.

7. CONCLUSION

In this article, we have considered both classical and Bayesian analysis of fuzzy survival
time observations when the lifetime of the items follows two-parameter Burr type XII dis-
tribution. The MLEs do not have explicit forms. Thus, Newton–Raphson and Expectation-
Maximization algorithms have been used to compute the MLEs and both of them work quite
well. The Bayes estimates under the squared error loss function also do not exist in explicit
form. In this case, we have proposed to use Lindley’s approximation, Tierney–Kadane approx-
imation and highest posterior density method to compute the Bayes estimates when the two
unknown parameters have independent gamma priors. However, we have considered gamma
priors, but a more general prior, namely a prior which has the log-concave p.d.f. may be used,
and the method can be easily incorporated in that case. Moreover, in Bayesian estimation,
we proposed to use a very well-known symmetric loss function which is the squared-error loss
function. However, we may extend the results of the paper by adopting other loss function
like LINEX. Another direction for extension is to consider censored fuzzy observations like
type II progressively censored fuzzy observations.
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A. Proof of Theorem 3.1

Recall that, the log-likelihood function of α and β is given by

l(α, β|x̃) = n log α + n log β +
n∑

i=1

log
∫

A(x)µx̃i(x)dx,

where

A(x) = xα−1(1 + xα)−β−1.(A.1)

Observe that, for fixed β > 0, we have

lim
α→0

l(α, β|x̃) = lim
α→∞

l(α, β|x̃) = −∞

and, for fixed α > 0, we have

lim
β→0

l(α, β|x̃) = lim
β→∞

l(α, β|x̃) = −∞.

We can see that
∂2 log(A(x))

∂α2
= −(β + 1)(log(x))2xα

(1 + xα)2
< 0

for fixed β > 0, i.e., A(x) is strictly log-concave in α for fixed β > 0. Similarly, we can prove that
A(x) is log-concave in β for fixed α > 0. By Prekopa–Leindler inequality (see Gardner [10])
we obtain that

∫
A(x)µx̃i(x)dx is strictly log-concave in α (or β) for fixed β > 0 (or α > 0).

Therefore, for fixed α (or β), l(α, β|x̃) is strictly concave and unimodal function with respect
to β (or α). Moreover,

lim
α→0
β→0

l(α, β|x̃) = lim
α→0
β→∞

l(α, β|x̃) = lim
α→∞
β→0

l(α, β|x̃) = lim
α→∞
β→∞

l(α, β|x̃) = −∞.

The rest of the proof is the same as that of Dey et al. ([9]).
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1. INTRODUCTION

In many practical applications such as materials testing, meteorology and hydrology,
only record data is available for statistical analysis. Then, for a sequence of successive,
increasing record values, an appropriate model are upper record values, first studied in [5].
Suppose that X1, X2, ... is an infinite sequence of independent and identically distributed
(i.i.d.) continuous random variables with cumulative distribution function (cdf) F . An obser-
vation is called an (upper) record value provided it is greater than all previously observed
values. More specifically, defining the record times as

L(1) = 1, L(n + 1) = min{j > L(n) | Xj > XL(n)}, n ∈ N,

the sequence (Rn)n∈N = (XL(n))n∈N is referred to as the sequence of (upper) record values
based on (Xn)n∈N; see [1], [15]. The structure of record values also appears in the context of
minimal repair of a system, and, under mild conditions, the epoch times of a non-homogeneous
Poisson process and upper record values are equal in distribution; see [11]. If not the record
values themselves, but the successively k-th largest values (R(k)

n )n∈N, k ∈ N, in an i.i.d. se-
quence of random variables are of interest, the appropriate description is provided by the
model of k-th record values introduced in [9].

We consider the problem of providing a prediction value for the occurrence of a future
Weibull record value Rs based on the first r, r < s, (observed) Weibull record values R? =
(R1, ..., Rr). In addition to the modeling of repairable systems mentioned above, the Weibull
record values model has been used in the literature to model reliability growth (see [7]) and
software reliability (see [13]). The point prediction problem for Weibull record values has
recently been studied in [16], where, in particular, the maximum likelihood predictor of Rs

based on R? was derived. In fact, predictive analysis of Weibull record values dates as back
as [14] and [10], where exact prediction intervals for Rs were constructed. For Bayesian
predictive analysis of Weibull record values, the reader is referred to, e.g., [3], [21], [22].
For statistical inference based on record values from Weibull distributions and application,
we also refer to [23] and [20].

The maximum likelihood prediction procedure is frequently examined in the literature
and commonly applied in the context of an ordered data model such as the model of upper
record values; see [12]. The maximum likelihood prediction procedure derives a predictor of
a r.v. Y based on a possibly p-dimensional random vector X with joint pdf fX,Y

θ , θ ∈ Θ, by
maximizing the predictive likelihood function Lrv of Y and θ given that X = x, which takes
the form

Lrv(y, θ|x) = fX,Y
θ (x, y),

with respect to θ and y. The functions πMLP and θ̂ML are called, respectively, maximum
likelihood predictor (MLP) of Y and predictive maximum likelihood estimator (PMLE) of θ,
if, for any x ∈ Rp,

Lrv(πMLP(x), θ̂ML(x)) = max
(y,θ)∈R×Θ

Lrv(y, θ|x).

Recently, a new likelihood-based general-purpose prediction procedure, the so-called maximum
observed likelihood prediction method has been introduced and studied in [19]; see also [18].
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By means of this procedure, a predictor of Y based on X is obtained by maximizing the
observed predictive likelihood function Lobs defined by

Lobs(y, θ|x) = f
X|Y
θ (x|y)

with respect to θ and y. Then, any functions πMOLP and θ̂MOL are referred to, respectively,
as maximum observed likelihood predictor (MOLP) of Y and predictive maximum observed
likelihood estimator (PMOLE) of θ, provided that, for any x ∈ Rp,

Lobs(πMOLP(x), θ̂MOL(x)) = max
(y,θ)∈R×Θ

Lobs(y, θ|x).

If, in a general parametric family {Fθ | θ ∈ Θ} of continuous cdfs, the s-th record Rs is
predicted based on R? = (R1, ..., Rr), then the maximum observed likelihood predictor is
given by

π
(s)
MOLP = F−1

θ̂(R?)

(
1− (1− Fθ̂(R?)(Rr))

s−1
r

)
,(1.1)

where the function θ̂ is such that

Ψ(θ̂(r?), r?) = max
θ∈Θ:

(θ,r?)∈Zr

Ψ(θ, r?);(1.2)

see [19, Theorem 3.3], [18, Theorem 5.3]. In equation (1.2), the function Ψ is given by

Ψ(θ, r?) =
r∏

i=1

fθ(ri)/(1− Fθ(ri))
ln(1− Fθ(rr))

, (θ, r?) ∈ Zr,(1.3)

with Zr = {(θ, r1, ..., rr) ∈ Θ×Rr
< | (r1, ..., rr) ∈ (α(Fθ), ω(Fθ))r

<}, where, for an interval I ⊆R
and n ∈ N, In

< = {(x1, ..., xn) ∈ In | x1 < x2 < ··· < xn}, and α(F ) and ω(F ) denote the left
and right endpoints of the support of a cdf F .

In order to facilitate building some intuition for the difference between the predictive
likelihood and the observed predictive likelihood function-based prediction procedures, let us
slightly rewrite the associated likelihood functions. First, observe that the predictive likeli-
hood function can be constructed by taking the product of the conditional density function
of Y given X and the density function of X, that is

Lrv(y, θ|x) = f
Y |X
θ (y|x) fX

θ (x).

Thus, in maximizing the predictive likelihood function the information on the variability
in Y as described by the conditional density function f

Y |X
θ is reduced to the mode of the

conditional density of Y given X yielding a prediction value, which, given the observed data,
is the most probable value of Y under a model that best fits the observed data as well as the
prediction value. In principal, any functional of the conditional density of Y given X could be
used to derive a prediction value of Y but the choice of the mode has the appealing advantage
of allowing to formally extend the maximum likelihood method from the parametric to the
predictive inference setup. Next, we have that

Lobs(y, θ|x) = fX
θ (x)

f
Y |X
θ (y|x)
fY

θ (y)
,
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which shows that the maximum observed likelihood prediction procedure excludes the vari-
ability in Y from consideration and effectively turns the prediction problem into an estimation
problem for the model f

X|Y
θ (x|y), θ ∈ Θ, y > xp. In this model the variability of the observed

data depends on the value of the quantity of interest, that is Y , which allows to draw in-
ference on Y purely within the classical maximum likelihood framework that is to perform
optimization with respect to quantities that are model parameters. Alternatively, the above
representation can be interpreted to suggest that the prediction procedure yields a prediction
value, which is associated with the highest relative increase in the conditional density of Y

given X compared to the unconditional density of Y .

In contrast to the MOLP, a general expression such as in (1.1) does not seem to exist
for the MLP. Moreover, from expression (1.1), we find when predicting the very next record
value (s = r + 1) that the MOLP becomes trivial in the sense that the last observed record
value serves as predictor for the next one.

We examine the MLP and the MOLP of future Weibull record values, derive represen-
tations and compare their performance via the mean squared error and the Pitman closeness
criterion. A predictor π1 of Rs is said to be Pitman closer to Y than a predictor π2 if

P (|π1 −Rs| < |π2 −Rs|) >
1
2
,(1.4)

and, if (1.4) holds, π1 is said to be preferable to π2 in Pitman closeness sense.

2. LIKELIHOOD-BASED PREDICTORS FOR WEIBULL RECORD VALUES

Let (Rn)n∈N be the sequence of Weibull record values. The density, cumulative distri-
bution and quantile functions of the two-parameter Weibull distribution Weibull(σ, p) with
scale parameter σ ∈ R+ and shape parameter p ∈ R+ are given by

(2.1)

fθ(x) =
p

σ

(x

σ

)p−1
exp
{
−
(x

σ

)p}
, x ∈ R+,

Fθ(x) = 1− exp
{
−
(x

σ

)p}
, x ∈ R+,

F−1
θ (x) = σ(− ln(1− x))

1
p , x ∈ [0, 1),

where θ = (σ, p) ∈ R2
+ is the vector of the distributional parameters. For r, s ∈ N, r < s− 1,

we derive the MOLP as well as the MLP of the future record Rs based on R? = (R1, ..., Rr).
The density functions of the distribution of R? as well as of the conditional distribution of
Rs given Rr = rr, rr ∈ (−∞, ω(Fθ)), can be stated in terms of fθ and Fθ as follows (see [1]):

fR?
θ (r1, ..., rr) =

(
r−1∏
i=1

fθ(ri)
1− Fθ(ri)

)
fθ(rr)1[α(Fθ),ω(Fθ))r(r1, ..., rr), (r1, ..., rr) ∈ Rr

<,(2.2)

f
Rs|Rr

θ (rs|rr) =
1

(s− r−1)!
fθ(rs)

1−Fθ(rr)

(
− ln

(
1−Fθ(rs)
1−Fθ(rr)

))s−r−1

1(rr,ω(Fθ))(rs), rs ∈ R.(2.3)



Likelihood-based prediction of future Weibull record values 429

The MOLP in the Weibull case can be explicitly stated.

Proposition 2.1. For s≥ 3, let R1, ...,Rs be the first sWeibull record values. For r ∈N,

2 ≤ r < s− 1, the unique MOLP of Rs and the PMOLE of p based on R? are given by

π
(s)
MOLP =

(
s− 1

r

)1/p̂MOL

Rr and p̂MOL = − r

ln
(∏r

i=1
Ri
Rr

) .

Proof: With fθ and Fθ as above, the function Ψ(·|r?), r? = (r1, ..., rr) ∈ (0,∞)r
<,

in (1.2) reads

Ψ(θ|r?) = pr

(
r∏

i=1

ri

rr

)p−1
1
rr
r

, σ ∈ R+, p ∈ R+.(2.4)

The function Ψ does not depend on the scale parameter σ, thus, we only need to find a
maximizing function with respect to p. Let

θ̂(r?) =

(
σ̂(r?),−r/ ln

(
r∏

i=1

ri/rr

))
,

where β̂ is an arbitrary measurable function on Rr
< with values in R+. Then, θ̂ satisfies (1.2)

with Ψ(·|r?) given by (2.4). Together with

F−1
θ

(
1− (1− Fθ(Rr))

s−1
r

)
=
(

s− 1
r

) 1
p

Rr,

we find the stated form of the MOLP.

Remark 2.1.

(i) The PMOLE and the MLE of p coincide. For the MLEs of σ and p we refer to
[14].

(ii) The MOLP can also be written as π
(s)
MOLP = (s− 1)1/p̂σ̂, where p̂ and σ̂ are the

MLEs of p and σ, respectively.

The maximum likelihood predictor of a future Weibull record value was derived in [16]
(see also [18, Section 5.3.5]). The respective result is contained in the following theorem.

Proposition 2.2. For s≥ 3, let R1, ...,Rs be the first sWeibull record values. For r ∈N,

2 ≤ r < s− 1, the unique MLP of Rs based on R? is given by

π
(s)
MLP = s−1/p̂ML σ̂ML.

Here, σ̂ML and p̂ML are the PMLEs of σ and p.

The PMLE of σ takes the form

σ̂ML =
(

s + 1/p̂ML − 1
s(r + 1/p̂ML)

)1/p̂ML

Rr,

while the PMLE of p is obtained as the unique positive solution of

p2 ln

(
r−1∏
i=1

Ri

Rr

)
+ (r + 1)p = ln

(
r + 1/p

s + 1/p− 1

)
with respect to p ∈ R+. For s = r + 1, the MLP takes the form π

(s)
MLP = Rr.
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The following remark collects, in particular, some results concerning the existence of
the MOLP and the MLP in the case of the three-parameter Weibull distribution, where, in
(2.1), x is replaced by x− µ for some location parameter µ.

Remark 2.2.

(i) It is straightforward to see that the MLP can also be expressed in the form

π
(s)
MLP =

(
s + 1/p̂ML − 1

r + 1/p̂ML

)1/p̂ML

Rr.

(ii) In case the underlying distribution depends on an unknown location parameter
µ ∈ R, neither the MLP nor the MOLP exists. Indeed, consider first the derivation
of the MOLP. Then, for r? = (r1, ..., rr) ∈ Rr

<, we want to determine the global
maximum of the function

Ψ(µ, p|r?) = pr

(
r−1∏
i=1

ri − µ

rr − µ

)p−1
1

(rr − µ)r
, (µ, σ) ∈ (−∞, r1)× R+.

We have

Ψ

(
µ,−r/ ln

(
r−1∏
i=1

ri − µ

rr − µ

)∣∣∣∣∣r?

)
∼ h

(
− ln

(
r−1∏
i=1

ri − µ

rr − µ

))
rre−r

(rr − r1)r
,

as µ →
µ<r1

r1, where h(x) = ex/xr, x ∈ R+. Since lim
x→∞

h(x) = ∞,

lim
µ→r1
µ<r1

Ψ

(
µ,−r/ ln

(
r−1∏
i=1

ri − µ

rr − µ

)∣∣∣∣∣r?

)
= ∞.

Hence, function Ψ does not possess a finite global maximum.

Next, consider the derivation of the MLP. There, for (r1, ..., rr) ∈ Rr
<, we want,

in particular, to maximize the function

G(µ, p) = pr+1

(
r−1∏
i=1

ri − µ

rr − µ

)p−1
1

(rr − µ)r+1

(r + 1/p)r+1/p

(s + 1/p− 1)s+1/p−1
,

(µ, σ) ∈ (−∞, r1)× R+.

Since

(r + 1/p)r+1/p

(s + 1/p− 1)s+1/p−1
= exp

{
−(s− r − 1) ln(s + 1/p− 1)− (s− r − 1)

rp + 1
+ o(1)

}
,

as p → 0, we have that

G

(
µ,−r/ ln

(
r−1∏
i=1

ri − µ

rr − µ

))
∼ g

(
− ln

(
r−1∏
i=1

ri − µ

rr − µ

))
rr+1e−(s−1)

(rr − r1)r+1
,

as µ −→
µ<r1

r1, where g(x) = e
x

 
1−

(s−r−1) ln(x( 1
r+1+ s−1

x ))

x

!/
xr+1, x ∈ R+.

Since lim
x→∞

g(x) = ∞, we conclude that

lim
µ→r1
µ<r1

G

(
µ,−r/ ln

(
r−1∏
i=1

ri − µ

rr − µ

))
= ∞.

Hence, function G does not possess a finite global maximum.
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3. EVALUATION IN TERMS OF THE BIAS AND THE MSE

In the following, Gamma(a, b), a, b ∈ R+, denotes the gamma distribution with parame-
ters a, b with density function f(x) = baxa−1 exp{−bx}/Γ(a), x > 0, where Γ(a) is the gamma
function evaluated at a.

Lemma 3.1. For s ≥ 3, let R1, ..., Rs be the first s Weibull record values. For r ∈ N,

2 ≤ r < s− 1, the bias of the MOLP of Rs based on R? is finite if and only if 1
r ln
(

s−1
r

)
< p,

in which case it is given by

E(Rs − π
(s)
MOLP) = σ

Γ
(
s + 1

p

)
Γ(s)

1−

∏s−1
i=r

(
1 + 1

pi

)−1

(
1− 1

pr ln
(

s−1
r

))r−1

.

If 1
r ln
(

s−1
r

)
≥ p, then E(Rs − π

(s)
MOLP) = −∞.

Proof: To prove the statement, we derive the expression for the expectation of π
(s)
MOLP

and use that the integral is linear if one of the integrand functions is integrable (cf. [17, p. 135]).
By [14, p. 42], Rr and p̂MOL are independent and pr/p̂MOL ∼ Gamma(r− 1, 1). Using results
in [1, section 2.7.1], we conclude that

E(π(s)
MOLP) = E

((
s− 1

r

)1/p̂MOL

Rr

)
= E(Rr)E

((
s− 1

r

)1/p̂MOL
)

= E(Rr)E
(

exp
{

1
pr

ln
(

s− 1
r

)
pr

p̂MOL

})
= E(Rr)

1(
1− 1

pr ln
(

s−1
r

))r−1

= σ
Γ
(
r + 1

p

)
Γ(r)

1(
1− 1

pr ln
(

s−1
r

))r−1 = σ
Γ
(
s + 1

p

)
Γ(s)

∏s−1
i=r (1 + 1

pi)
−1(

1− 1
pr ln

(
s−1

r

))r−1

= E(Rs)

∏s−1
i=r (1 + 1

pi)
−1(

1− 1
pr ln

(
s−1

r

))r−1 ,

where in the fourth equality we used the expression for the moment generating function of
the Gamma(r − 1, 1) distribution to evaluate E

(
exp
{

1
pr ln

(
s−1

r

)pr
p̂

})
, which is finite if and

only if 1
pr ln

(
s−1

r

)
< 1, as well as the fact that Γ(x + 1) = Γ(x)x, x ∈ R+. Now, linearity of

the integral yields the desired conclusion.

Lemma 3.2. For s ≥ 3, let R1, ..., Rs be the first s Weibull record values. For r ∈ N,

2 ≤ r < s− 1, the MSE of the MOLP of Rs based on R? is finite if and only if 2
r ln( s−1

r ) < p,

in which case it is given by

MSE(π(s)
MOLP) = σ2

Γ(s + 2
p)

Γ(s)

1− 2

s−1∏
i=r

(1 + 1
pi)

−1(
1− 1

pr ln( s−1
r )
)r−1 +

s−1∏
i=r

(1 + 2
pi)

−1(
1− 2

pr ln( s−1
r )
)r−1

.



432 G. Volovskiy and U. Kamps

Proof: To prove the statement, we use that

(Rs − π
(s)
MOLP)2 = R2

s − 2RsRr

(
s− 1

r

)1/p̂MOL

+ (π(s)
MOLP)2

as well as the fact that the integral is linear if the integrand can be written as a sum of an
integrable and a quasi-integrable function (cf. [17, p. 135]). By [1, Theorem 3.3.1], we have

E(R2
s) = σ2

Γ(s + 2
p)

Γ(s)
,

E(RrRs) = σ2
Γ(s + 2

p)

Γ(s)

s−1∏
i=r

(
1 +

1
pi

)−1

,

and a similar argument as in the proof of Lemma 3.1 yields

E((π(s)
MOLP)2) =


σ2

Γ(r + 2
p)

Γ(r)
1(

1− 2
pr ln( s−1

r )
)r−1 ,

2
r

ln
(

s− 1
r

)
< p,

∞,
2
r

ln
(

s− 1
r

)
≥ p,

=


σ2

Γ(s + 2
p)

Γ(s)

s−1∏
i=r

(1 + 2
pi)

−1(
1− 2

pr ln( s−1
r )
)r−1 ,

2
r

ln
(

s− 1
r

)
< p

∞,
2
r

ln
(

s− 1
r

)
≥ p.

Combining these results, we conclude that

MSE(π(s)
MOLP) = E((Rs − π

(s)
MOLP)2)

=


σ2

Γ(s + 2
p)

Γ(s)

1− 2

s−1∏
i=r

(1 + 1
pi)

−1(
1− 1

pr ln( s−1
r )
)r−1 +

s−1∏
i=r

(1 + 2
pi)

−1(
1− 2

pr ln( s−1
r )
)r−1

,
2
r

ln
(

s− 1
r

)
< p,

∞, 1 <
pr

ln
(

s−1
r

) ≤ 2.

Finally, it remains to show that MSE(π(s)
MOLP) = ∞ for p ≤ 1

r ln( s−1
r ). Lemma 3.1 implies that

E(|Rs−π
(s)
MOLP|) = ∞ for p ≤ 1

r ln( s−1
r ). By the well-known embedding theorem for Lebesgue

spaces (cf. [17, Example 8.4.9 (2)]), we find E((Rs − π
(s)
MOLP)2) = ∞ for p ≤ 1

r ln( s−1
r ).

Table 1 contain the biases and MSEs of the MLP (estimated from 107 Monte Carlo
replications) and the MOLP for various values of r, s and p, and with σ = 1. Results in
boldface represent all best results in terms of the MSE among the prediction methods, pro-
vided the best result is achieved by the MLP. The simulation results indicate that the MOLP
exhibits superior performance based on the MSE in most cases. There are a few exceptions
though, which suggest that the MLP has a lower MSE in cases when p, r are small (p = 0.5,
r = 3) and s = r + 2. It should be noted that the MSE of the MOLP can become large (or
even infinite) for small values of p in (0, 1), small values of r and a higher gap between r and s

(see Table 1). This is due to the fact that, in theses cases, (2/r) ln((s− 1)/r) is close to p from
below (or exceeds p), which yields large (or infinite) MSEs by means of Lemma 3.2. However,
the situation of a small r combined with a large gap between r and s is not meaningful in
practice. Moreover, one can observe that the difference in performance becomes smaller as
the sample size increases.
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4. COMPARISON IN TERMS OF PITMAN’S MEASURE OF CLOSENESS

Since the MLP π
(s)
MLP of Rs based on R? is not given in closed form, we are not able to

derive an analytic expression for the Pitman efficiency of the MOLP π
(s)
MOLP relative to π

(s)
MLP.

We therefore aim at establishing a lower bound on the Pitman efficiency. The following lemmas
are required to establish the desired result.

Lemma 4.1. For s ≥ 3, let R1, ..., Rs be the first s Weibull record values. For r ∈ N,

2 ≤ r < s− 1, the MOLP of Rs is always greater than the MLP of Rs.

Proof: Indeed, we know that, for (r1, ..., rr) ∈ (0,∞)r
<, the PMLE of p satisfies the

equation

p

(
p ln

(
r−1∏
i=1

ri

rr

)
+ r + 1

)
= ln

(
r + 1/p

s + 1/p− 1

)
.

Note that ln
(

r+1/p
s+1/p−1

)
< 0, p ∈ R+. Consequently, since ln(

∏r−1
i=1 ri/rr) < 0, the solution of

the above equation is always greater than −(r + 1)/ ln(
∏r−1

i=1 ri/rr) (= r+1
r p̂MOL). Now, for

α, β ∈ R, 0 < α < β, consider the functions

fα,β(t) =
β + t

α + t
, gα,β(t) = fα,β(t)t, t ∈ (−α,∞).

Differentiating fα,β and gα,β yields

f ′α,β(t) = − β − α

(α + t)2
, g′α,β(t) = fα,β(t)

(
ln(fα,β(t)) + t

f ′α,β(t)
fα,β(t)

)
, t ∈ (−α,∞).

Obviously, f ′α,β(t) < 0, t ∈ (−α,∞). Hence, fα,β is a strictly decreasing function. Furthermore,
for t ∈ (−α,∞),

ln(fα,β(t)) + t
f ′α,β(t)
fα,β(t)

= ln
(

1 +
β − α

α + t

)
+ t

α− β

(α + t)(β + t)

>
β − α

β + t
+ t

α− β

(α + t)(β + t)

=
α(β − α)

(α + t)(β + t)
> 0,

where we used the inequality x/(x+1) < ln(1+x), for x > −1, x 6= 0. Thus, gα,β is a strictly
increasing function. Using the preceding results, we obtain

π
(s)
MLP = gr,s−1(1/p̂ML)Rr

< gr,s−1(1/p̂MOL)Rr

= fr,s−1(1/p̂MOL)1/p̂MOLRr

< fr,s−1(0)1/p̂MOLRr = π
(s)
MOLP.
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Lemma 4.2. For s ≥ 3, let R1, ..., Rs be the first s Weibull record values. For r ∈ N,

2 ≤ r < s− 1, the probability of Rs exceeding its MOLP based on R? is given by

P (π(s)
MOLP < Rs) =

s−1∑
j=r

s−1−j∑
i=0

(−1)i

(
s− 1

j

)(
s− 1− j

i

)
1(

1 + i+j
r ln

(
s−1

r

))r−1 .

In particular, this probability is independent of the distributional parameters σ and p.

Proof: Observe that

π
(s)
MOLP < Rs ⇐⇒ s− 1

r
<

(
Rs

Rr

)p̂MOL

.

Let G denote the cumulative distribution function of (Rs/Rr)1/p̂MOL . By the results in [14,
section 4], G admits the representation

G(t) =

∞∫
0

H

(
r

s− r

(
t

z
2r − 1

)∣∣∣2(s− r), 2r

)
fχ2(z|2(r − 1))dz, t ∈ (1,∞).

Here, for n, m ∈ N, H(·|n, m) denotes the cumulative distribution function of the F distribu-
tion with parameters n and m, and fχ2(·|n) denotes the density function of the χ2 distribution
with parameter n. First, note that

H

(
r

s− r

(
t

z
2r − 1

)∣∣∣2(s− r), 2r

)
= I

1−t−
z
2r

(s− r, r) = 1− I
t−

z
2r

(r, s− r).

Consequently,

P (π(s)
MOLP < Rs) = 1−G

(
s− 1

r

)
=

∞∫
0

I
( r

s−1)
z
2r

(r, s− r)fχ2(z|2(r − 1))dz.

Furthermore, since the parameters of the regularized incomplete beta function are integers,
we have, by the relation of the regularized incomplete beta function to the binomial expansion
(see [8, (6.6.4)]),

Ix(r, s−r) =
s−1∑
j=r

(
s−1

j

)
xj(1−x)s−1−j =

s−1∑
j=r

s−1−j∑
i=0

(−1)i

(
s−1

j

)(
s−1− j

i

)
xi+j , x∈ (0,1).

From the preceding results we infer that

P (π(s)
MOLP < Rs) =

∞∫
0

I
( r

s−1)
z
2r

(r, s− r)fχ2(z|2(r − 1))dz

=
s−1∑
j=r

s−1−j∑
i=0

(−1)i

(
s− 1

j

)(
s− 1− j

i

)∫ ∞

0

(
r

s− 1

) i+j
2r

z

fχ2(z|2(r − 1))dz

=
s−1∑
j=r

s−1−j∑
i=0

(−1)i

(
s− 1

j

)(
s− 1− j

i

)∫ ∞

0
e

i+j
2r

ln( r
s−1)zfχ2(z|2(r − 1))dz

=
s−1∑
j=r

s−1−j∑
i=0

(−1)i

(
s− 1

j

)(
s− 1− j

i

)
1(

1 + i+j
r ln

(
s−1

r

))r−1 ,

where in the last equality we used the expression for the moment generating function of
the χ2(2(r− 1)) distribution to evaluate the integrals

∫∞
0 e

i+j
2r

ln( r
s−1)zfχ2(z|2(r− 1))dz. This

concludes the proof.
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Remark 4.1. The proof of Lemma 4.2 yields a finite sum representation of the cumu-
lative distribution function G of (Rs/Rr)1/p̂MOL :

G(t) = 1−
s−1∑
j=r

s−1−j∑
i=0

(−1)i

(
s− 1

j

)(
s− 1− j

i

)
1(

1 + i+j
r ln(t)

)r−1 , t ∈ (1,∞).

By exploiting the presence of alternating binomial sums in the above representation, a more
compact representation of G can be obtained. More precisely, we have that

G(t) = 1−
s−1∑
j=r

(−1)s−1−j

(
s− 1

j

)
∆s−1−jfr,j,t, t ∈ (1,∞),

where

fr,j,t(i) =
1(

1 + i+j
r ln(t)

)r−1 , 0 ≤ i ≤ s− 1− j,

and, for j = r, ..., s− 1, the (s− 1− j)-th forward difference is computed for i = 0. Using
this finite sum representation allows to avoid applying numeric integration for evaluation
of G (cf. [14, section 6]). Since alternating sums can be numerically problematic, for an
efficient and accurate implementation of G, it is advisable to use high precision arithmetic.
See sumBinomMpfr() in R package Rmpfr and its documentation.

Proposition 4.1. For s≥ 3, let R1, ...,Rs be the first sWeibull record values. For r ∈N,

2 ≤ r < s− 1, let π
(s)
MOLP and π

(s)
MLP be the MOLP and the MLP of Rs based on R?, respec-

tively. Then

P (|π(s)
MOLP −Rs| < |π(s)

MLP −Rs|)

>
s−1∑
j=r

s−1−j∑
i=0

(−1)i

(
s− 1

j

)(
s− 1− j

i

)
1(

1 + i+j
r ln

(
s−1

r

))r−1 .

Proof: Due to Lemma 4.1,

P (|π(s)
MOLP −Rs| < |π(s)

MLP −Rs|) > P (Rs > π
(s)
MOLP).

Hence, Lemma 4.2 yields the desired result.

Figure 1 contains the contour plots of the lower bound on the Pitman efficiency
PE(MOLP, MLP) = P

(
|Rs − π

(s)
MOLP| < |Rs − π

(s)
MLP|

)
of the MOLP of Rs relative to the

MLP of Rs based on R? for r, s such that 2 ≤ r ≤ 20 and r + 1 < s ≤ r + 10. Table 2 contains
values of the lower bound on as well as estimated Pitman efficiencies for selected r and s, and,
in the case of estimated Pitman efficiencies, for shape parameter values p = 0.5, 1.5, 2, 2.5.
Observe that while the lower bound on the Pitman efficiencies does not depend on the
distributional parameters, the Pitman efficiencies do depend on the shape parameter p.
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Each estimated Pitman efficiency was computed based on 106 simulated samples of Weibull
record values. From the contour plot of the lower bound on the Pitman efficiency, the MOLP
seems to be superior to the MLP in terms of Pitman closeness for r, s such that 2 ≤ r ≤ 20 and
r+1 < s ≤ r+10. The estimated Pitman efficiencies presented in Table 2 as well as additional
simulation results suggest that for fixed r and s the Pitman efficiency is a decreasing function
of p. Furthermore, the simulation results indicate that the lower bound from Proposition 4.1
is the tighter, the bigger r and the smaller s− r are.

10

20

30

5 10 15 20
r

s

Lower bound on PE(MOLP,MLP)
(0.639,0.666]
(0.666,0.693]
(0.693,0.719]
(0.719,0.746]
(0.746,0.773]
(0.773,0.799]
(0.799,0.826]
(0.826,0.853]
(0.853,0.88]
(0.88,0.907]

Figure 1: Contour plot of the lower bound on the Pitman efficiency PE(MOLP,MLP) =
P (|Rs − π

(s)
MOLP| < |Rs − π

(s)
MLP|) of the MOLP of Rs relative to the MLP of Rs

based on Weibull record values R1, ..., Rr for r, s such that 2 ≤ r ≤ 20 and
r + 1 < s ≤ r + 10.

The superior performance of the MOLP in terms of the Pitman efficiency compared
to the MLP even for small values of r and p < 1, for which the MOLP performs poorly if
evaluated in terms of the MSE (see Table 1) is in line with the intuition underlying the Pitman
criterion: namely being only affected by the bias and not accounting for the variability in
the predictors. Note also that according to Table 1, despite MOLP’s inferior performance
in terms of the MSE, it still has a lower bias than the MLP, which supports its superior
performance in terms of the Pitman criterion as evidenced by the values in Table 2.



438 G. Volovskiy and U. Kamps

Table 2: Values of the lower bound (first row in each section) as well as estimated Pitman
efficiencies PE(MOLP,MLP) = P (|Rs−π

(s)
MOLP| < |Rs−π

(s)
MLP|) of the MOLP of Rs

relative to the MLP of Rs based on Weibull record values R1, ..., Rr for selected
r and s, and, in the case of estimated Pitman efficiencies, for p ∈ {0.5, 1.5, 2, 2.5}.

r

�
s p r + 2 r + 3 r + 4 r + 5 r + 10

0.906 0.875 0.877 0.874 0.873
0.5 0.927 0.920 0.917 0.915 0.909

2 1.5 0.923 0.918 0.918 0.918 0.920
2 0.921 0.916 0.917 0.917 0.920
2.5 0.920 0.915 0.916 0.916 0.920

0.805 0.771 0.759 0.754 0.745
0.5 0.852 0.836 0.832 0.831 0.831

5 1.5 0.838 0.818 0.812 0.812 0.818
2 0.836 0.814 0.809 0.808 0.812
2.5 0.834 0.813 0.807 0.805 0.809

0.771 0.727 0.708 0.698 0.681
0.5 0.807 0.778 0.770 0.766 0.769

10 1.5 0.794 0.760 0.746 0.742 0.739
2 0.792 0.757 0.743 0.738 0.734
2.5 0.790 0.755 0.742 0.736 0.731

0.760 0.711 0.689 0.677 0.654
0.5 0.788 0.751 0.738 0.732 0.729

15 1.5 0.776 0.735 0.718 0.710 0.701
2 0.775 0.733 0.716 0.707 0.696
2.5 0.773 0.731 0.713 0.705 0.693

0.754 0.703 0.679 0.665 0.639
0.5 0.776 0.735 0.719 0.711 0.704

20 1.5 0.767 0.722 0.702 0.692 0.677
2 0.766 0.720 0.700 0.690 0.673
2.5 0.765 0.719 0.699 0.687 0.671

5. ASYMPTOTIC RESULTS

In the present section we establish two asymptotic results concerning the behavior of
the bias as well as the asymptotic distribution of the prediction error of the MOLP. Hereby,
we consider sequences (rn)∞n=1, (sn)∞n=1 ∈ NN, satisfying

rn < sn for all n ∈ N and lim
n→∞

rn = ∞.

However, by an abuse of notation, we write r, s →∞ when taking limits with respect to n.
Also, we will suppress n in the notation.

Proposition 5.1. For s ≥ 3, let R1, ..., Rs be the first s Weibull record values. The

MOLP π
(s)
MOLP of Rs based on R? is asymptotically unbiased in the sense that if lim

s,r→∞
s/r = λ,

for some λ > 1, then

E(π(s)
MOLP)

E(Rs)
−→ 1, r, s →∞.
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Proof: Observe that, under the stated assumptions, the condition 1
pr ln

(
s−1

r

)
< 1

is satisfied for r large enough, in which case, by the proof of Lemma 3.1,

E(π(s)
MOLP)

E(Rs)
=

∏s−1
i=r (1 + 1

pi)
−1(

1− 1
pr ln

(
s−1

r

))r−1 .

For x ∈ (−1, 1), set ρ(x) =
∑∞

k=2(−1)k+1 xk

k . Then log(1 + x) = x + ρ(x), x ∈ (−1, 1), and

s−1∏
i=r

(
1 +

1
pi

)−1

= exp

{
−

s−1∑
i=r

log
(

1 +
1
pi

)}

= exp

{
−1

p

s−1∑
i=r

1
i

}
exp

{
−

s−1∑
i=r

ρ(1/pi)

}
.

Since ρ(x) = O(x2) as x → 0, we have ρ(1/pi) = O(1/i2) as i →∞. Consequently,
lim

r,s→∞

∑s−1
i=r ρ(1/pi) = 0. Moreover, lim

r,s→∞

∑s−1
i=r 1/i = ln(λ). Hence, we obtain that

lim
r,s→∞

s−1∏
i=r

(
1 +

1
pi

)−1

=
(

1
λ

) 1
p

.

The claim now follows from the fact that

lim
r,s→∞

(
1− 1

pr
ln
(

s− 1
r

))r−1

= exp
{
−1

p
ln(λ)

}
=
(

1
λ

) 1
p

.

Remark 5.1. The shifted Stirling’s approximation for the (real) Gamma function
reads (see [2, formula (5.11.7)])

Γ(x + a) =
√

2πe−xxx+a− 1
2 eo(1), as x →∞.

Hence,

Γ(s + 1/p)
Γ(s)

= s1/peo(1), as s →∞.

To prove that π
(s)
MOLP is unbiased in the limit, i.e., lim

r,s→∞
E(Rs − π

(s)
MOLP) = 0, where r and s

are supposed to satisfy lim
r,s→∞

s
r = λ > 1, one has to prove that

s1/p

1−
∏s

i=r+1(1 + 1
pi)

−1(
1− 1

pr ln
(

s−1
r

))r−1

→ 0, r, s →∞,

which is equivalent to showing that

s1/p

((
1− 1

pr
ln
(

s− 1
r

))r−1

−
s∏

i=r+1

(
1 +

1
pi

)−1
)
→ 0, r, s →∞.

Numerical computation indicates that this is true.
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We continue with a result concerning the asymptotic distribution of the prediction error
of the MOLP.

Proposition 5.2. For s ≥ 3, let R1, ..., Rs be the first s Weibull record values. The

prediction error of the MOLP π
(s)
MOLP of Rs based on R? has an asymptotic normal distribu-

tion. More specifically, we have that

αs(σ, p)

(
Rs −

(
s− 1

r

) 1
p̂MOL

Rr

)
−→ N

(
0, λ + λ ln2(λ)− 1

)
, r, s →∞,

where it is assumed that there exists a λ ∈ (1,∞) such that lim
r,s→∞

(λ− s/r)
√

r = 0, and the

sequence of normalizing constants is given by αs(σ, p) = p
σs

1
2
− 1

p .

Proof: First, recall that, by result (7) in [14], p̂MOL is independent of Rr and Rs

and pr/p̂MOL ∼ Gamma(r − 1, 1). Let (Yn)∞n=1 and (Zn)∞n=1 be two independent sequences
of i.i.d. random variables, Y1, Z1 ∼ Exp(1). By [1, equation (2.3.3)], for any r, s ∈ N, r < s,
the identity (Rr, Rs)

d= σ((
∑r

i=1 Yi)
1/p, (

∑s
i=1 Yi)

1/p) holds true. Combining these results, we
conclude that

1
σ

(
Rs−

(
s−1

p

) 1
p̂MOL

Rr

)
d=

(
r∑

i=1

Yi +
s∑

i=r+1

Yi

)1/p

−

([
s− 1

r

]1/p
)1

r

Pr−1
i=1 Zi

(
r∑

i=1

Yi

)1/p

=

(
s +

{∑r
i=1 Yi−r√

r

√
r

s
+
∑s

i=r+1 Yi−(s−r)
√

s−r

√
s−r

s

}
√

s

)1/p
− s1/p

+ s1/p − λ1/p

(
r +

∑r
i=1 Yi − r√

r

√
r

)1/p

+

λ1/p −

([
s− 1

r

]1/p
) 1

r

�
(r−1)+

Pr−1
i=1

Zi−(r−1)
√

r−1

√
r−1

�
×
(

r +
∑r

i=1 Yi − r√
r

√
r

)1/p

=:A + B + C.(5.1)

We first treat the terms denoted by A. By [6, Theorem 5.6.1],∑r
i=1 Yi − r√

r
,

∑s
i=r+1 Yi − (s− r)

√
s− r

d−→ N (0, 1), r, s →∞.(5.2)

Hence, applying Theorem 2.8 in [4] as well as Slutsky’s lemma, we conclude that

∑r
i=1 Yi − r√

r

√
r

s
+
∑s

i=r+1 Yi − (s− r)
√

s− r

√
s− r

s

d−→ N (0, 1), r, s →∞.(5.3)
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By expanding the function f(x) = (1 + x)1/p, x > −1, around x = 0, f(x) = 1 + x
p + o(x),

as x → 0. Consequently,

A =

(
s +

{∑r
i=1 Yi − r√

r

√
r

s
+
∑s

i=r+1 Yi − (s− r)
√

s− r

√
s− r

s

}
√

s

)1/p

− s1/p

= s1/p

(1 +

{∑r
i=1 Yi − r√

r

√
r

s
+
∑s

i=r+1 Yi − (s− r)
√

s− r

√
s− r

s

}
1√
s

)1/p

− 1


=

s
1
p
− 1

2

p

{∑r
i=1 Yi − r√

r

√
r

s
+
∑s

i=r+1 Yi − (s− r)
√

s− r

√
s− r

s

}
(1 + oP (1)), r, s →∞.(5.4)

Similarly, we have

B = s1/p − λ1/p

(
r +

∑r
i=1 Yi − r√

r

√
r

)1/p

= −s1/p

[(
λ

r

s
+
∑r

i=1 Yi − r√
r

√
λ2

r

s

1√
s

)1/p

− 1

]

= −s1/p

[(
1 + o(1/

√
s) +

∑r
i=1 Yi − r√

r

√
λ2

r

s

1√
s

)1/p

− 1

]
, r, s →∞

= −s
1
p
− 1

2

p

(∑r
i=1 Yi − r√

r

√
λ2

r

s
+ o(1)

)
(1 + oP (1)), r, s →∞,(5.5)

where the second-last equality is due to lim
r,s→∞

(λ− s/r)
√

r = 0. Finally, we treat the terms

denoted by C. First, we rewrite C as

C =

λ1/p −

([
s− 1

r

]1/p
) 1

r

�
(r−1)+

Pr−1
i=1

Zi−(r−1)
√

r−1

√
r−1
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By [6, Theorem 5.6.1] and Slutsky’s lemma,
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Next, by (5.2), we have that(
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From (5.7) and (5.8) it readily follows that
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and observing that Wr = oP (1), as r, s →∞, we conclude that
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Finally, combining (5.1), (5.4), (5.5), (5.6), (5.9), (5.10), we arrive at
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p ln(λ)N (0, 1), as r, s →∞, Theorem 2.8 in [4] as well as Slutsky’s lemma
yield that
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as r, s →∞, where X1, X2, X3
i.i.d.∼ N (0, 1). Since(
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the statement is proved.

Remark 5.2. From the preceding result we obtain an approximate prediction interval
for Rs with nominal coverage probability 1− α, which is given by

π
(s)
MOLP ± z1−α/2

√
(s/r)(1 + ln2(s/r))− 1)

αs(σ̂MLE, p̂MLE)
,

where σ̂MLE is the MLE of σ, σ̂MLE = Rr/r1/p̂MLE and z1−α/2 denotes the respective quantile
of N (0, 1). For the MLEs of σ and p we refer to [14].

6. CONCLUSION

For predicting future record values based on a sequence of observed upper record values
with an underlying Weibull distribution, we derive two likelihood-based predictors, namely
the maximum likelihood predictor and the maximum observed likelihood predictor. Expres-
sions for the predictors are derived along with properties in terms of bias and mean squared
error. The predictors are compared via Pitman’s measure of closeness and their performance
is examined in a simulation study.
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