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Abstract:

• In this note, the right truncated Weibull distribution is derived as the distribution of

the minimum of a random number of independent and identically distributed random

variables. Specifically, the independent random variables have a common power func-

tion distribution and the random number has a zero-truncated Poisson distribution.
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1. INTRODUCTION

The Weibull distribution is one of the most popular probability models,
both from a theoretical and practical viewpoint, and it has been successfully
used to model lifetime and failure data in a wide variety of areas. Prabhakar
et al. [11] and Rinne [13] are two excellent monograph books that review the
history, theory and applications of the Weibull distribution.

To be more precise, let X be a random variable having a two-parameter
Weibull distribution, that is, its cumulative distribution function (cdf) is given
by

(1.1) FX(x;α, β) = 1− exp
(
−αxβ

)
, x > 0,

where α > 0 and β > 0 are the scale and shape parameters, respectively. Note
that the domain of the Weibull model is the positive real line. However, there
are many real situations in which the data take values in a bounded interval and
then a truncated distribution may be preferred. In this note, the attention will
be focussed on the Weibull distribution truncated to the interval (0, c), c > 0,
which is commonly referred to as the right –or upper– truncated Weibull (RTW)
distribution. The cdf of a random variable Y having a RTW distribution on (0, c)
is easily deduced from (1.1), namely,

FY (y;α, β, c) = P (X ≤ y|X ≤ c) =
FX(y;α, β, c)− FX(0;α, β)

FX(c;α, β)− FX(0;α, β)

=
1− exp

(
−αyβ

)
1− exp(−αcβ)

, 0 < y < c,

(1.2)

where α > 0 and β > 0. Statistical properties concerning the RTW model can be
found in Mart́ınez and Quintana [7], McEwen and Parresol [8], Rao [12], Wingo
[16] and Zhang and Xie [18], among others.

On the other hand, let Z be a random variable having a power function
(PF) distribution on the interval (0, c), that is, its cdf is given by

FZ(z;β, c) =
(z
c

)β
, 0 < z < c,

where β > 0 is a shape parameter. Recall that the PF distribution is obtained
by inverting the Pareto distribution. Statistical properties of the PF distribution
can be found in Forbes et al. [3, Chapter 36] and Johnson et al. [6, Chapter
20]. A detailed review of research concerning the PF law is given in Tahir et
al. [15]. Practical applications in different areas can also be found in Ferreira
and Andrade [2] (queuing theory), Meniconi and Barry [9] (electrical component
reliability) and Wu et al. [17] (economics and finance), among others.
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There exists a well-known relationship between the non-truncated Weibull
distribution and the PF distribution. If a random variable Z follows a PF
distribution on (0, 1) with shape parameter α > 0, then the random variable
(− logZ)1/β has a Weibull distribution with cdf (1.1). The aim of this note is to
present a non-trivial connection between the distributions RTW and PF. In the
next section, it is shown that the RTW model can be derived as the distribution
of the minimum of a positive random number N of independent and identically
distributed (iid) random variables having a common PF distribution. Specifically,
the ra ndom number N follows a zero-truncated Poisson distribution.

Before going further, it is interesting to point out that families of distri-
butions derived as the minimum of a positive random number N of iid random
variables are common in statistical applications. For example, this stochastic
representation arises in reliability analysis of series systems, in which the failure
of the system is due to the presence of an unknown number of independent com-
ponents of the same kind and it is assumed that the system fails if at least one
component fails. Some of those families of distributions are listed in Nadarajah
et al. [10] and some applications can be found in Silva et al. [14]. In addi-
tion, Bobotas and Koutras [1] have also studied the special case where N is a
non-negative random number with P (N = 0) > 0.

2. MAIN RESULT

Let N be a random variable having a zero-truncated Poisson distribution
with parameter λ > 0. The probability mass function of N is given by

(2.1) P (N = n) =
λn exp(−λ)

(1− exp(−λ))n!
, n = 1, 2, . . .

The following result provides a relationship between the RTW and the minimum
of iid PF distributions. The zero-truncated Poisson distribution plays a crucial
role.

Proposition 2.1. For any c > 0, let Z1, . . . , ZN be iid random variables

having a PF distribution on the interval (0, c) with shape parameter β > 0. For

any α > 0, let N be a random variable having a zero-truncated Poisson distribu-

tion with parameter λ = α cβ. Then, the random variable T = min{Z1, . . . , ZN}

has a RTW distribution on the interval (0, c).
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Proof: For any n = 1, 2, . . ., c > 0 and β > 0, the conditional cdf of the

random variable T |N = n is given by

FT |N=n(t;β, c) = 1−
n∏
i=1

(
1− FZi(t;β, c)

)
= 1−

(
1−

(
t

c

)β)n
, 0 < t < c.

From the above equation together with (2.1), for any α > 0 the marginal cdf of

T is obtained as follows

FT (t;α, β, c) =

∞∑
n=1

P (T ≤ t,N = n) =

∞∑
n=1

FT |N=n(t;β, c)P (N = n)

=
∞∑
n=1

[
1−

(
1−

(
t

c

)β)n] (αcβ)n exp(−αcβ)

(1− exp(−αcβ))n!

=
1− exp

(
−αtβ

)
1− exp(−α cβ)

, 0 < t < c,

which taking into account (1.2) implies the desired result.

To conclude, it is interesting to note that by taking the minimum of a ran-
dom numberN of iid PF random variables on the unit interval (0, 1), Jodrá [4] and
Jodrá and Jiménez-Gamero [5] have introduced two new probability distributions
depending on if N follows a shifted Poisson distribution or a zero-truncated geo-
metric distribution, respectively. Surprisingly, the well-studied RTW distribution
is obtained if the random number N has a zero-truncated Poisson distribution.
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