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Abstract:
• Kernel-type estimators are popular in density and distribution function estimation.

However, they suffer from boundary effects. In order to modify this drawback, this
study has proposed two new kernel estimators for the cumulative distribution function
based on two asymmetric kernels including the Birnbaum-Saunders kernel and the
Weibull kernel. We show the asymptotic convergence of our proposed estimators
in boundary as well as interior design points. We illustrate the performance of our
proposed estimators using a numerical study and show that our proposed estimators
outperform the other commonly used methods. The illustration of our proposed
estimators to a real data set indicates that they provide better estimates than those
of the formerly-known methodologies.
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1. INTRODUCTION

Suppose that X1, X2, . . . , Xn be a set of continuous random variables with
unknown cumulative distribution function F (x) which we wish to estimate. The
Empirical distribution function provides a uniformly consistent estimate of the
cumulative distribution function. However, estimations which are provided by
the Empirical distribution are not smooth. Another approach for estimating the
cumulative distribution function is to use Kernel-type estimators. Kernel-type
estimators for distribution estimation, based on symmetric kernels, have been
introduced by authors such as Nadaraya [14] and Watson and Leadbetter [21],
and their asymptotic properties have been investigated by Singh et al. [18].
Asymptotical superiority of Kernel-type estimators to the empirical distribution
function at a single point in density estimation was shown by Reiss [15] and Falk
[5].
Although the symmetric kernels are popular and commonly used in Kernel-type
estimators, they are not efficient for those distribution (density) functions which
have a compact support due to the boundary bias. This problem is known as
boundary effects and several approaches have so far been proposed to deal with
it in regression and density estimation tasks (Gasser and Muller [6], Rice [16],
Gasser et al. [7] and Muller [12]). In a similar manner, Tenreiro [19] proposed
some boundary kernels for estimating a cumulative distribution function with a
finite interval support. These approaches, hereafter called the Boundary kernel
methods or briefly the B-K methods, are based on symmetric kernels.
Asymmetric kernel functions were introduced by Chen [2] as an alternative ap-
proach to the boundary correction in kernel density estimation. He proposed
the beta kernel density estimator to estimate a density with support on [0, 1].
Chen [3] considered the gamma kernel density estimator to estimate a density
with support on [0, ∞ ). In order to provide a boundary-free estimation for
the density function f(x) with support on [0, ∞) by the gamma kernel density
estimator, Zhang [22] has shown that having a shoulder at x=0, whose derivative
of f(x) is zero at x = 0, is a necessary condition. For densities not satisfying
this condition, the gamma kernel density estimator suffers from severe boundary
problems. This approach was extended for estimating a density with support
on [0, ∞) using other asymmetric kernels (Jin and Kawczak [10], Scaillet [17],
Hirukawa and Sakudo [8] and Hirukawa and Sakudo [9]).
So far, the boundary effects in density estimation have attracted the attention of
many researchers. Accordingly, several methods, using symmetric and asymmet-
ric kernels, have been proposed to solve the problem. However, in the cumulative
distribution estimation, the boundary effects have received little if any attention.
In this paper, we have focused on estimating those distribution functions with
support on [0, ∞) and proposed a new Kernel-type estimator for the cumulative
distribution function based on asymmetric kernels. Our estimator at the design
point x has the following form:

(1.1) F̂n(x) = n−1
n∑

i=1

K̄x,b(Xi),
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where K̄x,b(t) =
∫∞
t kx,b(u)du and k(.) is an asymmetric kernel function on [0,

∞) with the smoothing parameter b. Thus, the kernel has the same support
as the true distribution function. We introduce two estimators by considering
two asymmetric kernels including the Birnbaum-Saunders (B-S) kernel and the
Weibull kernel. In the next Section, we demonstrate the asymptotic properties of
our proposed estimator based on the B-S kernel, hereafter called the B-S kernel
estimator. We investigate the rate of convergence of the B-S kernel estimator
both in the interior and the boundary points. In Section three, we have run the
same study for our second estimator which is based on the Weibull kernel, here-
after called the Weibull kernel estimator. The rest of the paper is organised as
follows. Section four is dedicated to illustrating the performance of our proposed
estimators. We conducted a comprehensive numerical study and considered var-
ious cumulative distribution functions to estimate and compare the performance
of our estimators with other existing methods. In section five we have illustrated
the performance of our proposed estimators on a real data set. Finally, Section
six is devoted to discussions and conclusions.
In this paper, we assume that the cumulative distribution function F (x) is satis-
fies in the following assumptions:

Assumption 1 The cumulative distribution function F (x) is absolutely continuous with
respect to Lebesgue measure on (0,∞) and has two continuous and bounded
derivatives.

Assumption 2 The smoothing parameter b = bn > 0 satisfies b → 0 , as n → ∞.

Assumption 3 The following integrals

(1.2)
∫ ∞

0
(xf(x))2 dx and

∫ ∞

0

(
x2f ′(x)

)2
dx,

are finite.

Following Hirukawa and Sakudo [9] and ‘In order to describe different asymptotic
properties of an asymmetric kernel estimator across positions of the design point
x > 0’, we denote by ‘interior x’ and a sequence of points converging to the
boundary or ‘boundary x’ a design point x that satisfies x/b → ∞ and x/b → k
for some 0 < k < ∞ as n → ∞, respectively.

2. Asymmetric cumulative distribution function estimation using B-
S kernel

In this Section, we aim at demonstrating the asymptotic convergence of our
first proposed estimator: Equation (1.1) based on the B-S kernel, i.e. the B-S
kernel estimator. To forward this end we will show that the B-S kernel estimator is
asymptotically unbiased and consistent. We will obtain an appropriate smoothing
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parameter for our estimator through minimizing the mean integrated square error.
In addition, we will discuss the convergence rate of the B-S kernel estimator in
the boundary points.

2.1. Asymptotic properties of the B-S kernel estimator

Consider the Birnbaum–Saunders kernel given by

(2.1) K̄B−S(t;β, α) = 1− Φ


(√

t
β −

√
β
t

)
α

 , t > 0, α > 0, β > 0,

where Φ(.) is the Standard Normal distribution function. Let α =
√
b and

β = x, where x and b denote the design point and the smoothing parameters,
respectively. The B-S kernel estimator for the cumulative distribution function
is defined as:

(2.2) F̂1(x) = n−1
n∑

i=1

K̄B−S

(
Xi;x,

√
b
)
.

In what follows we will obtain two approximate expressions for the bias and
variance for F̂1(x) in Lemma 2.1 and Lemma 2.1, respectively. First consider that
for the two continuous distribution functions F and G and their corresponding
density function f and g, it is easy to show that:

(2.3) Eg (F (X)) = 1− Ef (G(X)) .

where Eg (F (X)) is the expectation of F (X), when X is a randon variable fol-
lowing the distribution G.

Lemma 2.1. Suppose that Assumptions 1-3 hold, then we have:

(2.4) E
(
F̂1(x)

)
= F (x) +

b

2

(
xf(x) + x2f ′(x)

)
+O(b2).

Proof of Lemma 2.1: Since Xi’s are identical, we have

(2.5) Ef

(
F̂1(x)

)
= Ef

(
K̄B−S(T ;x,

√
b)
)
,

where T is a random variable following the distribution F . Using equation(2.3)
and Taylor expansion, we have:

(2.6)
Ef

(
K̄B−S(T ;x,

√
b)
)
= Ef

(
1−KB−S(T ;x,

√
b)
)
= Ek (F (T ))

= F (x) + f(x)E(T − x) +

∞∑
i=1

f (j)(x)

j!
E(T − x)j+1,
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where f (j)(.) is the jth derivative of f(x) and now T ∼ kx,
√
b(t) where

kx,
√
b(t) = t−

3
2 (t+x)√
2πbx

exp{− 1
2b(

t
x + x

t − 2)}, t > 0 , x > 0 , b > 0,(2.7)

Using the results of Johnson et al. [11], we have:

(2.8)

E(T − x) = b
x

2
,

E(T − x)2 =
bx2

2
(2 + 3b),

E(T − x)3 =
9b2x3

2
(3 + 5b),

⇒ E(F1(x)) = F (x) + f(x)
(
b
x

2

)
+

f ′(x)

2

(
bx2

2
(2 + 3b)

)
+

f (2)(x)

6

(
9b2x3

2
(3 + 5b)

)
+ · · · = F (x) +

b

2

(
xf(x) + x2f ′(x)

)
+O(b2),

where f ′(.) is the first derivative of f(x).

So, for the interior points, the bias of the B-S kernel estimator is of order O(b).
Although this rate of convergence to zero seems disappointing, one should be
aware that the smoothing parameter is a function of n. In the remainder of this
Section, we will show that by taking this relation into account and considering
the rate of convergence based on n, the bias of the B-S kernel estimator is normal
(not too bad). We defer a detailed discussion of this matter until later in Section
3 where we provide a comparison between the bias of the B-S kernel estimator
and the Weibull kernel estimator. In addition, in the numerical study, we will see
that the overall performance of the B-S kernel estimator is not only satisfactory
but also better than the other competitors. This achievement is the result of a
reduction in the variance of the B-S kernel estimator, as we will see in Lemma 2.2,
and what is the so-called trade-off between the variance and the bias.
Now we turn to the variance of the B-S kernel estimator. The following Lemma
shows that the variance of F̂1(x) resembles the variance of the Empirical distri-
bution function to some extent but it involves a negative term which can lead
to its superiority over the Empirical distribution function since it has a smaller
variance.

Lemma 2.2. Suppose that Assumptions 1-3 hold, then variance of the
B-S kernel estimator can be obtined as:

(2.9) Var(F̂1(x)) = n−1F (x) (1− F (x))− n−1b
1
2π− 1

2xf(x) +O(n−1b).
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Proof of Lemma 2.2: First consider that
(2.10)
E
(
K̄2

B−S(T ;x,
√
b)
)
=

∫ ∞

0
K̄2

B−S(t;x,
√
b)f(t)dt

=

∫ ∞

0
F (t)

(
2kB−S(t;x,

√
b)K̄B−S(t;x,

√
b)
)
dt (using integral by part)

= F (x) + f(x)E(Z − x) +
1

2
f ′(x)E(Z − x)2 + . . . ,

where Z ∼ 2kB−S(z;x,
√
b)K̄B−S(z;x,

√
b) (a skew probability density func-

tion) and
(2.11)

kB−S(z;x,
√
b) =

z−
3
2 (z + x)√
2πbx

exp{− 1

2b
(
z

x
+

x

z
− 2)} , z > 0 , x > 0 , b > 0,

By extending the results of Vilca and Leiva [20], we have:

(2.12)
E(Z − x) =

b
1
2x

2

(
ω1 + b

1
2γ2

)
,

E(Z − x)2 =
bx2

2

(
2γ2 + γ4 + b

1
2xω3

)
,

where γr = E(W r) and ωr = E(W r
√
bW 2 + 4). In addition, W is a random

variable with a Skewed Normal distribution, i.e. W ∼ SN(0, 1,−1).
Using the Taylor expansion for W

√
bW 2 + 4 and W 3

√
bW 2 + 4 , we obtain

W
√
bW 2 + 4 = 2W +

1

4
bW 3 − 1

64
b2W 5 +O(b3),

and
W 3
√
bW 2 + 4 = 2W 3 +

1

4
bW 5 − 1

64
b2W 7 +O(b3),

Nadarajah and Kotz [13] show that, E(W ) = − 1√
π

, E(W 3) = −
√

5
4π thus we can

deduce that

(2.13) γ2 = 1, γ4 = 3, ω1 ≈ − 2√
π
, ω3 ≈ −

√
5

π
.

By substituting γ2, γ4, ω1 and ω3 in (2.12) and then substituting (2.12) in (2.10),
we obtain

E
(
K̄2

B−S(T ;x,
√
b)
)
= F (x)−

√
b

π
xf(x) +O(b).
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Using this result and the result of Lemma 2.1, we have:
(2.14)

Var(F̂1(x)) = Var
(
n−1

n∑
i=1

K̄B−S(Xi;x,
√
b)

)
= n−1Var

(
K̄B−S(T ;x,

√
b)
)

= n−1
{
E
(
K̄2

B−S(T ;x,
√
b)
)
− E2

(
K̄B−S(T ;x,

√
b)
)}

= n−1
{
F (x)− b

1
2π− 1

2xf(x) +O(b)
}

− n−1

{(
F (x) +

b

2

(
xf(x) + x2f ′(x)

)
+O(b2)

)2
}

= n−1F (x) (1− F (x))− n−1
(
b
1
2π− 1

2xf(x)
)
+O(n−1b).

Using Lemma 2.1 and Lemma 2.2, we can derive an estimate of the mean inte-
grated square error (MISE) for the B-S kernel estimator as follows.

(2.15)
MISEB−S

(
F̂1(x)

)
=

∫ ∞

0
MSE

(
F̂1(x)

)
dx

≈ n−1

∫ ∞

0
F (x) (1− F (x)) dx− n−1b

1
2π− 1

2

∫ ∞

0
xf(x)dx

+
b2

4

∫ ∞

0

(
xf(x) + x2f ′(x)

)2
dx.

This result gives rise to the following proposition.

Proposition 2.1. The optimal smoothing parameter for the B-S kernel
estimator based on minimizing the MISE is

(2.16)

bMISE
B−S = argmin︸ ︷︷ ︸

b>0

(
MISEB−S

(
F̂1(x)

))

≈
{∫ ∞

0
xf(x)dx

} 2
3
{

π
1
2

∫ ∞

0

(
xf(x) + x2f ′(x)

)2
dx

}− 2
3

n− 2
3

This indicates that the optimal smoothing parameter is of order O(n−2/3). By
substituting bMISE

B−S in (2.15), we have:

MISEB−S(F̂1(x)) = n−1

∫ ∞

0
F (x) (1− F (x)) dx

− 3

4
n− 4

3π− 2
3

{∫ ∞

0
xf(x)dx

} 4
3
{∫ ∞

0

(
xf(x) + x2f ′(x)

)2
dx

}− 1
3

+O(n− 5
3 )
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⇒ MISEB−S(F̂1(x)) = n−1

∫ ∞

0
F (x) (1− F (x)) dx−O(n− 4

3 ).

2.2. The performance of the B-S kernel estimator at near boundary
points

In order to delve in asymptotic properties of the B-S kernel estimator at
the boundary points and compare the rate of its convergence at the boundary
points and the interior points, we consider two specific cases for the design point
x.

a) In the case where x = 0, the B-S kernel is zero, i.e. K̄B−S

(
t;x,

√
b
)
= 0

and, therefore, in this case F̂1(0) = 0 which is remarkable because the
ordinary kernel estimator does not satisfy this property.

b) For the case where x = cb, where 0 < c < 1, we have:

(2.17) E
(
F̂1(x)

)
= F (x) +

cb2

2
f(x) +O(b3),

and

(2.18) Var(F̂1(x)) = n−1F (x) (1− F (x))− n−1b
3
2π− 1

2 f(x) +O(n−1b2).

Therefore, we can compute the mean square error (MSE) for the B-S kernel
estimator at the boundary points as follows:

(2.19) MSEB−S(F̂1(x)) ≈ n−1F (x) (1− F (x))− n−1b
3
2π− 1

2 f(x) +
c2b4

4
f2(x).

Comparing the bias and variance terms of the B-S kernel estimator at the near
boundary and interior points (in equations (2.19) and (2.15), respectively) shows
that the bias term is smaller at the near boundary points at the expense of
increasing the variance term. Because at the near boundary points, the rate
of convergence to zero of the negative portion of variance, which is the gain of
smoothing technique over the empirical distribution function, is smaller than that
of interior points.
Now it is easy to show that the optimal smoothing parameter which minimizes
the MSE is

(2.20) bMSE
B−S = O(n− 2

5 ),

By substituting (2.20) in (2.19), we have:

(2.21) MSEB−S(F̂1(x)) = n−1F (x)(1− F (x)) +O(n− 8
5 ).
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3. Asymmetric cumulative distribution function estimation using
Weibull kernel

In the previous section, we introduced the B-S kernel estimator and demon-
strated its asymptotic consistency. In this section, we will run a similar study
and introduce another cumulative distribution function estimator based on the
Weibull kernel, i.e. the Weibull kernel estimator.

3.1. Asymptotic properties of the Weibull kernel estimator

Consider the Weibull kernel given by

(3.1) K̄wbl (t;α, β) = exp

{
−
(
t

β

)α}
, t ≥ 0, α > 0, β > 0.

Since T ∼ Weibull(α, β) then we have:

(3.2) E
(
T k
)
= βkΓ

(
1 +

k

α

)
, k = 1, 2, . . . ,

where Γ
(
1 + k

α

)
= 1− kγ

α + k2

12α2

(
π2 + 6γ2

)
+O

(
α3
)

and γ = 0.57721 is the Euler’s
constant. Hirukawa and Sakudo [9] proposed an expansion for Γ

(
1 + 2

α

)
Γ−2

(
1 + 1

α

)
as follows:

(3.3) Γ

(
1 +

2

α

)
Γ−2

(
1 +

1

α

)
= 1 +

π2

6α2
+

γπ2 − 3γ3

2α3
+O

(
α−4

)
.

Similarly, it is easy to show that

(3.4) Γ

(
1 +

3

α

)
Γ−3

(
1 +

1

α

)
= 1 +

π2

2α2
+ 2

γπ2 − 3γ3

α3
+O

(
α−4

)
.

Let (α, β) =
(
1/b, x/Γ

(
1 + α−1

))
where x and b denote the design point and

the smoothing parameters, respectively. Our second asymmetric Kernel-type
estimator, i.e. the Weibull kernel estimator, is defined as follows:

(3.5) F̂2 (x) = n−1
n∑

i=1

K̄wbl (Xi; 1/b, x/Γ (1 + b)) .

The Weibull kernel estimator F̂2(x) is nonnegative and appropriate to estimate
cumulative distribution functions with support on [0,∞). In what follows, we
present the theoretical properties of F̂2(x) and we will obtain an appropriate
smoothing parameter for this estimator through minimizing the mean integrated
square error. We will obtain approximate expressions for the bias and variance
for F̂2(x) in Lemma 3.1 and Lemma 3.2, respectively. In addition, we will discuss
the convergence rate of the Weibull kernel estimator in the boundary points.
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Lemma 3.1. Suppose that Assumptions 1-3 hold, then the expectation
value of F̂2(x) can be obtained as:

(3.6) E
(
F̂2 (x)

)
= F (x) + b2

π2x2f ′ (x)

12
+O

(
b3
)
.

Proof of Lemma 3.1: The proof is analogous with the proof of Lemma 2.1.
Using equation(2.3) and Taylor expansion, we have:

E
(
F̂2 (x)

)
= E

(
K̄wbl (T ; 1/b, x/Γ (1 + b))

)
= Ek (F (T ))

= F (x) + f (x)E (T − x) +

∞∑
j=1

f (j) (x)

j!
E (T − x)j+1,

where T is a random variable with Weibull (1/b, x/Γ (1 + b)) probability density
function. Using equations (3.3) and (3.4), we have:

E (T − x) = 0,

E (T − x)2 =
(xbπ)2

6
+ x2b3

(
γπ2

2
− 3γ3

)
+O

(
b4
)
,

E (T − x)3 = (xb)3
(
γπ2

2
+ 3γ3

)
+O

(
b4
)
.

Now we can conclude that

E
(
F̂2(x)

)
= F (x) +

1

2
f ′(x)

(
(xbπ2)

6
+ x2b3

(
γπ2

2
− 3γ3

))
+

f (2)(x)

6

(
(xb)3

(
γπ2

2
+ 3γ3

))
+ · · · = F (x) + b2

π2x2f ′(x)

12
+O(b3).

Note that for the interior points, the bias of the Weibull kernel estimator is of
order O(b2). However, by considering the smoothing parameter as a function of n
in Remark 3.1, we will see that in the sense of convergence rate of bias, the Weibull
kernel estimator is the same as the B-S kernel estimator. The following lemma
provides an approximation for the variance of the Weibull kernel estimator.

Lemma 3.2. Suppose that Assumptions 1-3 hold, then the variance of
F̂2(x) can be obtained as:

(3.7) Var(F̂2(x)) = n−1F (x)(1− F (x))− n−1b ln(2)xf(x) +O(n−1b2).

where ln(.) is the natural logarithm.
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Proof of Lemma 3.2: First note that
(3.8)
E
(
K̄2

wbl (T ; 1/b, x/Γ (1 + b))
)
=

∫ ∞

0
K̄2

wbl (t; 1/b, x/Γ (1 + b)) f (t) dt

=

∫ ∞

0
F (t)

{
2kwbl (t; 1/b, x/Γ (1 + b)) K̄wbl (t; 1/b, x/Γ (1 + b))

}
dt

= F (x) + f (x)E (Z − x) +
1

2
f ′ (x)E (Z − x)2 + . . . ,

where Z ∼ 2kwbl (z; 1/b, x/Γ(1 + b)) K̄wbl (z; 1/b, x/Γ(1 + b)) , z > 0, b > 0, x > 0.
It is easy to show that Z is random variable with Weibull(α, β

2
1
α
)density function.

Since 2−
1
α = 1− ln(2)

α + ln2(2)
2α2 +O(α−3) , we have:

(3.9)
E(Z − x) = −bx ln(2) +

(bx ln(2))2

6
+O(b3),

E(Z − x)2 = (xb)2
(
ln(2)2 +

π2

6

)
+O(b3).

By substituting (3.9) in (3.8), we obtain

(3.10) E(K̄2
wbl(T ; 1/b, x/Γ(1 + b)))) = F (x)− bx ln(2)f(x) +O(b2).

Using (3.10) and Lemma 3.1, we can deduce that:
(3.11)

Var
(
F̂2 (x)

)
= Var

(
n−1

n∑
i=1

K̄wbl (Xi; 1/b, x/Γ (1 + b))

)
= n−1Var

(
K̄wbl (T ; 1/b, x/Γ (1 + b))

)
= n−1

{
E
(
K̄2

wbl (T ; 1/b, x/Γ (1 + b))
)
− E2

(
K̄wbl (T ; 1/b, x/Γ (1 + b))

)}
= n−1

{
F (x)− bx ln (2) f (x) +O

(
b2
)
−
(
F (x) + b2

π2x2f ′ (x)

12
+O

(
b3
))2

}
= n−1F (x) (1− F (x))− n−1b ln (2)xf (x) +O

(
n−1b2

)
.

Using Lemma (3.1) and Lemma (3.2), we can derive an estimate of the MISE
for the Weibull kernel estimator as follows:
(3.12)

MISEwbl(F̂2(x)) ≈ n−1

∫ ∞

0
F (x)(1− F (x))dx− n−1b ln(2)

∫ ∞

0
xf(x)dx

+ b4
π4

144

∫ ∞

0
(x2f ′(x))2dx.

Now we can select the optimal smoothing parameter based on minimizing the
MISE.
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Proposition 3.1. The optimal smoothing parameter for the Weibull
kernel estimator based on minimizing the MISE of F̂2(x) in (3.12) is

(3.13)

bMISE
wbl = argmin︸ ︷︷ ︸

b>0

(MISEwbl(F̂2(x)))

=

{
36 ln(2)

∫ ∞

0
xf(x)dx

} 1
3
{

π4

∫ ∞

0
(x2f ′(x))2dx

}− 1
3

n− 1
3 .

Note that the optimal smoothing parameter is of order O(n−1/3). By
substitutingbMISE

wbl in (3.12), we have:

(3.14)
MISEwbl(F̂2(x)) = n−1

∫ ∞

0
F (x)(1− F (x))dx

− 2.4764(nπ)−
4
3 (ln(2))

4
3

{∫ ∞

0
xf(x)dx

} 4
3
{∫ ∞

0
(x2f ′(x))2dx

}− 1
3

+O(n− 5
3 )

⇒ MISEwbl(F̂2(x)) = n−1

∫ ∞

0
F (x)(1− F (x))dx−O(n− 4

3 ).

Remark 3.1. From the two equations (2.16) and (3.13), the optimal
smoothing parameter of the B-S kernel estimator and the Weibull kernel estimator
are of order O(n−2/3) and O(n−1/3), respectively. Therefore, in terms of the rate
of convergence to zero, we have bMISE

B−S ≈ (bMISE
wbl )2. Thus from (2.4) and (3.6), we

can conclude that for the interior points, the bias of the B-S kernel estimator has
the same rate of convergence to zero as the bias of the Weibull kernel estimator.

3.2. The performance of the Weibull kernel estimator near boundary
points

In this sub-section, we run a similar study like what we have done in Sec-
tion 2.2 in order to investigate the asymptotic properties of the Weibull kernel
estimator at the boundary points. This helps us to compare the rate of conver-
gence at the boundary points and the interior points. We consider two specific
cases for the design point x.

a) In the case where x = 0, we have K̄wbl(T ; 1/b, x/Γ(1 + b)) = 0, so in this
case, unlike the ordinary kernel estimator, F̂2(0) = 0.

a) For the case where x = cb, where 0 < c < 1, we have:

(3.15) E(F̂2(x)) = F (x) +
c2b4

2
f(x) +O(b5)
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and

(3.16) Var(F̂2(x)) = n−1F (x)(1− F (x))− n−1cb2 ln(2)f(x) +O(n−1b3).

So we can compute the MSE for the Weibull kernel estimator at the bound-
ary points as follows:
(3.17)

MSEwbl(F̂2(x)) ≈ n−1F (x)(1− F (x))− n−1cb2 ln(2)f(x) +
c4b8

4
f2(x).

Comparing the two equations (3.17) and (3.14) shows a trade-off between
the bias and the variance terms for the Weibull kernel estimator. This is
something like what we have seen for the B-S kernel estimator in Section 2.
The bias term is again smaller at the near boundary points at the expense
of increasing the variance term.
Now it is easy to show that the optimal smoothing parameter which mini-
mizes the above-mentioned MSE is

(3.18) bMSE
wbl = O(n− 1

6 ),

By substituting (3.18) in (3.17), we have:

(3.19) MSEwbl(F̂2(x)) = n−1F (x)(1− F (x)) +O(n− 4
3 ).

Remark 3.2. From the two equations (2.20) and (3.18), the optimal
smoothing parameter of the B-S kernel estimator and the Weibull kernel estimator
are of order O(n−2/5) and O(n−1/6), respectively. By substituting back these
values into the corresponding bias terms of the two estimators, we can deduce
that for the near boundary points, the bias of the B-S kernel estimator is of order
O(n−4/5) while the bias of the Weibull kernel estimator is of order O(n−2/3).

4. Numerical study

In this section, we illustrate the performance of the proposed estimators
(the B-S kernel estimator and the Weibull kernel estimator) through a simula-
tion study. We compare our proposed estimators with the ordinary kernel method
(O-K method), the B-K method and the Empirical distribution method. In both
the O-K method and the B-K method, we use the Epanechnikov kernel. In or-
der to select an appropriate bandwidth for the O-K and the B-K methods, we
use the optimal bandwidth proposed by Altman and Leger [1] and Tenreiro [19],
respectively.
We generated 1000 samples of size n=256 and 1024 from eight various distri-
butions including, 1: Burr (1, 3, 1), 2: Gamma (0.6, 2), 3: Gamma (4, 2), 4:
Generalized Pareto (0.4, 1, 0), 5: Halfnormal (0, 1), 6: Lognormal (0, 0.75),



Asymmetric kernels for boundary modification in distribution function estimation 15

7: Weibull (1.5, 1.5) and 8: Weibull (3, 2). In order to estimate the smooth-
ing parameter for the B-S kernel estimator and the Weibull kernel estimator, we
used Gamma density f(x) =

xα−1 exp (− x
β
)

βαΓ(α) as a referenced density in equations
(2.16) and (3.13), respectively. The parameters (α, β) have been estimated by
the method of maximum likelihood estimation.
In order to evaluate the performance of our proposed estimators and compare
their functionality with other existing methods, we considered the integrated
squared error ISEi =

∫∞
0

(
F̂i(x)− F (x)

)2
dx as an error metrics, where F̂i(x), i =

1, 2, . . . 5 stands for the B-S kernel estimator, the Weibull kernel estimator, the
O-K method, the B-K method and the Empirical distribution method, respec-
tively. In our setting, we approximated the integral with summation.
Table 1 shows the mean and standard deviation of the ISE for the eight distri-
butions and the two sample sizes over one thousand repetitions. In all cases, the
mean and standard deviation of the ISE decreased as the sample size increased.
The simulation results show that based on the ISE, regardless of the sample size,
our proposed estimators perform better than the other three methods. The only
exception is distribution 5: Halfnormal (0, 1) with a sample size of 256 for which
the B-K method has a smaller mean of ISE than that of the Weibull kernel es-
timator. However, even for this case, when the sample size is increased to 1024,
both the B-S kernel estimator and the Weibull kernel estimator have a better
performance. The comparison between the B-S kernel estimator and the Weibull
kernel estimator indicates the superiority of the B-S kernel estimator. This is
true, surprisingly, even in estimating two distributions Weibull (1.5, 1.5) and
Weibull (3, 2).
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Value(×10−4) B-S Weibull Ordinary Boundary Empirical

N Example Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

1 1.33 1.17 1.37 1.20 1.63 1.27 1.59 1.26 1.53 1.12

2 4.24 4.17 4.50 4.28 6.37 5.14 5.46 5.14 4.96 4.24

3 1.37 0.94 1.43 0.98 1.64 1.08 1.64 1.08 1.55 0.91

4 4.44 4.59 4.70 4.74 6.52 5.46 5.33 5.47 5.14 4.64
256 5 2.90 2.77 2.99 2.85 3.60 3.02 2.96 3.03 3.33 2.82

6 5.89 5.90 6.10 6.05 8.05 6.82 7.59 6.82 6.17 5.51

7 3.29 3.02 3.37 3.12 4.20 3.34 3.65 3.29 3.74 3.03

8 2.62 2.40 2.68 2.46 3.09 2.58 3.03 2.57 2.98 2.39

1 0.34 0.28 0.35 0.29 0.46 0.33 0.45 0.32 0.38 0.28

2 1.18 1.14 1.22 1.17 2.38 1.55 1.78 1.56 1.30 1.14

3 0.28 0.31 0.28 0.29 0.74 0.55 0.73 0.54 0.28 0.30

4 1.18 1.21 1.22 1.24 2.18 1.51 1.53 1.54 1.28 1.19
1024 5 0.74 0.72 0.76 0.73 1.14 0.82 0.81 0.82 0.81 0.71

6 0.63 0.56 0.64 0.58 1.04 0.70 0.91 0.69 0.67 0.52

7 0.91 0.81 0.93 0.81 1.30 0.90 1.12 0.89 1.00 0.80

8 0.69 0.62 0.70 0.62 0.87 0.68 0.86 0.68 0.75 0.62

Table 1: The mean and standard deviation of the ISE in estimating eight
distributions via five methods (see the text for explanation) for
n=256 and 1024.

In order to provide a better comparison between the aforementioned meth-
ods, we have presented the boxplots of the ISE for the case n=1024 in Figure
1. In this figure, we consider eight boxplots for eight divers’ distributions. In
the boxplots, the vertical axis shows the ISE and the horizontal axis contains
the methods. The dotted line in each of the boxplots shows the lowest median
of the ISEs. The overall superiority of the B-S kernel estimator in all cases is
obvious. The overall performance of the Weibull kernel estimator is better than
the B-K method and the Empirical distribution method. The O-K method shows
the worst performance as is expected.
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(a) Burr(1,3,1) (b) Gamma(0.6,2)

(c) Gamma(4,2) (d) Generalized Pareto(0.4,1,0)

(e) Halfnormal(0,1) (f) Lognormal(0,0.75)

(g) Weibull(1.5,1.5) (h) Weibull(3,2)

Figure 1: The boxplots of the ISE in estimating eight distribution func-
tions via five methods in 1000 repetitions (n = 1024) (see text
for further explanation).
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In Figure 2, we provide the results on the mean squared error (MSE) at
various points of the support of the considered distributions in 1000 repetitions
for the sample size (1024). This helps one to see the performance of the compared
methods depending on the point where the distribution function is estimated. To
increase the visibility and better compare other kernel-type estimators, we have
ignored the Empirical distribution in this Figure. The poor performance of the
O-K method at near boundary region is obvious. At the points far from the
boundary, the O-K method and the B-K method almost match. Although the
amount of MSE is dependent on the design point and the distribution which we
want to estimate, the overall performance of the two proposed estimators are bet-
ter than both the O-K and the B-K methods.Note that, the shape of asymmetric
kernels changes with the design point and for the points, those are far enough
from the boundary, they become symmetric, and finally all the methods almost
match in Figure 2.
Figures ?? to 4 illustrate 30 estimates in blue along with the true distribution in
red for the eight different distributions (n = 256) via five methods. The density
function of these distributions is plotted as well in the top left corner of each
image. The boundary bias of the O-K method is obvious. The B-K method
remedies this drawback but not completely. In particular, a careful inspection of
the figures, especially Gamma (4,2) and Weibull (3,2), for near boundary points,
shows that the B-K method suffers from over-estimation. It seems that this prob-
lem depends on the shape of the distribution which we wish to estimate. Another
striking point is that the Empirical distribution could not provide smooth esti-
mates. In general, the performance of our proposed estimators is satisfying.
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(a) Burr(1,3,1) (b) Gamma(0.6,2)

(c) Gamma(4,2) (d) Generalized Pareto(0.4,1,0)

(e) Halfnormal(0,1) (f) Lognormal(0,0.75)

(g) Weibull(1.5,1.5) (h) Weibull(3,2)

Figure 2: The Plot of the MSE in estimating eight distribution functions
via five methods in 1000 repetitions (n = 1024) (see the text for
further explanation).



20 Habib Allah Mombeni , Behzad Masouri and Mohammad Reza Akhoond

(a) Burr(1,3,1)

(b) Gamma(0.6,2)

Figure 3: Plots of 30 estimates (in blue) of Burr (1,3,1) and Gamma (0.6,2)
via five methods: (b) B-S kernel estimator (top mid), (c) Weibull
kernel estimator (top right), (d) O-K method (Bottom left),
(e) B-K method (Bottom mid) and (f) Empirical distribution
(bottom right). The true distribution is shown in red and sample
size n = 256. The top left (a) shows the density function of each
distribution.
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(a) Gamma(4,2)

(b) Generalized Pareto(0.4,1,0)

Figure 4: Plots of 30 estimates (in blue) of Gamma (4,2) and Generalized
Pareto (0.4, 1, 0) via five methods: (b) B-S kernel estimator (top
mid), (c) Weibull kernel estimator (top right), (d) O-K method
(Bottom left), (e) B-K method (Bottom mid) and (f) Empirical
distribution (bottom right). The true distribution is shown in
red and sample size n = 256. The top left (a) shows the density
function of each distribution.
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(a) Halfnormal(0,1)

(b) Lognormal(0,0.75)

Figure 5: Plots of 30 estimates (in blue) of Halfnormal (0,1) and Log-
normal(0,0.75) via five methods: (b) B-S kernel estimator (top
mid), (c) Weibull kernel estimator (top right), (d) O-K method
(Bottom left), (e) B-K method (Bottom mid) and (f) Empirical
distribution (bottom right). The true distribution is shown in
red and sample size n = 256. The top left (a) shows the density
function of each distribution.
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(a) Weibull(1.5,1.5)

(b) Weibull(3,2)

Figure 6: Plots of 30 estimates (in blue) of Weibull (1.5,1.5) and Weibull
(3,2) via five methods: (b) B-S kernel estimator (top mid), (c)
Weibull kernel estimator (top right), (d) O-K method (Bottom
left), (e) B-K method (Bottom mid) and (f) Empirical distribu-
tion (bottom right). The true distribution is shown in red and
sample size n = 256. The top left (a) shows the density function
of each distribution.
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5. Illustration with a real data set

In this Section, we apply our two proposed estimators to a real dataset. The
data are the time distance between marriage to the first childbirth. This dataset
is a result of a field research performed by Choromzadeh et al. [4] to study the
factors that influence childbirth behavioral patterns of women aged 15-49 in a
sample of size n=1106 in Ahwaz, Iran. Due to the traditions, many families tend
to have children immediately after marriage. Therefore, the data has a natural
peak in 9-18 months after marriage. There are rare cases of childbirth in 1-8
months, which are probably the result of pregnancy before marriage. Figure 7
shows the histogram of this dataset. On the other hand, due to the changes
in socioeconomic and cultural statuses, there are few families that give birth to
their first child in a considerable time after their marriage. Also, there are some
families whose delayed first birth is due to sterility problems. Thus, a long tail
with sparse data is another considerable feature in the distribution of this dataset.

Figure 8 illustrates 5 estimates of the distribution of this data via five methods.

Figure 7: Histogram of the months after marriage before the first child-
birth

The methods of choosing the smoothing parameter for various estimators are
described in Section 4. Figure 8-a shows that estimates mainly differ at the near
origin. In order to provide a better insight, we separately illustrate the estimates
in the first 9 months in Figure 8-b. In comparison with the Empirical distribution,
the estimates created by the O-K method and the B-K method are similar. It
seems they rise too early. In the simulation study, we have seen that these two
estimators suffer from over-estimating for near boundary points, especially for
those distributions that have the same shape as in Figure 7. The B-S kernel
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estimate and the Weibull kernel estimate are very close, and the more consistent
they are with the Empirical distribution and for this dataset, the more realistic
they seem to be.

Figure 8: Five estimates of the distribution of first childbirth via five
methods: B-S kernel estimator (solid-blue), Weibull kernel esti-
mator (dashed-red), O-K method (dashed-yellow), B-K method
(dotted-purple) and Empirical distribution (solid-green)

6. Conclusion and discussion

This paper is devoted to proposing some appropriate estimators for the
cumulative distribution functions with non-negative support. To achieve this
goal, we proposed a general asymmetric Kernel-type estimator and introduced
two asymmetric estimators for the cumulative distribution function. We demon-
strated the asymptotic consistency of our proposed estimators and we showed
that they are free from boundary effects as well. Comparing our estimators
based on the rate of convergence at the boundary points, we found that the B-S
kernel estimator was better than the Weibull kernel estimator. In our setting, we
estimated the bandwidths of the two estimators based on minimizing the MISE.
In order to evaluate the performance of our estimators and compare them with
other existing methods, we conducted a numerical study. The results of the nu-
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merical study show that both the B-S kernel and the Weibull kernel estimators
are superior to the B-K method proposed by Tenreiro [19]. In the numerical
study, the B-S kernel estimator achieved the best results and outperformed the
Weibull kernel estimator. This is consistent with the good asymptotic properties
of the B-S kernel estimator. In this research, we used the B-S kernel and the
Weibull kernel as the asymmetric kernels in our general estimator. As a path
for future research, one can try other existing asymmetric kernels. Another area
for future research can be the estimation of those cumulative distributions with
a finite interval support, for instance [a, b]. In addition, application of this type
of cumulative distribution estimator in several other fields such as the survival
analysis and the copula methods is an interesting topic for future research.
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