
FLEXIBLE ROBUSTMIXTURE REGRESSIONMOD-
ELING

Authors: Marcus G. Lavagnole Nascimento
– Departamento de Métodos Estat́ısticos, Universidade Federal do Rio de Janeiro,

Rio de Janeiro, Brazil (marcus@dme.ufrj.br)

Carlos A. Abanto-Valle
– Departamento de Métodos Estat́ısticos, Universidade Federal do Rio de Janeiro,

Rio de Janeiro, Brazil (cabantovalle@im.ufrj.br)

Abstract:

• This paper provides a flexible methodology for the class of finite mixture of regressions
with scale mixture of skew-normal errors (SMSN-FMRM) introduced by [42], relaxing
the constraints imposed by the authors during the estimation process. Based on the
data augmentation principle and Markov chain Monte Carlo (MCMC) algorithms,
a Bayesian inference procedure is developed. A simulation study is implemented in
order to understand the possible effects caused by the restrictions and an example
with a well known dataset illustrates the performance of the proposed methods.
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1. INTRODUCTION

Finite mixture regression models (FMRM) provide a flexible tool for mod-
eling data that arise from a heterogeneous population, where a single regression
model is not enough for capturing the complexities of the conditional distribu-
tion of the observed sample given the features. FMRM of Gaussian distributions,
using maximum likelihood methods for parameter estimation, have been exten-
sively used in the literature in different fields like marketing [11, 12], economics
[10, 21], agriculture [36], psychometrics [28], among others.

From a Bayesian perspective, there is a wide range of nonparametric meth-
ods, in particular, methods in which the error follows a mixture of Dirichlet
process [27] or a mixture of Polya trees [22]. However, in comparison with these
methodologies, the finite mixture of regressions presents the advantage of clas-
sifying the observations over the components of the mixture in a natural way.
This classification, in a range of applications, is the main topic of interest and
provides for practitioners a clear interpretation of the results, besides facilitating
the implementation.

Extensions of FMRM of Gaussian distributions have been proposed to
broaden the applicability of the model to more general structures like skewed
or heavy tailed errors. In this regard, [4] modified the EM algorithm for normal
mixtures, replacing the least squares criterion in the M step with a robust one.
[33] and [41], in turn, implemented an estimation procedure for finite mixture of
linear regression models assuming that the error terms follow a Laplace and a
Student-t distribution, respectively. As an attempt to accommodate asymmetric
observations, [29] introduced a FMRM based on skew-normal distributions [1].

More recently, as an attractive way to deal with skewness and heavy tails
simultaneously, [42] introduced a finite mixture regression model based on scale
mixtures of skew-normal distributions [6, SMSN] as follow:

f(yi|xi,ϑ,η) =
G∑
j=1

ηjg(yi|xi,θj),(1.1)

where the probability density function g(·|xi,θj) comes from the same member
of the SMSN(xiβj + µj , σ

2
j , λj , νj) family, θj = (βj , σ

2
j , λj , νj) is the specific

parametric vector for the component j, ηj > 0, j = 1, . . . , G,
∑G

j=1 ηj = 1, ϑ and
η denote the unknown parameters with ϑ = (θ1, . . . ,θG) and η = (η1, . . . , ηG).
However, [42] impose the constraints τ21 = . . . = τ2G and ν1 = . . . = νG about
the parameters during the estimation procedure in which τ2j = σ2j (1 − δ2j ) and

δj = λj/(
√

1 + λ2j ).

The aim of this paper, therefore, is to provide a flexible version for the
mixture of regressions based on scale mixtures of skew-normal distributions intro-
duced by [42], relaxing the restrictions described above and verifying empirically
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how our ideas improve the estimation process. Bayesian inference is developed
applying ideas like the data augmentation principle, stochastic representation in
terms of a random-effects model [2, 23], standard hierarchical representation of
a finite mixture model [14] and MCMC methods.

The remainder of the paper is organized as follows. Section 2 is related to
the development of a flexible methodology for the mixture regression model based
on scale mixture of skew-normal (SMSN-FMRM) distributions from a Bayesian
perspective. In order to make comparisons between the methodology proposed in
the present work and the one proposed by [42] feasible, Sections 3 and 4 present
the analysis of a simulation study and a real dataset respectively. Finally, some
concluding remarks and suggestions for future developments are given in Section
5.

2. MIXTURE REGRESSION MODEL BASED ON SCALE MIX-
TURE OF SKEW-NORMAL DISTRIBUTIONS

2.1. The model

Let y = (y1, . . . , yn)T given x = (xT1 , . . . ,x
T
n )T be a random sample from

a G-component mixture model, xi is a p-dimensional vector of explanatory vari-
ables, and consider a mixture regression model in which the random errors follow
a scale mixtures of skew-normal distributions (SMSN-FMRM) as defined by the
equation 1.1. Let S = (S1, . . . ,Sn) be the allocation vector, i. e., the vector con-
taining the information about in which group the observation yi of the random
variable Yi is. The indicator variable Si = (Si1, . . . , SiG)T , with

Sij =

{
1, if Yi belongs to component j

0, otherwise

and
∑G

j=1 Sij = 1. Given the weights vector η, the latent variables S1, . . . ,Sn
are independent with multinomial distribution

p(Si|η) = ηSi11 ηSi22 . . . (1− η1 − · · · − ηG−1)SiG .

The joint density of Y = (Y1, . . . , Yn) and S = (S1, . . . ,Sn) is given by

f(y, s|x,ϑ,η) =

G∏
j=1

n∏
i=1

[ηjg(yi|xi,θj)]Sij .

From the stochastic representation in terms of a random-effects model in-
troduced by [2] and [23], a random variable drawn from the scale mixture of
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skew-normal distributions has a hierarchical representation. Hence, the individ-
ual Yi belonging to the j−th component can be written as

Yi|Sij = 1,xi, wi, ui,θj ∼ N(xiβj + µj + σjδjwi, k(ui)σj

√
1− δ2j ),

Wi|Sij = 1, ui ∼ TN[0,+∞)(0, k(ui)),

Ui|Sij = 1, νj ∼ h(·; νj),

where µj = −
√

2
πm1,jσjδj , m1 = E[U−1/2], which corresponds to the regression

model where the error distribution has zero mean and hence the regression pa-
rameters are all comparable. Thus, the joint density of Y and the latent variables
S, W and U is

f(y, s,w,u|x,ϑ,η) =

G∏
j=1

[
n∏
i=1

[ηjf(yi|θj ,xi, wi, ui)f(wi|ui)f(ui|νj)]Sij
]
.

In this article, k(U) = U−1 is used since it leads to good mathematical
properties. Without loss of generality, the distributions skew normal [1, SN],
skew-t [3, ST] and skew-slash [39, SSL] are considered here, it means that mixing
variables are chosen as: U = 1, U ∼ G(ν2 ,

ν
2 ) and U ∼ Be(ν, 1), where G(·, ·) and

Be(·, ·) indicate the gamma and beta distributions respectively.

As in [17], we introduce a new parameterization in terms of the component-
specific parameters θ∗j = (βj , ψj , τ

2
j , νj), where ψj = σjδj and τ2j = σ2j (1 − δ2j ).

The original parametric vector θj = (βj , σ
2
j , λj , νj), on its turn, is recovered

through

λj =
ψj
τj
, σ2j = τ2j + ψ2

j ,

since ψj/τj = σjδj/(σj
√

1− δ2j ) = λj and τ2j + ψ2
j = σ2j (1− δ2j ) + σ2j δ

2
j = σ2j .

2.2. Bayesian Inference

Performing a Bayesian analysis, an important step is the priors distribu-
tions selection. In the context of finite mixture models, in particular, mixture
regression models, a special attention on these choices is quite relevant since it
is not possible to choose an improper prior because it implies in an improper
posterior density [16]. In addition, as pointed by [25], it is recommended to avoid
be as “noninformative as possible” by choosing large prior variances because the
number of components is highly influenced by the prior choices. Consenquently,
in order to avoid identifiability problems, it was adopted the hierarchical priors
introduced by [31] for mixtures of normal distributions to reduce sensitivity with
respect to choosing the prior variances.
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Hence, considering the parametric vector θ∗j = (βj , ψj , τ
2
j , νj) for an arbi-

trary mixture component j, the prior set was specified as: η ∼ D(e0, . . . , e0),
(βj , ψj)|τ2j ∼ Np+1(b0, τ

2
jB0), τ

2
j |C0 ∼ IG(c0, C0) and C0 ∼ G(h0, H0), where

e0, b0 ∈ R(p+1), B0 ∈ R(p+1)×(p+1), c0, h0 and H0 are known hyper parame-
ters, Nq(·, ·), D(·, . . . , ·) and IG(·, ·) indicate the q-variate normal, the Dirichlet
and inverse gamma distributions. Considering the parameter ν priors, p(νj) ∝
νj/(νj +d)31(2,40)(νj) [26] and νj ∼ G(1,40)(α, γ), where α and γ are known hyper
parameters and GA(·, ·) denotes the truncated gamma on set A, are specified for
the ST-FMRM and SSL-FMRM respectively.

The Bayesian approach for estimating the parameters uses the data aug-
mentation principle [35], which considers W,U and S as latent unobserved vari-
ables. The joint posterior density of parameters and latent variables can be
written as

p(ϑ∗,η,w,u, s|y,x) ∝


G∏
j=1

[ n∏
i=1

[
ηjf(yi|θ∗j ,xi, wi, ui)f(wi|ui)f(ui|νj)

]Sij]p(θ∗j )
 p(η),

where p(θ∗j ) = p(βj , ψj |τ2j )p(τ2j |C0)p(C0)p(νj) and ϑ∗ = (θ∗1, . . . ,θ
∗
G). In light

of the data augmentation technique, conditional on the allocation vector S, the
parameters estimation may be executed independently for each parametric com-
ponent θ∗j and for the weights distribution η. As a consequence, the full con-
ditionals of the parameters and the latent unobserved variables for the mixture
regression models based on the SMSN distributions are written as follows:

p(η|s) ∝ p(s|η)p(η)(2.1)

p(wi|Sij = 1, · · · ) ∝
[
f(yi|θ∗j ,xi, wi, ui)f(wi|ui)

]Sij ,(2.2)

p(ui|Sij = 1, · · · ) ∝
[
f(yi|θ∗j ,xi, wi, ui)f(wi|ui)f(ui|νj)

]Sij ,(2.3)

p(βj , ψj | · · · ) ∝
∏

{i:Sij=1}

f(yi|θ∗j ,xi, wi, ui)p(βj , ψj |τ2j ),(2.4)

p(τ2j | · · · ) ∝
∏

{i:Sij=1}

f(yi|θ∗j ,xi, wi, ui)p(τ2j |C0),(2.5)

p(C0| · · · ) ∝
G∏
j=1

p(τ2j |C0)p(C0),(2.6)

p(νj | · · · ) ∝
∏

{i:Sij=1}

f(ui|νj)p(νj).(2.7)

Additional details about the derivations of the full conditionals are available in
Appendix A.1.

In furtherance of making Bayesian analysis feasible for parameter estima-
tion in the SMSN-FMRM class of models, random samples from the posterior
distributions of (ϑ,η,w,u, s) given (y,x) are drawn through Monte Chain Monte
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Carlo simulation methods. Algorithm 1 describes the sampling scheme from the
full conditionals distributions of the parameters and the latent unobserved vari-
ables.

Algorithm 1. MCMC for finite mixture of scale mixtures of skew-normal.

1 Set k = 1 and get starting values for S(0), (θ
∗(0)
1 , . . . ,θ

∗(0)
G ), η(0), w(0) and

u(0);

2 Parameter simulation conditional on the classification S(k−1):

2.1 Sample η(k) from p(η|s(k−1));

2.2 Sample the component latent variables w
(k)
i and u

(k)
i , i = 1, . . . , n,

from the full conditionals (2.2)-(2.3) and the component parameters

β
(k)
j , ψ

(k)
j , τ2

(k)

j , ν
(k)
j , j = 1, . . . , G, from the full conditionals (2.4)-

(2.7).

3 Sample S
(k)
i independently for each i = 1, . . . , n from

Pr(Sil = 1|yi,xi,ϑ∗) =
g(yi|xi,θ∗l )Pr(Sil = 1|ϑ∗)∑G
j=1 g(yi|xi,θ∗j )Pr(Sij = 1|ϑ∗)

.

4 Set k = k+ 1 and repeat the steps 2, 3 and 4 until convergence is achieved.

Introduced by [30] into the mixture models background, the term label
switching refers to the invariance of the mixture likelihood function under relabel-
ing the components. Considering the maximum likelihood estimation, where we
are looking for the corresponding modes of the likelihood function, label switch-
ing is not an object of interest. From the Bayesian point of view, however, it is a
topic of concern because the labeling of the unobserved categories changes dur-
ing the sample process of the mixture posterior distribution. Post-processed the
MCMC, in order to deal with the label switching problem, the Kullback-Leibler
algorithm [34] is applied over this paper.

3. SIMULATION STUDY

In this section, a simulated scenario is considered for three purposes: (i) ver-
ifying if the true parameter values are recovered accurately by using the method-
ology described on Section 2; (ii) comparing the estimation performance of the
unconstrained and constrained models; (iii) formulating a sensitivity analysis
study to the hyperparameters specification. To that end, datasets are artificially
generated as follow:
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{
Yi = xiβ1 + ε1, Si1 = 1,

Yi = xiβ2 + ε2, Si2 = 1,

where Sij is a component indicator of Yi with Pr(Sij = 1) = ηj , j = 1, 2,
xi = (1, xi1), i = 1, . . . , n. Finally, ε1 and ε2 follow a distribution in the SMSN
family. According to this procedure, 100 random samples of size n = 500 are
generated from the SN-FMRM, ST-FMRM and SSL-FMRM models with the
following parameter values: β1 = (β01, β11)

T = (20, 0)T , β2 = (β02, β12)
T =

(−4, 3)T , σ21 = 1, σ22 = 4, λ1 = 0, λ2 = 5, η1 = 0.4, η2 = 0.6. In addition, for
the ST-FMRM and SSL-FMRM models, ν = (ν1, ν2) = (8, 3) and ν = (6, 2),
respectively.

Table 1: Prior sets hyperparameters specifications.
Specification e0 b0 B0 c0 h0 H0 d α γ

P1 4 (0,0,0) Diag(100,100,100) 0.01 0.01 0.01 4/(1 +
√

2) 6 1

P2 4 (0,0,0) Diag(10,10,10) 0.01 0.01 0.01 4/(1 +
√

2) 6 1

P3 4 (0,0,0) Diag(100,100,100) 2.5 0.75 0.75
0.5s2y

4/(1 +
√

2) 6 1

P4 4 (0,0,0) Diag(100,100,100) 0.01 0.01 0.01 9/(1 +
√

2) 4 1

During the estimation process for the SMSN-FMRM models, the uncon-
strained version proposed in this paper and the constrained version of [42] were
considered and it was adopted the four different hyperparameters specifications
described in Table 1 for both. For each sample, 20000 iterations from Algorithm
1 were conducted. The first 10000 were discarded as a burn-in period. In order
to reduce the autocorrelation within the successive values of the simulated chain,
it was required a thin equals to 10. Finally, based on 1000 records, the posterior
mean were obtained.

Table 2 shows the mean squared error (MSE) and coverage percentage for
the MCMC estimates based on the 100 samples, in which the coverage percentage
is the proportion of the time that the credibility interval contains the true value
of interest. The first important fact that is possible to observe from the table is
that with high probability the true parameter values are recovered, particularly
if the unconstrained methodology is considered. Comparing the unconstrained
methodology proposed in this work with the restricted version, there is a signif-
icant improvement on the MSE and coverage percentage, specially for the scale,
symmetry and kurtosis parameters. Taking λ2, for example, the coverage per-
centage is zero or almost zero in all cases and the MSE is more than ten times
greater in specific cases.

Taking the hyperparameters specification P1 as a baseline, a sensitivity
analysis study is built. The specification P2 consists in reducing the values of B0,
and almost no impact on the results of β1 and β2 is observed, however, looking
to the unconstrained model, a significant decrease in the coverage percentage for
the scale and symmetry parameters is noticed. The specification P3 follows [31],
the results are similar compared with the P1 ones, but there is a gain on the
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MSE for λ2 in the heavy tailed distributions and unconstrained model. Lastly,
a degradation on the MSE for ν is noted when the changes made in P4 for d, α
and γ are assumed.

Table 2: MSE and coverage percentage in parenthesis for the MCMC
estimates based on the 100 samples from the SMSN-FMRM.

Parameters
SN-FMRM ST-FMRM SSL-FMRM

τ21 6= τ22 τ21 = τ22 τ21 6= τ22 , ν1 6= ν2 τ21 = τ22 , ν1 = ν2 τ21 6= τ22 , ν1 6= ν2 τ21 = τ22 , ν1 = ν2

β0,1

P1 0.0143(1.00) 0.0148(0.99) 0.0221(0.99) 0.0271(0.96) 0.0234(1.00) 0.0458(0.97)
P2 0.0222(0.98) 0.0225(0.97) 0.0311(0.98) 0.0293(1.00) 0.0426(0.98) 0.0497(0.97)
P3 0.0253(1.00) 0.0272(0.98) 0.0286(0.99) 0.0364(0.94) 0.0312(0.99) 0.0434(0.97)
P4 - - 0.0228(0.99) 0.0284(0.98) 0.0378(0.99) 0.0499(0.97)

β1,1

P1 0.0000(0.97) 0.0001(0.98) 0.0001(0.96) 0.0001(0.96) 0.0001(0.93) 0.0001(0.94)
P2 0.0001(0.95) 0.0001(0.93) 0.0002(0.95) 0.0002(0.92) 0.0002(0.95) 0.0002(0.92)
P3 0.0001(0.94) 0.0001(0.89) 0.0002(0.95) 0.0002(0.95) 0.0001(0.97) 0.0001(0.94)
P4 - - 0.0001(0.99) 0.0001(0.94) 0.0002(0.91) 0.0002(0.92)

β0,2

P1 0.0142(0.94) 0.0170(0.97) 0.0454(0.84) 0.0545(0.84) 0.1869(0.91) 0.1932(0.84)
P2 0.0156(0.94) 0.0204(0.99) 0.0351(0.94) 0.0697(0.83) 0.1461(0.91) 0.2866(0.65)
P3 0.0157(0.93) 0.0163(0.96) 0.0369(0.91) 0.0477(0.90) 0.1502(0.91) 0.1502(0.90)
P4 - - 0.0316(0.90) 0.0429(0.88) 0.1708(0.96) 0.1170(0.95)

β1,2

P1 0.0000(0.94) 0.0001(0.96) 0.0001(0.97) 0.0001(0.99) 0.0001(0.90) 0.0001(0.92)
P2 0.0000(0.96) 0.0001(0.95) 0.0001(0.97) 0.0001(0.99) 0.0001(0.99) 0.0001(0.99)
P3 0.0000(0.95) 0.0000(0.98) 0.0001(0.97) 0.0001(0.96) 0.0001(0.98) 0.0001(0.99)
P4 - - 0.0001(0.90) 0.0001(0.98) 0.0001(0.95) 0.0001(0.96)

σ2
1

P1 0.0956(0.95) 0.9566(0.34) 0.0523(0.99) 0.0756(0.98) 0.0943(0.99) 0.4890(0.77)
P2 0.1233(0.37) 0.0823(0.89) 0.2337(0.17) 0.0335(0.98) 0.1374(0.42) 0.0612(0.96)
P3 0.1385(0.90) 0.8905(0.29) 0.0600(0.99) 0.1026(0.95) 0.1015(0.98) 0.4174(0.84)
P4 - - 0.0593(0.98) 0.1311(0.95) 0.0348(1.00) 0.2948(0.89)

σ2
2

P1 0.1760(0.91) 0.5010(0.62) 1.3980(0.84) 0.7495(0.86) 2.5937(0.84) 1.5439(0.85)
P2 0.2358(0.82) 1.9505(0.09) 0.7075(0.90) 0.5111(0.94) 2.3527(0.72) 1.8668(0.74)
P3 0.2076(0.89) 0.5872(0.55) 0.9655(0.87) 0.7671(0.85) 2.3347(0.80) 1.3687(0.88)
P4 - - 0.9523(0.91) 0.7049(0.88) 1.4102(0.92) 0.9150(0.88)

λ1

P1 0.0648(1.00) 2.4698(0.54) 0.0622(1.00) 0.6500(0.85) 0.1128(1.00) 1.7950(0.62)
P2 0.0122(1.00) 0.0820(1.00) 0.0128(1.00) 0.0589(1.00) 0.0142(1.00) 0.0965(1.00)
P3 0.1465(1.00) 2.3544(0.48) 0.0781(0.99) 0.6287(0.89) 0.1241(1.00) 1.2843(0.78)
P4 - - 0.0620(1.00) 0.7134(0.83) 0.0547(1.00) 1.3541(0.72)

λ2

P1 1.6120(0.96) 6.1614(0.00) 3.1617(0.98) 6.3709(0.00) 2.3855(0.94) 4.1220(0.04)
P2 1.8628(0.52) 14.1231(0.00) 0.7802(0.92) 10.7803(0.00) 0.5909(0.94) 8.9064(0.00)
P3 1.0375(0.86) 6.6829(0.00) 0.9961(0.96) 6.6883(0.01) 0.7847(0.97) 4.6046(0.02)
P4 - - 3.2051(0.96) 6.4518(0.00) 1.8351(1.00) 4.7205(0.01)

η1

P1 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)
P2 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)
P3 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)
P4 - - 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)

η2

P1 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)
P2 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)
P3 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)
P4 - - 0.0000(1.00) 0.0000(1.00) 0.0000(1.00) 0.0000(1.00)

ν1

P1 - -
3.6146(0.97) 19.8156(0.14) 1.3108(1.00) 7.2708(0.73)

P2 11.0161(1.00) 14.5225(0.25) 1.9544(1.00) 3.2971(0.89)
P3 5.1347(0.96) 20.0174(0.12) 1.7550(1.00) 8.0294(0.66)
P4 5.9129(0.97) 19.0113(0.16) 4.9511(0.97) 10.5920(0.46)

ν2

P1 - -
1.0621(1.00) 0.9324(0.92) 3.3490(0.86) 4.7921(0.65)

P2 1.7930(0.95) 3.4168(0.63) 4.4666(0.69) 14.4817(0.18)
P3 1.0371(0.99) 1.3937(0.92) 3.0896(0.79) 3.7640(0.67)
P4 1.9016(0.95) 2.2195(0.91) 1.0183(0.96) 1.7100(0.84)

4. EMPIRICAL ANALYSIS

In order to explore the interval memory hypothesis and the partial matching
hypothesis, [9] designed an experiment in which a pure fundamental tone with
electronically generated overtones added was played to a trained musician. The
overtones were determined by a stretching ratio, corresponding to the harmonic
pattern usually heard in traditional definite pitched instruments. The musician
was asked to tune an adjustable tone to the octave above the fundamental tone
and 150 trials were recorded as the ratio of the adjusted tone to the fundamental.

This dataset has been analysed in many articles which explored the mix-
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ture of linear regression framework [13, 38, 24]. More recently, [41] fitted a robust
mixture regression model using the t−distribution and [42], a robust mixture re-
gression based on the SMSN class of distributions. Conducive to make compar-
isons with the results in [42] possible, the methods proposed in this paper are
applied to the tone perception data.
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Figure 1: Tone perception data scatterplot and histogram.

Considering the estimation process for the SN-FMRM, ST-FMRM and
SSL-FMRM, the hyperparameters specification P3 presented in Table 1 was cho-
sen. From the MCMC scheme described in Section 2.2, 20000 iterations were
drawn. The first 10000 draws were discarded as a burn-in period. In order to
reduce the autocorrelation between successive values of the simulated chain, only
every 10th values of the chain were stored and from the resulting 1000 we cal-
culated the posterior estimates. It is worth mentioning that, because of the two
well defined components, the label switching problem was not identified.

Table 3 contains the maximum a posteriori estimation of the parameters of
the models under analysis: SN-FMRM, ST-FMRM and SSL-FMRM in addition
to their corresponding 95% high posterior density credibility interval and the
Z-scores for the convergence test introduced by [20]. Additionally, in order to
compare the fit of the different models, two versions proposed by [19] of the
Watanabe-Akaike Information Criterion [40, WAIC] were computed, indicating
that the T-FMRM has the best fitting, conclusion that goes in opposition to the
ST-FMRM model observed by [42]. More details about these criteria are available
in Appendix A.2. Figure 2 illustrates the scatterplots of the dataset with the six
fitted models and the equivalent 95% high posterior density credibility intervals.
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Table 3: Estimation results for fitting the SMSN-FMRM under analysis
to the tone data. First row: maximum a posteriori. Second
row: 95% high posterior density credibility interval. Third row:
convergence test Z-scores.

Parameters N-FMRM T-FMRM SL-FMRM SN-FMRM ST-FMRM SSL-FMRM

β0,1

1.9107 1.9325 1.9167 1.9044 1.9291 1.9147
(1.8586,1.9569) (1.8832,1.9771) (1.8703,1.9689) (1.8532,1.9664) (1.8757,1.9846) (1.8679,1.9703)

-1.2777 0.0250 -0.0878 -0.7281 0.2527 -0.2157

β1,1

0.0457 0.0387 0.0425 0.0447 0.0365 0.0431
(0.0243,0.0688) (0.0175,0.0595) (0.0196,0.0649) (0.0205,0.0672) (0.0151,0.0618) (0.0202,0.0641)

1.0459 -0.2666 -0.2561 0.4088 -0.2404 1.1750

β0,2

-0.0188 0.0153 0.0477 0.0208 0.0136 0.0194
(-0.2054,0.2059) (-0.0186,0.0704) (-0.0317,0.1359) (-0.2457,0.2495) (-0.0358,0.0849) (-0.1075,0.1276)

-0.7409 1.2719 -0.6623 -0.1860 -0.9211 -1.1195

β1,2

0.9893 0.9928 0.9745 0.9796 0.9869 0.9729
(0.9070,1.0802) (0.9669,1.0079) (0.9304,1.0061) (0.8899,1.0971) (0.9615,1.0141) (0.9228,1.0212)

0.3946 -1.5883 1.0861 0.3949 0.0831 1.7043

σ2
1

0.0027 0.0020 0.0019 0.0028 0.0021 0.0022
(0.0019,0.0036) (0.0012,0.0029) (0.0014,0.0029) (0.0019,0.0042) (0.0013,0.0035) (0.0015,0.0034)

-0.4449 1.7121 -1.5685 0.6334 0.4865 1.8521

σ2
2

0.0173 0.0005 0.0011 0.0269 0.0009 0.0032
(0.0105,0.02676) (0.0002,0.0010) (0.0004,0.0026) (0.0127,0.0621) (0.0003,0.0024) (0.0008,0.0141)

0.1553 1.5999 -0.9927 1.1119 0.2782 -0.2783

λ1

0.0800 -0.0972 0.0186
- - - (-0.7634,0.7341) (-0.8113,0.5411) (-0.7843,0.5725)

-0.3516 -1.6838 0.1532

λ2

1.0045 -0.3676 -1.2264
- - - (-1.7427,2.7095) (-1.3333,0.0821) (-2.6623,0.3076)

-0.7809 -1.3453 0.4094

η1

0.6908 0.5606 0.5805 0.7045 0.5691 0.6296
(0.6030,0.7733) (0.4700,0.6516) (0.4820,0.6876) (0.6103,0.7901) (0.4538,0.6564) (0.5223,0.7383)

-0.2578 1.6709 1.7261 0.3072 0.4209 -0.6418

η2

0.3091 0.4393 0.4194 0.2954 0.4308 0.3703
(0.2266,0.3969) (0.3483,0.5299) (0.3123,0.5179) (0.2098,0.3896) (0.3435,0.5461) (0.2616,0.4776)

0.2578 -1.6709 -1.7261 -0.3072 -0.4209 0.6418

ν1

3.0280 5.8212 5.5252 6.2337
- (2.0015,24.7743) (2.1481,11.7897) - (2.0678,21.7135) (3.1571,11.5048)

0.7383 -1.0693 1.5870 1.4383

ν2

2.1162 1.4630 2.1281 1.5494
- (2.0001,2.6451) (1.4000,1.7509) - (2.0000,2.6977) (1.4000,3.0780)

0.8492 0.9953 -1.8332 -0.3276
WAIC1 -263.9868 -349.6941 -301.1313 -253.9442 -329.4679 -283.6500
WAIC2 -288.2918 -372.0548 -329.3142 -290.7716 -361.6124 -330.5183
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Figure 2: Tone perception data scatterplot and the fitted SMSN-FMRM
models.
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In comparison with [42], the coefficients β estimates are quite similar. How-
ever, for the parameters λ and ν, in line with the results observed on the previous
section, the estimates diverge. [42] outcomes point to the presence of asymmetry
for at least of one the components when the SN-FMRM, ST-FMRM and SSL-
FMRM are considered. Nevertheless, as Figure 3 illustrates, when the flexible
version proposed in this paper is applied, it is possible to verify that the intro-
duction of a skewness parameter is not effective considering the dataset under
analysis.
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Figure 3: Skewness parameters posterior samples.

5. CONCLUSION

In this work a flexible Bayesian methodology is developed for the mixture
regression models based on scale mixtures of skew-normal distributions proposed
by [42] with the aim of understanding the possible effects caused by the restric-
tions commonly imposed in the context of robust mixture regression modeling.
The tone perception data and an artificial dataset are analysed in order to ver-
ify the advantages that the additional flexibility introduced by the methodology
developed in this article has. In fact, this paper presents divergent results in
comparison with [42] and the empirical analysis illustrates the possible effects of
imposing constraints for this class of models.

Extensions of the contributions made in this article are possible. First, the
number of components might be consider as an unknown quantity of interest,
estimating it in a full Bayesian framework. Also the proposed methods may
be extended to multivariate settings, such as the recent proposals of [18] for
mixtures of multivariate Student-t distributions and to models capable to deal
with longitudinal data as discussed in [37]. Contemplating extensions able to
deal with nonlinear effects of the covariates [7, 8, 5] is also a stimulating topic for
further research.



Flexible Robust Mixture Regression Modeling 13

A. APPENDIX

A.1. Mixture regression based on scale mixtures of skew-normal full
conditional distributions

Considering the SN-FMRM model and assuming Fn×(p+1) = (x w), for

each j = 1, . . . , G, construct a matrix Fj ∈ RNj×(p+1), Nj =
∑n

i=1 Sij . Similarly,
construct an observation matrix yj ∈ RNj×1. Hence, by the Bayes theorem, the
full conditionals are

� η|s ∼ D(e0 +N1, . . . , e0 +NG);

� (βj , ψj)|s,y,w, τ2k ∼ Np+1(bj ,Bj);

Bj =

(
1
τ2
j
B−10 + 1

τ2
j

(Fj
TFj)

)−1
bj = Bj

(
1
τ2
j
B−10 b0 + 1

τ2
j

(Fj
T (yk − µk))

)
� τ2j |s,y,w, C0,βj , ψj ∼ IG(cj , Cj);

cj = c0 +
Nj
2 + 1

2

Cj = C0 +
(yj−Fjβ

∗
j−µj)T (yj−Fjβ

∗
j−µj)+(β∗j−b0)TB

−1
0 (β∗j−b0)

2

� C0|τ21 , . . . , τ2G ∼ G(h,H).

h = h0 +Gc0

H = H0 +
∑G

j=1
1
τ2
j

where β∗j = (βj ψj)
T . Considering now the latent variable W

� Wi|Sij = 1, yi,βj , ψj , τ
2
j ∼ TN[0,+∞)(a,A);

a =
(yi−xiβj−µj)ψj

τ2
j +ψ

2
j

A =
τ2
j

τ2
j +ψ

2
j

For the ST-FMRM and the SSL-FMRM models the full conditionals are
almost the same, the difference is that F is replaced by Fwn×(p+1) = (

√
ux
√
uw)

and y, by yw =
√
uy, where

√
u is the square root element by element. Consid-

ering now the latent variable W
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� Wi|Sij = 1, yi, ui,βj , ψj , τ
2
j ∼ TN[0,+∞)(a,A/ui).

Lastly, for the latent variable U and the parameters ν

� Skew-T

Ui|Sij = 1, yi, wi, νj ,βj , ψj , τ
2
j ∼ G

(
νj
2 + 1,

νj
2 +

(yi−µj−xiβj−ψjwi)2

2τ2
j

+
w2
i
2

)
;

� Skew-Slash

Ui|Sij = 1, yi, wi, νj ,βj , ψj , τ
2
j ∼ G(0,1)

(
νj + 1,

(yi−µj−xiβj−ψjwi)2

2τ2
j

+
w2
i
2

)
;

νj |s,u ∼ G(2,40)(α+Nj , γ −
∑

i:Sij=1 ui)

For the degrees of freedom in skew-t is not possible to find a closed form to
the full conditionals, so a Metropolis-Hastings step is required. To sample νj ,
j = 1, . . . , G a normal log random walk proposal was used

log(νnewj − 2) ∼ N(log(νj − 2), cνj )(1.1)

with adaptive width parameter cνj [32]. The proposal was shifted away from 0,
as it is advisable to avoid values for νj that are close to 0, see [15].

A.2. Watanabe-Akaike information criterion

Define the predictive accuracy of the fitted model to data as

p(y) =
n∑
i=1

log

∫
f(yi|θ)p(θ|y)dθ.

To compute this predictive density, it is possible to evaluate the expectation using
draws from the usual posterior simulations:

p(y) =
n∑
i=1

log

(
1

T

T∑
t=1

f(yi|θ(t))

)
.

Introduced by [40], the Watanabe-Akaike information criterion (WAIC)
consists on the posterior predictive density in addition to a correction for effective
number of parameters to adjust for overfitting. [19] describes two adjustments.
The first one is a difference:

WAIC∗1 = 2

n∑
i=1

(
log
(
E(θ|y)f(yi|θ)

)
− E(θ|y) (log(f(yi|θ))

)
,
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which can be computed from simulations by replacing the expectations by aver-
ages over the posterior draws, it means,

WAIC∗1 = 2
n∑
i=1

(
log

(
1

T

T∑
t=1

f(yi|θ(t))

)
− 1

T

T∑
t=1

logf(yi|θ(t))

)
.

The second is based on the variance of individual terms in the log predctive
density summed over the n data observations:

WAIC∗2 =
n∑
i=1

var(θ|y) (logf(yi|θ)) .

In practice, the posterior variance of the log predictive density for each data
point yi, that is, V T

t=1log f(yi|θ(t)), where V T
t=1 is the sample variance, V T

t=1a(t) =
1

T−1
∑T

t=1(a(t)−ā)2. Summing over all the data observations, the effective number
of parameters is:

WAIC∗2 =
n∑
i=1

V T
t=1

(
log f(yi|θ(t))

)
.

Finally, either WAIC∗1 or WAIC∗2 are applied as a bias correction:

WAICq = −2(p(y)−WAIC∗q ).(1.2)
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