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Universidade Nova de Lisboa,
Portugal (regadas.correia@gmail.com)

Carlos A. Coelho
– Departamento de Matemática,

CMA/UNL - Centro de Matemática e Aplicações,
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Abstract:

• In this paper the authors introduce the hyper-block matrix sphericity test which is
a generalization of both the block-matrix and the block-scalar sphericity tests and
as such also of the common sphericity test. This test is a tool of crucial importance
to verify elaborate assumptions on covariance matrix structures, namely on meta-
analysis and error covariance structures in mixed models and models for longitudinal
data. The authors show how by adequately decomposing the null hypothesis of the
hyper-block matrix sphericity test it is possible to easily obtain the expression for
the likelihood ratio test statistic as well as the expression for its moments. From
the factorization of the exact characteristic function of the logarithm of the statistic,
induced by the decomposition of the null hypothesis, and by adequately replacing
some of the factors with an asymptotic result, it is possible to obtain near-exact
distributions that lie very close to the exact distribution. The performance of these
near-exact distributions is assessed through the use of a measure of proximity between
distributions, based on the corresponding characteristic functions.
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1. INTRODUCTION

Likelihood ratio tests (l.r.t.’s) have a large scope of application in differ-
ent fields of research such as for example engineering, economics, medicine and
ecology [27, 20, 5, 21]. However, in most cases, the exact distribution of the l.r.t.
statistics has a very complicated expression which makes difficult the practical
use of the testing procedure. On the other hand the commonly used asymptotic
approximations [2, 26] display lack of precision mainly in extreme situations such
as for high number of variables and/or small sample sizes [14, 9] and situations
where the parameters of interest and/or nuisance parameters are on the bound-
ary of the parameter space [11]. This is a well known and recognized problem
in standard likelihood ratio testing procedures which becomes even more serious
when one wants to perform tests for more elaborate covariance structures. These
elaborate structures have recently become very important in different statistical
techniques for the validation of assumptions required in different models such as
in hierarchical or mixed linear univariate and multivariate models.

In this paper the authors introduce the hyper-block matrix (HBM) spheric-
ity test. This test is a useful generalization of the block-matrix and of the block-
scalar sphericity tests and is of crucial importance to validate elaborate assump-
tions on covariance matrix structures, for example on meta-analysis and error
covariance structures in mixed models and models for longitudinal data.

We will say that a covariance matrix Σ has a HBM spherical structure if
we can write

(1.1) Σ =



Ik1 ⊗∆1 · · · 0

...
. . .

...
0 · · · Ikm ⊗∆m


 , (∆` unspecified, ` = 1, ...,m) .

where ⊗ denotes the Kronecker product, and for ` = 1, . . . ,m, Ik` denotes the
identity matrix of order k` and ∆` is a positive-definite matrix.

The HBM spherical structure may arise in many situations and has as par-
ticular cases many interesting and important structures which may be of interest
not only as covariance structures in multivariate analysis as well as covariance
structures for the error in linear mixed and repeated measures models.

Let us consider a situation in which the same p∗ random variables (r.v.’s),
X1, . . . , Xp∗ , are measured in m “locals”, in the `-th of which (` = 1, . . . ,m) we
take k` measurements, that is, a sample of size k`, and let us suppose we organize
such a meta-sample in a matrix X of dimensions p∗×n, with n =

∑m
`=1 k`, as in

Figure 1.

Here “locals” is a general designation for example for different locals, fac-
tories, companies, hospitals, etc., and if we consider the p∗ r.v.’s X1, . . . , Xp∗

organized in the random vector X∗ = [X1, . . . , Xp∗ ]
′, with Cov(X∗) = ∆, then
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k1︷ ︸︸ ︷ k`︷ ︸︸ ︷

X
(p∗×n)

=




X11 . . . X1k1 . . . X1,k1+···+k`−1+1 . . . X1,k1+···+k` . . .
X21 . . . X2k1 . . . X2,k1+···+k`−1+1 . . . X2,k1+···+k` . . .

...
...

...
...

Xp∗1 . . . Xp∗k1 . . . Xp∗,k1+···+k`−1+1 . . . Xp∗,k1+···+k` . . .

km︷ ︸︸ ︷
. . . X1,k1+···+km−1+1 . . . X1,k1+···+km
. . . X2,k1+···+km−1+1 . . . X2,k1+···+km

...
...

. . . Xp∗,k1+···+km−1+1 . . . Xp∗,k1+···+km




Figure 1: Data matrix illustrating a situation of a meta-sample from m
“locals”, with sample size k` for the `-th local and p∗` = p∗

(` = 1, . . . ,m).

we have

Cov(X) = Cov(vec(X)) =



Ik1 ⊗∆ · · · 0

...
. . .

...
0 · · · Ikm ⊗∆


 .

But, the HBM sphericity setup allows for more general situations as for
example those in which we may want to study or model possible differences in
strength break in a set of p∗ components manufactured by m different companies,
or the measurements of p∗ variables thought to be possible important indicators
of some disorder or disease, measured across m hospitals, or measurements of
p∗ pollutants in m different locals, or measurements of p∗ atmospheric variables
and indicators in m different cities, by taking a sample of size k` in the `-th
“local”, but that, furthermore, not in every “local”, city, hospital or company, it
was possible to obtain measurements of all p∗ variables, although we still want
to consider as many of these in each “local” as possible. Then we may want to
consider a meta-sample as the one illustrated in Figure 2, for p∗ = 5.

In this case, since in different “locals” we may have different subsets of
the p∗ variables being analyzed, we may end-up with a covariance setup for the
matrix X as the one in (1.1), with different covariance matrices for each “local”.

Once we assume the HBM spherical structure for the covariance structure
in our model, we may then be interested in testing if that is indeed a plausible
model for our covariances. The issues are thus: (i) how can we carry out a test
for such an elaborate structure, and (ii) in case we find a way of doing so, how
will we then be able to obtain p-values and/or quantiles for our test statistic,
since this may have a quite elaborate exact distribution.
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k1︷ ︸︸ ︷ k`︷ ︸︸ ︷

X
(p∗×n)

=




X11 . . . X1k1 . . . X1,k1+···+k`−1+1 . . . X1,k1+···+k` . . .
X21 . . . X2k1 . . . . . .
X31 . . . X3k1 . . . X3,k1+···+k`−1+1 . . . X3,k1+···+k` . . .

. . . X4,k1+···+k`−1+1 . . . X4,k1+···+k` . . .
X51 . . . X5k1 . . . . . .

km︷ ︸︸ ︷
. . . X1,k1+···+km−1+1 . . . X1,k1+···+km
. . . X2,k1+···+km−1+1 . . . X2,k1+···+km
. . .
. . . X4,k1+···+km−1+1 . . . X4,k1+···+km
. . . X5,k1+···+km−1+1 . . . X5,k1+···+km




Figure 2: Data matrix illustrating a situation of a meta-sample from m
“locals”, with sample size k` for the `-th local (` = 1, . . . ,m),
p∗1 = 4, p∗` = 3 and p∗m = 4, with different covariance matrices
∆` (` = 1, . . . ,m).

These are indeed the issues we propose to address in this paper, namely
showing how one can quite easily build the l.r.t. statistic for the test of the HBM
Spherical structure and how we can then obtain the expression for the moments
of the statistic and even for the characteristic function (c.f.) of its logarithm, from
which factorization we will then be able to obtain very sharp approximations for
the exact distribution of the statistic.

The HBM sphericity test is thus a test where the null hypothesis is written
as

(1.2) H0 : Σ =



Ik1 ⊗∆1 · · · 0

...
. . .

...
0 · · · Ikm ⊗∆m


 , (∆` unspecified, ` = 1, ...,m)

where Σ is the covariance matrix of the random vector X and the matrices ∆`

are p∗` × p∗` , (` = 1, ...,m), with p` = k` × p∗` and p =
∑m

`=1p`.

This test is a generalization of the standard sphericity test and it has as
particular cases a number of interesting and important tests:

(i) the block-matrix sphericity (BM-Sph) test, for m = 1 [4, 3, 15],

(ii) the block-scalar sphericity (BS-Sph) test, for p∗` = 1, (` = 1, ...,m) [19, 18,
13],

(iii) the block independence (BI) test, for k` = 1, (` = 1, ...,m) [24, 25], [1,
Chap. 9], [17, Sec. 11.2], [6, 7],
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(iv) the common independence (Ind) test, for p∗` = k` = 1, (` = 1, ...,m) [22,
Sec. 7.4.3],[9, Secs. 1,2], and

(v) the sphericity (Sph) test, for m = p∗1 = 1 [16],[1, Sec. 10.7],[17, Sec. 8.3],[9].

These particular cases as well as their relations may be analyzed in Figure 3.

✗
✖

✔
✕

HBM-Sph

H0: Σ=

[
Ik1

⊗∆1 0
. . .0 Ikm⊗∆m

]

✗
✖

✔
✕

BS-Sph

H0: Σ=

[
σ2
1Ik1

0
. . .0 σ2

mIkm

]

✗
✖

✔
✕

Ind

H0: Σ=

[
σ2
1 0
. . .0 σ2

m

]

✗
✖

✔
✕

BI

H0: Σ=

[
∆1 0

. . .0 ∆m

]
✗
✖

✔
✕

BM-Sph

H0: Σ=

[
∆ 0

.. .0 ∆

]

✗
✖

✔
✕

Sph

H0: Σ=

[
σ2 0

. . .0 σ2

]
m=1 //

kℓ=1,∀ℓ
//

p∗
ℓ=1,∀ℓ

{{

p∗
ℓ=1

kℓ=1,∀ℓ
��

kℓ=1,∀ℓ

��

m=1

""

p1=1oo

p∗
ℓ=1,∀ℓ

oo

σ2
1=...=σ2

m

..

∆1=...
=∆m

//

∆1=...=∆m

p∗
ℓ=1,∀ℓ

pp

Figure 3: Particular cases of the HBM (Hyper-Block Matrix) test and
their inter-relations:

HBM-Sph: Hyper-block matrix sphericity test;
BM-Sph: Block-matrix sphericity test;
BS-Sph: Block-scalar sphericity test;

Sph: Sphericity test; Ind: Independence test; BI: Block independence test.

The exact distribution of the HBM sphericity test statistic is almost in-
tractable in practical terms, thus our propose is to develop near-exact distribu-
tions for the test statistic and its logarithm, based on an adequate factorization
of the c.f. of the logarithm of the test statistic.

In Section 2 we will show how we may decompose the overall null hypothesis
in (1.2) into a set of three conditionally independent hypotheses and then how
from this decomposition (see [8]) we may derive expressions for the l.r.t. statistic
and its h-th moment. In Section 3 we will show how we may easily obtain the
expression for the c.f. of the logarithm of the test statistic and how we may use
the decomposition of the null hypothesis in Section 2, to induce an adequate
factorization of this c.f. in two factors, one that is the c.f. a Generalized Integer
Gamma (GIG) distribution [6], and the other the c.f. of a sum of independent
r.v.’s whose exponentials have Beta distributions. Then, in Section 4 we will use
this factorization to build very sharp near-exact distributions both for the test
statistic and its logarithm.

Near-exact distributions are asymptotic distributions built using a different
approach. Usually working from an adequate factorization of the c.f. of the loga-
rithm of the l.r.t. statistic, we leave unchanged the set of factors that correspond
to a manageable distribution and approximate asymptotically the remaining set
of factors, in such a way that the resulting c.f., which we will call a near-exact
c.f., corresponds to a known manageable distribution, from which p-values and
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quantiles may be easily computed. These near-exact distributions lie much closer
to the exact distribution than any common asymptotic distribution and, when
correctly built for statistics used in Multivariate Analysis, will show a marked
asymptotic behavior not only for increasing sample sizes but also for increasing
number of variables involved.

In Section 5 we will use a measure of proximity between the exact distribu-
tion and the near-exact distributions, based on the corresponding characteristic
functions in order to assess the quality and the asymptotic properties of the
near-exact distributions developed.

Section 6 is dedicated to power studies, where the very good behavior of
the test is revealed, through studies based on 1 000 000 pseudo-random samples
and carried out on several scenarios of violation of the null hypothesis of HBM
sphericity.

2. THE TEST STATISTICS AND ITS MOMENTS

In general terms, a null hypothesis H0 may be decomposed into a sequence
of three conditionally independent null hypotheses, if H0 admits the decomposi-
tion

H0 ≡ H03|1,2 ◦H02|1 ◦H01

where ‘◦’ is to be read as ‘after’, as long as

ΩH0 ≡ ΩH03|1,2 ⊂ ΩH13|1,2 ≡ ΩH02|1 ⊂ ΩH12|1 ≡ ΩH01 ⊂ ΩH11 ≡ ΩH1

where ΩH0 is the parameter space under H0 and ΩH1 the union of the parameter
spaces under H0 and H1, and where H1∗ represents the alternative hypothesis to
H0∗ (where ‘∗’ is used as a wildcard).

The null hypothesis

(2.1) H01 : Σ = bdiag (Σ``; ` = 1, ...,m)

corresponds to the test of independence of m groups of variables, the `-th group
having p` = p∗`×k` variables (` = 1, ...,m).

If we consider that the random vector X has a p-variate Normal distribution
with expected value vector µ and covariance matrix Σ, that is, if we consider the

vector X ∼ Np

(
µ,Σ

)
and suppose that we have a sample of size N (> p) from

X, then the l.r.t. statistic used to test H01 and its h-th moment are respectively
given by (see secs. 9.2 and 9.3.2 in [1])

(2.2) Λ1 =
|A|

N
2

m∏
`=1

|A``|
N
2
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and

(2.3) E
[
(Λ1)h

]
=

m−1∏

`=1

p∏̀

k=1

Γ
(
N−q`−k

2 + N
2 h
)

Γ
(
N−q`−k

2

) Γ
(
N−k

2

)

Γ
(
N−k

2 + N
2 h
) ,

(
h> p−pm

N −1
)

where the matrix A is the maximum likelihood estimator (m.l.e.) of Σ, A`` its
`-th diagonal block of order p` (` = 1, ...,m) and q` = p`+1 + ...+ pm.

The null hypothesis

(2.4) H02|1 =
m∧

`=1

H`
02|1

where for ` = 1, ...,m

(2.5)

H`
02|1 : Σ`` = bdiag

(
Σ`
vv, v = 1, ..., k`

)

assuming Σ = bdiag (Σ``, ` = 1, ...,m)
that is, assuming H01

is the null hypothesis of a test of independence of k` groups of variables, with p∗`
variables each. The l.r.t. statistic to test H`

02|1 in (2.5) and its h-th moment are

respectively given by (see Secs. 9.2 and 9.3.2 in [1])

Λ`2|1 =
|A``|

N
2

k∏̀
v=1

∣∣Av``
∣∣N2

and

E

[(
Λ`2|1

)h]
=

k`−1∏

v=1

p∗∏̀

k=1

Γ
(
N−q`v−k

2 + N
2 h
)

Γ
(
N−q`v−k

2

) Γ
(
N−k

2

)

Γ
(
N−k

2 + N
2 h
) ,

(
h> p`

N −1
)

where the matrix A`` is the maximum likelihood estimator of Σ``, A
v
`` its v-th

(v = 1, ..., k`) diagonal block of order p∗` and q`v = (k` − v) p∗` , (v = 1, ..., k`).

The l.r.t. statistic to test the null hypothesis in (2.4) is thus

(2.6) Λ2|1 =

m∏

`=1

Λ`2|1 =

m∏

`=1

|A``|
N
2

k∏̀
v=1

∣∣Av``
∣∣N2

and, given the fact that the statistics Λ`2|1, ` = 1, . . . ,m, form a set of m inde-

pendent statistics, since under H01 in (2.1) the m matrices A`` are independent
and each statistic Λ`2|1 is built only from A``, the h-th moment of Λ2|1 is

(2.7)

E
[(

Λ2|1
)h]

=

m∏

`=1

E

[(
Λ`2|1

)h]

=
m∏

`=1

k`−1∏

v=1

p∗∏̀

k=1

Γ
(
N−q`v−k

2 + N
2 h
)

Γ
(
N−q`v−k

2

) Γ
(
N−k

2

)

Γ
(
N−k

2 + N
2 h
) ,

(
h > max

{p`
N − 1, ` = 1, ...,m

})
.
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Finally, the null hypothesis H03|1,2 may be written as

(2.8) H03|1,2 =
m∧

`=1

H`
03|1,2

where, for ` = 1, ...,m,

(2.9)

H`
03|1,2 : Σ`

11 = · · · = Σ`
k`k`

= ∆` (∆` unspecified)

assuming Σ = bdiag
(
Σ`` =

(
bdiag

(
Σ`
vv, v = 1, ..., k`

)))

that is, assuming H02|1 and H01

is the null hypothesis corresponding to the test of equality of k` covariance ma-
trices each with dimensions p∗` × p∗` .

Since under H02|1, for each ` = 1, . . . ,m, the k` matrices Av`` (v = 1, . . . , k`)

are independent, The l.r.t. statistic to test each null hypothesis H`
03|1,2 in (2.9)

and its h-th moment are respectively, (see Secs. 10.2 and 10.4.2 in [1])

Λ`3|1,2 =

k∏̀
v=1
|Av``|

N
2

∣∣A∗`
∣∣k` N2

k
Np`
2

`

and

E

[(
Λ`3|1,2

)h]
=

p∗∏̀

k=1

k∏̀

v=1

Γ
(
N−1

2 − k−1
2k`

+ v−1
k`

)

Γ
(
N−1

2 − k−1
2k`

+ v−1
k`

+ N
2 h
) Γ

(
N−k

2 + N
2 h
)

Γ
(
N−k

2

)

where the matrix A`` is the maximum likelihood estimator of Σ``, A
v
`` its v-th

diagonal block of order p∗` (v = 1, ..., k`) and A∗` = A1
`` + · · ·+Ak``` .

The l.r.t. statistic to test (2.8) is thus

(2.10) Λ3|1,2 =

m∏

`=1

Λ`3|1,2 =
m∏

`=1

k∏̀
v=1
|Av``|

N
2

∣∣A∗`
∣∣k` N2

k
Np`
2

`

and, since under H01 in (2.1), the m statistics Λ`3|1,2 are independent, given that

each statistic Λ`3|1,2 is built only from A`` and under H01 the m matrices A``
(` = 1, . . . ,m) are independent, the h-th moment of Λ3|1,2 is given by

E
[(

Λ3|1,2
)h]

=

m∏

`=1

E

[(
Λ`3|1,2

)h]

=
m∏

`=1

p∗∏̀

k=1

k∏̀

v=1

Γ
(
N−1

2 − k−1
2k`

+ v−1
k`

)
Γ
(
N−k

2 + N
2 h
)

Γ
(
N−1

2 − k−1
2k`

+ v−1
k`

+ N
2 h
)

Γ
(
N−k

2

) ,

(
h > max

{
p∗`
N − 1, ` = 1, ...,m

})
.
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From Lemma 10.3.1 in [1], the l.r.t. statistic to test (1.2) is thus the product
of the l.r.t. statistics used to test the null hypotheses in (2.1), (2.4) and (2.8),
that is, the product of the l.r.t. statistics in (2.2), (2.6) and (2.10), thus with

(2.11)

Λ = Λ1 × Λ2|1 × Λ3|1,2

=
|A|

N
2

m∏
`=1

|A``|
N
2

×





m∏

`=1

|A``|
N
2

k∏̀
v=1

∣∣Av``
∣∣N2




×





m∏

`=1

k∏̀
v=1
|Av``|

N
2

∣∣A∗`
∣∣k` N2

k
Np`
2

`





=

{
m∏
`=1

k
Np`
2

`

}
× |A|

N
2

m∏
`=1

∣∣A∗`
∣∣k` N2

where the matrix A is the m.l.e. of Σ, A`` is the `-th diagonal block of order p`

of A (` = 1, ...,m), with p =
m∑
`=1

p` and A∗` = A1
`` + · · · + Ak``` , where Av`` is the

v-th (v = 1, ..., k`) diagonal block of order p∗` of A`` and p` = k` × p∗` . We should
note that the expression in (2.11) is identical to the one we obtain when we use
the usual method of derivation of the l.r.t. statistic, through its definition (see
Appendix A).

The hypotheses H03|1,2, H02|1 and H01 are independent in the sense that
under the overall null hypothesis H0 it is possible to prove that the l.r.t. statistics
used to test these hypotheses are independent. Indeed, by Lemma 10.4.1 in [1] or
Theorem 5 in [10], the l.r.t. statistic Λ1 in (2.2) is independent of the m matrices
A``, (` = 1, ...,m), so that since Λ2|1 and Λ3|1,2 are built only from the m matrices
A`` (` = 1, ...,m), these l.r.t. statistics are independent of Λ1. But then, since we
may use the same two results to argue that each statistic Λ`2|1 is independent of

the k` matrices Av`` (v = 1, . . . , k`), the statistic Λ2|1 is independent of all
∑m

`=1 k`
matrices Av`` (` = 1, . . . , k`; v = 1, . . . ,m) and as such independent of Λ3|1,2 which
is built only on these matrices.

As such, we may obtain the expression of the h-th moment of Λ from the
expressions for the h-th moment of each of the statistics Λ3|1,2, Λ2|1 and Λ1 writing
it as

E
[
(Λ)h

]
=E

[
(Λ1)h

]
× E

[(
Λ2|1

)h]× E
[(

Λ3|1,2
)h]

=

m∏

`=1

p∗∏̀

k=1

k`−1∏

v=1

Γ
(
N−1

2 − k−1
2k`

+ v−1
k`

)

Γ
(
N−1

2 − k−1
2k`

+ v−1
k`

+ N
2 h
)

Γ
(
N−q`v−k

2 + N
2 h
)

Γ
(
N−q`v−k

2

)

×
m∏

`=1

p∗∏̀

k=1

Γ
(
N−1

2 − k−1
2k`

+ k`−1
k`

)

Γ
(
N−1

2 − k−1
2k`

+ k`−1
k`

+ N
2 h
) Γ

(
N−k

2 + N
2 h
)

Γ
(
N−k

2

)

×
m−1∏

`=1

p∏̀

k=1

Γ
(
N−q`−k

2 + N
2 h
)

Γ
(
N−q`−k

2

) Γ
(
N−k

2

)

Γ
(
N−k

2 + N
2 h
) ,



The hyper-block matrix sphericity test 11

for h>max {(p− pm)/N−1, p`/N−1(`=1, ...,m)} and where p =
∑m

`=1p`, q` =
p`+1 + ...+ pm, p` = k` × p∗` and q`v = (k` − v) p∗` (` = 1, ...,m; v = 1, ..., k`) .

Actually we may note that the two first null hypotheses may be condensed
into a single null hypothesis to test the independence of q∗∗ =

∑m
`=1 k` groups of

variables, the ν-th group with p∗∗ν variables for

(2.12)
p∗∗ =

[
p∗1, . . . , p

∗
1, p
∗
2, . . . , p

∗
2, . . . , p

∗
` , . . . , p

∗
` , . . . , p

∗
m, . . . , p

∗
m

]
,

︸ ︷︷ ︸
k1

︸ ︷︷ ︸
k2

︸ ︷︷ ︸
k`

︸ ︷︷ ︸
km

with ν = 1, . . . ,
∑m

`=1 k`, that is, with

p∗∗ν = p∗` , for 1 +
`−1∑

i=1

ki ≤ ν ≤
∑̀

i=1

ki .

This null hypothesis may be written as

H0,12 : Σ = bdiag
(

∆1, . . . ,∆k1 , . . . ,∆k1+···+k`−1+1, . . . ,∆k1+···+k` , . . .︸ ︷︷ ︸
of order p∗1

︸ ︷︷ ︸
of order p∗`

. . . ,∆k1+···+km−1+1, . . . ,∆k1+···+km
)
.

︸ ︷︷ ︸
of order p∗m

The l.r.t. statistic to test H0,12 is given by

(2.13) Λ1,2 =
|A|

N
2

∏q∗∗

ν=1 |A∗νν |
N
2

where A∗νν is the ν-th diagonal block of order p∗∗ν (ν = 1, ..., q∗∗), and the expres-
sion of its h-th moment is given by (see secs. 9.2 and 9.3.2 in [1])

E
[
(Λ1,2)h

]
=

q∗∗−1∏

ν=1

p∗∗ν∏

k=1

Γ
(
N−q∗ν−k

2 + N
2 h
)

Γ
(
N−q∗ν−k

2

) Γ
(
N−k

2

)

Γ
(
N−k

2 + N
2 h
)

for

q∗ν = p∗∗ν+1 + · · ·+ p∗∗q∗∗ where q∗∗ =
m∑

`=1

k` .

Note that the l.r.t. statistic in (2.13) may be also given by the product of the
l.r.t.’s in (2.2) and (2.6), used to test the null hypotheses in (2.1) and (2.4)
respectively, and the expression of its h-th moment may also be given by the
product of the expressions of the h-th moments in (2.3) and (2.7) of the l.r.t.’s
in (2.2) and (2.6) respectively.

Finally, the expression of the h-th moment of Λ may be re-written as
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(2.14)

E
[
(Λ)h

]
= E

[
(Λ1,2)h

]
× E

[(
Λ3|1,2

)h]

=

q∗∗−1∏

ν=1

p∗∗ν∏

k=1

Γ
(
N−q∗ν−k

2 + N
2 h
)

Γ
(
N−q∗ν−k

2

) Γ
(
N−k

2

)

Γ
(
N−k

2 + N
2 h
)

×
m∏

`=1

p∗∏̀

k=1

k∏̀

v=1

Γ
(
N−1

2 − k−1
2k`

+ v−1
k`

)

Γ
(
N−1

2 − k−1
2k`

+ v−1
k`

+ N
2 h
) Γ

(
N−k

2 + N
2 h
)

Γ
(
N−k

2

) .

The factorization of the c.f. of W = − log Λ developed in the next section
will have as a starting base this last expression.

3. THE CHARACTERISTIC FUNCTION OF W = − log(Λ)

Since in (2.14) the Gamma functions remain valid for any strictly complex
h, if we take W1,2 = − log Λ1,2 and W3 = − log Λ3|1,2, we may write the c.f. of
W = − log Λ as

(3.1)

ΦW (t) = E
(
e−it log Λ

)
= E

[
Λ−it

]
= E

[
Λ−it1,2

]
E
[
Λ−it3|1,2

]

= ΦW1,2
(t) ΦW3

(t)

=

q∗∗−1∏

ν=1

p∗∗ν∏

k=1

Γ
(
N−q∗ν−k

2 − N
2 it
)

Γ
(
N−q∗ν−k

2

) Γ
(
N−k

2

)

Γ
(
N−k

2 − N
2 it
)

︸ ︷︷ ︸
ΦW1,2

(t)

×
m∏

`=1

p∗∏̀

k=1

k∏̀

v=1

Γ
(
N−1

2 − k−1
2k`

+ v−1
k`

)

Γ
(
N−1

2 − k−1
2k`

+ v−1
k`
− N

2 it
) Γ

(
N−k

2 − N
2 it
)

Γ
(
N−k

2

)

︸ ︷︷ ︸
ΦW3

(t)

,

where t ∈ R, i =
√
−1, q∗ν = p∗∗ν+1 + · · ·+ p∗∗q∗∗ , q

∗∗ =
∑m

`=1 k`, and p∗∗ν are defined
in (2.12). From this expression we may state that

Λ
d≡





q∗∗−1∏

ν=1

p∗∗ν∏

k=1

(Yνk)
N/2



×





m∏

`=1

p∗∏̀

k=1

k∏̀

v=1

(Y`kv)
N/2





where

Yνk ∼ Beta
(
N−q∗ν−k

2
,
q∗ν
2

)
and Y`kv ∼ Beta

(
N−k

2
,
v−1

k`
+
k−1

2

k`−1

k`

)

are independent r.v.’s.
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In order to be able to build sharp near-exact distributions for W and Λ,
we need to further factorize ΦW1,2(t) and ΦW3(t), by writing each one of these
c.f.’s as the product of two factors, one that is the c.f. of a Generalized Integer
Gamma (GIG) distribution and the other the c.f. of a sum of independent r.v.’s
whose exponentials have Beta distributions.

3.1. The factorization of the characteristic function of W1,2 = − log Λ1,2

The results in [7, 14] may be used to show that ΦW1,2
(t) in (3.1) may be

written as
ΦW1,2 (t) = ΦW1,2,a (t)× ΦW1,2,b

(t) ,

where

(3.2) ΦW1,2,a (t) =

p∏

k=3

(
N − k
N

)r1,k (N − k
N

− it
)−r1,k

is the c.f. of the sum of p− 2 independent integer Gamma r.v.’s, that is a Gener-
alized Integer Gamma distribution of depth p− 2, with integer shape parameters
r1,k given by

(3.3) r1,k =

{
h1,k−2 + (−1)k k∗ k = 3, 4

r1,k−2 + h1,k−2, k = 5, ..., p

with k∗ =
⌊
m∗

2

⌋
, where m∗ is the number of sets of variables with an odd num-

ber of variables, among the q∗∗ groups of variables, the ν-th of which with p∗∗ν
variables, and

h1;k = (# of p∗∗ν (ν = 1, .., q∗∗) ≥ k)− 1, k = 1, ..., p− 2

and

(3.4) ΦW1,2,b
(t) =

(
Γ
(
N−1

2

)

Γ
(
N−2

2

) Γ
(
N−2

2 − N
2 it
)

Γ
(
N−1

2 − N
2 it
)
)k∗

is the c.f. of the sum of k∗ independent r.v.’s with Logbeta distributions multiplied
by N

2 . We should note that when k∗ = 0, ΦW1,2,b
(t) = 1.

3.2. The factorization of the characteristic function of W3 = − log Λ3|1,2

Based on the results in [14] we may re-write the c.f. of W3, ΦW3(t) in (3.1),
as

ΦW3 (t) = ΦW3,a (t)× ΦW3,b
(t)
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where

(3.5) ΦW3,a (t) =

m∏

`=1

p∗∏̀

k=2

(
N − k
N

)r`3,k−1
(
N − k
N

− it
)−r`3,k−1

is the c.f. of the sum of
m∑
`=1

p∗`−m independent Gamma r.v.’s, that is, a Generalized

Integer Gamma distribution of depth
m∑
`=1

p∗` −m with integer shape parameters

r`3;k given by (B.1) in Appendix B, and

(3.6)

ΦW3,2 (t) =

m∏

`=1





bp∗`/2c∏

k=1

k∏̀

v=1

Γ(a`k+b`kv)
Γ(a`k+b`∗kv)

Γ(a`k+b`∗vk−Nit)
Γ(a`k+b`vk−Nit)

×




k∏̀

v=1

Γ

(
a`
p∗
`

+b`
p∗
`
v

)
Γ

(
a`
p∗
`

+b`∗
p∗
`
v

) Γ

(
a`
p∗
`

+b`∗
p∗
`
v
−N

2
it

)
Γ

(
a`
p∗
`

+b`
p∗
`
v
−N

2
it

)



(p∗` mod 2)




with

(3.7) a`k = N − 2k, b`kv = 2k − 1 + v−2k
k`

, b`∗vk =
⌊
b`vk
⌋

and

(3.8) a`p∗`
=

N−p∗`
2 , b`p∗`v

=
p`−k`−p∗`+2v−1

2k`
, b`∗p∗`v =

⌊
b`p∗`v

⌋
,

is the c.f. of the sum of
m∑
`=1

⌊
p∗`
2

⌋
k` independent Logbeta r.v.’s multiplied by N

and
m∑
`=1

k` (p∗` mod 2) independent Logbeta r.v.’s multiplied by N
2 .

As such, the c.f. of W may be written as

(3.9) ΦW (t) = Φ1 (t)× Φ2 (t)

where

(3.10) Φ1 (t) = ΦW1,2,a (t)× ΦW3,a (t) ,

with ΦW1,2,a (t) and ΦW3,a (t) given by (3.2) and (3.5), respectively, and

(3.11) Φ2 (t) = ΦW1,2,b
(t)× ΦW3,b

(t)

with ΦW1,2,b
(t) and ΦW3,b

(t) in (3.4) and (3.6), respectively.

The c.f. Φ1(t) in (3.10) can be seen as the c.f. of a GIG distribution of depth
p− 1, and it may be written as

(3.12) Φ1 (t) =

p∏

k=2

(
N − k
N

)r+k (N − k
N

− it
)−r+k
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where

(3.13) r+
k = r∗1,k +

m∑

`=1

r`∗3,k ,

with

(3.14) r∗1,k =

{
0 k = 2

r1,k k = 3, . . . , p
and r`∗3,k =

{
r`3,k k = 2, . . . , p∗`

0 k = p∗` , . . . , p

with r1,k given by (3.3) and r`3,k given by (B.1) in Appendix B, while Φ2(t) is the

c.f. of a sum of k∗ +
m∑
`=1

⌊
p∗`
2

⌋
k` independent Logbeta r.v.’s multiplied by N and

m∑
`=1

k` (p∗` mod 2) independent Logbeta r.v.’s multiplied by N
2 .

From this alternative expression for the c.f. of W = − log Λ given by (3.9),
we may see that the exact distribution of Λ in (2.11) may be written as

Λ
d≡

{
p∏

k=2

eZk

}{
k∗∏

k=1

(Y1,k)
N
2

}


m∏

`=1

bp∗`/2c∏

k=1

k∏̀

v=1

(
Y `

3,kv

)N




×





m∏

`=1

{
k∏̀

v=1

(Y `
3,v)

N
2

}p∗` mod 2




where
d≡ means ”equivalent in distribution” and all the r.v.’s involved are inde-

pendent, with

(3.15)

Zk ∼ Γ

(
r+
k ,
N − k
N

)
, k = 2, . . . , p

Y1,k ∼ Beta
(
N − 2

2
,
1

2

)
, k = 1, . . . , k∗

Y `
3,kv ∼ Beta

(
a`k + b`∗kv, b

`
kv − b`∗kv

)
, k = 1, . . . ,

⌊
p∗`
2

⌋
; v = 1, . . . , k`;

` = 1, . . . ,m

Y `
3,v ∼ Beta

(
a`p∗`

+ b`∗p∗`v, b
`
p∗`v
− b`∗p∗`v

)
,

with r+
k given by (3.13) and (3.14), a`k, b

`
kv and b`∗kv given by (3.7) and a`p∗`

, b`p∗`v
and b`∗p∗`v given by (3.8).

This representation will enable us to develop well-fitting near-exact distri-
butions, which bear an extreme closeness to the exact distribution of Λ.
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4. NEAR-EXACT DISTRIBUTIONS FOR W AND Λ

To build the near-exact distributions of W = − log Λ and Λ we will leave
Φ1(t) in (3.9) and (3.12) unchanged and we will replace Φ2(t) in (3.9) and (3.11)
by a sharp asymptotic approximation in such a way that the resulting c.f. corre-
sponds to a known manageable distribution.

From the results in Section 5 of [23], which show that we may asymptot-
ically replace a Logbeta(a, b) distribution by an infinite mixture of Γ(b + j, a)
distributions, with j = 0, 1, . . . , using a somewhat heuristic approach, we will
replace Φ2(t) by

(4.1) Φ∗2(t) =
m+∑

j=0

πjθ
r+j(θ − it)−(r+j) ,

which is the c.f. of a finite mixture of Γ(r + j, θ) distributions, where

(4.2)

r = k∗

2 +
m∑
`=1

bp∗`/2c∑
k=1

k∑̀
v=1

v−2k
k`
−
⌊
v−2k
k`

⌋

+
m∑
`=1

(
k∑̀
v=1

2v−p∗`−1
2k`

−
⌊

2v−p∗`−1
2k`

⌋)p∗` mod 2

= k∗

2 +
m∑
`=1

⌊
p∗`+1

2

⌋
k`−1

2

is the sum of all the second parameters of the Beta r.v.’s in (3.15) and θ is
obtained, together with s1, s2 and π∗, as the numerical solution of the system of
equations

(4.3)

dh

dth
Φ2(t)

∣∣∣∣
t=0

=
dh

dth

(
π∗θs1(θ − it)−s1 + (1− π∗)θs2(θ − it)−s2

)∣∣∣∣
t=0

,

h = 1, . . . , 4 ,

that is, as the rate parameter of a mixture of two Gamma distributions with a
common rate, which matches the first 4 derivatives of Φ2(t), at t = 0, so that

Φ1(t)×
(
π∗θs1(θ−it)−s1+(1−π∗)θs2(θ−it)−s2

)
corresponds to a distribution that

matches the first 4 exact moments of W . Then the weights πj , j = 0, . . . ,m+− 1
are determined in such a way that

(4.4)
dh

dth
Φ2(t)

∣∣∣∣
t=0

=
dh

dth
Φ∗2(t)

∣∣∣∣
t=0

, h = 1, . . . ,m+ ,

with πm+ = 1−
∑m+−1

j=0 πj .
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We will thus take as near-exact c.f. of W the c.f.

(4.5)

Φ∗W (t) = Φ1(t)× Φ∗2(t)

=

{
p∏

k=2

(
N − k
N

)r+k (N − k
N

− it
)−r+k

}

×




m+∑

j=0

πj θ
r+j (θ − it)−(r+j)





=

m+∑

j=0

πj

{
θr+j (θ−it)−(r+j)

p∏

k=2

(
N−k
N

)r+k (N−k
N
−it
)−r+k

}

with r and r+
k respectively given by (4.2) and (3.13), which is the c.f. of a mixture

of m++1 GNIG distributions of depth p that matches the first m+ exact moments
of W . This c.f. yields near-exact distributions for W with p.d.f.

(4.6) fW (w) =
m+∑
j=0

πjf
GNIG

(
w
∣∣∣ r+

2 , r
+
3 , ..., r

+
p , r;

N−2
N , N−3

N , ..., N−pN , θ; p
)
,

and c.d.f.

(4.7) FW (w) =
m+∑
j=0

πjF
GNIG

(
w
∣∣∣ r+

2 , r
+
3 , ..., r

+
p , r;

N−2
N , N−3

N , ..., N−pN , θ; p
)
,

for w > 0, and near-exact distributions for Λ with p.d.f.

(4.8) fΛ(z)=
m+∑
j=0

πjf
GNIG

(
− log z

∣∣∣ r+
2 , r

+
3 , ..., r

+
p , r;

N−2
N , N−3

N , ..., N−pN , θ; p
)

1
z ,

and c.d.f.

(4.9) FΛ(z)=
m+∑
j=0

πj

(
1−FGNIG

(
− log z

∣∣∣r+
2 , r

+
3 , ..., r

+
p , r;

N−2
N , N−3

N , ..., N−pN , θ; p
))
,

for 0 < z < 1.

The modules for the GNIG c.d.f. and p.d.f. are available in [12] and on
the web-page https://sites.google.com/site/nearexactdistributions/. Using these
modules, the computation of the p.d.f.’s and c.d.f.’s of the near-exact distribu-
tions becomes easy and very manageable, once the system of equations in (4.4)
is linear and as such very simple to solve, as it is also the case with the sys-
tem of equations in (4.3). The authors make available a set of Mathematica R©

modules to implement the computation of p.d.f, c.d.f., p-values and quantiles
for the near-exact distributions developed in the paper, as well as a module
to compute the value of the l.r.t. statistic from a sample, on the web-page
https://sites.google.com/site/nearexactdistributions/hyper-block-matrix-sphericity. In
Appendix C the authors present a short manual for the use of these modules,
along with some examples.
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5. NUMERICAL STUDIES

In order to assess the performance of the near-exact distributions obtained
in the previous section we will use the measure

(5.1) ∆∗ =
1

2π

∫ +∞

−∞

∣∣∣∣
ΦW (t)− Φ∗W (t)

t

∣∣∣∣ dt ,

with
max
w
|FW (w)− F ∗W (w)| = max

z
|FΛ(z)− F ∗Λ(z)| ≤ ∆∗ ,

where ΦW (t) and Φ∗W (t) represent respectively the exact and near-exact c.f.’s of
W ; FW ( · ), F ∗W ( · ), the exact and near-exact c.d.f.’s of W and FΛ( · ) and F ∗Λ( · )
those of Λ. Values for this measure ∆∗, which is therefore an upper bound on
the difference between the exact and near-exact c.d.f.’s of both W and Λ for the
near-exact distributions developed in the previous section, for different values
of p∗` and k`, may be analyzed in Tables 1 and 2, with smaller values of the
measure indicating even better agreements between the near-exact and the exact
distributions.

From Tables 1 and 2 we may see the clear asymptotic behavior of the near-
exact distributions not only for increasing sample sizes but also for increasing
values of p∗` and k`, as well as the very good performance of the near-exact distri-
butions for very small sample sizes, which barely exceed the number of variables
in use. This asymptotic behavior is more marked for the near-exact distributions
that match more exact moments. This may be seen from the more accentuated
decrease in the values of the measure ∆∗ for these near-exact distributions, that
is, e.g. increases either in sample size or in the number of variables make the
values of the measure ∆∗ to decrease more for the near-exact distributions that
match 10 exact moments than for those that match 6 exact moments. It is inter-
esting to note that even near-exact distributions that match a very small number
of exact moments or even no exact moment, and that, as such, are much simpler
in their structure, and faster to compute, exhibit these asymptotic behaviors,
with the behavior of the near-exact distribution that matches no exact moment
being absolutely remarkable. This latter one is a very simple near-exact distri-
bution, for the computation of which we do not even need to solve the system of
equations in (4.4). In this case we will have m+ = 0, and from (4.5)-(4.9) it is
easy to see that the near-exact distribution is just a GIG or a GNIG distribution,
according to r in (4.2) being integer or not.

6. POWER STUDIES

In order to try to assess the behavior of the test under the alternative
hypothesis, some power studies, based on simulations, were carried out. These
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Table 1: Values of the measure ∆∗ in (5.1) for different values of m+ (the
number of exact moments matched by the near-exact distribu-
tions) and for m = 4 and increasing values of k`, p

∗
` and N , for

base values of k` = {3, 2, 3, 4}, p∗` = {3, 5, 6, 4} and sample sizes
N = p+ 2, 200, 500, with p =

∑m
`=1 k`×p

∗
` .

m+

N 0 1 2 4 6 10

k` + 0, p∗` + 0, p = 53

p+ 2 7.06×10−6 4.36×10−8 1.33×10−12 2.31×10−19 1.30×10−26 9.24×10−37

p+ 200 7.40×10−7 1.04×10−8 3.21×10−14 4.24×10−21 9.44×10−28 8.24×10−41

p+ 500 1.60×10−7 2.35×10−9 1.52×10−15 1.39×10−22 5.96×10−30 3.50×10−44

k` + 2, p∗` + 0, p = 89

p+ 2 2.24×10−6 7.56×10−9 1.67×10−13 1.49×10−20 1.51×10−27 2.76×10−41

p+ 200 5.28×10−7 4.22×10−9 4.99×10−14 2.71×10−21 1.49×10−28 7.42×10−43

p+ 500 1.35×10−7 1.15×10−9 6.45×10−15 9.96×10−23 1.50×10−30 5.65×10−46

k` + 5, p∗` + 0, p = 143

p+ 2 8.66×10−7 1.70×10−9 2.33×10−14 4.31×10−22 8.30×10−30 4.34×10−45

p+ 200 3.75×10−7 1.77×10−9 2.13×10−14 4.19×10−22 8.01×10−30 3.79×10−45

p+ 500 1.16×10−7 5.99×10−10 3.99×10−15 2.71×10−23 1.77×10−31 9.58×10−48

k` + 2, p∗` + 2, p = 129

p+ 2 1.14×10−6 2.50×10−9 1.58×10−14 3.24×10−22 7.86×10−30 6.94×10−45

p+ 200 4.34×10−7 2.30×10−9 8.28×10−15 1.72×10−22 3.85×10−30 2.66×10−45

p+ 500 1.28×10−7 7.39×10−10 1.19×10−15 8.62×10−24 6.44×10−32 4.83×10−48

k` + 2, p∗` + 5, p = 189

p+ 2 6.62×10−7 9.46×10−10 2.22×10−15 1.41×10−23 1.27×10−31 1.88×10−47

p+ 200 3.84×10−7 1.32×10−9 2.92×10−15 1.69×10−23 2.33×10−31 7.10×10−47

p+ 500 1.35×10−7 5.18×10−10 2.47×10−16 1.05×10−24 6.62×10−33 3.62×10−49

k` + 5, p∗` + 2, p = 207

p+ 2 3.75×10−7 4.84×10−10 1.88×10−15 9.07×10−24 4.51×10−32 1.36×10−48

p+ 200 2.38×10−7 7.36×10−10 2.92×10−15 2.24×10−23 1.66×10−31 1.01×10−47

p+ 500 8.99×10−8 3.03×10−10 7.05×10−16 2.33×10−24 7.17×10−33 7.46×10−50

k` + 5, p∗` + 5, p = 303

p+ 2 1.75×10−7 1.47×10−10 1.53×10−16 1.85×10−25 2.43×10−34 5.01×10−52

p+ 200 1.52×10−7 3.02×10−10 3.43×10−16 9.02×10−25 2.43×10−33 1.90×10−50

p+ 500 6.79×10−8 1.54×10−10 1.04×10−16 1.50×10−25 2.12×10−34 4.44×10−52

p+ 1000 2.75×10−8 6.65×10−11 2.57×10−17 1.70×10−26 1.07×10−35 4.24×10−54

studies focused on two forms of violation of the null hypothesis: (i) the violation
of the equality of the ∆` matrices inside each block of k` of these matrices and (ii)
the violation of the block-independence inside each group of p` = p∗`×k` variables
(see (1.2)).

First of all we should bring to the attention of the reader the fact that we
are working with a random vector

X =
[
X ′1, . . . , X

′
m

]′
,

where in turn, for ` = 1, . . . ,m,

X` =
[
X ′`1, . . . , X

′
`k`

]′
,
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Table 2: Values of the measure ∆∗ in (5.1) for different values of m+ (the
number of exact moments matched by the near-exact distribu-
tions) and for m = 5 and increasing values of k`, p

∗
` and N , for

base values of k` = {3, 2, 3, 4, 4}, p∗` = {3, 5, 6, 4, 5} and sample
sizes N = p+ 2, 200, 500, with p =

∑m
`=1 k`×p

∗
` .

m+

N 0 1 2 4 6 10

k` + 0, p∗` + 0, p = 73

p+ 2 3.81×10−6 1.61×10−8 1.57×10−13 1.14×10−21 2.24×10−27 4.53×10−40

p+ 200 6.64×10−7 6.61×10−9 5.43×10−15 2.03×10−21 2.09×10−28 9.91×10−43

p+ 500 1.58×10−7 1.66×10−9 1.82×10−15 7.74×10−23 1.86×10−30 3.79×10−46

k` + 2, p∗` + 0, p = 119

p+ 2 1.39×10−6 3.35×10−9 4.07×10−14 1.39×10−21 5.16×10−29 1.00×10−43

p+ 200 4.80×10−7 2.78×10−9 2.26×10−14 6.90×10−22 2.09×10−29 2.40×10−44

p+ 500 1.37×10−7 8.61×10−10 3.48×10−15 3.46×10−23 3.29×10−31 3.67×10−47

k` + 5, p∗` + 0, p = 188

p+ 2 5.50×10−7 7.93×10−10 6.19×10−15 4.93×10−23 3.95×10−31 3.17×10−47

p+ 200 3.19×10−7 1.10×10−9 8.81×10−15 9.96×10−23 1.07×10−30 1.42×10−46

p+ 500 1.12×10−7 4.31×10−10 2.02×10−15 9.19×10−24 3.89×10−32 7.89×10−49

k` + 2, p∗` + 2, p = 171

p+ 2 6.57×10−7 1.05×10−9 3.25×10−15 2.49×10−23 2.25×10−31 2.55×10−47

p+ 200 3.44×10−7 1.33×10−9 2.73×10−15 2.87×10−23 3.31×10−31 5.50×10−47

p+ 500 1.16×10−7 4.92×10−10 4.57×10−16 1.95×10−24 8.74×10−33 2.10×10−49

k` + 2, p∗` + 5, p = 249

p+ 2 3.50×10−7 3.68×10−10 5.29×10−16 1.36×10−24 4.43×10−33 7.49×10−50

p+ 200 2.61×10−7 6.53×10−10 7.82×10−16 3.81×10−24 2.29×10−32 1.18×10−48

p+ 500 1.06×10−7 2.98×10−10 1.69×10−16 4.17×10−25 1.23×10−33 1.43×10−50

k` + 5, p∗` + 2, p = 270

p+ 2 2.38×10−7 2.28×10−10 5.34×10−16 1.13×10−24 2.43×10−33 1.28×10−50

p+ 200 1.90×10−7 4.31×10−10 1.78×10−15 4.88×10−24 1.93×10−32 3.20×10−49

p+ 500 8.00×10−8 2.06×10−10 3.53×10−16 7.31×10−25 1.40×10−33 5.37×10−51

k` + 5, p∗` + 5, p = 393

p+ 2 9.00×10−8 5.69×1011 2.98×10−17 1.40×10−26 7.15×10−36 2.13×10−54

p+ 200 9.26×10−8 1.35×10−10 8.75×10−17 1.03×10−25 1.25×10−34 1.93×10−52

p+ 500 4.72×10−8 7.98×10−11 3.32×10−17 2.48×10−26 1.82×10−35 1.00×10−53

p+ 1000 2.09×10−8 3.81×10−11 9.49×10−18 3.62×10−27 1.31×10−36 1.68×10−55

with
X`j ∼ Np∗`

(
µ
`j
,∆`

)
j = 1, . . . , k`

for some positive-definite matrix ∆` and some real p∗`×1 vector µ
`j

, and with

Cov
(
X`j , X`′j′

)
= 0p∗`×p∗`′

for either ` = `′ or ` 6= `′, with j 6= j′ if ` = `′.

To keep things not too much involved, mainly in terms of easiness of expo-
sition and to restrain the number of possible scenarios, while at the same time
being able to give a view of a quite wide variety of situations under the alternative
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hypothesis, we considered a case with m = 2 and k1 = 2 and k2 = 3 with p∗1 = 5
and p∗2 = 2, with

∆1 =




1 1/2 1/3 1/4 1/5

1/2 2 2/3 2/4 2/5

1/3 2/3 3 3/4 3/5

1/4 2/4 3/4 4 4/5

1/5 2/5 3/5 4/5 5




and ∆2 =

[
1 1/2

1/2 2

]
,

where the choice of ∆1 and ∆2 did not obey to any other particular criteria than
that of being two positive-definite matrices.

In the next two subsections we will perform power studies for the cases of
violation of the hypothesis of equality of the diagonal blocks within each block
of k` matrices and the hypothesis of independence generating for each scenario
1 000 000 pseudo random samples of size 29.

6.1. Violation of the equality hypothesis

In order to implement the violation of the hypothesis of equality of the
diagonal blocks inside each Ik` ⊗∆` block (` = 1, 2), we considered 40 different
scenarios, with Σ covariance matrices of the form




δ11∆1 0 0 0 0

0 δ12∆1 0 0 0

0 0 δ21∆2 0 0

0 0 0 δ22∆2 0

0 0 0 0 δ23∆2




with δ11, δ12, δ21, δ22 and δ23 assuming the values in Table 3. In this Table are
also defined the values for δ∗1 and δ∗2 . These new parameters summarize in a
single value, respectively, the variability of the combinations of the values of δ11,
δ12 and δ21, δ22, δ23. The values of δ∗1 and δ∗2 in Table 3 are defined based on

the rank of the values of
∑k`

i=1

(
1/δ`i − 1/ δ`

)2
, (` = 1, 2; k` = 2, 3), since this is

for our purpose a more adequate measure of dispersion of the values of δ1j and
δ2j (j = 1, . . . , k`; ` = 1, 2) than the usual variance. We will see that with this
choice for the definition of the values of δ∗1 and δ∗2 , the power of the test will
be an increasing function of the values of both δ∗1 and δ∗2 . The values δ11, δ12

and the values δ21, δ22, δ23 were indeed chosen in such a way that they would
generate a wide range of values of δ∗1 and δ∗2 that could show how the power of
the test behaves for this variety of values. We should remark that for δ∗1 = 1 and
δ∗2 = 1 we are under the null hypothesis in (1.2), while for any other combination
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of values of δ∗1 and δ∗2 we will be under various forms of the alternative hypothesis
due to the fact that for values of δ∗1 different from 1, the null hypothesis H1

03|1,2
in (2.5) is violated, since in these cases we have V ar(X11) 6= V ar(X12), while
for δ∗2 6= 1 it is the hypothesis H2

03|1,2 in (2.5) that is violated, since for δ∗2 6= 1

we have at least two of V ar(X21), V ar(X22) or V ar(X23) different. Increasing
values of either δ∗1 or δ∗2 indicate a larger departure from H0 in (1.2).

Table 3: Definition of the values for δ∗1 and δ∗2 .

δ∗1 ⇐⇒ δ11 δ12 δ∗2 ⇐⇒ δ21 δ22 δ23

1 1 1 1 1 1 1
2 1 2 2 1 1 2
3 1/2 2 3 1/2 1 2
4 1/3 2 4 1/2 1/2 2
5 1/3 3 5 1/3 1 2

6 1/3 1 3
7 1/3 1/3 2
8 1/3 1/3 3

In Tables 4 and 5 we may analyze the power values for different values
of δ∗1 and δ∗2 , respectively for α = 0.05 and α = 0.01. We may note how for
δ∗1 = δ∗2 = 1, situation in which we are under the null hypothesis H0 in (1.2), we
obtain a value for power which coincides with the α value, showing the unbiased-
ness characteristic of the test. We may also see how power has a good rate of
convergence towards 1 for increasing values of δ∗1 and δ∗2 .

Table 4: Power values, rounded to three decimal places, for α = 0.05 and
different values of δ∗1 and δ∗2 .

δ∗2
1 2 3 4 5 6 7 8

1 0.050 0.113 0.309 0.512 0.545 0.833 0.845 0.983
2 0.170 0.293 0.556 0.736 0.769 0.939 0.942 0.996

δ∗1 3 0.805 0.888 0.967 0.988 0.992 0.999 0.999 1.000
4 0.988 0.995 0.999 1.000 1.000 1.000 1.000 1.000
5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 5: Power values, rounded to three decimal places, for α = 0.01 and
different values of δ∗1 and δ∗2 .

δ∗2
1 2 3 4 5 6 7 8

1 0.010 0.030 0.118 0.259 0.278 0.605 0.634 0.927
2 0.050 0.109 0.290 0.482 0.513 0.802 0.816 0.975

δ∗1 3 0.559 0.696 0.871 0.941 0.954 0.992 0.992 1.000
4 0.940 0.970 0.993 0.998 0.999 1.000 1.000 1.000
5 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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In Figure 4 we present smoothed surface and line plots of the power values
for the cases considered in Tables 4 and 5.

α = 0.05

a) b)

∆1
*
= 1

∆1
*
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Figure 4: a) Smoothed surface plots and b) non-smoothed profile plots for
different values of δ∗1 and running value of δ∗2 , for the values of
power for the violation of the hypothesis of equality of diagonal
blocks within each Ik`

⊗∆` block (` = 1, 2).

6.2. Violation of the independence hypothesis

To implement the violation of the independence hypothesis, we consider 65
different scenarios with covariance matrices of the form




∆1 γ1C1 0 0 0

γ1C1 ∆1 0 0 0

0 0 ∆2 γ21C2 γ22C2

0 0 γ21C2 ∆2 γ23C2

0 0 γ22C2 γ23C2 ∆2



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where

C1 =
1

10




1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9


 and C2 =

1

10

[
1 2
2 3

]
,

and where γ1 assumes the values 0.0, 1.0, 1.5, 1.75 and 1.95 and γ21, γ22 and γ23

assume the values in Table 6.

While for γ1 = 0 we have the hypothesis H1
02|1, of independence between

X11 and X12, confirmed, for values of γ1 different from zero we will be under
the alternative hypothesis, since then the independence between these two sets
of variables will be violated, with increasing values of γ1 indicating an “increas-
ing non-independence” of these two sets of variables, or equivalently, decreasing
values of the determinant of the matrix

Σ1 =

[
∆1 γ1C1

γ1C1 ∆1

]
.

In what concerns the values of γ21, γ22 and γ23, we will have the hypoth-
esis of independence among X21, X22 and X23 confirmed when all these three
parameters are equal to zero, and we will be under the alternative hypothesis if
at least one of them is different from zero, with

γ21 6= 0 =⇒ Cov(X21, X22) = γ21C2 6= 0 ,
γ22 6= 0 =⇒ Cov(X21, X23) = γ22C2 6= 0 ,
γ23 6= 0 =⇒ Cov(X22, X22) = γ23C2 6= 0 .

In order to define a hierarchy of the triplets of values of these three parameters,
we compute the determinant of the matrix

Σ2 =




∆2 γ21C2 γ22C2

γ21C2 ∆2 γ23C2

γ22C2 γ23C2 ∆2


 .

Values for |Σ2|, as a function of the values of γ21, γ22 and γ23 are shown in Table
6. These values are listed in decreasing order of |Σ2| and they are used to define
the values of the new parameter γ∗, with increasing values of γ∗ corresponding
to decreasing values of |Σ2|. The parameter γ∗ is then used ahead in Tables 7
and 8 and Figure 5.

Then, while for γ∗ = 1 we will be under the null hypothesis H2
02|1 of inde-

pendence among the sets of variables X21, X22 and X23, for increasing values of
γ∗ we will be increasingly further away from this null hypothesis.

We may see by looking at Tables 7 and 8 how the values for power give
the value of α for γ1 = 0 and γ∗ = 1, situation in which we are under the null
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Table 6: Definition of the values of γ∗ for the different values of the pa-
rameters γ∗21, γ∗22 and γ∗23.

γ21 0.0 3.0 3.5 4.0 3.0 3.0 3.5 4.5 4.0 4.5 3.5 4.95 4.95
γ22 0.0 0.0 0.0 0.0 3.0 3.0 3.5 0.0 4.0 4.5 3.5 0.0 4.95
γ23 0.0 0.0 0.0 0.0 3.0 0.0 3.5 0.0 4.0 4.5 0.0 0.0 4.95

|Σ2| 5.359 3.405 2.706 1.904 1.843 1.479 1.121 1.001 0.534 0.142 0.105 0.105 0.001

γ∗ 1 2 3 4 5 6 7 8 9 10 11 12 13

Table 7: Power values, rounded to three decimal places, for α = 0.05 and
different values of γ1 and γ∗.

γ1
γ∗ 1 2 3 4 5 6 7 8 9 10 11 12 13

0.0 0.050 0.153 0.217 0.362 0.379 0.483 0.605 0.672 0.864 0.994 1.000 1.000 1.000
1.0 0.108 0.249 0.346 0.511 0.523 0.632 0.732 0.793 0.923 0.998 1.000 1.000 1.000
1.5 0.311 0.523 0.629 0.773 0.773 0.854 0.901 0.938 0.981 1.000 1.000 1.000 1.000
1.75 0.666 0.833 0.892 0.951 0.947 0.975 0.984 0.993 0.998 1.000 1.000 1.000 1.000
1.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 8: Power values, rounded to three decimal places, for α = 0.01 and
different values of γ1 and γ∗.

γ1
γ∗ 1 2 3 4 5 6 7 8 9 10 11 12 13

0.0 0.010 0.039 0.070 0.144 0.161 0.222 0.338 0.383 0.659 0.967 0.996 0.996 1.000
1.0 0.027 0.086 0.137 0.247 0.265 0.351 0.474 0.531 0.771 0.984 0.999 0.999 1.000
1.5 0.115 0.257 0.350 0.509 0.521 0.626 0.725 0.785 0.916 0.997 1.000 1.000 1.000
1.75 0.378 0.591 0.689 0.818 0.816 0.887 0.923 0.953 0.986 1.000 1.000 1.000 1.000
1.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

hypothesis H0 in (1.2), while for all other combinations of values of these two
parameters the value of power increases as the values of γ∗ and/or γ1 increase,
easily reaching 1.

In Figure 5 we present smoothed surface and line plots of the power values
for the cases considered in Tables 6 and 7. From the plots in this Figure and the
values in Tables 7 and 8 we may see how power attains the value 1 for the larger
values of γ1 and γ∗, as expected. We may also note that as in the case of the
previous subsection, for γ1 = 0 and γ∗ = 1, in which case we are under the null
hypothesis, the value of the power equals the α value considered, showing again
the unbiasedness characteristic of the test.



26 Bárbara R. Correia, Carlos A. Coelho and Filipe J. Marques
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Figure 5: a) Smoothed surface plots; and b) non-smoothed profile plots,
for the different values of γ1 and running value of γ∗, for the
values of power in Tables 7 and 8.

7. CONCLUSIONS

The procedure developed in this paper makes it possible to test elaborate
covariance structures such as the HBM spherical structure through the use of
very precise near-exact approximations. The testing procedure is based on an
adequate decomposition of the overall null hypothesis into a sequence of sub-
hypotheses, in our case the ones used to test the independence of several groups
of variables and the equality of several covariance matrices in different sequences
of covariance matrices. This decomposition of the null hypothesis allows us to
obtain the likelihood ratio test statistic, the expression of its h-th moment and
the expression of the characteristic function of its logarithm. Furthermore, the
suitable decomposition of the null hypothesis also induces a factorization of this
characteristic function which is the basis for the development of the near-exact
approximations. These approximations can be easily implemented since there
are already computational modules available in the internet for the two main
distributions involved, which are the GNIG and GIG distributions.
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The high precision of the near-exact distributions, which was assessed in
the numerical studies section, makes them an efficient tool to obtain p-values and
quantiles for the test statistic, even in cases where the sample size is very small
and/or the number of variables is large.

Power studies conducted through simulations show the unbiased nature of
the test as well as its good power properties, reaching rapidly powers close to 1
in the different scenarios considered.

The procedure developed may be very useful to address other, eventually,
more complex structures. A natural extension of this framework is to consider
the same global structure but for complex Normal random variables or even for
quaternion random variables. Other possible extension is to consider specific
structures for the block-diagonal covariance matrices such as the circular or the
compound symmetry structures.
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APPENDICES

APPENDIX A – Obtaining the expression of the l.r.t. statistc Λ, asso-
ciated with the null hypothesis H0 in (1.2), by using the definition of
likelihood ratio statistic

Let us consider the vector X ∼ Np

(
µ,Σ

)
and let us suppose that we have a

sample of size N from X. The l.r.t statistic Λ associated with the HBM sphericity
test is defined by

(A.1) Λ =
supL0

supL1

where L0 is the likelihood function when the parameter space is under H0 in (1.2)
and L1 is the likelihood function under the alternative hypothesis.

The likelihood function associated with the sample is

(A.2) L
(
x1, . . . , xN ;µ; Σ

)
=

1

(2π)
Np
2 |Σ|

N
2

e
− 1

2
tr
(
(X−EN1µ

T )Σ−1(X−EN1µ
T )

T
)
,
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where Ers denotes a matrix of 1’s of dimension r×s.

Let then L0 = L0

(
x1, . . . , xN ;µ; Σ|Ho

)
= log

(
L0

(
x1, . . . , xN ; Σ|Ho

))
. From

(A.2) we have

L0 = −Np
2

log (2π)− N

2
log
∣∣Σ|Ho

∣∣− 1

2
tr
((
X−EN1x

T
)

Σ−1
|Ho
(
X−EN1x

T
)T)

− 1

2
tr
((
EN1x

T−EN1µ
T
)

Σ−1
|Ho
(
EN1x

T−EN1µ
T
)T)

.

As
tr
((
X − EN1x

T
)

Σ−1
|Ho
(
X − EN1x

T
)T)
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the function L0 can be written as

L0 = −Np
2

log (2π)− N
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∣∣− 1

2
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.

Given that
∣∣Σ|Ho

∣∣ =
∣∣∣bdiag (Ik` ⊗∆`, ` = 1, ...,m)

∣∣∣ =
m∏
`=1

|Ik` ⊗∆`|

=
m∏
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|Ik` |
p∗` |∆`|k` =
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where ∆` is a matrix of order p∗` , and
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)

with

tr
(
AΣ−1
|Ho

)
= tr

(
A . bdiag

(
Ik` ⊗∆−1

` , ` = 1, . . . ,m
))

=
m∑
`=1

tr
(
A``

(
Ik` ⊗∆−1

`

))

=
m∑
`=1

k∑̀
v=1

tr
(
Av``∆−1

`

)
,

we can write L0 as
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By solving the system of likelihood equations





∂L0
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∣∣∣
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we obtain the maximum likelihood estimators of µ and Σ under H0, which are,
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where A∗` =
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Under H1, the likelihood function is given by

L1
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)
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By solving the system of likelihood equations
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we conclude that
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Then, from (A.1), (A.3) and (A.4) we have

(A.5)

Λ =
supL0

(
xN ;µ; Σ|Ho

)

supL1

(
xN ;µ; Σ

)

=

(2π)−
Np
2 N

Np
2

{
m∏
`=1

k
Np`
2

`

}{
m∏
`=1

|A∗` |
− k`N

2

}
e−

Np
2

(2π)−
Np
2 N

Np
2 |A|−

N
2 e−

Np
2

=

{
m∏
`=1

k
Np`
2

`

}
|A|

N
2

m∏
`=1

∣∣A∗`
∣∣ k`N2

where the matrix A is the maximum likelihood estimator of Σ, A`` is the `-th
diagonal block of order p` = k` × p∗` of A (` = 1, ...,m), with p =

∑m
`=1p` and

A∗` = A1
`` + · · ·+Ak``` , where Av`` is the v-th (v = 1, ..., k`) diagonal block of order

p∗` of A``. We should note how expression (A.5) is the same as expression (2.11).
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APPENDIX B – Shape parameters

The shape parameters r`3;k in (3.5) are given by
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For the derivation of the expressions for these parameters see [14] and
references therein, making the necessary adjustments.

APPENDIX C – The Mathematica R© modules

The modules described in this Appendix are available at the web-page
https://sites.google.com/site/nearexactdistributions/hyper-block-matrix-sphericity and
may be downloaded from this web-page.
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C.1 - Computation of the p.d.f. and c.d.f. of the near-exact distributions

The modules made available for the computation of the p.d.f. and c.d.f.
of the near-exact distributions for Λ are called, respectively, NEpdf and NEcdf.
These modules have 4 mandatory arguments, which are:

– the sample size,

– a list with the values of p∗` (` = 1, . . . ,m),

– a list with the values of k` (` = 1, . . . ,m),

– the running value where the p.d.f. or c.d.f. is to be computed,

and which have to be given in this order; and 5 optional arguments, which are:

– nm: the number of exact moments to be matched by the near-exact distri-
bution, that is, the value of m+ in (4.1) and (4.4)–(4.9) (default value: 4),

– prec1: the number of digits used to print the value of the p.d.f. or c.d.f.
(default value: 10),

– prec2: the number of precision digits used in the computation of the p.d.f.
or c.d.f. (default value: 200),

– prec3: the number of precision digits used to store the m+ exact moments
of W = − log Λ computed (default value: 200),

– prec4: number of precision digits used in the computation of the m+ exact
moments of W = − log Λ by the module that does this computation (de-
fault value: 1500).

These optional arguments may be given in any order, but they will have to be
called by their names, as it is exemplified below. If not used, they will assume
their default values.

These modules use a number of other modules available on the same web-
page which compute the weights πj and the rate parameter θ in (4.1), the shape
and rate parameters in Φ1(t) as well as other shape and rate parameters involved
in the expressions of the near-exact p.d.f. and c.d.f.. The module that computes
the weights πj uses another module which computes the exact moments of W =
− log Λ by applying a numerical method to the exact c.f. of W in (3.1).

For example to compute the near-exact c.d.f. of Λ, on a value near the 0.05
quantile, for a case with the same parameters as those used for the examples for
which we computed power in Section 6, which was a case with m = 2, p∗1 = 5,
p∗2 = 2, k1 = 2 and k2 = 3, using the default values for all optional arguments,
we would use the first command in Figure 6. The second command in that same
figure uses the option prec1 in order to obtain an output with more digits. The
options named prec2, prec3, and prec4, will usually not be necessary, unless
one suspects from lack of precision in the result obtained, which may happen in
cases where the number of variables or the sample size are very large. This fact
is illustrated with the third command in Figure 6, where although 500 precision
digits are requested for the internal representation of the exact moments of W ,
the result obtained is exactly the same as the one obtained with the second
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'

&

$

%
Figure 6: Mathematica R© commands to be used with the module NEcdf

command. The fourth command in Figure 6 illustrates, together with the third
one that the order in which the optional arguments are given is arbitrary.

We remark that, for a given level α, we should reject the null hypothesis
when the computed value of the l.r.t. statistic is lower than the α-quantile of the
l.r.t. statistic. As such, the computation of the c.d.f. for the l.r.t. statistic also
gives automatically the p-value.

We may note the extremely low values that these quantiles attain. This is
due to the fact that we chose to use the ‘complete’ l.r.t. statistic, that is, the l.r.t.
statistic with its exponent N/2. This is indeed the case why some authors chose
to use l.r.t. statistics without this exponent, to make these values not so close
to zero, what in some cases may cause some numerical problems. But indeed
this poses absolutely no problems to the computation of the near-exact p.d.f.’s
or c.d.f.’s.

The computation of quantiles is done with the module Quant. Given the
sample size and the values for p∗` and k` (` = 1, . . . ,m), the module generates,
by default, 10 pseudo-random samples, under the null hypothesis of hyper-block
sphericity in (1.2), using then the empirical α-quantile as a ‘starting value’ for a
Newton-type method, which will find the approximate near-exact quantile using
the values of the near-exact p.d.f. and c.d.f. computed on the successive iteration
values.

This module has 5 mandatory arguments which first one is the α value for
the quantile and which last 4 are exactly the same as the 4 mandatory arguments
for the modules NEpdf and NEcdf, given in the exact same order. This module
also has 8 optional arguments, which are:

– nm: the number of exact moments to be matched by the near-exact dis-
tribution, that is, as for NEpdf and NEcdf, the value of m+ in (4.1) and
(4.4)–(4.9) (default value: 4),

– prec1: the number of digits used to print the value of the quantile (default
value: 10),

– prec2: the number of precision digits used in the computation of the p.d.f.
or c.d.f. for the implementation of a Newton-type method (default value:
400),
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– prec3: the number of precision digits used to store the m+ exact moments
of W = − log Λ computed (default value: 200),

– prec4: number of precision digits used in the computation of the m+ exact
moments of W = − log Λ by the module that does this computation (de-
fault value: 1500)

– eps: the value of the minimum upper-bound for two consecutive quantile
approximations obtained from the Newton-type method; if those two con-
secutive approximations differ a quantity that is less than eps, the process
stops, giving as result the last approximation found (default value: 10−6

times the ‘starting value’)

– nsamp: the number of pseudo-random samples generated by the module to
obtain the ‘starting value’ (default value: 10).

'

&

$

%
Figure 7: Mathematica R© commands to be used with the module Quant

In Figure 7 we present a few commands that may be used with the module
Quant to compute the 0.05 quantile of Λ for the same scenario considered in Figure
6. The first command uses all optional arguments with their default values, which
will be adequate for most cases. The second command uses the optional argument
prec1 to request 20 digits, instead of 10, for the approximate 0.05 quantile. We
may see that when this second command is repeated, as the third command in
Figure 7, the result obtained is different. There is indeed no problem, and for the
attentive reader there should be not much of a surprise. What happens is that
since we use for eps its default value, the precision obtained for the approximation
of the quantile should ensure at least 6 decimal digits correct. This is exactly
what happens. Indeed it seems that at least 11 digits are correct. Then the
fourth and fifth commands give the same result, which should be correct for all
digits displayed. They illustrate the fact that the order in which the optional
arguments are given is arbitrary and also that by giving the optional argument
eps a small enough value, in this case a value which would ensure that at least
21 digits of the approximate quantile are correct, we will always get the same
result.

There is also another module called Lambda, which may be used to compute
the value of the statistic Λ in (2.11) for a given dataset. This dataset has to be
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given in a file, with observations defining the rows and variables the columns.
This module has 3 mandatory arguments, which are:

– the name of the data file (including the path),

– a list with the values of p∗` (` = 1, . . . ,m),

– a list with the values of k` (` = 1, . . . ,m),

and which have to be given in this order.

Further details on these modules and their use are available at the web-page
https://sites.google.com/site/nearexactdistributions/hyper-block-matrix-sphericity.
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