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1. INTRODUCTION

Weibull distribution has wide applications in survival analysis, reliabili-
ty engineering, weather forecasting, hydrology, meteorology and insurance (e.g,
Murthy et al. [16], Ye et al. [26]). The cumulative distribution function (cdf) of
the two-parameter Weibull distribution, denoted by Weibull(β, η), is

F (x;β, η) = 1− e−(x/η)β , x > 0,

where β > 0 is the shape parameter and η > 0 is the scale parameter. In
particular, if β = 1, then the Weibull distribution simplifies as the exponential
distribution Exp(η) with mean η, and it becomes the Rayleigh distribution when
β = 2. In the case of β ≥ 10, the shape of Weibull distribution is close to that of
the smallest extreme value distribution (e.g, Nelson [17]).

Record values were first introduced by Chandler [11] as special order statis-
tics from random samples, which can be simply described as follows (For more
description, refer to Ahsanullah [1] and Arnold et al. [2]. Let {Xn, n = 1, 2, . . .}
be an iid (independent and identically distributed) sequence of continuous ran-
dom samples. Observation Xj is called an upper record if Xj > Xi for each i < j.
In addition, the record times sequence {Un, n ≥ 1} is defined by U1 = 1 with
probability 1 and Un = min{j : j > Un−1, Xj > XUn−1} for n ≥ 2. Thus, the
sequence {XUn , n ≥ 1} is called a sequence of upper record statistics. Lower
record statistics can be defined analogously.

Record values are commonly seen in real life applications, such as those in
meteorology, sports, economics and life tests (e.g., Ahsanullah [1] and Arnold et
al. [2]), where joint confidence region for unknown parameters is of great practical
significance. In the recent years, joint confidence regions based on records were
investigated by many authors, and most of their studies on record values are
related to Weibull distributions. For references, see, for example, Chan [10], Chen
[12], Murthy et al. [16], Soliman et al. [21], Wu and Tseng [25], Soliman and
Al-Aboud [20], Asgharzadeh et al. [3], Asgharzadeh and Abdi [4, 5, 6], Teimouri
and Nadarajah [22], Wang and Shi [23], Jafari and Zakerzadeh [13], Wang and
Ye [24], Zakerzadeh and Jafari [27], and Zhao et al. [30].

In the next section, we discuss the classical methods to build joint con-
fidence regions for parameters of Weibull(β, η) distribution, based on (upper)
record values. Then the minimum area confidence region (MACR) for (β, η)
based on records is established in section 3 and section 4. Comparison of these
confidence regions is given in section 5, showing that the proposed MACR is
superior to the classical confidence regions for having smaller expected area.
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2. Classical Confidence Regions Based on Records

Let XU1 < XU2 < · · · < XUn be the upper record values coming from
Weibull(β, η). For simplicity, we write XUi as Ri and let Yi = (Ri/η)β (i =
1, 2, . . . , n). Then Y1 < Y2 < · · · < Yn are the first n upper record values from
the standard exponential distribution. Arnold et al. [2] showed that Z1, . . . , Zn

are iid from Exp(1), that is, Z1, . . . , Zn
iid∼ Exp(1), where Zi = Yi − Yi−1 (i =

1, 2, . . . , n; Y0 ≡ 0). It follows that for j = 1, 2, . . . , n− 1,

(i) Uj = 2
∑j

i=1 Zi = 2(
Rj
η )β ∼ χ2

2j , Vj = 2
∑n

i=j+1 Zi = 2[(Rnη )β − (
Rj
η )β] ∼

χ2
2(n−j) and the two pivotal quantities are independent, where χ2

m denotes the
chi-square distribution with m degrees of freedom;

(ii) Uj + Vj = 2(Rnη )β ∼ χ2
2n ,

Vj/2(n−j)
Uj/2j

= j
n−j [(

Rn
Rj

)β − 1] ∼ F2(n−j),2j , and the

two pivotal quantities are independent (see Asgharzadeh and Abdi [5] , Johnson
et al. [15], p.350) where Fn1,n2 stands for the F -distribution with n1 and n2
degrees of freedom.

To build a joint confidence region for β and η, we have from (ii) that

P

[
F2(n−j),2j(α1) ≤

j

n− j
[(
Rn
Rj

)β − 1] ≤ F2(n−j),2j(α2)

]
=
√

1− α

for j = 1, 2, . . . , n− 1, and

P

[
χ2
2n(α1) ≤ 2(

Rn
η

)β ≤ χ2
2n(α2))

]
=
√

1− α,

where α1 = 1−
√
1−α
2 , α2 = 1+

√
1−α
2 , Fn1,n2(p) is the p quantile of Fn1,n2 and χ2

m(p)
is the p quantile of χ2

m. Then one type of the classical level 1−α confidence region
for (β, η) is given by (Asgharzadeh and Abdi [5])

(2.1) Aj :


log[1+n−j

j
F2(n−j),2j(α1)]

log(Rn/Rj)
≤ β ≤

log[1+n−j
j
F2(n−j),2j(α2)]

log(Rn/Rj)

Rn[ 2
χ2
2n(α2)

]
1
β ≤ η ≤ Rn[ 2

χ2
2n(α1)

]
1
β ,

where j = 1, 2, . . . , n− 1, and each Aj produces a level 1−α confidence region
for (β, η). Based on Monte Carlo simulation, Asgharzadeh and Abdi [5] observed
that Abn

5
c and Abn

5
c+1 provide the smallest confidence areas in most cases, where

bxc denotes the largest integer value smaller than x.

Noticing that U = 2β
∑n

i=1 log(Rn/Ri) ∼ χ2
2n−2 and V = 2(Rn/η)β ∼ χ2

2n,
which are independent, Jafari and Zakerzadeh [13] derived another type of the
classical level 1− α confidence region for (β, η):

(2.2) B :


χ2
2n−2(α1)

2
∑n
i=1 log(Rn/Ri)

≤ β ≤ χ2
2n−2(α2)

2
∑n
i=1 log(Rn/Ri)

Rn[ 2
χ2
2n(α2)

]
1
β ≤ η ≤ Rn[ 2

χ2
2n(α1)

]
1
β ,



Confidence Region for Weibull Distribution 5

where α1 = 1−
√
1−α
2 and α2 = 1+

√
1−α
2 . By simulation study, Jafari and Zak-

erzadeh [13] concluded that the expected area of the confidence region in (2.2) is
smaller than that in (2.1) proposed by Asgharzadeh and Abdi [5].

3. A Basic Theorem on the MACR

Let T = T (X) be a sufficient statistic of parameter θ = (β, η) with pdf
(probability density function) f(t; θ), where t ∈ T (X ) , θ ∈ Θ. Here, X denotes
the random sample with sample space X , and Θ is the parameter space.

According to the Sufficiency Principle in mathematical statistics (e.g., Bick-
el and Doksum [8], Casella and Berger [9], we only need to consider the confidence
region C(T ) based on sufficient statistic T = T (X), without loss of information
from the sample X. The purpose of using the sufficient statistic to simplify or
reduce the sample X to T = T (X), so that we have T (X ) = Θ to be used in the
following theorem. This theorem creates the MACR for θ under some restriction,
where |C| denotes the area of any confidence region C.

Theorem 3.1. Suppose that for any θ ∈ Θ,
1. T = T (X) is a sufficient statistic of θ with pdf f(t; θ), such that T (X ) = Θ;
2. there exists some p(θ) > 0, such that f̃(T ; θ) = f(T ; θ)/p(θ) is a pivotal
quantity;
3. the confidence region Ck(T ) is defined by

Ck(T ) = {θ : f̃(T ; θ) ≥ k, θ ∈ Θ},

where k > 0 is the critical value determined by P [θ ∈ Ck(T )] = 1 − α for any
α ∈ (0, 1).
Then Ck(T ) is the level 1− α MACR of θ, under restriction

(3.1)

∫
θ∈C(t)

dt ≤ rk(θ)|C(θ)|.

for any C(T ) and θ ∈ Θ, where rk(θ)=
∫

θ∈Ck(t)
dt/|Ck(θ)|.

Proof: Let C(T ) be any level 1 − α confidence region of θ, satisfying∫
θ∈C(t)

dt ≤ rk(θ)|C(θ)|. Then for any θ ∈ Θ,

1− α ≤ P [θ ∈ C(T )] =

∫
θ∈C(t)

[f(t; θ)− kp(θ)]dt+ kp(θ)

∫
θ∈C(t)

dt.
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It follows from P [θ ∈ Ck(T )] = 1− α that

≤ P [θ ∈ C(T )]− P [θ ∈ Ck(T )]

= dk(θ) + kp(θ)
[ ∫
θ∈C(t)

dt−
∫

θ∈Ck(t)

dt
]

≤ kp(θ)rk(θ)
[
|C(θ)| − |Ck(θ)|

]
,

where

dk(θ) =
( ∫
θ∈C(t)

dt−
∫

θ∈Ck(t)

dt
)

[f(t; θ)− kp(θ)]dt

=
( ∫
θ∈C(t)∩Ck(t)

−
∫

θ∈Ck(t)∩C(t)

)
[f(t; θ)− kp(θ)]dt ≤ 0

where C denotes the complementary set of C, and f(t; θ) − kp(θ) ≥ or ≤ 0 if
θ ∈ Ck(t) or θ ∈ Ck(t). It follows that |C(θ)| − |Ck(θ)| ≥ 0 or |Ck(θ)| ≤ |C(θ)|
for any θ ∈ Θ, which, together with T (X ) = Θ, implies that |Ck(T )| ≤ |C(T )|
for any T . The proof is complete.

This theorem extends the basic theorems in Zhang [28, 29], which are valid
for building the MACRs of parameters for normal and exponential distributions,
but are not for the Weibull(β, η) distribution. By Theorem 3.1, Ck(T ) is the
level 1−α optimal confidence region of θ, minimizing the area of any level 1−α
confidence region C(T ) under the restriction in (3.1). This restricted condition
may look complicated, but the MACR Ck(T ) does satisfy this condition, due to∫

θ∈Ck(t)

dt = rk(θ)|Ck(θ)|.

Moreover, there is no need to check which C(T ) is under the restriction. The
situation is like that of using Lehmann-Scheffé theorem to build the UMVUE
(uniformly minimum variance unbiased estimator), without need to check which
estimator is unbiased (e.g., Bickel and Doksum [8], Casella and Berger [9]).

A similar theorem was established in Jeyaratnam [14]. The minimum vol-
ume confidence region built by Jeyaratnam is based on a pivotal quantity T (X, θ)
such that for each x, T (x, θ) is a one-to-one map on Θ whose Jacobian J does
not depend on θ, and it is optimal for any level 1−α confidence region based on
the special pivotal quantity.
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4. Formulation of the MACR Based on Records

Based on n record values R1 < R2 < · · · < Rn from Weibull(β, η), we now
apply Theorem 3.1 to derive the MACR for parameter θ = (β, η). Let

Z =

n−1∑
i=1

log(Rn/Ri).

Then (Z,Rn) is a sufficient statistic for (β, η), according to Wang and Ye [24].
Being its equivalent statistic, T = (Z, logRn/Z) is also sufficient for (β, η). By
section 2, U = 2βZ ∼ χ2

2n−2 and V = 2(Rnη )β ∼ χ2
2n, which are independent.

Thus, (U, V ) has pdf fχ2
2n−2

(u)fχ2
2n

(v), u, v > 0, and the pdf of T = (T1, T2) is

f(t1, t2;β, η) = fχ2
2n−2

(2βt1)fχ2
2n

[2(
et1t2

η
)β]
∣∣∣ ∂(u, v)

∂(t1, t2)

∣∣∣, t1 > 0,

where fχ2
m

(x) (Fχ2
m

(x)) denotes the pdf (cdf) of χ2
m, U = 2βT1, V = 2( e

T1T2

η )β

and Jacobian | ∂(u,v)∂(t1,t2)
| = 4β2t1(

et1t2
η )β.

Treating R = (R1, R2, · · · , Rn) as the random sample X in section 3, we
can see that T = (Z, logRn/Z) is a sufficient statistic for θ = (β, η), satisfying
the conditions 1 and 2 in Theorem 3.1, where the pivotal quantity is

f̃(t1, t2;β, η) = fχ2
2n−2

(2βt1)fχ2
2n

[2(
et1t2

η
)β] · (2βt1) · 2(

et1t2

η
)β, t1 > 0.

Hence, the level 1− α MACR for (β, η) is Ck(T ) = {(β, η) : f̃(T1, T2;β, η) ≥ k}
or

(4.1) Ck(T ) = {(β, η) : g(βZ) + h((Rn/η)β) ≤ kα}.

where g(x) = x− (n− 1) log x and h(y) = y − n log y are both convex functions,
and kα is a critical value to be determined.

Let k(x) ≡ kα−g(x), k̃ ≡ kα−hmin and hmin = h(n). Then the confidence
region in (4.1) can be equivalently expressed as

Ck(T ) =

 g(βZ) ≤ k̃

h((Rn/η)β) ≤ k(βZ)

for computational purpose. From the property of convex function, g(βZ) ≤ k̃ is
equivalent to k1 ≤ βZ ≤ k2 with g(k1) = g(k2) = k̃, and h((Rn/η)β) ≤ k(βZ)
means k11(βZ) ≤ (Rn/η)β ≤ k12(βZ) with h(k11(βZ)) = h(k12(βZ)) = k(βZ).
Finally, the level 1− α MACR for (β, η) in (4.1) can be written as

(4.2) Ck(T ) =


k1/Z ≤ β ≤ k2/Z

Rn/[k12(βZ)]
1
β ≤ η ≤ Rn/[k11(βZ)]

1
β ,
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where g(x) = x − (n − 1) log x with g(k1) = g(k2) = k̃, h(y) = y − n log y with
h(k11(βZ)) = h(k12(βZ)) = k(βZ), and the critical value kα is determined by

1− α = P [(β, η) ∈ Ck(T )]

= P [g(βZ) + h((Rn/η)β) ≤ kα]

=

∫ ∞
0

∫ ∞
0

g(x)+h(y)≤kα

4fχ2
2n−2

(2x)fχ2
2n

(2y)dxdy

=

∫ k2

k1

∫ k12(x)

k11(x)
4fχ2

2n−2
(2x)fχ2

2n
(2y)dxdy

=

∫ k2

k1

2fχ2
2n−2

(2x)[Fχ2
2n

(2k12(x))− Fχ2
2n

(2k11(x))]dx,

where kα > gmin + hmin and h(k11(x)) = h(k12(x)) = kα − g(x). A short R code
(R Core Team [18]) for computing kα, k1, k2, k11(x), k12(x) in (4.2) is given in
Appendix A, where the last integral in the above equation is computed by using
Simpson’s rule for numerical integration (the interval [k1, k2] is split up into 1000
subintervals).

5. Comparison of Confidence Regions

In the statistical literature, the commonly used measure of accuracy for a
confidence region is its volume (area). Clearly, the smaller the volume (area),
the more accurate the confidence region. To compare the MACR in (4.1) or (4.2)
with the classical confidence regions in (2.1) and (2.2), we now discuss their areas
as follows.

Given the sample data of upper record values: R = (R1, R2, · · · , Rn), the
area of the classical confidence region in (2.1) is

|Aj | =
∫ log[1+

n−j
j F2(n−j),2j(α2)]
log(Rn/Rj)

log[1+
n−j
j F2(n−j),2j(α1)]
log(Rn/Rj)

Rn[(
2

χ2
2n(α1)

)
1
β − (

2

χ2
2n(α2)

)
1
β ]dβ,

where the integral can be computed by using Simpson’s rule for numerical inte-
gration.

Similarly, the area of the classical confidence region in (2.2) is

|B| =
∫ χ22n−2(α2)

2
∑n
i=1

log(Rn/Ri)

χ22n−2(α1)

2
∑n
i=1

log(Rn/Ri)

Rn[(
2

χ2
2n(α1)

)
1
β − (

2

χ2
2n(α2)

)
1
β ]dβ,
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and the area of the MACR in (4.1) or (4.2) is

|Ck(T )| =

∫ k2/Z

k1/Z
Rn[(

1

k11(βZ)
)
1
β − (

1

k12(βZ)
)
1
β ]dβ

=
Rn
Z

∫ k2

k1

[(
1

k11(x)
)
Z
x − (

1

k12(x)
)
Z
x ]dx.

Monte Carlo simulation is conducted to compute the expected areas of
confidence regions in (2.1), (2.2) and (4.1). Since η is the scale parameter of
Weibull(β, η), we can set η = 1 without loss of generality. We generate N = 1000

independent upper record values R(i) = (R
(i)
1 , R

(i)
2 , ..., R

(i)
n ) from Weibull(β, 1),

where i = 1, 2, ..., N . Then
∑N

i=1 |C(R(i))|/N is used to simulate E|C(R)|, the
expected area of C(R).

Table 1 lists the expected areas of confidence regions in (2.1), (2.2) and
(4.1), where A∗ stands for the smallest-area confidence region in (2.1), B repre-
sents the confidence region in (2.2), and Ck(T ) is the MACR in (4.1). We see
from Table 1 that the MACR is always the best for having the smallest expected
area.

Example 5.1. Roberts [19] gave the monthly maximal of one-hour av-
erage concentration of sulfur dioxide in pphm (parts per hundred million) from
Long Beach, California, for the years 1956 to 1974. The related upper record
values for the month of October is 26, 27, 40 and 41, where n = 4 and R4 = 41.

Chan [10] showed that Weibull(β, η) is a reasonable model for the data set.
Then the level 95% MACR for (β, η) in (4) is given by

Ck(T ) = {(β, η) : 0.8979β − 3 log(0.8979β) + (41/η)β − 4β log(41/η) ≤ kα}

with area 154.908, where kα = 1.297, k1 = 0.451 and k2 = 9.640 are obtained by
using the R code in Appendix A.

The level 95% confidence regions for (β, η) in (2.1) are

A1 = {(β, η) : 0.5826 ≤ β ≤ 11.9955, 41(0.1029)
1
β ≤ η ≤ 41(1.1318)

1
β },

A2 = {(β, η) : 0.1646 ≤ β ≤ 6.4905, 41(0.1029)
1
β ≤ η ≤ 41(1.1318)

1
β },

A3 = {(β, η) : 0.1720 ≤ β ≤ 58.9824, 41(0.1029)
1
β ≤ η ≤ 41(1.1318)

1
β }

with areas 195.118, 166.671 and 369.396 respectively.

The level 95% confidence region for (β, η) in (2.2) is

B = {(β, η) : 0.5305 ≤ β ≤ 9.0277, 41(0.1029)
1
β ≤ η ≤ 41(1.1318)

1
β }

with area 172.502. The plots of the confidence regions for MACR, A2 and B are
displayed in Figure 1, where the MACR has the smallest area and better shape.
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β
1− α n Region 0.25 0.5 1.0 1.2 1.5 2.0 3.0 5.0
0.90 5 A∗ 403.8 17.92 6.110 5.250 4.788 4.275 4.054 3.911

B 336.7 14.93 5.347 4.660 4.127 3.876 3.620 3.565
Ck(T ) 315.1 14.01 5.113 4.403 3.890 3.569 3.415 3.364

10 A∗ 214.6 10.17 2.982 2.525 2.253 2.064 1.926 1.893
B 140.0 6.644 2.384 2.123 1.881 1.756 1.648 1.618

Ck(T ) 108.7 6.392 2.232 1.889 1.793 1.651 1.549 1.546
15 A∗ 152.4 6.399 1.970 1.717 1.503 1.364 1.283 1.264

B 73.04 4.232 1.491 1.291 1.174 1.122 1.068 1.069
Ck(T ) 67.13 4.129 1.464 1.267 1.128 1.075 1.031 1.003

20 A∗ 108.1 4.788 1.434 1.233 1.110 1.028 0.973 0.952
B 55.59 2.741 1.067 0.962 0.900 0.854 0.788 0.780

Ck(T ) 45.46 2.605 1.035 0.908 0.876 0.789 0.767 0.744
30 A∗ 76.49 2.806 0.906 0.812 0.741 0.666 0.635 0.629

B 37.69 1.712 0.684 0.617 0.571 0.539 0.521 0.518
Ck(T ) 21.18 1.505 0.659 0.601 0.550 0.517 0.491 0.494

0.95 5 A∗ 697.9 27.58 8.752 7.528 6.373 5.800 5.417 5.228
B 578.3 22.50 7.254 6.413 5.559 5.167 4.787 4.743

Ck(T ) 509.4 21.82 6.919 6.050 5.258 4.756 4.471 4.408
10 A∗ 420.0 13.81 4.003 3.490 3.108 2.673 2.538 2.520

B 228.6 8.852 3.135 2.772 2.490 2.289 2.184 2.142
Ck(T ) 198.0 8.648 2.931 2.668 2.342 2.129 2.048 2.004

15 A∗ 336.2 9.370 2.714 2.326 2.006 1.817 1.682 1.670
B 138.0 6.083 2.057 1.756 1.615 1.494 1.412 1.393

Ck(T ) 111.1 5.490 1.911 1.685 1.530 1.420 1.311 1.299
20 A∗ 179.8 7.024 1.998 1.694 1.457 1.356 1.271 1.251

B 78.08 4.305 1.429 1.275 1.195 1.097 1.038 1.022
Ck(T ) 70.62 3.659 1.328 1.218 1.112 1.034 0.988 0.965

30 A∗ 112.8 3.929 1.278 1.093 0.987 0.890 0.845 0.830
B 50.17 2.508 0.925 0.825 0.766 0.714 0.693 0.675

Ck(T ) 39.10 2.265 0.911 0.780 0.722 0.676 0.646 0.643
0.99 5 A∗ 3731 71.42 16.96 13.87 11.68 9.785 8.808 8.413

B 2566 56.98 14.70 12.25 10.13 8.881 8.004 7.626
Ck(T ) 1541 45.17 11.68 10.10 8.757 7.533 6.943 6.690

10 A∗ 1022 29.63 7.443 5.990 5.039 4.394 4.002 3.943
B 568.6 19.05 5.510 4.588 4.046 3.675 3.424 3.349

Ck(T ) 434.5 16.75 5.099 4.293 3.778 3.368 3.147 3.054
15 A∗ 750.5 19.30 4.685 3.835 3.263 2.866 2.687 2.600

B 367.2 11.27 3.356 2.927 2.561 2.321 2.225 2.178
Ck(T ) 309.7 10.25 3.104 2.684 2.396 2.160 2.013 2.002

20 A∗ 477.4 13.45 3.479 2.863 2.507 2.159 1.993 1.946
B 212.1 7.883 2.496 2.174 1.889 1.741 1.634 1.600

Ck(T ) 179.1 7.291 2.292 1.968 1.772 1.624 1.533 1.482
30 A∗ 306.3 8.630 2.204 1.892 1.597 1.460 1.330 1.300

B 115.9 4.887 1.497 1.370 1.239 1.141 1.070 1.068
Ck(T ) 79.47 4.170 1.471 1.290 1.125 1.044 1.002 0.981

Table 1: Expected areas of confidence regions for (β, η) with η = 1.

For comparison, consider the confidence region (YSCR) of (β, η) in Chen
[12] for a complete sample X = (X1, X2, · · · , Xn). Here the original data set of
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X is (n = 19)

26, 14, 27, 15, 16, 16, 11, 10, 14, 12, 15, 40, 29, 13, 20, 41, 31, 28, 11.

Then Chen’s level 95% confidence region (YSCR) for (β, η) is
1.9056 ≤ β ≤ 6.6327,

(
2
∑n
i=1X

β
(i)

60.0972 )
1
β ≤ η ≤ (

2
∑n
i=1X

β
(i)

21.2138 )
1
β ,

which has area 34.2436 and is also plotted in Figure 1. Clearly, the YSCR is
much more accurate, but it is based on a complete sample with n = 19.

0 5 10 15

0
20

40
60

80

beta

et
a

MACR
A2
B
YSCR

Figure 1: 95% confidence regions MACR, A2, B and YSCR for (β, η).

Appendix A: R code for computing kα, k1, k2, k11(x), k12(x) in (4.2)

# Compute the critical value k, k1, k2, k11(x), k12(x) at level Pk=1-c.

# n= sample size

f <- function(n,c) {a <- (n-1)*(1-log(n-1))+n*(1-log(n)); b <- 50

g <- function(x) x-(n-1)*log(x)

h <- function(y) y-n*log(y)

# Step 1: find k1 < k2 so that g(k1)=g(k2)=k-h(n).

k1k2 <- function(n,k) {a <- 0; b <- n-1

kk<- k-(n-n*log(n))
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for (i in 1:50) if (g((a+b)/2)<kk) b <- (a+b)/2 else a <- (a+b)/2

k1 <- (a+b)/2; a <- n-1; b <- n+100

for (i in 1:50) if (g((a+b)/2)<kk) a <- (a+b)/2 else b <- (a+b)/2

k2 <- (a+b)/2; c(k1,k2)}

# Step 2: find k11(x) < k12(x) so that h(k11(x))=h(k12(x))=k-g(x).

k11k12 <- function(n,k,x) {a <- 0; b <- n

kk<- k-g(x)

for (i in 1:50) if (h((a+b)/2)<kk) b <- (a+b)/2 else a <- (a+b)/2

k11x <- (a+b)/2; a <- n; b <- n+100

for (i in 1:50) if (h((a+b)/2)<kk) a <- (a+b)/2 else b <- (a+b)/2

k12x <- (a+b)/2; c(k11x,k12x)}

# Step 3: find k so that Pk=1-c.

Int<- function(n,k) {N <- 1000

K <- k1k2(n,k)

H <- (K[2]-K[1])/N; df <- 2*(n-1)

P <- function(x) {

KK <-k11k12(n,k,x)

2*dchisq(2*x,df)*(pchisq(2*KK[2],2*n)-pchisq(2*KK[1],2*n))}

x1 <- K[1]+((1:N)-0.5)*H ; x2 <- K[1]+(1:(N-1))*H

s1<-0; s2<-0

for (j in 1:N) s1<- s1+P(x1[j])

for (j in 1:(N-1)) s2<- s2+P(x2[j])

Pk <- H/6*(P(K[1])+P(K[2])+4*s1+2*s2); c(Pk,K) }

for (i in 1:100) {

R <- Int(n,(a+b)/2)

if (R[1]<1-c) a <-(a+b)/2 else b<-(a+b)/2}

k <- (a+b)/2; list(k=k,k1=R[2],k2=R[3])}
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Mathematics, special issue, 149-161.

[4] Asgharzadeh, A. and Abdi, M. (2011a). Exact confidence intervals and joint
confidence regions for the parameters of the Gompertz distribution based on
records, Pakistan Journal of Statistics, 27, 1, 55-64.

[5] Asgharzadeh, A. and Abdi, M. (2011b). Joint confidence regions for the pa-
rameters of the Weibull distribution based on records, ProbStat Forum, 4, 12-24.

[6] Asgharzadeh, A. and Abdi, M. (2011c). Confidence intervals and joint confi-
dence regions for the Two-Parameter Exponential distribution based on records,
Communications of the Korean Statistical Society, 18, 1, 103-110.

[7] Asgharzadeh, A. and Abdi, M. (2012). Confidence intervals for the parameters
of the Burr Type XII distribution based on records, International Journal of
Statistics and Economics, 8, 96-104.

[8] Bickel, P. J. and Doksum, K. A. (2001). Mathematical Statistics: Basic Ideas
and Selected Topics, Vol I, 2nd ed. New Jersey: Prentice Hall.

[9] Casella, G. and Berger, R. L. (2002). Statistical Inference, 2nd ed. Pacific
Grove, CA: Duxbury Press.

[10] Chan, P. S. (1998). Interval estimation of location and scale parameters based
on record values, Statistics and Probability Letters, 37, 49-58.

[11] Chandler, K. N. (1952). The distribution and frequency of record values, Jour-
nal of the Royal Statistical Society Series B, 14, 220-228.

[12] Chen, Z. M. (1998). Joint estimation for the parameters of Weibull distribution,
Journal of Statistical Planning and Inference , 66, 113-120.

[13] Jafari, A. A. and Zakerzadeh, H. (2015). Inference on the parameters of the
Weibull distribution using records, SORT , 39, 1, 3-18.

[14] Jeyaratnam, S. (1985). Minimum volume confidence regions, Statistics & Prob-
ability Letters , 3, 307-308.

[15] Johnson, N. L.; Kotz, S. and Balakrishnan, N. (1994). Continuous uni-
variate distributions, Volume 1, 2nd edition, Wiley & Sons, New York.

[16] Murthy, D.N.P.; Xie, M. and Jiang, R. (2004). Weibull models, Wiley, Hobo-
ken.

[17] Nelson, W. (1982). Applied life data analysis, John Wiley & Sons, INC., New
York.

[18] R Core Team (2014). R: A language and environment for statistical comput-
ing, R Foundation for Statistical Computing, Vienna, Austria. http://www.R-
project.org/.

[19] Roberts, E. (1979). Review of statistics of extreme values with applications
to air quality data: Part II. applications, Journal of the Air Pollution Control
Association, 29, 733-740.

[20] Soliman, A. A. and Al-Aboud, F. M. (2008). Bayesian inference using record
values from Rayleigh model with application, European Journal of Operational
Research, 185, 659-672.



14 Junmei Zhou, Fen Jiang and Jin Zhang

[21] Soliman, A. A.; Abd Ellah, A. H. and Sultan, K. S. (2006). Comparison of
estimates using record statistics from Weibull model: bayesian and non-bayesian
approaches, Computational Statistics & Data Analysis, 51, 2065-2077.

[22] Teimouri, M. and Nadarajah, S. (2013). Bias corrected MLEs for the Weibull
distribution based on records, Statistical Methodology, 13, 12-24.

[23] Wang, L. and Shi Y. M. (2013). Reliability analysis of a class of exponential
distribution under record values, Journal of Computational and Applied Mathe-
matics, 239, 367-379.

[24] Wang, B. X. and Ye, Z. S. (2015). Inference on the Weibull distribution based
on record values, Computational Statistics & Data Analysis, 83, 26-36.

[25] Wu, J. W. and Tseng, H. C. (2006). Statistical inference about the shape
parameter of the Weibull distribution by upper record values, Statistical Papers,
48, 95-129.

[26] Ye, Z.S.; Hong, Y. and Xie, Y. (2013). How do heterogeneities in operating
environments affect field failure predictions and test planning, The Annals of
Applied Statistics, 7, 4, 2249-2271.

[27] Zakerzadeh, H. and Jafari, A. A. (2015). Inference on the parameters of two
Weibull distributions based on record values, Statistical Methods and Applica-
tions, 24, 25-40.

[28] Zhang, J. (2017). Minimum-volume confidence sets for parameters of normal
distributions, AStA-Advances in Statistical Analysis, 101, 309-320.

[29] Zhang, J. (2018). Minimum volume confidence sets for two-parameter exponen-
tial distributions, The American Statistician, 72, 3, 213-218.

[30] Zhao, X.; Cheng, W. B; Zhang, Y.; Zhang, Q. N. and Yang, Z. H. (2015).
New statistical inference for the Weibull distribution, The Quantitative Methods
for Psychology, 11, 3, 139-147.


