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1. INTRODUCTION

Ranked set sampling (RSS), a data collection scheme, was first implemented
by [9] as a good competitor to simple random sampling (SRS) scheme to estimate
the mean of Australian pasture yields in agricultural experimentation. Due to
its importance to other situations and for a variety of applications in statistics
[9] is reprinted in [10]. RSS scheme has recently been getting some attention
from researchers working in statistical process control. [11] and [12] for example,
proposed different run rules for control charts under different RSS schemes. [19]
studied the EWMA control chart for monitoring linear profiles under various RSS
schemes. For discussions of some other situations where RSS found applications,
see [17], [4], [18], [14], [5], and [13].

[9, 10] claimed that the RSS mean is an unbiased estimator of the popula-
tion mean and the variance of the RSS mean is smaller than in simple random
sampling (SRS) with equal measurement elements. This sampling scheme is use-
ful when it is difficult to measure large number of elements but visually (without
inspection) ranking some of them is easier. It involves randomly selecting m sets
(each of size m elements) from the study population. The elements of each set are
ordered with regards to the study variable, say X, by any negligible cost method
or visually without measurements. Finally, the ith minimum from the ith set,
i = 1, 2, . . . ,m, are identified for measurement. The obtained sample is called a
ranked set sample of set size m. It is worth to observe that visual ranking with
large set size is prone to ranking errors. In practice, the set size should be small
(m =2, 3, or 4). For more details see [1], [8], and [21].

[25] provided the mathematical theory behind the claims of [9, 10]. They
proved the following identities:

1. f(x) = 1
m

∑m
i=1 fX(i)

(x).

2. µ = 1
m

∑m
i=1 µi.

3. σ2 = 1
m

∑m
i=1 σ

2
i + 1

m

∑m
i=1(µi − µ)2.

where µ is the mean and σ2 is the variance of the study population f(x) and
µi and σ2i are the mean and the variance of the ith ordered statistic. They also
showed that the efficiency of the RSS mean with respect to (w.r.t.) SRS, defined
by the ratio of the variances of the two sample means, is bounded by 1 and m+1

2 .
In particular, when the study population is degenerate then the efficiency is 1,
and when the study population is uniform then the efficiency is m+1

2 .

As claimed by [9, 10] it is later shown in the literature that estimators
calculated based on RSS are more efficient than their counterpart in SRS. For
example, [24] showed that the empirical distribution function based on RSS is
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more efficient than its counterpart in SRS. Some authors estimate the parameters
of a specific distribution using RSS, see for example [2] and [22].

For improving the efficiency of estimators, some variations of RSS were
proposed. [1] suggested double RSS (DRSS), as a method that improves efficiency
of the RSS estimators while keeping m fixed. They reported that the RSS mean
estimator is less efficient than that based on DRSS. Median RSS (MRSS) is a
modification of RSS proposed by [15] to decrease ranking error and to improve the
efficiency of the estimators being estimated. The procedure of MRSS is similar to
RSS but in lieu of identifying the ith minimum from the ith set only the median

of each set is identified. Given odd set size m, the
(
m+1
2

)th
smallest element is

identified from each set for measurement. When m is even, from the first m
2 sets

the
(
m
2

)th
smallest element is identified for measurement and from the second m

2

sets the
(
m
2 + 1

)th
smallest element is identified for measurement. [20] suggested

a double MRSS (DMRSS) as an alternative procedure to improve the efficiency of
the sample mean. They compared the DMRSS with SRS, RSS, DRSS, and some
other sampling schemes and found that DMRSS is the most efficient scheme.

In the process of DMRSS, the data points are identified based on the data
points of MRSS. For example, if m is odd, the data points of the DMRSS are just
the medians of the data points of MRSS; that is, the data points of DMRSS are
the medians of the medians of the SRS. It is clear that identifying median of the
medians is a hard process, and this contradict the nature of RSS schemes which
require visual comparison without inspection (a rationale originally mentioned
by [9]). On the other hand, in the process of DRSS, the data points are identified
based on the data points of the RSS. For example, the first data point of DRSS
is the minimum of the RSS data points, which is easy to be identified visually
without inspection. [1] have shown by the degree of distinguishability and the
probability of perfect ranking that ranking an independent and identically (iid)
data points is harder than ranking ordered (but independent) data points. Thus,
getting a DMRSS is harder than a DRSS. In other words, DRSS is more practical
than DMRSS.

To improve the efficiency of RSS estimators, we suggest to combine MRSS
scheme with RSS scheme; that is, to apply the method of MRSS on the obtained
RSS data points. We shall call this method by mixed double-ranked set sampling
(MxDRSS).

Section 2 introduces notations and some basic results. MxDRSS is clarified
in Section 3. The practicality of this method is discussed and compared with other
methods in Section 4. Estimation of the population mean based on MxDRSS is
investigated in Section 5. Numerical results for specific distributions are presented
in Section 6. Finally, Section 8 concludes the paper.
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2. NOTATION AND SOME BASIC RESULTS

Let X be a continuous random variable with cumulative distribution func-
tion (cdf) F (x), probability density function (pdf) f(x), mean µ, and variance
σ2. Let X1, X2, . . . , Xm be a SRS from f(x), then Xi are iid as f(x). Note that
when f(x) is infinite, SRS and random sample are used synonymly.

Suppose Y
(1)
1 , Y

(1)
2 , . . . , Y

(1)
m be a RSS; that is Y

(1)
i is the ith order statistic

of the random sample X1, X2, . . . , Xm, where the superscript (1) represents stage
1. The cdf of Yi (See for example [3]) is given by

(2.1) FYi(y) = FX(i)
(y) =

m∑
k=i

(
m

k

)
F k(y) (1 − F (y))m−k , i = 1, 2, . . . ,m,

and the pdf of Yi is

(2.2) fYi(y) = m

(
m− 1

i− 1

)
F i−1(y) (1 − F (y))m−i f(y), i = 1, 2, . . . ,m.

Let Y
(2)
1 , Y

(2)
2 , . . . , Y

(2)
m be a DRSS; that is Y

(2)
i is the ith order statis-

tic of the RSS Y
(1)
1 , Y

(1)
2 , . . . , Y

(1)
m and each of Y

(2)
i are obtained from indepen-

dent ranked set samples of size m. Apparently, Y
(2)
1 , Y

(2)
2 , . . . , Y

(2)
m are the order

statistics of the independent (not identical) random variables Y
(1)
1 , Y

(1)
2 , . . . , Y

(1)
m .

Hence, the cdf of Y
(2)
i (See for example [6]) is given by

(2.3) F
Y

(2)
i

(y) =

m∑
l=i

∑
Sl

(
l∏

k=1

F
Y

(1)
jk

(y)

m∏
k=l+1

(
1 − F

Y
(1)
jk

(y)

))
,

where Sl is the set of the entire permutations (j1, j2, . . . , jm), of the integers
(1, 2, . . . ,m) for which j1 < j2 < · · · < jl, and jl+1 < jl+2 < · · · < jm ([6]). The

pdf of Y
(2)
i is the derivative of F

Y
(2)
i

(y).

Let W
(1)
1 ,W

(1)
2 , . . . ,W

(1)
m be a MRSS; that is

(2.4) W
(1)
i =


X(m+1

2
) if m is odd & i = 1, . . . ,m

X(m
2
) if m is even & i = 1, . . . , m2

X(m+2
2

) if m is even & i = m+2
2 , . . . ,m

The pdf of W
(1)
i is

(2.5) f
W

(1)
i

(x) =


fX

(m+1
2 )

(x) if m is odd & i = 1, . . . ,m

fX(m2 )
(x) if m is even & i = 1, . . . , m2

fX
(m+2

2 )
(x) if m is even & i = m+2

2 , . . . ,m
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Let W
(2)
1 ,W

(2)
2 , . . . ,W

(2)
m be a DMRSS; that is

W
(2)
i =


W

(1)

(m+1
2

)
if m is odd & i = 1, . . . ,m

W
(1)
(m
2
) if m is even & i = 1, . . . , m2

W
(1)

(m+2
2

)
if m is even & i = m+2

2 , . . . ,m

The pdf of W
(2)
i is

f
W

(2)
i

(x) =


f
W

(1)

(m+1
2 )

(x) if m is odd & i = 1, . . . ,m

f
W

(1)

(m2 )

(x) if m is even & i = 1, . . . , m2

f
W

(1)

(m+2
2 )

(x) if m is even & i = m+2
2 , . . . ,m

Referring to the procedures of MRSS and DMRSS, it is worth observing

that both W
(1)
i and W

(2)
i are independent over i.

3. MIXED DOUBLE-RANKED SET SAMPLNG

MxDRSS scheme is similar to DRSS but in stage 2 MRSS is applied in lieu
of RSS. The following steps describe the procedure of MxDRSS.

1. Choose m sets randomly of size m2 elements each from the study popula-
tion.

2. Apply the procedure of RSS on each set of Step 1 to acquire a RSS of size
m. This produces m ranked sets (each of size m).

3. Apply the procedure of MRSS on each ranked set in Step 2 to acquire a
second stage sample, which we call it a MxDRSS of size m.

4. Repeat Steps 1-3 independently h cycles, if needed, to acquire an MxDRSS
of size n = mh.

In order to clarify this procedure, it is helpful to refer to some illustrations.
First let us denote Xijk, i, j, k = 1, 2, . . . ,m for the units obtained by Step 1,
where i is for the number of sets and j × k is the size of the ith set. Xijk

are iid with common distribution function F (x) and density f(x). Second, let
Yij = X(ijj), i, j = 1, 2, . . . ,m be the units obtained by Step 2 (Yij denote the jth

order statistic from the ith set). Finally, the units obtained in step 3 are denoted
by Zi, i = 1, 2, . . . ,m. Tables 1 and 2 explain the procedure when m = 3 and 4,
respectively.
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Table 1: Mixed Double-Ranked Set Sampling: m = 3.

Step 1 Step 2 Step 3

X111, X112, X113 Y11 = X(111)

X121, X122, X123 Y12 = X(122) Z1 = Y(12)
X131, X132, X133 Y13 = X(133)

X211, X212, X213 Y21 = X(211)

X221, X222, X223 Y22 = X(222) Z2 = Y(22)
X231, X232, X233 Y23 = X(233)

X311, X312, X313 Y31 = X(311)

X321, X322, X323 Y32 = X(322) Z3 = Y(32)
X331, X332, X333 Y33 = X(333)

Table 2: Mixed Double-Ranked Set Sampling: m = 4.

Step 1 Step 2 Step 3

X111, X112, X113, X114 Y11 = X(111)

X121, X122, X123, X124 Y12 = X(122) Z1 = Y(12)
X131, X132, X133, X134 Y13 = X(133)

X141, X142, X143, X144 Y14 = X(144)

X211, X212, X213, X214 Y21 = X(211)

X221, X222, X223, X224 Y22 = X(222) Z2 = Y(22)
X231, X232, X233, X234 Y23 = X(233)

X241, X242, X243, X244 Y24 = X(244)

X311, X312, X313, X314 Y31 = X(311)

X321, X322, X323, X324 Y32 = X(322)

X331, X332, X333, X334 Y33 = X(333) Z3 = Y(33)
X341, X342, X343, X344 Y34 = X(344)

X411, X412, X413, X414 Y41 = X(411)

X421, X422, X423, X424 Y42 = X(422)

X431, X432, X433, X434 Y43 = X(433) Z4 = Y(43)
X441, X442, X443, X444 Y44 = X(444)

4. PRACTICALITY OF MxDRSS

In this section, Hellinger distance is defined and used as a measure of added
practicality and applied to some variations of RSS.
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Suppose Y and X are two random variables with density functions fY (x)
and fX(x), respectively. The Hellinger distance (See for example [16]) between
Y and X is defined by

H(X,Y ) =

(
1 −

∫ ∞
−∞

√
fY (x)fX(x)dx

) 1
2

.

Obviously, for iid random variables, H(X,Y ) = 0. So the Hellinger distance
between any two data points of the SRS X1, X2, . . . , Xm is zero. Therefore,
identifying the ordered data points (for getting either RSS or MRSS) based on
the SRS is difficult. That is, obtaining MRSS and RSS are equivalent in terms
of practicality.

Now, given the data points of the RSS (Y
(1)
1 , Y

(1)
2 , . . . , Y

(1)
m ), and using the

pdf’s of the order statistics, it can be shown after simple calculation that the
Hellinger distances between any pair of RSS data points are given in the third
column of Table 3. Note that the Hellinger distances in this case are not zeros;
that is, the additional work of identifying the ordered data points of DRSS (i.e.,
for stage 2) based on the RSS data points (stage 1) is simpler now than using
SRS data points.

Now, given the data points of the MRSS (W
(1)
1 ,W

(1)
2 , . . . ,W

(1)
m ), and sup-

pose m is odd. Due to the iid case, H
(
W

(1)
k ,W

(1)
l

)
= 0 for each k, l = 1, 2, . . . ,m.

Therefore, getting a DMRSS based on the MRSS practically is the same as ob-
taining a MRSS based on the SRS. When m is even, the Hellinger distance is
given by

H
(
W

(1)
k ,W

(1)
l

)
=

{
H(W

(1)
m
2
,W

(1)
m+2

2

) > 0 if k ≤ m
2 & l > m

2

0 otherwise

Now suppose Y
(2)
1 , Y

(2)
2 , . . . , Y

(2)
m be a DRSS, then the Hellinger distance

between any pairs of DRSS data points are shown in the last column of Table 3.
It is clear that Hellinger distances are higher in stage 2 than in stage 1.

Similarly, for the DMRSS W
(2)
1 ,W

(2)
2 , . . . ,W

(2)
m , the Hellinger distance is

zero when m is odd. When m is even, the Hellinger distance is given by

H
(
W

(2)
k ,W

(2)
l

)
=

{
H(W

(2)
m
2
,W

(2)
m+2

2

) > H(W
(1)
m
2
,W

(1)
m+2

2

) > 0 if k ≤ m
2 & l > m

2

0 otherwise

To sum up, for a single stage sampling scheme, MRSS and RSS have same
practicality, and since it is shown in the literature that MRSS is more efficient
than RSS, we recommend to use MRSS. For a double stage sampling scheme,
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Table 3: Hellinger Distances, m = 2, 3, 4; 1st and 2nd stage.

m (k, l) stage 1 stage 2

2 (1, 2) 0.4633 0.5920
3 (1, 2) 0.4086 0.5473

(1, 3) 0.7071 0.8625
(2, 3) 0.4086 0.5473

4 (1, 2) 0.3870 0.5306
(1, 3) 0.6501 0.8304
(1, 4) 0.8399 0.9628
(2, 3) 0.3412 0.4889
(2, 4) 0.6501 0.8304
(3, 4) 0.3870 0.5306

DRSS is more practical than DMRSS. But, it is shown in the literature DMRSS
is more efficient. So, to gain the efficiency provided by applying MRSS, we suggest
to mix MRSS with RSS by applying the procedure of MRSS on the data points
of RSS. That is, in the first stage we apply RSS and in the second stage we apply
MRSS. So, the obtained sample is just a combination between RSS and MRSS
and it is a double stage approach, and we call it MxDRSS. The practicality of
this new MxDRSS scheme is same as DRSS but in Section 6 we show it is more
efficient.

Due to the properties of order statistics V1, . . . , Vm, it can be seen that
H(V1, Vm) is the largest distance andH(Vm

2
, Vm+2

2
) is the minimum distance. Also

note that H(V1, V1+r) = H(Vm−r, Vm), r = 2, . . . ,m − 1. Apparently increasing
m decreases the Hellinger distances for the same pair of order statistics; which is
reasonable in the sense that identifying the ordered data points from a small m is
easier than in a large m. It can also be concluded from Table 3 that identifying
the ordered data points for stage 2 (DRSS) based on the ordered data points of
stage 1 (RSS) is consistently easier than identifying the ordered data points for
stage 1 (RSS) based on the identical data points of SRS. This result is consistent
with the findings of [1].

5. ESTIMATION OF THE POPULATION MEAN

In this section estimation of the population mean is studied. Particularly,
in Section 5.1 the population mean estimation is reviewed under the SRS, RSS,
and DRSS schemes. In Sections 5.2 and 5.3 the population mean estimation is
reviewed respectively under the MRSS and DMRSS schemes and also the re-
sults given in the literature about these scehemes are enhanced and some new
closed form expressions for the variances of the sample means and efficiencies are
provided. Finally, in Section 5.4 the population mean estimation is investigated
under the proposed MxDRSS scheme.
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5.1. Population mean estimation based on SRS, RSS, and DRSS

Let X1, X2, . . . , Xm be a SRS from f(x). The mean of the sample X̄ =∑m
i=1Xi/m is an unbiased estimator of µ with variance σ2/m.

Let Y
(1)
1 , Y

(1)
2 , . . . , Y

(1)
m be a RSS. It is shown by [25] (see also [26]) that

Ȳ (1) =
∑m

i=1 Y
(1)
i /m is an unbiased estimator of µ and var(Ȳ (1)) ≤ var(X̄). [7]

reported that var(Ȳ (1)) = σ2/m −
∑m

i=1

(
µ
(1)
i − µ

)2
/m2, where µ

(1)
i is the ith

order statistic’s mean.

Let Y
(2)
1 , Y

(2)
2 , . . . , Y

(2)
m be a DRSS. [1] reported that the mean Ȳ (2) =∑m

i=1 Y
(2)
i /m is an unbiased estimator of µ with var(Ȳ (2)) = σ2/m−

∑m
i=1

(
µ
(2)
i − µ

)2
/m2,

where µ
(2)
i is the ith order statistic’s mean of the RSS Y

(1)
1 , Y

(1)
2 , . . . , Y

(1)
m . They

also showed that var(Ȳ (2)) ≤ var(Ȳ (1)).

5.2. Population mean estimation based on MRSS

Let W
(1)
1 ,W

(1)
2 , . . . ,W

(1)
m be a MRSS. Let W̄ (1) = 1

m

∑m
i=1W

(1)
i be the

sample mean of MRSS. Then

E
(
W̄ (1)

)
=


µ
(1)
m+1

2

if m is odd

1
2

(
µ
(1)
m
2

+ µ
(1)
m+2

2

)
if m is even

where µ
(1)
k = E

(
X(k)

)
. [15] reported that, for symmetric distribution, W̄ (1) is an

unbiased estimator of µ.

The variance of W̄ (1) can be derived as follow.

var
(
W̄ (1)

)
= var

(
1

m

m∑
i=1

W
(1)
i

)
.

Since the data points of MRSS are independent, then

var
(
W̄ (1)

)
=

1

m2

m∑
i=1

var
(
W

(1)
i

)
.

Now, from Eq (2.4) and Eq (2.5), we have

var
(
W̄ (1)

)
=


1
mσ

2(1)
m+1

2

if m is odd

1
2m

(
σ
2(1)
m
2

+ σ
2(1)
m+2

2

)
if m is even
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where σ
2(1)
k = var

(
X(k)

)
. Using the result of [7],

var
(
W̄ (1)

)
=

 σ2 − 1
m

∑m
i=1

(
µ
(1)
i − µ

)2
− 1

m

∑m
i:i 6=m+1

2
σ
2(1)
i if m is odd

1
2σ

2 − 1
2m

∑m
i=1

(
µ
(1)
i − µ

)2
− 1

2m

∑m
i:i 6=m

2
,m+2

2
σ
2(1)
i if m is even

5.3. Population mean estimation based on DMRSS

Let W
(2)
1 ,W

(2)
2 , . . . ,W

(2)
m be a DMRSS. Let W̄ (2) = 1

m

∑m
i=1W

(2)
i be the

sample mean of DMRSS. Then

E
(
W̄ (2)

)
=


µ
(2)
m+1

2

if m is odd

1
2

(
µ
(2)
m
2

+ µ
(2)
m+2

2

)
if m is even

where µ
(2)
k = E

(
W

(1)
(k)

)
. Using the properties of order statistics and for symmetric

distribution it can be shown that E
(
W̄ (2)

)
= µ and the variance of W̄ (2) is

var
(
W̄ (2)

)
=


1
mσ

2(2)
m+1

2

if m is odd

1
2m

(
σ
2(2)
m
2

+ σ
2(2)
m+2

2

)
if m is even

where σ
2(2)
k = var

(
W

(1)
(k)

)
. Using the result of [1],

var
(
W̄ (2)

)
=

 σ2 − 1
m

∑m
i=1

(
µ
(2)
i − µ

)2
− 1

m

∑m
i:i 6=m+1

2
σ
2(2)
i if m is odd

1
2σ

2 − 1
2m

∑m
i=1

(
µ
(2)
i − µ

)2
− 1

2m

∑m
i:i 6=m

2
,m+2

2
σ
2(2)
i if m is even

5.4. Population mean estimation based on MxDRSS

Let Z1, Z2, . . . , Zm be a MxDRSS; that is

Zi =


Y

(1)

(m+1
2

)
if m is odd & i = 1, . . . ,m

Y
(1)
(m
2
) if m is even & i = 1, . . . , m2

Y
(1)

(m+2
2

)
if m is even & i = m+2

2 , . . . ,m

Referring to the procedure of MxDRSS, one may conclude that Zi are independent
over i, and it is worth observing that they are not identical. The pdf of Zi is

fZi(x) =


f
Y

(1)

(m+1
2 )

(x) if m is odd & i = 1, . . . ,m

f
Y

(1)

(m2 )

(x) if m is even & i = 1, . . . , m2

f
Y

(1)

(m+2
2 )

(x) if m is even & i = m+2
2 , . . . ,m
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Let Z̄ = 1
m

∑m
i=1 Zi be the sample mean of MxDRSS. Then

E
(
Z̄
)

=


µ
Y

(1)

(m+1
2 )

if m is odd

1
2

(
µ
Y

(1)

(m2 )

+ µ
Y

(1)

(m+2
2 )

)
if m is even

where µ
Y

(1)
(k)

= E
(
Y

(1)
(k)

)
. Using the properties of order statistics and for symmet-

ric distribution it can be shown that E
(
Z̄
)

= µ and the variance of Z̄ is

var
(
Z̄
)

=


1
mσ

2

Y
(1)

(m+1
2 )

if m is odd

1
2m

(
σ2
Y

(1)

(m2 )

+ σ2
Y

(1)

(m+2
2 )

)
if m is even

where σ2
Y

(1)
(k)

= var
(
Y

(1)
(k)

)
.

6. NUMERICAL RESULTS FOR SPECIFIC DISTRIBUTIONS

6.1. Results from a uniform distribution

Suppose that the underlying population is uniform U(0, 1), then the sam-
ple means using SRS, RSS, MRSS, DRSS, DMRSS and MxDRSS of size m are
unbiased estimators of µ, while the variances depend on the sampling scheme.

1. For a SRS, var(X̄) = 1/12m.

2. For a RSS, var(Ȳ (1)) = 1/6m(m+ 1), and the relative efficiency (see [25])
w.r.t. SRS is Eff(Ȳ (1); X̄) = var(X̄)/var(Ȳ (1)) = (m+ 1)/2 .

3. For a MRSS, the variance of the sample mean and the relative efficiency
have not been provided in the literature in closed form. However, we find
that the following expressions can be obtained for this situation:

var
(
W̄ (1)

)
=

{
1

4m(m+2) if m is odd
1

4(m+1)2
if m is even

.

Thus, the relative efficiency w.r.t. SRS is given by

Eff(W̄ (1); X̄) =
var(X̄)

var(W̄ (1))
=

{
m+2
3 if m is odd

(m+1)2

3m if m is even
.
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4. For a DRSS, when m = 3, var(Ȳ (2)) ≈ 0.0092, and the relative efficiency is
Eff(Ȳ (2); X̄) = 3.026. When m = 4, var(Ȳ (2)) ≈ 0.0049, and the relative
efficiency is Eff(Ȳ (2); X̄) = 4.281.

5. For a DMRSS, when m = 3, var(W̄ (2)) = σ
2(2)
2 /3 ≈ 0.0089, and the relative

efficiency is Eff(W̄ (2); X̄) = 3.130. For m = 4, var(W̄ (2)) = (σ
2(2)
2 +

σ
2(2)
3 )/8 ≈ 0.0047, and the relative efficiency is Eff(W̄ (2); X̄) = 4.422.

6. For a MxDRSS, when m = 3, var(Z̄) = σ2
Y

(1)
(2)

≈ 0.0115, and the relative ef-

ficiency is Eff(Z̄; X̄) = 2.406. When m = 4, var(Z̄) = (σ2
Y

(1)
(2)

+ σ2
Y

(1)
(3)

)/2 ≈

0.0060, and the relative efficiency is Eff(Z̄; X̄) = 3.470.

So far, we have discussed results for symmetric but rectangular distribution.
In the next subsection, we will discuss results for other types of well known
distributions.

6.2. Results for the normal, exponential, and skew normal distribu-
tions

The relative efficiencies of the sample means obtained by RSS, MRSS,
DRSS, DMRSS, and MxDRSS w.r.t. SRS for the normal distribution N(0, 1),
skew normal distribution SN(0, 1, 1), and exponential distribution Exp(1) are
summarized in Table 4. Also the results of the uniform distribution U(0, 1) are
provided. Table 5 shows the bias and variance of the obtained estimators from
the skewed distributions. Moreover, to examine the effect of the kurtosis and
skewness on the biasedness and relative efficiency of the considered sampling
schemes the gamma distribution Gamma(α, 1) is used, where α is changed from
1 to 6 (note that increasing α decreases the kurtosis and the skewness) and the
results are shown in Figures 1 and 2 for m = 3 and m = 4, respectively. So,
from Figures 1 and 2 (a) one may conclude that bias is a bit higher for skewed
distributions than non-skewed distributions, and from Figures 1 and 2 (b) one
may conclude that the efficiency is low for highly skewed distributions.

From the results of Tables 4, 5, and Figures 1 and 2 the remarks below can
be observed:

1. In terms of efficiency, the best sampling scheme among those studied in
this paper is the DMRSS except for highly skewed distribution like the
exponential distribution.
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Table 4: The efficiency in the population mean estimation under the con-
sidered sampling schemes w.r.t. SRS.

m
Distribution (Skewness, kurtosis) Method 2 3 4 5

RSS 1.500 2.000 2.500 3.000
MRSS 1.500 1.667 2.083 2.333

U(0, 1) (0, −1.2) DRSS 1.923 3.026 4.281 5.670
DMRSS 1.923 3.130 4.422 6.925
MxDRSS 1.923 2.406 3.470 4.350

RSS 1.467 1.914 2.347 2.770
MRSS 1.467 2.229 2.774 3.486

N(0, 1) (0, 0) DRSS 1.785 2.633 3.526 4.456
DMRSS 1.785 4.992 7.091 12.226
MxDRSS 1.785 3.615 5.046 7.318

RSS 1.465 1.909 2.339 2.759
MRSS 1.465 2.241 2.786 3.500

SN(0, 1, 1) (0.137, 0.062) DRSS 1.780 2.620 3.503 4.419
DMRSS 1.780 5.016 7.089 12.030
MxDRSS 1.780 3.635 5.059 7.290

RSS 1.333 1.636 1.920 2.190
MRSS 1.333 2.250 2.441 2.230

Exp(1) (2, 6) DRSS 1.516 2.024 2.523 3.016
DMRSS 1.516 3.116 2.867 2.226
MxDRSS 1.516 2.854 2.988 2.265

Table 5: The (bias, variance) of the sample mean obtained by MRSS,
DMRSS, and MxDRSS for skewed distributions.

Distribution m
(Skewness, kurtosis) Method 3 4 5

SN(0, 1, 1) MRSS (−0.010, 0.101) (−0.010, 0.061) (−0.014, 0.039)
(0.137, 0.062) DMRSS (−0.015, 0.045) (−0.016, 0.024) (−0.018, 0.011)

MxDRSS (−0.014, 0.062) (−0.013, 0.034) (−0.017, 0.018)

Exp(1) MRSS (−0.167, 0.120) (−0.167, 0.075) (−0.217, 0.043)
(2, 6) DMRSS (−0.244, 0.048) (−0.249, 0.025) (−0.281, 0.011)

MxDRSS (−0.220, 0.068) (−0.212, 0.039) (−0.264, 0.019)

2. As m increases, the efficiency also increases except for the Exp(1) under
DMRSS (it decreases when m > 2 as shown by [20]) and MxDRSS (it
decreases when m > 3). Our MxDRSS scheme shows better performance
than DMRSS when m > 3.

3. The efficiency is lower for those distributions with large skewness and large
kurtosis.

4. In terms of biasedness, the MRSS has the smallest bias.
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(a) Biasedness.

(b) Efficiency.

Figure 1: The effectiveness of the skewness parameter of the Gamma(α, 1)
on the biasedness and efficiency of the estimates when m = 3
under the considered sampling schemes.

5. The bias is small when the skewness is small.

7. A REAL DATA EXAMPLE

In this section, a real data set is analyzed to illustrate the usefulness of our
proposed methodology.

The body mass index (BMI) is a measure of relative size based on the mass
and height of an individual. It is commonly employed among children and adults
to predict health outcomes. Commonly accepted BMI ranges are underweight:
under 18.5, normal weight: 18.5 to 25, overweight: 25 to 30, obese: over 30.
A data set that has a BMI for 2107 people is contained in R-package mixsmsn.
Six types of samples (obtained by using SRS, RSS, MRSS, DRSS, DMRSS, and
MxRSS) of size 5 each are presented in Table 6 and the question of interest is to
estimate the mean of the BMI. The estimated BMI mean and the standard error
of the mean under SRS, RSS, MRSS, DRSS, DMRSS, and MxDRSS are obtained
and reported in Table 6.
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(a) Biasedness.

(b) Efficiency.

Figure 2: The effectiveness of the skewness parameter of the Gamma(α, 1)
on the biasedness and efficiency of the estimates when m = 4
under the considered sampling schemes.

Table 6: Body Mass Index Example.
SRS RSS MRSS DRSS DMRSS MxDRSS

20.00 22.00 25.91 22.00 26.36 26.36
22.62 20.25 21.97 26.89 23.08 28.30
23.70 26.36 31.63 22.09 28.68 22.09
32.79 31.96 26.51 30.78 24.86 26.30
35.18 33.46 34.63 32.64 26.51 23.32

estimated mean 26.858 26.806 28.130 26.880 25.898 25.274
estimated standard error 2.9951 2.6184 2.2361 2.1811 0.9313 1.1257

As suggested by [23] the estimated variance of the sample mean obtained
by RSS is given by

S2
RSS =

∑m
i=1(Y

(1)
i − Ȳ (1))2

m− 1
.

Accordingly, one may define the estimated variances of the sample means obtained
by MRSS, DRSS, DMRSS, and MxDRSS in the same way. For example, in case
of MxDRSS,

S2
MxDRSS =

∑m
i=1(Zi − Z̄)2

m− 1
,
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and hence the estimated standard error is given by

SE(Z̄) =

√
S2
MxDRSS

m
.

8. CONCLUSION

Practically, given an RSS in stage 1, applying RSS or MRSS in stage 2 is
the same because identifying the sample observations is done after the ranking
process. But as discussed in Section 6 it is shown that efficiency is higher if we
apply MRSS in stage 2. It is also found that efficiency decreases by increases in
the kurtosis and skewness. To sum up, DRSS and MxDRSS will behave the same
in practicality, but in terms of efficiency MxDRSS is better than DRSS (except
for the uniform distribution, which is fatter tailed).
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