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SEBASTIÁN NIKLITSCHEK-SOTO
– Department of Statistics, Universidad de Concepción, Concepción,

Chile (sniklitschek@udec.cl)
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1. INTRODUCTION

Distribution theory is an emerging field of statistics which has received an increasing
attention recently, with different methods that have been proposed to generate new distributions;
see [4, 21, 23, 24, 44]. To the best of our knowledge, the method used in the present work has
not been previously considered.

When modeling continuous data restricted to a bounded interval, the beta distribution
is a natural choice providing a wide variety of shapes; see [12]. Some of its extensions, de-
rived by using general classes of distributions, are the beta-Gumbel [36], beta-Fréchet [35],
beta-exponential [37], beta-Pareto [1], beta-generalized-exponential [3], beta-normal [11], beta-
power [8], beta-Marshall-Olkin [2], and beta-Marshall-Olkin-Lomax [44] distributions. These
extensions of the beta distribution have provided good fits to different types of data. However,
all of such extensions lose the essence of the beta distribution of having its support in the unit
interval, that is, to model data between zero and one.

An alternative to the beta distribution is a double-bounded distribution first defined in
[25] and after named the Kumaraswamy distribution in [22]. The cumulative distribution func-
tion (CDF) of the Kumaraswamy distribution has a closed analytical form. Some of its ex-
tensions are the Kumaraswamy-G [6], Kumaraswamy-Gumbel [7], Kumaraswamy-Weibull [9],
Kumaraswamy-generalized-gamma [10], and trapezoidal-Kumaraswamy [41] distributions. The
extensions of the Kumaraswamy distribution include additional parameters, are able to model
bathtub-shaped hazard rates, and are widely applied in engineering.

In general, as mentioned, the beta distribution is very flexible and often employed in prac-
tice. However, it is common in many cases to have bounded data which follow heavy left-and-
right tailed distributions. Therefore, as noted in [14, 18], the beta and Kumaraswamy distribu-
tions, as well as their extensions above mentioned, are not suitable to model heavy tails. In order
to add flexibility into the beta distribution, the rectangular beta (RB) distribution was proposed in
[18]. In practice, the beta and RB distributions have been powerful tools for modeling bounded
data, but the RB distribution permits the modeling of heavy-tailed bounded data in equal pro-
portions in both tails. An approach to solve the above mentioned limitations was presented in
[19], but the parameters of such an approach do not have a clear interpretation and there is no
an efficient method for estimating these parameters. Another attempt for obtaining alternative
beta distributions is provided in [24]. To the best of our knowledge, there is no distributions that
allow the modeling of heavy left-and-right tailed bounded data in different proportions.

The objective of this paper is to propose a bounded-support distribution based on a new
method to circumvent the above-mentioned limitations. This new distribution is the trapezoidal
beta (TB) model, which has high flexibility to model the tails in different proportions for its
probability density function (PDF). The TB distribution is a mixture model, extends both the
beta and rectangular beta distributions, and permits one to model bounded data with heavy right
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and/or left tails in different proportions. We estimate the TB distribution parameters by using
the maximum likelihood method. We take advantage of the finite mixture representation of the
TB distribution to implement the expectation-maximization (EM) algorithm. This algorithm has
two main steps: the expectation (E) step and the maximization (M) step. The EM algorithm
is a widely applicable approach to the iterative computation of maximum likelihood estimates,
which is useful in a variety of incomplete data settings. The idea behind the EM algorithm
applied to mixture models is to assume that the mixture is generated by missing observations.
For more details of this algorithm, see [33]

The rest of the paper is organized as follows. In Section 2, we provide background of
the beta and RB distributions and propose the new TB distribution specifying its mathematical
properties. In addition, in this section, a shape analysis is performed to show the flexibility of the
TB distribution graphically. Section 3 describes a methodology to estimate the TB distribution
parameters based on the EM algorithm. In Section 4, the proposed distribution is evaluated
throughout Monte Carlo simulation studies. A comparison of the proposed distribution and the
beta and RB distributions is also conducted in this section. Furthermore, we include an empirical
illustration with education data corresponding to a university selection score of 1295 institutions
in the Metropolitan region of Chile. Finally, some concluding remarks and possible directions
for future research are given in Section 5.

2. THE NEW DISTRIBUTION

In this section, background with respect to the beta and RB distribution is provided and
proposed TB distribution is derived specifying its mathematical properties and a shape analysis
to graphically show the flexibility of the TB distribution.

2.1. Background

Let Y follow a beta distribution of parameters α > 0 and β > 0, which we denote by
Y ∼ Beta(α, β). The PDF of Y is given by

fY (y;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
yα−1(1− y)β−1, 0 < y < 1,(2.1)

where Γ is the gamma function. The mean and variance of Y are established respectively as

E(Y ) =
α

α+ β
,(2.2)

Var(Y ) =
αβ

(α+ β)2(α+ β + 1)
.



4 J.I. Figueroa-Zúñiga, S. Niklitschek-Soto, V. Leiva, and S. Liu

In order to add flexibility into the beta distribution, the RB distribution was proposed. If a
random variable Z follows an RB distribution of parameters 0 ≤ θ ≤ 1, α > 0 and β > 0, the
notation Z ∼ RB(θ, α, β) is adopted. The PDF of Z is stated as

(2.3) fZ(z; θ, α, β) = θ + (1− θ)fY (z;α, β), 0 < z < 1,

where θ is a mixture parameter. From (2.2) and (2.3), we obtain that

E(Z) =
θ

2
+ (1− θ) α

α+ β
,(2.4)

Var(Z) =
αβ

(α+ β)2(α+ β + 1)
(1− θ)(1− θ(1 + (α+ β))) +

θ

12
(4− 3θ).

By taking θ = 1 and θ = 0 in the RB distribution, we get the uniform and beta distributions, so
that its mean and variance are given in (2.4). The RB distribution permits one to model heavy-
tailed bounded data in equal proportions on both tails as noted in the shape analysis; see Figure
1(a).

2.2. The trapezoidal beta distribution

Consider a non-negative polynomial P such that 0 ≤
∫ 1
0 P (t; a, b) dt ≤ 1. By choosing

P (t; a, b) = a+ (b− a)t, the PDF of the TB distribution is obtained as

fT (t; a, b, α, β) = a+ (b− a)t+

(
1−

∫ 1

0
(a+ (b− a)t) dt

)
fY (t;α, β)

= a+ (b− a)t+

(
1− a+ b

2

)
fY (t;α, β), 0 < t < 1,(2.5)

with 0 ≤ a, b ≤ 2, 0 ≤ a+ b ≤ 2, and fY being the beta PDF of parameters α and β as defined
in (2.1). In this case, the notation T ∼ TB(a, b, α, β) is used. Note that the TB PDF defined by
(2.5) can be rewritten as a mixture of three beta distributions by considering

fT (t; a, b, α, β) = ω1f1(t) + ω2f2(t) + ω3f3(t),(2.6)

=
a

2
(2− 2t) +

b

2
(2t) +

(
1− a+ b

2

)
fY (t;α, β),

where f1(t) = fY (t; 1, 2) = 2 − 2t, f2(t) = fY (t; 2, 1) = 2t and f3(t) = fY (t;α, β) corre-
spond to particular cases of the beta PDF described in (2.1). In addition,

(2.7) ω1 =
a

2
, ω2 =

b

2
, ω3 =

(
1− a+ b

2

)
are the weights such that ω1 + ω2 + ω3 = 1 and 0 ≤ ω1, ω2, ω3 ≤ 1.
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We now present some properties of the TB distribution. Let T ∼ TB(a, b, α, β). Then,
the k-th moment of T is given by

(2.8) mk = E(T k) =
a

k + 1
+
b− a
k + 2

+

(
1− a+ b

2

)
m∗k,

where m∗k is the k-th moment of the Beta(α, β) distribution. Thus, from (2.8), we have

mk =
a

k + 1
+
b− a
k + 2

+

(
1− a+ b

2

)(k−1∏
r=0

α+ r

α+ β + r

)
.(2.9)

In addition, the moment generating and characteristic functions of T ∼ TB(a, b, α, β) are stated
respectively as

MT (v) = E(evT ) = 1 +

∞∑
k=1

mk
vk

k!
, v ∈ R,(2.10)

ϕT (v) = E(eivT ) = 1 +
∞∑
k=1

mk
(iv)k

k!
, v ∈ R.

Based on (2.9) or (2.10), we deduce that the mean and variance of T are given respectively as

E(T ) =
a+ 2b

6
+

(
1− a+ b

2

)
α

α+ β
,(2.11)

Var(T ) =

(
3a+ 9b− (a+ 2b)2

36

)
+

(
α

α+ β

)(
1− a+ b

2

)(
α+ 1

α+ β + 1
− α(2− a− b)

2(α+ β)
− a+ 2b

3

)
.

Note that taking a = b = 0 (beta distribution), and a = b = θ (RB distribution) in (2.11), the
mean and variance established in (2.2) and (2.4) are obtained, respectively.

Figure 1(a) shows how the RB distribution allow us to model heavy tails in equal propor-
tions in both tails, but not in different proportions, such as the TB distribution does. Figure 1
(b) reflects a global vision of the TB distribution with its diverse particular cases, which are the
uniform (solid line in black), beta (segmented line in black), RB (dotted line in black) and two
different types of TB (in gray) distributions. Observe that the parameters a and b presented in
the PDF of the TB distribution defined in (2.5) can be intuitively interpreted as the lift at the
left and right tails, respectively; see Figure 1 (b)-(e). For example, Figure 1 (c) lifts the left tails
but not the right tails, whereas Figure 1 (d) does the opposite. Similarly, Figure 1 (e) lifts the
left tails and also the right tails, whereas Figure 1 (f) does the opposite. In summary, particular
cases of the TB distribution, plotted in Figure 1 (1)-(f), are: (i) a = b = 1 (uniform distribution);
(ii) a = b = 0 (beta distribution); and (iii)a = b = θ (RB distribution), with PDFs defined
in (2.1) and (2.3), respectively. Special and interesting cases occur when a = 0, b 6= 0 and
when a 6= 0, b = 0, in whose case extreme-tail events are concentrated close to zero or to one,
respectively, as noted in Figure 1 (c)-(d).
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Figure 1:
Plots of the (a) RB(θ, α = 10, β = 15) PDF with θ as indicated, and
(b)-(f) TB(a, b, α = 10, β = 15) PDF with a, b as listed.
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3. ESTIMATION AND EM ALGORITHM

In this section, a methodology to estimate the parameters of the TB distribution is pro-
vided. We implement the EM algorithm to efficiently obtain the corresponding estimates.

3.1. Estimation of TB distribution parameters

Note that the parameters of the TB distribution can be estimated by the maximum like-
lihood method. Then, by taking advantage of the finite mixture representation of the TB dis-
tribution stated in (2.6), the EM algorithm may be implemented to efficiently estimate the TB
distribution parameters.

First, based on a sample T = (T1 . . . , Tn)> of size n from the TB distribution of PDF as
given in (2.5), with observations t = (t1 . . . , tn)>, the likelihood function for Θ = (a, b, α, β)>

is written as

L(Θ; t) =
n∏
i=1

(
a+ (b− a)ti +

(
1− a+ b

2

)
fY (ti;α, β)

)
.(3.1)

Then, in order to build estimators for the parameter Θ of the TB distribution, we can maximize
the log-likelihood function defined as

`(Θ; t) =
n∑
i=1

log

(
a+ (b− a)ti +

(
1− a+ b

2

)
fY (ti;α, β)

)
.(3.2)

The maximum likelihood estimates of a, b, α and β are obtained by differentiating the function
(3.2) with respect to the mentioned parameters, generating the corresponding score vector. This
vector must be equated to zero and the associated solution are the maximum likelihood estimates.
However, such equations do not have closed-form and then they need to be solved numerically to
maximize the log-likelihood function defined in (3.2). Subsequently, a non-linear optimization
method is needed. For instance, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton
method can be used; see [26]. We use the EM algorithm to obtain the parameter estimates.

3.2. EM algorithm

An efficient computationally strategy for estimating the parameter Θ = (a, b, α, β)> of
the TB distribution is to optimize the function (3.2) as a missing data framework.



8 J.I. Figueroa-Zúñiga, S. Niklitschek-Soto, V. Leiva, and S. Liu

The optimization problem can be solved with the EM algorithm and the finite mixture
structure of the TB distribution. Consider a discrete random variable U for the missing (unob-
served) data, where ui = j, with j ∈ {1, 2, 3}, indicates which mixture component generates
ti. Thus, the complete data v are formed by v = (t>,u>)>, where the unobserved data are
u = (u1 . . . , un)> and the observed data are t = (t1 . . . , tn)>. Thus, the likelihood function
for Θ, considering the finite mixture representation of the TB distribution given in (2.6), under
a complete data setting with n observations is now given by

(3.3) L(c)(Θ;v) =
n∏
i=1

(ω1f1(t))
11 (ω2f2(t))

12 (ω3f3(t))
13 ,

where 1 is the indicator function, such that 1j = 1 if ui = j, with j ∈ {1, 2, 3}, and 1j = 0
otherwise. Hence, the log-likelihood function based on (3.3) for complete data is defined as

(3.4) `(c)(Θ;v) =

n∑
i=1

11 log (ω1f1(t)) +

n∑
i=1

12 log (ω2f2(t)) +

n∑
i=1

13 log (ω3f3(t)) .

Note that the complete data log-likelihood function defined in (3.4) contains missing data, so that
parameter estimates obtained directly from it cannot be calculated. Hence, in order to compute
the estimates of a, b, α and β, we use the EM algorithm, recalling it has the E-step and M-step.

In order to implement its E-step, we need to find the expected value of the log-likelihood
function stated in (3.4) and consequently of 1j , for j = 1, 2, 3, given Ti. Therefore, it is neces-
sary to specify an auxiliary function Q, which is the mentioned conditional expectation, using
the random vector V = (T>,U>)>, associated with the complete data v, given the observed
data T = t, established as

Q(Θ) = E(`(c)(Θ;V )|T = t)(3.5)

=
n∑
i=1

E(`(c)(Θ;Vi)|Ti = ti)

=
n∑
i=1

3∑
j=1

pij`
(c)(Θ; vi, ti)

=

n∑
i=1

3∑
j=1

pij log(ωjfj(ti;Θ)),

where

(3.6) pij = P(Ui = j|Ti = ti;Θ) =
ωjfj(ti;Θ)∑3
l=1 ωlfl(ti;Θ)

, i = 1, . . . , n, j = 1, 2, 3.

In order to initiate the EM algorithm, in its E-step, we need a starting value Θ̂(0); see details
about how to establish this starting value in Subsection 3. Thus, from (3.5), we have

Q(Θ)|
Θ=Θ̂(r−1) =

n∑
i=1

3∑
j=1

p̂
(r−1)
ij log(ω̂

(r−1)
j fj(ti; Θ̂

(r−1))),(3.7)
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where Θ̂(r−1) is the value of Θ for the (r − 1)th iteration at which the function Q(Θ) must be
evaluated in order to iterate the EM algorithm. In addition, for j = 1, 2, 3, ωj and fj are defined
in (2.6), with ω̂(r−1)

j being the value of ωj given in (2.7) for the (r − 1)th iteration and ω̂(0)
j as

established in Subsection 3. Furthermore, we have

(3.8) p̂
(r−1)
ij =

ω̂
(r−1)
j fj(ti; Θ̂

(r−1))∑3
l=1 ω̂

(r−1)
l fl(ti; Θ̂(r−1))

, i = 1, . . . , n, j = 1, 2, 3.

Note that the expression given in (3.8) is obtained from E(1j |Ti = ti)|Θ=Θ̂(r−1) .

In the M-step, we must find Θ̂(r), which maximizes Q(Θ)|
Θ=Θ̂(r−1) defined in (3.7). By

taking the derivatives ofQwith respect to ω1, ω2, and ω3, under the restriction ω1+ω2+ω3 = 1,
it is possible obtain the estimates

(3.9) ω̂
(r)
j =

∑n
i=1 p̂

(r−1)
ij∑n

i=1

∑3
j=1 p̂

(r−1)
ij

=
n̂
(r−1)
j

n
, j = 1, 2, 3.

In addition, the derivatives with respect to α and β lead to the usual maximum likelihood esti-
mates of the beta distribution, which solves the equations

ψ
(
α̂(r)

)
− ψ

(
α̂(r) + β̂(r)

)
=

∑n
i=1 p̂

(r−1)
i3 log(ti)

n̂
(r−1)
3

,

(3.10)

ψ
(
β̂(r)

)
− ψ

(
α̂(r) + β̂(r)

)
=

∑n
i=1 p̂

(r−1)
i3 log(1− ti)
n̂
(r−1)
3

,

where ψ is the digamma function that is defined as the logarithmic derivative of the gamma
function Γ stated in (2.1) and given by

ψ(x) =
d

dx
log
(
Γ(x)

)
=

1

Γ(x)

d
dx

Γ(x).

The estimating equations presented in (3.10) can be solved using a quasi-Newton algorithm
and the estimates of ω1, ω2, and ω3, subject to ω1 + ω2 + ω3 = 1, are obtained from (3.9).
Once the parameters are updated in each iteration, repeat both the E and M steps iteratively
until a certain criterion of convergence is obtained. The algorithm EM must be iterated until
reaching convergence, for example, when |`(c)(Θ̂(r)) − `(c)(Θ̂(r−1))| < 10−5, where Θ̂(r) is
the current ML estimate of Θ and Θ̂(r−1) its previous estimate, with `(c) being given in (3.4); see
McLachlan and Krishnan [34, pp. 21-23]. Note that, in some cases, the EM algorithm does not
admit an analytical solution in its E-step or M-step. Then, it becomes necessary to use iterative
methods for the computation of the expectation or for the maximization. For variants of the
EM algorithm based on approximations of its E-step or M-step, which preserve its convergence
properties. In our case, in the M-step of the algorithm, we use the BFGS method to iteratively
solve the corresponding non-linear maximization problem. The BFGS method is implemented
in the R software by the functions optim and optimx; see www.R-project.org and R
Core Team [38].

www.R-project.org
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4. NUMERICAL STUDIES

In this section, the TB distribution is evaluated throughout Monte Carlo simulations, com-
paring it with the beta and RB distributions. Here, we also include an empirical illustration with
education data to show potential applications of the results obtained in the present investigation.

4.1. Simulation study

We start this section with an important remark about the data generation from the TB
distribution. As noted in (2.6), this distribution can be seen as the mixture of three beta distribu-
tions. Except in some extreme cases such as the L-J-U-shaped beta distribution, the weights of
the first two distributions on the mixture precisely capture the behavior of their tails. From Fig-
ure 2, note that, if we generate a small sample of data from the TB distribution with parameter
Θ = (0.2, 0.5, 10, 15), we might not have data in any of its tails. Therefore, the corresponding
histogram may not represent the true shape of the TB distribution. This small sample behavior
is improved as the sample size increases and noted in Figure 2 for different values of the sample
size n. For this reason, in our simulation study, we consider a sample size n = 1000.

We carry out a Monte Carlo simulation study to compare the performance of the beta, RB
and TB distributions with samples generated from each of them. In order to capture the particular
tail behavior of each one of these distributions, we use a sample size of n = 1000 and generate
100 samples for calculating the mean of the log-likelihood and Akaike information criterion
(AIC). The AIC is given by AIC = −2`(Θ̂) + 2d, where `(Θ̂) is the log-likelihood function
for Θ, associated with the underlying distribution, evaluated at Θ = Θ̂, d is the dimension of
the parameter space, and n is the size of the data set. Note that this criterion is based on the log-
likelihood function and penalize the distribution with more parameters. A distribution whose
information criterion has a smaller value is better [13, 46].

Firstly, we simulate data from the TB distribution with parameter Θ = (0.3, 0.7, 10, 15).
In Table 1, we observe that the TB distribution achieves a better fit than the RB and beta distribu-
tions. Table 2 reports that the RB distribution fits the data by finding a value for θ between a and
b. The beta distribution fits the data by increasing the variance, that is, by finding smaller values
for α and β compensating the inability of this distribution to lift the tails. Secondly, we simulate
data from the RB(0.4,10,15) distribution. In Table 3, note that the TB distribution fit the data
with the same good level than the RB distribution. Table 4 reports that the TB distribution gives
similar parameter estimates compared to the RB distribution. As in the first scenario, the beta
distribution fits the data by increasing the variance. We collect a sample from the Beta(10,15)
distribution. In Table 5, notice that the TB and RB distributions fit the data with the same good
level in comparison to the beta distribution. Table 6 reports that the TB and RB distributions
give similar parameter estimates in comparison to the beta distribution.
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Figure 2:

Histograms for the indicated sample size n from the
TB(0.2,0.5,10,15) distribution with simulated data, where the
true TB PDF is drawn in solid line.
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Table 1:
Mean log-likelihood and AIC of the listed distributions for samples
drawn from a TB(0.3,0.7,10,15) distribution with simulated data.

Distribution Log-likelihood AIC

TB 193.3288 −378.6576
RB 181.0892 −356.1783
Beta 64.0552 −124.1103

Table 2:
Mean estimated parameter of the indicated distribution for samples
drawn from a TB distribution with simulated data.

Distribution a = 0.3 b = θ = 0.7 α = 10 β = 15

â b̂, θ̂ α̂ β̂

TB(a, b, α, β) 0.3023 0.7187 10.0799 15.1376
RB(θ, α, β) – 0.5435 11.0549 16.2195
Beta(α, β) – – 1.6037 1.6018

Table 3:
Mean log-likelihood and AIC of the listed distributions for samples
drawn from an RB(0.4,10,15) distribution with simulated data.

Distribution Log-likelihood AIC

TB 278.6866 −549.3732
RB 278.1757 −550.3514
Beta 132.9706 −261.9412

Table 4:
Mean estimated parameter of the indicated distribution for samples
drawn from a TB distribution with simulated data.

Distribution a = 0.4 b = θ = 0.4 α = 10 β = 15

â b̂, θ̂ α̂ β̂

TB(a, b, α, β) 0.4188 0.4141 9.7293 14.7257
RB(θ, α, β) – 0.4161 9.7188 14.7168
Beta(α, β) – – 1.7944 2.1850
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Table 5:
Mean log-likelihood and AIC of the listed distributions for samples
drawn from a Beta(10, 15) distribution with simulated data.

Distribution Log-likelihood AIC

TB 942.6532 −1877.306
RB 942.6532 −1879.306
Beta 942.6532 −1881.306

Table 6:
Mean estimated parameter of the indicated distribution for samples
drawn from a Beta(10, 15) distribution with simulated data.

Distribution a = 0 b = θ = 0 α = 10 β = 15

â b̂, θ̂ α̂ β̂

TB(a, b, α, β) 9.88e-324 4.94e-324 10.3288 15.5109
RB(θ, α, β) – 9.88e-324 10.3294 15.5120
Beta(α, β) – – 10.3274 15.5087

4.2. Empirical illustration

To illustrate the TB distribution in practice, we apply the proposed methods to a real-world
data set and we compare the goodness of fit of the beta, RB and TB distributions. We analyze
the data collected in the year 2016 of the average score of a university selection test for 1295
school establishments in the Metropolitan Region of Chile. This test is applied to students who
have graduated from school in Chile at a national level and covers different areas of knowledge.
In Chile, this test is named “Prueba de Selección Universitaria” (PSU) and the results obtained
by the students in this test define the available possibilities to continue their studies in different
universities in the country. The data set is publicly available on the “datachile” website (https:
//es.datachile.io).

We are interested in describing the distribution of the performance of the students who
have applied to the PSU. To measure the performance, a total of 1295 average scores per estab-
lishment have been taken in the Metropolitan Region of Chile and scored in the interval (0, 1)
throughout the transformation proposed by [43] defined as

t =
(N − 1)

N

(t∗ − a1)
(a2 − a1)

+
1

2N
, t∗ ∈ [a1, a2].

In our case, a1 = 293.5, a2 = 715.5 and N = 1295.

https://es.datachile.io
https://es.datachile.io
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From the histogram presented in Figure 3, note that the distribution of the data has a
lifted right tail and slightly lifted left tail. Thus, it is justifiable to propose the TB distribution
to model these data, that is, we assume that T ∼ TB(a, b, α, β). From Table 7, observe that
the TB distribution achieves the best fit compared to the RB and beta distributions. In Table
8, we present the estimated parameters according to the method described in Section 3. As
starting values of Θ = (a, b, α, β)> to initiate the EM algorithm, we consider the maximum
likelihood estimates of α and β of the beta distribution, whereas a and b are obtained from the
relation given in (2.7) with ω1 and ω2, respectively, according to a visual conjecture detected
at the tails of the histogram of the data such as mentioned above. This is corroborated by
the estimates obtained, mainly at its right tail (â = 0.0066 and b̂ = 0.2742). Observe that
these estimates have a very intuitive interpretation, since the tails of the PDF are lifted in these
quantities. The RB distribution attempts to compensate for this fact by assigning weight in both
tails (â = b̂ = θ̂ = 0.0334), whereas the beta distribution tries to compensate it by increasing
the variance (decreasing α̂ and β̂). In Figure 3, we see the adjusted PDFs for the three different
distributions, with the TB distribution being the model that captures the empirical behavior of
the data better.

Table 7:
Log-likelihood/AIC of the indicated distribution for education data.

Distribution
Indicator TB RB Beta

Log-likelihood 413.896 401.647 371.711
AIC −819.791 −797.293 −739.422

Table 8:
Estimates of the indicated distribution parameter with education data.

Distribution â b̂ = θ̂ α̂ β̂

TB(a, b, α, β) 0.0066 0.2742 4.3566 5.0824
RB(θ, α, β) – 0.0334 3.5307 3.6990
Beta(α, β) – – 3.1095 3.1901

5. CONCLUSIONS AND FUTURE RESEARCH

This paper reported the following findings:

(i) By using a new method, we have proposed a new family of four-parameter distributions,
called the trapezoidal beta distribution, which is widely flexible and generalizes the beta
and rectangular beta distributions, being the new distribution an alternative to the beta
distribution when both left and right tails are heavy.
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Figure 3:
Histogram with estimated PDFs for the indicated distribution with the
education data.

(ii) It was shown that the trapezoidal beta distribution can be rewritten conveniently as a mix-
ture of three beta distributions, two with specific values in their parameters, and one tra-
ditional beta distribution with two arbitrary parameters.

(iii) By taking advantage of the finite mixture representation of the new family of distribu-
tions, the expectation-maximization algorithm was implemented to efficiently estimate its
parameters.

(iv) Monte Carlo simulations based on the new family of distributions proposed in this research
were provided to detect its performance.

(v) An example with a real data set was conducted to illustrate the potential applications with
the new family of distributions proposed in the paper. In addition, we compare the new
distributions to their natural competitors, corresponding to the beta and rectangular beta
distributions, showing the convenience of using the new distributions.

In summary, we have proposed a new family of distributions based on new method, which allows
us to model data with support between zero and one as well as heavy left and/or right tails. We
estimated the parameters of the new distribution and the expectation-maximization algorithm.
Numerical studies with simulated and real data were performed to show the good empirical
behavior of the estimators and to illustrate potential applications. In the simulation study, we
observed that the trapezoidal beta distribution performed as well as the rectangular beta and beta
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distributions when the samples are generated from any of these two distributions. Moreover,
we noted marked differences in favor of the trapezoidal beta distribution when the samples were
generated from the trapezoidal beta distribution. In the empirical illustration, the trapezoidal beta
distribution turned out to be the model that fits the data best, based on the Akaike information
criterion. Furthermore, it is the only distribution that adequately addresses the essence of the data
distribution when heavy left and/or right right tails are present. We conclude that the trapezoidal
beta distribution seems to be a new robust alternative for modeling bounded data. Therefore,
this investigation may be a knowledge addition to the tool-kit of diverse practitioners, including
educators, statisticians, and data scientists.

Some open problems that arose from the present investigation are the following:

(i) It possible to extend the benefits of the trapezoidal beta distribution to any bounded distri-
bution.

(ii) A re-parametrization of the trapezoidal beta model in terms of its mean is of interest. This
will allow us to connect its mean to a regression structure in a similar manner to that as in
generalized linear models.

(iii) Identifiability problem can be present in the case of the parameter estimation of the new
distribution and it must be studied further.

(iv) The use of covariates when modeling a response with support in [0, 1] following the new
family of distributions is of interest.

(v) An extension of the present study to the multivariate case is also of practical relevance [27,
31, 40].

(vi) Incorporation of temporal, spatial, functional, and quantile regression structures in the
modeling, as well as errors-in-variables, and PLS regression, are also of interest [5, 16,
17, 20, 28, 29, 32, 39, 42]

(vii) The derivation of diagnostic techniques to detect potential influential cases are needed,
which are an important tool to be used in all statistical modeling [5, 15, 30].

(viii) Robust estimation methods when outliers are present into the data set can be applied [45].

(ix) Applications of the new methodology proposed here can be of interest in diverse areas
[23].

Therefore, the proposed results in this study promotes new challenges and offers an open door
to explore other theoretical and numerical issues. Research on these and other issues are in
progress and their findings will be reported in future articles.
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