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1. Introduction

Sequential CUSUM methods for detecting parameter changes in distribu-

tions on the real line is a well developed field with an extensive literature. The

same cannot be said about CUSUM methods to detect changes of location in

non-Euclidean spaces such as the circle. Distributions on the circle generate

data which cannot generally be treated in the same manner as linear data - see

Fisher (1993, Chapter 1 and Section 3.1), Mardia and Jupp (2000, Chapter 1)

and Jammalamadaka and SenGupta (2001, Section 1.2.2). One impediment to

the application of linear CUSUM methods is the fact that a circle has no well

separated beginning and end. Whichever point is selected as the beginning point,

the distance between it and the endpoint is zero. A family of distributions with

a fixed arc on the circle as support could in principle be treated as if the sample

space were a finite fixed interval on the real line. However, the options involved

in formulating a changepoint model would then be severely curtailed: a model

involving shifts of arbitrary size in the location of the distribution would be out

of the question. The distributions from which the data in our applications in Sec-

tion 5 arise encompass the full circle and are therefore not amenable to analysis

by linear CUSUM methods.

Lombard, Hawkins and Potgieter (2018) reviewed the current state of change

detection procedures for circular data. They also constructed distribution free

CUSUMs for circular data in which the numerical value of an in-control mean di-

rection is specified, the objective being to detect a change in mean direction away

from this value. The situation is analogous to that in which the well known Page

(1954) CUSUM is applied, namely detection of a change away from a specified

numerical value of the mean of a distribution on the real line. However, in the

examples treated in Section 5 of the present paper, no in-control circular mean
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value is specified and the objective is to detect a change away from the unknown

current circular mean value, whatever it may be. Such a CUSUM, unlike that

proposed by Lombard, Hawkins and Potgieter (2018), must be rotation invariant

because the outcome of the analysis should not depend upon which point on the

circle is chosen as the origin of angular measurement.

The main contribution of the present paper is the construction of such in-

variant CUSUMs for circular data. The CUSUMs we construct are non-parametric

in the sense that their form is not dependent upon an underlying parametrically

specified distribution. The in-control properties of the CUSUMs are shown in a

Monte Carlo study to be quite robust over a wide class of circular distributions,

which makes them near distribution free over this class. As far as we are aware,

no CUSUMs of this nature for circular data have to date been treated in the

statistical literature.

Section 2 of the paper focuses on mean direction. We provide justifications

for the form of our CUSUM and discuss some computational details. In Section

3 we elaborate on its in-control and out-of control properties. The results of

an extensive Monte Carlo study are also reported. In Section 4 we briefly con-

sider a CUSUM for detecting concentration changes. Section 5 demonstrates the

application of the CUSUMs to two sets of data and Section 6 summarizes our

results.
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2. Detecting direction change

2.1. Derivation of the CUSUM statistic

Initially the data X1, X2, . . . come from a non-uniform and unimodal con-

tinuous distribution F with unknown mean direction ν = ν0 on the circle [−π, π).

This defines the in-control state. (Since mean direction is a vacuous concept in a

uniform distribution, the latter is excluded from consideration. The CUSUM of

Lombard and Maxwell (2012), which is rotation invariant, can be used to detect

a change from a uniform to a non-uniform distribution.) We estimate ν by

(2.1) ν̂n = atan2(Sn, Cn)

where for n = 2, 3, . . .,

(2.2) Cn =
n∑
j=1

cosXj , Sn =
n∑
j=1

sinXj ,

and atan2 denotes the four-quadrant inverse tangent function

atan2(x, y) =



tan−1(x/y) if y > 0

tan−1(x/y) + πsign(x) if y < 0

(π/2)sign(x) if y = 0, x 6= 0

0 if y = x = 0,

the symbol tan−1 denoting the usual inverse tangent function with range re-

stricted to (−π/2, π/2). This non-parametric estimator is, in fact, also the max-

imum likelihood estimator of mean direction in a von Mises distribution, which
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is arguably the best known among circular distributions. The von Mises distri-

bution with mean direction ν and concentration κ, has density function

f(x) =
1

2πI0(κ)
exp[κ cos(x− ν)], −π ≤ x < π,

where I0 denotes the modified Bessel function of the first kind of order zero. The

log-likelihood ratio based on observations X1 + δ, . . . , Xn + δ is, apart from a

factor not depending upon δ, given by

l(δ) = cos(Xn − δ − ν)

and a locally most powerful test of the hypothesis H0 : δ = 0 is therefore based

on the derivative

dl(δ)

dδ

∣∣∣∣
δ=0

= sin(Xn − ν).

Replacing ν by ν̂n−1 leads to consideration of a CUSUM based on the statistic

(2.3) Vn = sin(Xn − ν̂n−1).

Despite the fact that Vn originates from the von Mises distribution, it has at

least two purely non-parametric origins that do not depend upon any assumption

involving the type of the underlying distribution.

The first of these follows upon expanding the sine function and using the

trigonometric relations

sin(ν̂n−1) = Sn−1/Rn−1, cos(ν̂n−1) = Cn−1/Rn−1,

wherein

(2.4) R2
n = C2

n + S2
n.
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This gives

(2.5) Vn = (Cn−1/Rn−1) sinXn − (Sn−1/Rn−1) cosXn,

which is the (signed) area of the parallelogram spanned by the unit length vectors

(Cn−1, Sn−1)/Rn and (sinXn, cosXn). The former of these vectors points in the

mean direction of the data X1, . . . , Xn−1 while the latter vector points in the

direction of the new observation Xn.and the greater the angular distance between

the two directions is, the larger will be the area of the parallelogram. Thus, if

a change in mean direction ν occurs at index n, we can expect a succession of

positive or negative values Vn, n > τ .

A second non-parametric argument leading to consideration of Vn comes

from considering the change ν̂n − ν̂n−1 in the estimate of ν effected by a change

in mean direction from ν to ν + δ occurring at index n. We have

ν̂n = atan2 [Sn−1 + sin(Xn + δ), Cn−1 + cos(Xn + δ)]

= atan2(Sn−1/n+ δ1,n, Cn−1/n+ δ2,n)

where

nδ1,n = sin(Xn + δ) = sinXn +O(δ),

nδ2,n = cos(Xn + δ) = cosXn +O(δ).

Since both Sn−1/n and Cn−1/n converge as n→∞, and both δ1,n and δ2,n tend
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to zero, we can make a Taylor expansion around (Sn−1/n,Cn−1/n). This gives

Rn−1(ν̂n − ν̂n−1) = nδ1,n
Cn−1
Rn−1

− nδ2,n
Sn−1
Rn−1

+O(n−1)

=
Cn−1
Rn−1

sinXn −
Sn−1
Rn−1

cosXn +O(δ) +O(n−1)

= Vn +O(δ) +O(n−1),

which shows again the relevance of Vn for detecting changes in mean direction.

The most important property of Vn as far as motivation for the present

paper is concerned is its rotation invariance: its numerical values are unaffected

if all the data are rotated through the same fixed, but unknown, angle. Thus, a

CUSUM based on Vn will be applicable in situations where no in-control direction

is specified and the objective is merely to detect deviations from this arbitrary

in-control direction. Both examples treated in Section 5 of the paper are of this

nature. This contrasts with the distribution free CUSUMs in Lombard, Hawkins

and Potgieter (2017), which require a specified numerical value of the in-control

mean direction.

2.2. Construction of the CUSUM

When the process is in control, that is, when X1, X2, . . . are independently

and identically distributed (but with unknown mean direction), then

(2.6) ξn := (Vn − En−1 [Vn])/
√

Varn−1 [Vn], n ≥ 2,
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is a martingale difference sequence with conditional variance 1. Here and else-

where, En−1[·] and Varn−1[·] denote expected value and variance computed con-

ditionally upon X1, . . . , Xn−1. Using standard martingale central limit theory,

we can show that cumulative sums of the ξn will be asymptotically normally dis-

tributed regardless of the type of underlying distribution - see, e.g. Helland (1982,

Theorem 3.2). Furthermore, if ν = ν0 changes by an amount δ to ν = ν0 + δ at

observation Xτ+1 (τ being the last in-control observation) then by either of the

two arguments following (2.3), we can expect Eτ [ξτ+1] to be non-zero. Thus, a

standard two-sided normal CUSUM for data on the real line, applied to the ξn

sequence, could be expected to be effective in detecting a change away from the

initial direction. Furthermore, the in-control behaviour should be quantitatively

similar to that of a standard normal CUSUM.

The conditional mean and variance in (2.6) depend on the first two mo-

ments of sinX and cosX, which are unknown parameters. Accordingly, given

observations X1, . . . , Xn, we estimate the conditional mean and variance non-

parametrically by

Ên−1 [Vn] =
1

n− 1

∑n−1

i=1
sin(Xi − ν̂n−1) = 0

and

(2.7) V̂arn−1 [Vn] =
1

n− 1

∑n−1

i=1
sin2(Xi − ν̂n−1) := B2

n−1.

Then a computable CUSUM is obtained upon replacing ξn in (2.6) by

(2.8) ξ̂n = Vn/Bn−1.

The CUSUM is started at observation m+ 1 by setting D±i = 0 for i = 1, . . . ,m
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and

D+
m+n = max{0, Dm+n−1 + ξ̂m+n − ζ}

(2.9)

D−m+n = min{0, Dm+n−1 + ξ̂m+n + ζ}

for n ≥ 1, where ζ is the reference value. The run length, N , is the first index

n at which either D+
m+n ≥ h or D−m+n ≤ −h, where h is a control limit. The

control limit is chosen to produce a specified in-control average run length (ARL),

which we denote throughout by ARL0. The first m observations serve to make an

initial estimate of the population moments after which the estimates are updated

with the arrival of each new observation. Since the the random variables sin X

and cos X are bounded, convergence of sample moments to population moments

would be quite rapid so that a relatively small number m of observations should

suffice to initialize the CUSUM.

2.3. Implementation

Implementation of the CUSUM scheme requires an efficient method of up-

dating the summand ξ̂n−1 upon arrival of a new observation Xn. For this, set

sn = sinXn, cn = cosXn

and

C(2)
n =

n∑
j=1

c2j , S(2)
n =

n∑
j=1

s2j , A(2)
n =

n∑
j=1

sjcj

and observe that

(2.10) (n− 1)B2
n−1 =

C2
n−1

R2
n−1

S
(2)
n−1 +

S2
n−1

R2
n−1

C
(2)
n−1 − 2

Cn−1Sn−1
R2
n−1

A
(2)
n−1.
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In particular, we see that the Rn−1 factors in Vn and Bn−1 cancel, whence

(2.11) ξ̂n =
V ∗n
B∗n−1

:=
Cn−1 sinXn − Sn−1 cos Xn√(

C2
n−1S

(2)
n−1 + S2

n−1C
(2)
n−1 − 2Cn−1Sn−1A

(2)
n−1

)
/(n− 1)

.

Next, note the simple recursions

Sn−1 = Sn−2 + sn−1, Cn−1 = Cn−2 + cn−1,

S
(2)
n−1 = S

(2)
n−2 + s2n−1, C

(2)
n−1 = C

(2)
n−2 + c2n−1

and

A
(2)
n−1 = A

(2)
n−2 + sn−1cn−1.

To compute V ∗n in (2.11) given Sn−2, Cn−2, cn−1, cn, sn−1 and sn, use the first

of these recursions. To compute Bn−1, given Sn−1, Cn−1, S
(2)
n−1, C

(2)
n−1, A

(2)
n−1, cn−1,

and sn−1, use (2.10).

A rational basis for specifying a reference value ζ is also required. This

aspect of the CUSUM design is considered in Section 3.3 of the paper.

3. In-control properties

While the proposed CUSUM is not distribution free, the asymptotic in-

control normality of CUSUMs of ξ̂n suggests that it may be nearly so. Then,

use of standard normal distribution CUSUM control limits should lead to an

in-control ARL sufficiently close to the nominal value to make the CUSUMs of

practical use. The requisite control limit h can be obtained from the widely avail-

able software packages of Hawkins, Olwell and Wang, (2016) or Knoth (2016).

To check this expectation we estimated by Monte Carlo simulation the in-control

ARL over a range of unimodal symmetric and asymmetric distributions on the
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circle. Among the multitude of possible distributions, the class of wrapped sta-

ble and Student t distributions, together with their skew versions, represent a

wide range of unimodal distribution shapes on the circle. Simulated data from

these distributions are easily obtained by generating random numbers Y from

the distribution on the real line and then wrapping these around the circle by

the simple transformation Y (mod 2π). Algorithms for generating the random

numbers Y are given in Nolan (2015) and in Azzalini and Capitanio (2003). The

algorithms were implemented in Matlab and the relevant programs are included

in the supplementary material to this paper.

Some simulations were also run on data from other types of distribution

which are defined directly on the circle and not obtained by wrapping. Specif-

ically, we used the sine-skewed distributions developed Umbach and Jammala-

madaka (2011) and by Abe and Pewsey (2011). In contrast to the wrapped stable

and Student t distributions, the densities of these distributions have closed form

expressions, which facilitates model fitting and parameter estimation. The var-

ious unimodal distribution shapes available in these classes of distributions are

quite similar to those in the class of wrapped distributions. Since the behaviour

of a non-parametric CUSUM depends more on the general shape of the under-

lying distribution than on the specific parameter values producing that shape, it

comes as no surprise that the in-control behaviour of the CUSUMs proposed here

is quite similar in the two classes (wrapped and directly constructed) of distribu-

tions. Since wrapped distributions are widely known and understood, we frame

our discussion in the context of these distributions. Some simulation results for

data from the sine-skewed distributions are included in the supplementary mate-

rial to this paper. In the discussion that follows, Sα, 0 < α ≤ 2, denotes a stable

distribution with index α and tn, n ≥ 1 denotes a Student t-distribution with n

degrees of freedom.

In assessing the performance of the direction CUSUM under various sym-
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metric in-control and out-of-control distributions, we standardize the observations

to a common measure of concentration. The concentration parameter κ of the

von Mises(ν, κ) distribution satisfies the relation

(3.1) κ = A−1(E[cos(X − ν)])

where A(κ) = I1(κ)/I0(κ) and I1 denotes the modified Bessel function of the

first kind of order 1. In view of the status of the von Mises distribution among

circular distributions, which is much like that of the normal distribution among

distributions on the real line, we use in this paper κ in (3.1) as a measure of the

concentration of a unimodal circular distribution with mean direction ν. Thus,

given κ and the density function of Y , the scale parameter σ is chosen to make

the distribution of the wrapped random variable

X = (σY )w := σY (mod 2π)

satisfy (3.1).

For instance, suppose Y has an Sα distribution with characteristic function

φ(t;α) = E[cos tY ] = exp(−|t|α).

Then (Jammallamadaka and SenGupta, 2001, Proposition 2.1),

E[cos(σY )w] = φ(σ;α) = exp(−σα)

so that

(3.2) σ = (− log( A(κ)))1/α.

As another example, a Student t-distribution with α degrees of freedom has
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characteristic function

φ(t;α) =
Kα/2(

√
αt)(
√
αt)α/2

2α/2−1Γ(α2 )

where Kα/2 denotes the modified Bessel function of the second kind order α/2

and Γ denotes the gamma function. Thus, in this case,

E[cos(σY )w] = φ(σ;α) =
Kα/2(

√
ασ)(

√
ασ)α/2

2α/2−1Γ(α2 )
,

and σ is the solution to the equation

(3.3) Kα/2(
√
ασ)(

√
ασ)α/2 = 2α/2−1Γ(

α

2
)A(κ).

Some numerical values that were used in the simulation study which is reported

next, are shown in Table 1.

κ = 1 κ = 2 κ = 3

S2 0.90 0.60 0.46

S1 0.81 0.36 0.21

S1/2 0.65 0.13 0.04

t3 1.07 0.64 0.46

t2 1.00 0.55 0.38

Table 1: Scale parameter σ solving (3.2) and (3.3)

3.1. Symmetric distributions

We used standard normal control limits in 50, 000 Monte Carlo realizations

of the two-sided CUSUM in each of five underlying symmetric unimodal distri-

butions: wrapped Student t-distributions with 2 and 3 degrees of freedom and

three wrapped stable distributions with indexes α = 2 (the wrapped normal dis-

tribution), α = 1 (the wrapped Cauchy distribution, which is also the wrapped
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Student t-distribution with 1 degree of freedom) and α = 1/2 (the wrapped sym-

metrized Lévy distribution). Except for the wrapped normal, these are wrapped

versions of heavy-tailed symmetric distributions on the real line. Each of the

distributions was standardized to concentrations of κ = 1, 2 and 3 by specifying

the scale parameter σ (see Table 1) in accordance with (3.2) and (3.3). Two sets

of simulations were run. In the first set, the CUSUMs were initiated at n = 11,

the first m = 10 observations serving to establish initial estimates of the unknown

parameters. In the second set we took m = 25, initiating the CUSUM at n = 26.

We present in Tables 2.1 and 2.2 aggregated sets of results representing the

general picture. (Detailed tables are given in the supplementary material to this

paper.) Each entry is the average of five estimated in-control ARLs, one from

each of the five distributions. The number in brackets shows the range of the five

estimates. The tables show the results for reference values ζ = 0 and ζ = 0.25.

ζ = 0 ζ = 0.25

ARL0 κ = 1 κ = 2 κ = 3 κ = 1 κ = 2 κ = 3

250 242 (2) 243 (5) 242 (4) 236∗ (4) 233∗ (2) 225∗ (20)

500 490 (3) 491 (6) 491 (10) 493 (9) 483 (8) 464∗ (52)

1000 1037 (9) 1039 (14) 1042 (20) 1018 (7) 997 (30) 958∗† (117)

Table 2.1: Average in-control ARL of the non-parametric CUSUM
in five symmetric distributions (m = 10). The number in
brackets is the range of the five estimates.

ζ = 0 ζ = 0.25

ARL0 κ = 1 κ = 2 κ = 3 κ = 1 κ = 2 κ = 3

250 244 (2) 244 (6) 245 (7) 242 (4) 239 (3) 234∗ (8)

500 492 (4) 493 (7) 493 (10) 498 (9) 491 (7) 478 (28)

1000 1039 (11) 1041 (10) 1045 (17) 1024 (13) 1005 (26) 971 (82)

Table 2.2: Average in-control ARL of the non-parametric CUSUM
in five symmetric distributions (m = 25). The number in
brackets is the range of the five estimates.
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All but the four starred estimates shown in the Tables lie within 5% of the

nominal value. The exceptions, which all lie within 10%, occur at ζ = 0.25 and

predominantly at the smaller warmup m = 10. In the cell marked ∗† the five

estimates were 874, 959, 976, 988 and 991, the outlier 874 coming from the very

heavy tailed Lévy distribution. In fact, all three discrepancies in this column are

attributable to a substantial underestimate from the Lévy distribution Clearly,

the CUSUM is very near distribution free overall when a reference constant close

to zero is used. With a larger reference constant, as the concentration increases

so does the variation in true ARL between distributions. This behaviour can be

explained to a large extent by reference to the martingale central limit theorem

upon which the construction of the CUSUM rests. If the summand ξn is replaced

by ξn ∓ ζ, the cumulative sums take the form Sk ∓ kζ where

(3.4) Sk =

m+k∑
n=m+1

ξ̂n, k ≥ 1

and ζ is positive. The rationale behind the construction of the CUSUM consists

essentially in replacing the discrete time process Sk/h =
∑m+k

n=m+1ξ̂n/h, k ≥ 1,

where h is the control limit, by a continuous time Brownian motion process,

W (t), t > 0. This is effected by changing the time scale. We identify k with

th2 where h is the control limit, and then replace Sk/h by W (th2)/h, which has

the same distribution as W (t). Similarly, kζ is replaced by th2ζ/h = thζ. Thus,

(Sk ∓ kζ)/h, k ≥ 1, is replaced by W (t) − thζ. The validity of this procedure

requires that h tends to ∞. Now, if ζ is positive and h→∞ then the drift term

thζ → ∞, which makes the resulting CUSUM useless. To avoid this effect, ζ

must be chosen to be O(1/h), which in practical terms means that ζ should be a

small positive number or zero.

Next, the effect of any Phase I estimation on the in-control Phase II perfor-

mance of the CUSUM needs to be considered. Given ζ̂, let ĥ be the control limit

which gives a standard normal CUSUM an in-control ARL value ARL0. The
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simulation results in Tables 2 and 3 together with the ensuing discussion indicate

that the resulting Phase II CUSUM is near distribution free provided that the

reference constant is suitably close to zero. Thus, regardless of the form of the

underlying distribution, in such cases the true Phase II in-control ARL will be

nearly constant and acceptably close to the nominal value ARL0. This behaviour

is in stark contrast to that of parametric CUSUMs where estimating unknown

parameters from Phase I data and then pretending that the Phase I estimate is

the true value, affects irrevocably the in-control ARL of the Phase II CUSUM.

Then there is no guarantee that the in-control ARL will be equal to, or even

near, the nominal value. This point has been made repeatedly in the published

literature, most recently by Keefe, et al. (2015, Introduction section) and Saleh

et Al. (2016). Hawkins and Olwell (1998, pages 159-160) give a realistic example

in which the true in-control ARL of a normal distribution CUSUM, with variance

estimated from Phase I data, differs by two orders of magnitude from the nominal

value.

In this connection, and to illustrate further the in-control behaviour of

the nonparametric CUSUM, we present next a result that is representative of

a general pattern. Consider a situation in which data arise from a wrapped t3

distribution with concentration parameter κ - see (3.3). CUSUMs with reference

constants ζ = 0 and ζ = 0.25 and nominal in-control ARL 500 are run at κ = 1

and κ = 3. A Phase I sample of size m = 30 is used in each case to obtain an

initial value B∗m of the sequence of denominators in the summands ξ̂n see (2.11).

The ”true” in-control ARLs, estimated from 50, 000 Monte Carlo trials in each

instance, are shown in Table 3.

ζ = 0 ζ = 0.25

κ = 1 492 499

κ = 3 492 482

Table 3: Estimated in-control ARL of direction CUSUM for data
from a wrapped t3 distribution with concentration parameter κ.
Warmup m = 30 and based on 50, 000 Monte Carlo trials.
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In each of the six instances the 50, 000 values of B∗m were grouped into

bins of unit length and the average of the corresponding run lengths in each

bin calculated. Figure 1 shows plots of these average run lengths against the

midpoints of the bins together with confidence intervals of width equal to three

estimated standard errors (Bins containing fewer than 100 observations, which

contain the less commonly occurring values of B∗m, are not shown.) The figure

thus provides a representation of the Phase II in-control ARL, conditional upon

the Phase I estimate B∗m. It is only at the combination κ = 3, ζ = 0.25. that

the Phase II in-control ARL exhibits substantial systematic variation away from

the corresponding unconditional value in Table 3.

3.2. Asymmetric distributions

To assess the effect of skewness in the underlying distribution on the in-

control ARL, we generated data from wrapped skew-normal distributions (Pewsey,

2000) with mean direction zero and skewness parameters λ = 2 (lightly skewed),

λ = 7 (moderately skewed) and λ = ∞ (heavily skewed), wrapped skew-stable

Cauchy- and Lévy distributions with skewness parameters β = 0.75 and 1.0

(Jammallamadaka and SenGupta, 2001, Section 2.2.8) and from wrapping skew-

t distributions (Jones and Faddy, 2003) with 2 and 3 degrees of freedom and

skewness parameters λ = 2, 7 and ∞ . The aggregated results are in Tables 4.1

and 4.2. Comparing the results with those in Tables 2.1 and 2.2, we see that

the general pattern is the same. The main contributors to the apparent degra-

dation seen at ζ = 0.25, κ = 3 are the excessively skewed distributions, namely

the wrapped skew-normal and t-distributions with skewness parameter λ = ∞

and the wrapped Lévy distribution with skewness parameter β = 1. These dis-

tributions produce estimates that are consistently substantially lower than the
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Figure 1: In-control ARL (on the vertical axis), conditional upon the value of B∗30
(on the horizontal axis), for two concentrations κ and two reference
values ζ in wrapped t3 distributions. The stars denote the ARL values
and the dotted lines are 95% confidence intervals

rest. This is perhaps not too surprising if one takes account of their shape. The

supplementary material to this paper has a Figure showing a plot of a wrapped

skew-t density with 2 degrees of freedom and skewness parameters λ = 0, 2 and

7 at κ = 3. The extreme skewness and high concentration at λ = 7 magnifies

the deleterious effect that a large reference value has on the approximation to the

nominal in-control ARL (Section 3.1, first paragraph after Table 2.2). The degra-

dation noted above largely disappears when such highly skewed distributions are

eliminated from consideration.
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ζ = 0 ζ = 0.25

ARL0 κ = 1 κ = 2 κ = 3 κ = 1 κ = 2 κ = 3

250 241 (2) 240 (4) 238 (7) 235 (5) 228 (11) 217 (25)

500 489 (4) 487 (6) 484 (9) 490 (8) 474 (29) 448 (71)

1000 1039 (11) 1036 (9) 1031 (13) 1013 (13) 979 (61) 915 (178)

Table 4.1: Average in-control ARL of the non-parametric CUSUM
in thirteen asymmetric distributions (m = 10). The number
in brackets is the range of the thirteen estimates.

ζ = 0 ζ = 0.25

ARL0 κ = 1 κ = 2 κ = 3 κ = 1 κ = 2 κ = 3

250 243 (2) 242 (3) 242 (4) 240 (3) 235 (7) 229 (22)

500 491 (5) 490 (6) 489 (7) 494 (7) 484 (25) 463 (59)

1000 1039 (13) 1038 (10) 1038 (11) 1019 (17) 988 (65) 935 (161)

Table 4.2: Average in-control ARL of the non-parametric CUSUM
in thirteen asymmetric distributions (m = 25). The number
in brackets is the range of the thirteen estimates.

3.3. Choice of reference constant

We saw in Sections 3.1 and 3.2 that the CUSUM exhibits good in-and

out-of-control behaviour throughout when a small positive reference constant ζ

is used. In analogy with a normal distribution CUSUM, one would expect the

CUSUM to then be quite adept at detecting small changes but less effective if

the change is of substantial magnitude. In the latter case, efficient detection

of a change requires use of a larger reference constant. Again in analogy with

a normal distribution CUSUM, an appropriate choice of reference constant for

efficient detection of a rotation of size ≥ δ0 could be

ζ =
E[sin(X + δ0 − ν)− sin(X − ν)]√

Var[sin(X − ν)]
,
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which can be estimated from some in-control Phase I data X1, . . . , Xm by

(3.5) ζ̂ =
δ0
2
×
m−1

∑m
j=1 sin(Xj + δ0 − ν̂m)√

m−1
∑m

j=1 sin2(Xj − ν̂m)
.

Clearly, the variability of the estimator ζ̂ will depend on both the size m of the in-

control Phase I sample and on the type of the unknown underlying distribution.

If ζ̂ turns out to be too large given the known limitations of the CUSUM, one

could use a reference value ζ̂ ≤ 0.25, say, and solve for δ0 from (3.5). This δ0

would serve as an indication of the magnitude of change that the CUSUM could

be expected to detect efficiently.

3.4. Out-of-control properties

While the in-control behaviour of the CUSUM is similar to that of a

CUSUM for normal data on the real line, the same is not true in respect of

its out-of-control behaviour. In fact, we show next that a consequence of the

continual updating of the mean direction estimator ν̂n from (2.1) is that after a

change of mean direction the CUSUM will return eventually to what appears to

be an in-control state. This behaviour is similar to that of self-starting CUSUMs

for linear data, and is a warning to users of the need for corrective action as soon

as a change is diagnosed- see Hawkins and Olwell (1998, Section 7.1).

Suppose there is a rotation of size δ from n = τ + 1 onwards and set

Yi = Xi+τ + δ, i ≥ 1 Then, using the approximations

1

τ + k
≈ 0 and

k

τ + k
≈ 1

for large k and fixed τ ≥ m, the mean direction estimated from the dataX1, . . . , Xτ , Y1, . . . , Yk
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is

ν̂τ+k = atan2

(
Sτ +

∑k
i=1 sinYi

τ + k
,
Cτ +

∑k
i=1 cosYi

τ + k

)

≈ atan2

(∑k
i=1 sinYi
k

,

∑k
i=1 cosYi
k

)
:= ν̂k(Y ),

which is the estimated mean direction of Yi, 1 ≤ i ≤ k. Thus, for sufficiently large

k, ν̂τ+k is in effect estimating the mean direction of the post-change observations

Y1, . . . , Yk. Consequently,

ξ̂τ+k+1 ≈
sin(Yk+1 − ν̂k(Y ))√

k−1
∑k

i=1 sin2(Yi − ν̂k(Y ))

which, because of its rotation invariance, has the same distribution as the in-

control variable ξ̂k.

A further consequence of this behaviour is that, in the absence of a sub-

stantial amount of in-control Phase I data there is no simple manner in which to

assess, a priori, the out-of-control ARL

E[N − τ |N > τ ]

of the CUSUM. Here N − τ is the time taken for an alarm to be raised after a

change has occurred, the expected value being calculated upon an assumption

of no false alarms prior to the change. Nevertheless, simulation results indicate

that the out-of-control ARL of the two-sided CUSUM behaves in an appropriate

manner, namely that the out-of-control ARL is less than the in-control ARL0 and

that it decreases as the size of the shift increases from 0 to π/2. For shifts of size

in excess of π/2,the ARL starts increasing again. This behaviour is a result of

the periodic nature of the CUSUM summand. Furthermore, that choosing ζ = 0

leads to substantially larger out-of-control ARLs compared to those produced by
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small positive reference constants.

To illustrate that the general pattern of out–of-control ARL behaviour mim-

ics that of a normal distribution CUSUM, Table 5 gives out–of-control ARL esti-

mates from 10, 000 simulations involving in each case shifts δ of sizes ranging from

π/8, to 7π/8 in a wrapped Cauchy distribution with κ = 2, a warmup sample size

m = 25 and reference constants ζ = 0, ζ = 0.125 and ζ = 0.25. The in-control

ARL was 1, 000 throughout. The results are for shifts induced respectively at

observation τ = 100 and at observation τ = 200.

τ = 100 τ = 200
ζ = 0 ζ = 0.125 ζ = 0.25 ζ = 0 ζ = 0.125 ζ = 0.25

δ = π/8 123 49 82 82 37 39

δ = π/4 50 17 14 40 17 13

δ = π/2 31 11 8 28 11 8

δ = 3π/4 38 16 12 37 15 12

δ = 7π/8 58 29 26 61 31 28

Table 5: Estimated out–of-control ARL of direction CUSUM for data
from a wrapped Cauchy distribution with concentration
parameter κ = 2. Warmup m = 25. Changepoints τ = 100
and τ = 200.

If a sufficiently large amount of in-control Phase I data are available to

allow a non-trivial nonparametric estimate of the underlying density to be made

(Taylor, 2008), the in-control and out-of-control properties of the CUSUM can

be fathomed by sampling from the estimated density.

3.5. Bimodal distributions

Thus far attention has focussed on unimodal distributions. However, many

of the properties of the proposed CUSUM remain intact when the underlying

distribution is multimodal. Here, we restrict attention to bimodal densities of



24 Lombard, Hawkins and Potgieter

the form

(3.6) f(θ) = pg(θ) + (1− p)g(θ − µ0)

with 1/2 ≤ p < 1 and a unimodal density g on the circle. Since the concentration

of f will be less than that of g, one finds that the approximation to the nominal

in-control ARL often improves markedly, even at a reference constant 0.25. For

instance, let g in (3.6) be a von Mises density with high concentration κ = 3.42

and mean 0. Then, if p = 1 (which is the unimodal case), and with ζ = 0.25

and a nominal in-control ARL of 500, the estimated true in-control ARL is 461.

On the other hand if p = 1/3 and µ0 = −3π/4, in which case f is bimodal with

concentration equal to 1, the estimated true in-control ARL of 492 is much closer

to the nominal value.

On the other hand, the ability of the CUSUM to detect a change of size

δ 6= 0 decreases as µ0 in (3.6) nears ±π and vanishes when f in (3.6) is antipodal,

that is, when p = 1/2 and |µ0| = π. Put another way, the CUSUM is then unable

to distinguish between f(θ) and f(θ−δ). The ostensible reason for this behaviour

is that an antipodal distribution does not possess a well defined mean or median

Nevertheless, a non-trivial CUSUM will result upon replacing the data Xi by

2Xi. This replacement transforms f(θ) to g(θ/2)/2, which is unimodal - see, for

instance, Jammalamadaka and SenGupta (2001, page 48).

4. Concentration change

For data X1, . . . , Xn from a von Mises(ν, κ) distribution, locally most pow-

erful tests of the hypothesis κ = κ0 (6= 0) are based on the statistic
∑n

i=1 cos(Xi−

ν). However, the fact that κ is not a scale parameter of the distribution of X

complicates matters. Hawkins and Lombard (2017) showed that even if the mean
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direction ν is known, control limits for a specified in-control ARL in a von Mises

CUSUM for detecting change away from κ0 depend upon κ0. Nonetheless, the

locally most powerful test statistic suggests application of a CUSUM based on

V ′n = cos(Xn − ν̂n−1), n ≥ 1.

Again, there are purely non-parametric interpretations of V ′n, devoid of any ref-

erence to a von Mises distribution. For instance, since

V ′n = (Cn−1/Rn−1) cosXn + (Sn−1/Rn−1) sinXn,

we see that V ′n is the (signed) length of the projection of the vector yn =

(sinXn, cosXn) in the direction ν̂n−1 ≈ ν of the unit vector

(Sn−1/Rn−1, Cn−1/Rn−1). If the concentration increases (decreases) after n = τ ,

the average of V ′τ+1, . . . , V
′
τ+k will tend to be greater (smaller) than the average

of V ′1 , . . . , V
′
τ . Another non-parametric interpretation rests on the fact that R2

n

in (2.4) is a frequently used non-parametric measure of concentration in a sam-

ple X1, . . . , Xn. Simple algebra shows that the relative change in R2
n−1 brought

about by the next observation Xn is

R2
n

R2
n−1
− 1 =

2V ′n
Rn−1

+
1

R2
n−1 ,

again justifying consideration of V ′n.

Proceeding in much the same manner as in Section 2.2, a CUSUM of

(4.1) ξ̂′n =
cos(Xn − ν̂n−1)−Rn−1/(n− 1)

B′n−1

where

B′n =

√
n−1

∑n

i=1
cos2(Xi − ν̂n)−R2

n/n
2,

is suggested to detect a change in concentration.



26 Lombard, Hawkins and Potgieter

A change in the numerical value of κ has a much greater effect on the de-

nominator B′n−1 in (4.1) than a change of direction has on the denominator Bn−1

in (2.8). Furthermore, the distribution of V ′n is heavily skewed. Consequently,

a CUSUM based on ξ̂′n cannot be expected to have a near distribution free in-

control ARL over a wide range of reference values. Indeed, simulation results

indicate that one is essentially restricted to ζ = 0 and a large (≥ 500) nominal

in-control ARL if a satisfactory degree of in-control distribution freeness is to be

had over the families of distributions considered in Section 3.

5. Applications

In the two applications treated here we define the sample mean direction

of data X1, . . . , Xn by

ν̂n = atan2
(∑n

i=1
sinXi,

∑n

i=1
cosXi

)

and the sample concentration, by

κ̂n = A−1
(
n−1

∑n

i=1
cos(Xi − ν̂n)

)
= A−1

(
Rn
n

)
,

in analogy with (3.1). After a CUSUM signals, we estimate the changepoint τ

in the conventional manner. That is, if the CUSUM signals with D+ (D−) at

n = N , the changepoint estimate is the last index n < N at which D+
n = 0

(D−n = 0). Both data sets are included in the supplementary material to the

paper.



Nonparametric CUSUMs for Circular Data 27

5.1. Acrophase data

The data, kindly provided by Dr. Germaine Cornelissen of the Univer-

sity of Minnesota Chronobiology Laboratory, come from ambulatory monitoring

equipment worn by a patient suffering from episodes of clinical depression. The

time at which systolic blood pressure reaches its maximum value on a given day is

called the acrophase. Monitoring the acrophase can provide an automated early

warning of a possible medical condition before it becomes clinically obvious. We

show the results of a two-sided CUSUM analysis with reference constant ζ = 0.25

(recommended reference value from (3.5) to enable detection of a 30 degree, i.e.

π/6 = 0.52 radian, rotation) and control limits h = ± 8.59, which leads to an

in-control ARL of approximately 500. The first m = 30 observations are used to

find initial estimates of the required parameters.

The left-hand panel in Figure 2 shows the CUSUM. The upper CUSUM D+

signals at n = 66 and the changepoint estimate is τ̂ = 57, that is, 27 observations

after the warmup period. The right-hand panel in Figure 2 shows the CUSUM

after restarting at n = 88, observations 58 through 87 serving as a warmup to

estimate the new direction. A sustained decrease in the lower CUSUM D− is

evident. The CUSUM signals at n = 120, a changepoint being indicated at

n = 110. Continuing in this manner produces the results in Table 6, which

shows the progress of the CUSUMs as the data accrue. The estimate of the mean

direction and concentration in each segment is shown in the third and fourth

columns of the table.
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Figure 2: Direction CUSUMs of acrophase data. Left-hand panel:
CUSUM after start at n = 31. Right-hand panel: CUSUM
after restart at n = 88. The vertical dotted lines indicate
the location of the estimated changepoints. The dashed
horizontal lines indicate the control limits.

segment signal at ν̂ κ̂

1− 57 66 −1.70 (263◦) 1.86

58− 110 120 −0.76 (317◦) 0.78

111− 140 178 −1.90 (251◦) 2.60

141− 241 255 −1.19 (292◦) 2.51

242− 282 299 −0.90 (308◦) 0.31

283− 306 none −.007 (360◦) 1.68

Table 6: Acrophase data: Progression of CUSUMs

Figure 3 shows dot plots, constructed after the fact, of the data in the

six identified segments together with an indication of the mean in each segment.

A noticeable feature in this plot is the first two increases followed by a sudden

large decrease to more or less the original mean value. This is indicative of an

external intervention in the treatment of the patient to reset the acrophase. After

that, there follows a sustained increase, this time without any apparent external

intervention. The figure also reveals some variation between the concentrations

within the six segments - see the fourth column in Table 6. This does not affect

the validity of the CUSUM since there is no assumption that the concentrations

in the various segments must all be the same. In retrospect, it seems that the
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CUSUM has done a good job of identifying location changes.
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Figure 3: Rose plots of the data in each of the six identified segments of the acrophase data.
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5.2. Pulsar data

Lombard and Maxwell (2012) developed a rotation invariant cusum to de-

tect deviation from a uniform distribution on the circle and applied it to some

data consisting of arrival times of cosmic rays from the vicinity of a pulsar. The

objective is to detect periods of sustained high energy radiation. Following a

standard procedure in Astrophysics, the data were wrapped around a circle of

circumference equal to the period of the pulsar. If no high energy radiation is

present the wrapped data should be more or less uniformly distributed on the cir-

cumference of the circle, while a non-uniform distribution should manifest itself

during periods of high energy radiation. They found that the first 190 observa-

tions could reasonably be assumed to have arisen from a uniform distribution.

We now apply to observations 191 through 1250 the concentration CUSUMs from

Section 4 of the present paper to detect further changes in concentration. The

in-control ARL of the chart is set at 500 observations with reference value ζ = 0

(again, the recommended reference value from (3.5) to enable detection of a 30

degree, i.e. π/6 = 0.52 radian, rotation) and control limits ±30.46. The first

m = 50 observations are used to obtain initial estimates of the required means,

variances and covariance of sin X and cos X.

The full extent of the concentration CUSUM, without restarts, is shown

in Figure 4. The first signal is at n = 191 + 495 = 686 and the changepoint is

estimated at n = 191 + 331 = 522. The estimated concentration in the segment

[192, 522] is 0.35. Thereafter, the lower CUSUM D− shows a sustained decrease

to the end of the data series. In fact, if the CUSUM is restarted at n = 523, a

changepoint is indicated at n = 523. Such a pattern is indicative of a more or

less continuous decrease in concentration as the series progresses. The estimated

concentration of the observations in the segment [523, 1250] is 0.06, suggesting
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a uniform distribution in this segment. Hawkins and Lombard (2015) applied a

retrospective segmentation method to these data. Except for a short segment

[191− 207], which falls within the warmup set used to initiate the CUSUM, the

results of the CUSUM analysis agree quite well with their results. The numerical

details are shown in Table 7.
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Figure 4: Concentration CUSUM of the pulsar data.

Retrospective

segment ν̂ κ̂

191-207 -0.41 1.89

208-573 -1.58 0.35

574-1250 - 0.0

CUSUM

segment ν̂ κ̂

191-522 -1.44 0.35

523-1250 - 0.06

Table 7: Pulsar data. Segments delineated by sequential
CUSUM and retrospective segmentation

6. Summary

We develop non-parametric rotation invariant CUSUMs for detecting changes

in the mean direction and concentration of a circular distribution. The CUSUMs

are designed for situations in which the initial mean direction and concentration
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are unspecified, the objective being to detect a change from the initial values,

whatever the latter may be. Monte Carlo simulation results indicate that the

CUSUMs have in-control average run lengths that are acceptably close to the

nominal values over a wide class of symmetric and asymmetric circular distri-

butions. Two applications of the methodology to data from Health Science and

Astrophysics are discussed.
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