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Abstract:

• We analyse the problem of finding the optimal combination of quota-share and stop
loss treaties, maximizing the expected utility or the adjustment coefficient of the ce-
dent, for each of two risks dependent through a copula structure. By risk we mean
a line of business or a portfolio of policies. Results are obtained numerically, using
the software Mathematica. Sensitivity of the optimal reinsurance strategy to several
factors are investigated, including: i) the dependence level, by means of the Kendall’s
tau and the dependence parameter; ii) the type of dependence, using different copulas
describing different tail behaviour; iii) the reinsurance calculation principles, where
expected value, variance and standard deviation principles are considered. Results
show that different dependence structures, yield significantly different optimal solu-
tions. The optimal treaty is also very sensible to the reinsurance premium calculation
principle. Namely, for variance related premiums the optimal solution is not the pure
stop loss. In general, the maximum adjustment coefficient decreases when dependence
increases.
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1. INTRODUCTION

From the vast range of literature intended for the financial and insurance
community, it is widely accepted that dependencies play a determinant role in
risk assessment and management. Namely, reinsurance is a risk mitigating tool,
constituting an important instrument in the management of risk of an insurance
company where dependencies should be taken into account. When transferring
risk, the cedent seeks a trade-off between profit and safety, which is dependent
on the nature of the insured underlying risk and on the reinsurance premium
calculation principle. This optimization problem has been largely studied in the
literature, however only recently dependencies among risks have been considered.
The goal is always to find the reinsurance strategy, which is usually defined by
the forms of reinsurance to be considered and the specific retention levels, that
minimizes a given measure of the underlying risk.

In [19] (for the aggregate claim model) and [13] (for the individual claim
model) the authors obtain analytically the optimal reinsurance strategy maxi-
mizing the adjustment coefficient or the expected utility assuming independence.
The premium calculation principle used is a convex functional, including the
expected value, standard deviation and variance premium principles as special
cases. In the case of “variance related” premium calculation principles, the op-
timal reinsurance contract is a specific, implicitly defined, non-linear function of
the retained risk such that the tail of the underlying risk is shared by both the in-
surer and the reinsurer. If the expected value calculation principle is considered,
the pure stop loss treaty is optimal. In fact, the pure stop loss, which appears
as the optimal form of reinsurance in an innumerable amount of cases where the
expected value premium principle is used, is not realistic in practice. It means all
the risk in the tail is ceded to the reinsurer which will not accept it but at a very
high premium loading, in which case the stop loss is probably not optimal any-
more (as shown in [19, 13]). Other works considering convex premium principles
include [21, 22] and [15], where convex risk measures (e.g. the variance or semi-
variance of the retained risk) are used as optimality criteria. In all these works,
independence is assumed. Indeed, while a large quantity of analytical studies
can be found regarding optimal reinsurance, only a few number consider depen-
dence. Notwithstanding, the interest in studying optimal reinsurance strategies
under dependencies is increasing, driven by the need for real, robust and reliable
quantitative risk models.

Article [12] is one of the first works including the effects of dependence
when investigating analytical optimal forms or risk transfer. The optimal reten-
tion limit for the excess-loss (XL) reinsurance is studied considering two classes
of insurance businesses, dependent through the number of claims by means of a
bivariate Poisson, when the cedent intends to maximize the expected utility or
the adjustment coefficient, using the expected value premium principle. Other
authors have considered the optimal reinsurance problem under dependence be-
tween claim numbers, such as [28] and [5]. In [25] the impact of dependencies from
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year to year reinsurance payoffs are investigated using copulas and simulation,
however optimal reinsurance is not directly addressed. In [6] positive dependen-
cies in the individual risk are considered by means of the stochastic ordering. By
considering a fixed reinsurance premium, calculated through the expected value
principle, the authors demonstrate that in this case the optimal form of rein-
surance is the XL treaty, when the optimality criterion is the maximization of
the expectation of a convex function of the retained risk, including the expected
utility for the exponential functional. In that paper, the authors refer to the
non-proportional reinsurance as excess of loss (XL), assuming the risks are indi-
vidual claims and then considering their sum. Accounting for dependence have
protruded the use of numeral techniques, such as Dynamical Financial Analysis
(DFA), Linear Programming, see e.g. [2], dynamic control problems, see e.g. [4],
or simulation, see e.g. [25], which is often based on Monte Carlo simulation. Very
recently, in [3], it has been advocated that when constraints on dependencies and
economic and solvency factors are included in the optimal reinsurance problem,
“the optimal contract can only be found numerically”. Hence, they propose a
numerical framework, based on the Second-Order Canonical Problem for numer-
ical optimization. Other works regarding the application of numerical techniques
to solve optimal reinsurance problems consider numerical methods for stochastic
control theory (see for instance [29]). Most of these numerical works deal with
real data.

In this work, we aim at studying the sensitiveness of the optimal reinsurance
strategy, in presence of dependencies, to different factors such as premium calcu-
lation principles and dependence structures and levels. We account not only for
the expected value principle, but also for the standard deviation and the variance
principles. We consider two underlying risks and by risk we mean the aggregate
claims of a line of business, a portfolio of policies or a policy. Dependence between
the two risks is modelled through copulas, allowing to easily change the depen-
dence structure and strength. We construct the optimal problem as finding the
optimal combination of quota share (QS) and stop loss treaties, for each risk, that
maximizes the expected utility or the adjustment coefficient of the total wealth
of the first insurer. The analytical results in [6] for the expected value principle
are not straightforwardly extendable to the variance related premiums, thus, we
use numerical methods. To properly study the sensitivity of the optimal rein-
surance strategy to several dependence structures and levels, and to a variety of
reinsurance premium calculation principles, the problem setting is kept as simple
as possible and no real data is used. The distributions of the underlying risks are
assumed to be known and different distributions are considered. This controlled
environment allows for a systematically analysis of the optimal reinsurance and
its sensitivity to the several factors considered.

The layout of this paper is as follows. In Section 2 we set the optimization
problem to be solved, introducing the copulas that will be used, the premium
calculation principles and optimality criteria. In Section 3 we present the numer-
ical results and their discussion. Finally, conclusions and future perspectives are
drawn in Section 4.
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2. SETTING THE OPTIMIZATION PROBLEM

We consider two risks, X1 and X2, with distribution functions FX1(x1) and
FX2(x2), respectively. By risk we mean a line of business, a portfolio of policies
or a policy. We assume that the two risks are dependent through a copula,
denoted by Cα, α > 0, such that the joint distribution is given by Cα(x1, x2) =
Cα(FX1(x1), FX2(x2)), and the joint density function is given by fX1,X2(x1, x2).
We use the notation dCα(x1, x2) = fX1,X2(x1, x2)dx1dx2. We assume that the
insurer reinsures each risk by means of a QS contract topped by a stop loss
treaty. Thus, the retained risks are Yi = Yi(ai,Mi) = min(aiXi,Mi), i = 1, 2,
where 0 6 ai 6 1, represents the QS retained level of risk i, i = 1, 2, and Mi > 0,
denotes the stop loss retention limit, above which all the risk is ceded to the
reinsurer, for risk i, i = 1, 2. Therefore, the total wealth of the insurer after
reinsurance is given by

W (a1,M1, a2,M2) = W (a1,M1) +W (a2,M2)

= (1− e1)P1 − PR1 − Y1 + (1− e2)P2 − PR2 − Y2,(2.1)

where Pi > 0, represents the premium received by the insurer for each risk i,
i = 1, 2, and ei > 0, i = 1, 2 are the corresponding insurer expenses; PRi =
PRi(ai,Mi) > 0 denotes the premium charged by the reinsurer for each risk i,
i = 1, 2.

2.1. The dependence structure

When two risks are assumed not to be independent, an infinite range of
possible dependencies between them can be at stake. The first question is, if
they are dependent, what is the best model to explain the existing dependencies.
Copulas constitute a convenient and elegant way of describing dependencies be-
tween two or more random variables. Also, using copulas, measures of non-linear
dependence can be explored, such as the Kendall’s rank correlation coefficient,
which is a measure of concordance [14].

Our underlying risks 1, X1 and X2, are continuous random variables and the
joint density function is given by fX1,X2(x1, x2) = fX1(x1)fX2(x2) c (FX1(x1), FX2(x2)),

where c(u1, u2) = ∂2

∂u1∂u2
C(u1, u2), (u1, u2) ∈ [0, 1]2 is the so-called copula den-

sity. In our case, the retained risk after the combination of QS and stop loss,
Yi = min(aiXi,Mi), i = 1, 2, 0 6 ai 6 1, Mi > 0, is non-decreasing function
of Xi, hence the dependence structure is maintained for the retained risks (see
[14]). That is, if the joint distribution of (X1, X2) is described by copula C,
FX1,X2(x1, x2) = C(FX1(x1), FX2(x2)), then the joint distribution of (Y1, Y2) is
also described by copula C, FY1,Y2(y1, y2) = C(FY1(y1), FY2(y2)).

1In this work the random variables of interest are the two risks considered. Hence, often the
underlying random variables are designated by risks.
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In this work, we consider Clayton’s and Frank’s copulas, which belong
to the Archimedean family of copulas and have lower and no tail dependency,
respectively. In these cases the Kendall’s tau rank coefficient can be easily de-
scribed by τα = α

α+2 , for Clayton’s copula, and τalpha = 1 − 41−D1(α)
α , with

D1(α) = 1
α

∫ α
0

t
et−1dt, for Frank’s copula (see [14]). We also consider the Pareto’s

copula which can be derived as the “natural” bivariate distribution of two Pareto
distributions with the same shape parameter α and it is as heavy right tail cop-
ula. Indeed, the Pareto’s copula is the survival Clayton’s copula with dependence
parameter 1/α. Thus, the Pareto’s copula Kendall’s tau is τα = 1

1+2α .

2.2. The reinsurance premium

We analyse optimal reinsurance strategies for the expected value calculation
principle, where the loading is proportional to the expected value of the risk, and
also for the variance and standard deviation calculation principles. The later
belong to the so-called (see [19]) variance related premium principles, as the
premium loading is an increasing function of the variance of the covered risk.
Noticing that the amount of risk ceded to the reinsurer, per risk i, i = 1, 2, is
Xi − Yi, with Yi = min(aiXi,Mi), we can compute the reinsurance premium on
each total ceded risk.

Expected value principle:

PRi = E(Xi − Yi) + δiE(Xi − Yi) = (1 + δi)E(Xi − Yi).

Variance principle: PRi = E(Xi − Yi) + δiV ar(Xi − Yi).

Standard deviation principle: PRi = E(Xi − Yi) + δi
√
V ar(Xi − Yi).

Here δi > 0, i = 1, 2, is the loading coefficient. This is how the authors in [6],
using the expected value principle, as well as in [19, 13], for variance related
principles, compute the reinsurance premium. However, when a combination of
QS and stop loss is taken into account, the QS and stop loss premiums can be
considered separately. This is the procedure followed for instance in [8, 9], and it
corresponds to many practical cases, where the stop-loss contract is independent
of the QS treaty, coming on top of the QS. In fact, the QS premium is usually
proportional to the ceded risk minus a commission. In this case, the QS premium
is the proportion of the premium received by the insurer Pi correspondent to the
ceded risk, (1 − ai)Pi, subtracting the commission, ci > 0: PQSi = (1 − ai)(1 −
ci)Pi. The stop loss premium will be computed on the ceded risk after QS:
Zi = max(aiXi −Mi, 0), i = 1, 2. Thereby, the total reinsurance premium turns
out as follows.

Expected value principle: PRi = PQSi + (1 + δi)E(Zi).
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Variance principle: PRi = PQSi + E(Zi) + δiV ar(Zi).

Standard deviation principle: PRi = PQSi + E(Zi) + δi
√
V ar(Zi).

Here, we will study and compare optimal reinsurance strategies in both
cases where the premium is computed on the total ceded risk or separately for
QS and stop loss.

2.3. The expected utility and the adjustment coefficient

Several authors have considered to use the expected utility of wealth as
optimality criteria when ascertaining the optimal reinsurance strategy, e.g. [8, 9,
12, 19, 13, 23]. The adjustment coefficient can be regarded as a given coefficient
of aversion of the exponential utility function. On the other hand, the adjustment
coefficient is connected to the ultimate probability of ruin. From the well known
Lundberg Inequality, the larger the adjustment coefficient is, the smaller the
upper bound of the probability of ultimate ruin is. Thus, maximizing the adjust-
ment coefficient R instead of minimizing the probability of ruin Φ(u) is reason-
able. Because of this, many authors have considered maximizing the adjustment
coefficient as optimality criteria for reinsurance, e.g. [7, 11, 12, 19, 13, 10, 28].
In [18] reinsurance strategies minimizing directly the probability of the insurer’s
ruin are studied. There, the authors consider that the reinsurance premium is an
increasing function of the expected value of the transferred risk. They show that
in this case the stop loss, or the truncated stop loss if there are reinsurance pre-
mium budget restrictions, is the optimal strategy. In [26] the same problem, also
considering the expected value premium principle, is analyzed in the presence of
background risk. Other works can be found, where strategies minimizing directly
the probability of ruin are obtained, such as in [20, 24, 1, 27]. However, in such
works the framework is usually a dynamical setting, with a diffusion setup and a
continuous time adaptation of the contract, which is not the case of the present
paper.

Notice that the adjustment coefficient is independent from the initial capi-
tal, u, of the insurer. Thus, the optimal strategy that maximizes the adjustment
coefficient is also independent of u. In [16] an upper bound for the probability of
ruin, dependent on the initial capital, is provided. In [17] this inequality is fur-
ther refined and used to approximate the probability of ruin in regime-switching
Markovian models. This upper bound represents an improvement to the Lund-
berg bound, specially for the cases where the initial capital is small. Hence, it is
expected that using such upper bound as optimality criteria will lead to different
optimal retention levels, specially for small values of the initial capital. However,
it requires the distribution of losses to be new worse than used (NWU) and repre-
sents a significantly more complex bound from the computational point of view,
when compared to the Lundberg bound, as it includes the need to solve an extra
minimization problem.
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In this work we will consider maximizing the expected exponential utility
and the adjustment coefficient. Interesting future works include the minimiza-
tion of the improved upper bound for the probability of ruin provided in [16] as
optimality criteria, and to compare it with the results here presented.

2.3.1. Maximizing the expected utility

The goal is to determine the optimal reinsurance contract for a risk-averse
insurer which purpose is to maximize the expected utility of its wealth. We
consider the exponential utility function, for risk averse investors, defined through
U(x) = 1− e−β x

β , where β = −U ′′(x)/U ′(x) > 0 is the coefficient of risk aversion.
In this case, the expected utility of the wealth for a given (fixed) coefficient of
aversion β is:

(2.2) E[U(W (a1,M1, a2,M2))] =
1

β

(
1− E

[
e−βW (a1,M1,a2,M2)

])
.

Maximizing the expected utility (2.2) corresponds to find the reinsurance strategy,
(a1,M1, a2,M2), that maximizes E[U(W )] for a given (fixed) coefficient of risk
aversion β. Recalling (2.1), this is equivalent to minimize the following functional:

E
[
e−βW (a1,M1,a2,M2)

]
:= G(β, a1,M1, a2,M2) =

= e−β((1−e1)P1+(1−e2)P2)eβ(PR1(a1,M1)+PR2(a2,M2)) ×(2.3)

×
∫ +∞

0

∫ +∞

0
eβ(Y1(a1,M1)+Y2(a2,M2))dCα(x1, x2)

for a given (fixed) β.

2.3.2. Maximizing the adjustment coefficient

The adjustment coefficient, R, of the retained risk after reinsurance is de-
fined as the unique positive root, if it exists, of G(R, a1,M1, a2,M2) = 1, where
G is given by (2.3). The coefficient of adjustment is related to the coefficient of
risk aversion of the exponential utility, as it corresponds to the value of the risk
aversion coefficient for which the expected utility (2.2) is zero, see [19]. In [19]
it is demonstrated that, under general regularity assumptions on the functional
G verified in our case, a reinsurance policy maximizes the adjustment coefficient,
R̂, if and only if:

i) The expected utility, with coefficient of risk aversion R̂, is maximum for
that policy and

ii) G(R̂, a1,M1, a2,M2) = 1.
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Thus, as suggested in [19], the problem of maximizing the adjustment coefficient
can be split in two sub problems:

1. For each β > 0, find the reinsurance strategy, (a1,M1, a2,M2) that mini-
mizes G.

2. Solve G(β, a1,M1, a2,M2) = 1 with respect to the single variable β.

Whence, given the algorithm to find the optimal reinsurance maximizing the ex-
pected utility it is straightforward to obtain the reinsurance strategy maximizing
the adjustment coefficient. However, maximizing the adjustment coefficient re-
quires the solution of several expected utility maximization problems, until the
desired root is found.

3. NUMERICAL RESULTS AND DISCUSSION

The numerical implementation was performed the Mathematica. All the
double and single integrals involved in the evaluation of G(β, a1,M1, a2,M2) are
solved using Mathematica numerical integration, which applies global adaptive
Gauss-Kronrod quadrature rules. The resolution of the minimization problems
were carried out using numerical algorithms for non-linear constrained global op-
timization already implemented in Mathematica, namely the Nelder Mead and
Differential Evolution algorithms. Strictly speaking, the Nelder Mead algorithm
is not a global optimization method, but it tends to work quite well if the ob-
jective function does not have many local minima, which is the case here. The
numerical procedure, namely the numerical optimization problem, is amenable for
improvement as no particular features of the functional to minimize were taken
into consideration and general global optimization was applied. The existence of
plateaux regions in the functional to minimize, specially regarding the stop loss
retention values, made the convergence to the optimal solution slower in some
cases. Nevertheless, results were achieved and analysis of the sensitiveness to the
several factors, such as premium calculation principles and dependence structures
and levels, of the optimal reinsurance for two dependent risks were performed.

In the following, the premium received by the insurer is computed by means
of the expected value principle with a loading coefficient of γi = 0.2, i = 1, 2.
For the underlying risks, X1 and X2, we will consider different distributions, but
in such way that the expected value is always 1. Hence, the premium loading
charged by the insurer is γiE(Xi) = γi, i = 1, 2. We assume expenses are 5%
of the premium, ei = 0.05, i = 1, 2. Whenever the QS premium is computed
on a proportional basis, separately from the stop-loss premium, the commission
is ci = 0.03, i = 1, 2. Indeed, the QS reinsurance commission should be lower
than the insurer expenses ci < ei, meaning it is impossible to reinsure the whole
risk through QS with a certain profit. This implies that the QS premium loading
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premium principle loading coefficient

expected value δ

variance δ E(X)/V ar(X)

standard deviation δ E(X)/
√
V ar(X)

Table 1: Loading coefficients for the three premium principles considered,
where δ is the loading coefficient for the expected value principle
and X is the underlying risk.

premium principle QS and stop loss separately QS and stop loss together

expected value 0.3 0.2

variance 0.1 0.0666667

standard deviation 0.173205 0.11547

Table 2: Loading coefficients, for the three premium principles, consider-
ing two Pareto risks with expected value 1 and shape parameter
3.

is E(Xi) [(1− ci)(1 + γi)− 1] = 0.164E(Xi). When maximizing the expected
utility, we consider a coefficient of risk aversion β = 0.1.

In Table 1 are presented the premium loadings. With these values, the
premium loading when all the risk is transferred by means of a pure stop loss
contract, i.e when ai = 1 and Mi = 0, is the same for all three premium prin-
ciples. Indeed, in this case the moments involved in computing the reinsurance
premiums, either for QS and stop loss together or separately, correspond to the
moments of the underlying risk. However, if QS and stop loss are considered
separately that is true only when ai = 1 (and Mi = 0), whereas if the premium
is computed for the QS and stop loss together that is true no matter the value of
ai (as long as Mi = 0). We first consider two Pareto distributions with expected
value 1 and shape parameter 3. The loading coefficients in this case are shown
in Table 2. In this case, independently of the premium calculation principle, the
optimal retention levels of QS and stop loss contracts are the same for both risks,
as they are equal. Results for the optimal reinsurance, as function of Kendall’s
tau coefficient, maximizing the expected utility with coefficient of risk aversion
β = 0.1 and the loading coefficients in Table 2 are presented in Figure 1.

From the results, we can see that when the expected value principle is
computed on the total ceded risk, the optimal reinsurance contract is always the
pure stop loss, independently of the dependence structure and strength. This is
expected, from the results in [6]. If the expected value principle is computed only
on the ceded risk through stop-loss, after QS, the pure stop loss is no longer the
optimal contract. In this case, for larger values of the Kendall’s tau correlation,
the optimal QS levels decrease below the independence optimal QS level. For
larger values of the Kendall’s tau, it compensates to cede part of the risk trough
QS and to cede trough stop loss on top of that, independently of the dependence
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Figure 1: Optimal reinsurance maximizing the expected utility with β =
0.1.

structure. This is related with the QS premium loading in this case, that for
strong dependence compensates the stop-loss premium loading. This is not veri-
fied when independence is assumed, for this loading coefficients. Thus, the results
suggest that affects the type of optimal contract even when the expected value
principle is considered, if QS and stop-loss premiums are computed separately.
We also observe that, no matter what the optimal contract is, the optimal stop
loss limits for the expected value principle, computed together or separately for
QS and stop loss, decrease as dependence strength increases.

Regarding the variance and standard deviation principles, we can see that
the pure stop loss is never the optimal treaty, not even in the independent case.
That is in accordance with the results in [19]. In these cases, the optimal QS
levels always decrease as the dependence strength increases, independently of
computing the reinsurance premium together, for the whole ceded risk, or sepa-
rately for QS and stop-loss. However, the optimal stop-loss limit does not always
decrease as dependence strength increases. For the variance principle, if the pre-
mium is computed together for QS and stop-loss, the optimal limit of stop loss
decreases, as dependence increases, in the case of Pareto’s copula, but it increases,
as dependence increases (and the QS optimal level decreases) for Clayton’s and
Frank’s copulas. For the standard deviation principle, this behaviour of Clay-
ton’s and Frank’s copulas is observed not only for the premium computed on the
whole ceded risk, but also when the premiums of QS and stop-loss are computed
separately. These results show that dependence impacts the optimal levels of re-
tention in non-intuitive ways, especially in the cases of variance related premium
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Figure 2: Optimal reinsurance maximizing the adjustment coefficient, and
corresponding optimal values of the adjustment coefficient.

principles.

Next we consider the maximization of the adjustment coefficient as optimal-
ity criteria. As described in Chapter 2, to obtain the optimal reinsurance treaty
maximizing the adjustment coefficient, it is enough to find the optimal solution
for the expected utility problem with the coefficient of risk aversion β > 0 such
that the expected utility value in (2.2) is equal to 0. In order to solve equation
G(R, a1,M1, a2,M2) = 1, for (a1,M1, a2,M2) minimizing G(R, a1,M1, a2,M2), a
bisection method was applied. Amongst the root finding numerical methods, bi-
section is the simplest. Although its convergence is not very fast when compared
with Newton-type methods, it has the advantage of not requiring the computa-
tion of derivatives of the functional. Also, convergence to a tolerance of 10−6 was
reached within an average of 10 iterations, as the initial points were easily chosen
close enough to the solution. Situations where convergence was more difficult
regard instances where converge of the constraint global optimization algorithm
to the minimum of functional G was slow. This was the case of Clayton’s cop-
ula, when using the standard deviation principle computing QS and stop loss
premiums separately. Results are depicted in Figure 2.
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Again, as expected from the results in [6] and [19], the optimal treaty when
the expected value principle is applied to QS and stop loss together is the pure
stop loss, for all three copulas and all values of the dependence parameter. That is
not the case for the variance related premium principles, even in the independent
case. The optimal retention levels vary with the dependence parameter, although
not so significantly as for the case where the risk aversion coefficient was fixed.
Instead, the impact of dependence is very relevant in the value of the maximum
adjustment coefficient of the optimal contract. It can be observed, for all copulas
and premium principles considered, that the adjustment coefficient decreases as
dependence strength increases. This means that the higher the dependence, the
higher the upper bound of the ultimate probability of ruin.

The remarks made for the case of a fixed coefficient of aversion apply here,
although now the differences in the standard deviation and variance principles,
computing QS and stop loss premiums together, are more accentuated. The
adjustment coefficient always decreases when dependence increases. It can be
observed that the maximum adjustment coefficient using the standard deviation
principle is always below those using the expected value and variance principles.
If QS and stop loss premiums are computed together, then the maximum adjust-
ment coefficient using the expected value principle is higher. If premiums are
computed separately, then the maximum adjustment coefficient using the vari-
ance principle is higher. This is verified for all three copulas. When the standard
deviation principle is considered, the maximum adjustment coefficient of the op-
timal contract is similar computing the premium together on the whole ceded
risk, or separately for QS and stop-loss. It is worth noticing the differences in
the optimal reinsurance for the different copulas. Differences are particularly sig-
nificant between the Pareto’s copula and Clayton’s and Frank’s copulas. This is
because Pareto’s copula has right tail dependence, while Clayton’s and Frank’s
copulas do not.

Afterwards we have considered two risks with different tail heaviness: two
Pareto distributions with expected value 1 and shape parameters 3 and 12, re-
spectively. In this case, the variances are 3 and 1.2, respectively. For this case,
we have considered dependence by means of the Pareto’s copula, where depen-
dence is stronger on the right tail, and we aim at maximizing the expected utility
with coefficient of risk aversion β = 0.1. Regarding the loading coefficients, we
apply the same reasoning as before, which is described in Table 1 and leads to
the loading coefficients presented in Table 3. Results are shown in Figure 3.
Whenever the expected value principle is applied (blue lines of Figure 3), either
on the total ceded risk or just on the stop loss contract, the pure stop loss treaty
is optimal for both risks. The optimal stop loss retention limits are similar for
both risks and decrease as dependence increases.

Regarding the standard deviation principle (green lines in Figure 3), the
pure stop loss contract is optimal for the second (lighter tailed) risk, when com-
puting the reinsurance premium both on the total ceded risk or separately for
QS and stop loss. The optimal stop loss retention values for this pure stop loss
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premium principle QS and stop loss separately QS and stop loss together

X1 X2 X1 X2

expected value 0.3 0.3 0.2 0.2

variance 0.1 0.25 0.0666667 0.166667

standard deviation 0.173205 0.273861 0.11547 0.182574

Table 3: Loading coefficients, for the three premium principles, consider-
ing two Pareto risks with expected value 1 and shape parameter
3 (X1) and 12 (X2).
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Figure 3: Optimal reinsurance maximizing the expected utility with β =
0.1 for two dependent risks with Pareto distributions with mean
1 and shape parameters 3 (X1) and 12 (X2).

contract on the second risk are significantly high, compared to the first risk or
with the other, expected value and variance, premium calculation principles, and
decrease as dependence strength increases. For the first (heavier tailed) risk, the
optimal reinsurance contract is not the pure stop loss anymore and the optimal
stop loss retention limits are much lower than those of the second risk, though
still higher compared to the expected value premium principle. The optimal QS
levels are quite low and both QS and stop loss optimal retention limits decrease
as dependence increases. With the standard deviation premium principle, much
of the first risk is transferred, while much of the second risk is kept.

For what concerns the variance principle (red lines in Figure 3), the pure
stop loss contract is optimal for the second risk only when the QS premium is
computed on a proportional basis. Again, the optimal QS and stop loss retention
values decrease with dependence. The optimal stop loss retention limits of the
first risk are significantly different when QS and stop loss premiums are com-
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puted together or separately. This difference is less accentuated for the second
risk, where the stop loss contract is optimal when computing QS and stop loss
premiums separately.

In general, for all three premium principles and for both risks, the optimal
QS and stop loss retained levels decrease as dependence increases. In most cases
the pure stop loss contract is optimal for the second (lighter tailed) risk. Thus,
in most cases only the tail of the second risk is transferred. On the contrary, for
the first (heavier tailed) risk, the pure stop loss contract is optimal only for the
expected value principle, meaning that for the standard deviation and variance
principles it is optimal to transfer more of the first (heavier tailed) risk.

4. CONCLUSIONS

Clearly dependencies alter the optimal treaty, as compared with the inde-
pendent case, and the impact of these dependences on the optimal treaty may
be non-intuitive. Different dependence structures, yield significantly different op-
timal solutions. As expected, the optimal treaty is also highly sensitive to the
premium calculation principle and relevant differences are encountered between
premiums calculated on the total ceded risk or separately for QS and stop loss.
In some cases, this behaviour is accentuated in the presence of dependencies.
The results here presented can be useful in bringing insight on the impact of
dependence on the optimal reinsurance strategy. Such insight can be helpful in
the design of more general theoretical results on optimal reinsurance of depen-
dent risks. It can also be beneficial when analysing real world case studies of
applications.
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