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Abstract:

• Parameters of Marshall-Olkin Extended Burr XII (MOEBXII) distribution are usually
estimated using maximum likelihood (ML) and least squares (LS) estimation methods.
However, these estimators are not robust to the outliers which are often encountered in
practice. The purpose of this paper is to obtain robust estimators for the parameters
of MOEBXII distribution using optimal B robust estimation method. A simulation
study is provided to show the performance of the proposed estimators over ML, LS
and robust M estimators.Further, a real data example from a pharmacokinetics study
is also given to illustrate the modeling capacity of the MOEBXII distribution when
the parameters are properly estimated.

Key-Words:

• Least squares estimator; Marshall-Olkin extended Burr XII (MOEBXII) distribution;
maximum likelihood estimator; optimal B-robust estimator.

AMS Subject Classification:

• 62F35,65C60
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1. INTRODUCTION

Burr [4] introduced a family of continuous distributions that includes twelve
types of cumulative distribution functions with different shapes. Since then, Burr
XII distribution has attracted attention in many different fields [15, 20, 2, 22,
21, 16, 10]. The Burr distribution has relationship with several distributions and
some of them are summarized by Rodriguez [23] and Tadikamalla [26]. Because of
it is flexility for modeling data, several generalizations of the Burr XII distribution
have been introduced in literature. One of these generalizations is based on the
Marshall-Olkin transformation which further improves the flexibility of the Burr
XII distribution. Marshall and Olkin [19] introduced a method of obtaining a
family of distributions with an additional parameter α.Let F (x) and F̄ (x) =
1− F (x) be the cumulative distribution function (cdf) and the survival function
of the baseline distribution, respectively. Then, a Marshall-Olkin (MO) extended
distribution can be defined with the following survival function

(1.1) F̄α(x) =
αF̄ (x)

1− ᾱF̄ (x)

where α > 0 is an additional parameter and ᾱ = 1− α. When α = 1, we get the
baseline distribution. Using the transformation given in (1.1) several generalized
distributions are defined in the literature. One of these generalizations is the
Marshall-Olkin extended Burr type XII (MOEBXII) distribution introduced by
Al-Saiari et al. [3].

Several researchers have considered parameter estimation of the Burr XII
distribution. For instance, Wingo [28, 29] has considered estimating the pa-
rameters of the Burr XII distribution using the ML estimation method. Mali-
nowska et al. [17] have provided the minimum variance linear unbiased estimators
(MVLUE), the best linear invariant estimators (BLIE) and the ML estimators
based on n-selected generalized order statistics for the parameters of the Burr
XII distribution. Shao [24] has given a complete investigation on the behaviors
of the ML estimates based on uncensored and right-censored data. Wang and
Cheng [27] have used a robust regression method to estimate the parameters of
the Burr XII distribution. Dogru and Arslan [6, 7] have proposed estimators
based on the M estimation and the optimal B-robust (OBR) estimation meth-
ods to estimate the parameters of Burr XII distribution. However, concerning
the MOEBXII distribution a small number of researchers have been considered
to estimate the parameters of the MOEBXII distribution in the literature. For
example, Al-Saiari et al. [3] have used the ML and Bayes estimation methods to
estimate the parameters of the MOEBXII distribution. Since ML estimators may
be spoiled when there are outliers in the data, robust estimation methods can be
used to estimate the parameters of MOEBXII distribution. Recently, Guney and
Arslan [9] and Ozdemir et al. have explored the robust estimation methods to
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estimate the parameters of MOEBXII distribution if robustness is a concern. The
aim of this paper is twofold. First, alternative to the robust estimation methods
used in the paper by Guney and Arslan [9] and Ozdemir et al., we propose to
use the OBR estimation method to estimate the parameters of the MOEBXII
distribution. By doing this, we gain robustness against to the outliers in the
data. The second aim of this study is to use the MOEBXII distribution to model
the pharmacokinetics data using the robust estimators which has not been tried
before.

Note that, the pharmacokinetics properties of the drug are among the most
important drug characteristics for optimal treatment after the selection of the
appropriate drug in the treatment of a disease. The most appropriate daily dose
to achieve the effective plasma level is determined by these features. Among
these properties one of the most important pharmacokinetics property is plasma
drug concentration. The maximum concentration (Cmax) and the time taken
to reach the maximum concentration (Tmax) are also important variables for
the pharmacokinetics studies. These variables can be easily estimated by using
the right distribution. However, to obtain the reliable estimates of Cmax and
Tmax, trustfully modeling of the plasma drug concentration is necessary (For
more details see [1]).

The remainder of the paper is organized as follows. In Section 2, we briefly
recall the MOEBXII distribution. In Section 3, we first summarize the ML, LS
and robust M estimation methods, and then we give the OBR estimators for the
parameters of the MOEBXII distribution. Section 4 and Section 5 are dedicated
to the simulation study and a real data from pharmacokinetics study to compare
the performance of the OBR estimation method with the ML, LS and robust M
estimation methods. Finally, conclusions and discussions are given in Section 6.

2. MARSHALL-OLKIN EXTENDED BURR XII DISTRIBUTION

The probability density function (pdf) and the cdf of Burr XII distribution
are

(2.1) f(x; c, k) = ck
x(c−1)

(1 + xc)k+1
, x ≥ 0,

(2.2) F (x; c, k) = 1− 1

(1 + xc)k
, x ≥ 0

where c and k > 0 are the shape parameters. Substituting the cdf of the Burr
XII distribution given in (2.2) into the transformation equation given in (1.1) the
Marshall-Olkin Extended Burr XII distribution (MOEBXII(α, c, k)) is obtained
with the following pdf and cdf, respectively
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(2.3) f(x;α, c, k) = αck
x(c−1) (1 + xc)−(k+1)[

1− (1− α) (1 + xc)−k
]2 , x ≥ 0,

(2.4) F (x;α, c, k) =
1− (1 + xc)−k

1− (1− α) (1 + xc)−k
, x ≥ 0

where α,c and k > 0 are the shape parameters [3]. When α = 1 the Burr XII
distribution is recovered with two parameters c and k. The MOEBXII distri-
bution contains distributions with different shapes for the different values of the
parameters. For example we get, bell-shaped, right-skewed or L-shaped distribu-
tions when we set different values for α,c and k. This makes crucial advantage of
flexibility for this distribution to fit data sets with several different shapes. One
can see [3] for further details about the MOEBXII distribution.

3. PARAMETER ESTIMATION

In this section, the ML, LS, robust M and the OBR estimation methods to
estimate the parameters of the MOEBXII distribution.

3.1. Maximum Likelihood Estimation

Let x = (x1, x2, . . . , xn) be a random sample of size n from the MOEBXII(α, c, k)
distribution with the unknown parameters α,c and k. The log-likelihood function
is

l(α, c, k) = nlog(αck) + (c− 1)

n∑
i=1

logxi − (k + 1)

n∑
i=1

log(1 + xci )(3.1)

− 2
n∑

i=1

log(1− (1− α) (1 + xci )
−k).

Taking the derivatives of this function with respect to α, c and k, we get the
following score functions

(3.2) sα =
n

α
− 2

n∑
i=1

(1 + xci )
−k

1− (1− α) (1 + xci )
−k

,

(3.3)
sc = n

c +
∑n

i=1 logxi − (k + 1)
∑n

i=1
xc
i log(xi)
1+xc

i

− 2k(1− α)
∑n

i=1
(1+xc

i )
−(k+1)xc

i log(xi)

1−(1−α)(1+xc
i )

−k ,
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(3.4) sk = n
k −

∑n
i=1 log(1 + xci )− 2(1− α)

∑n
i=1

(1+xc
i )

−klog(1+xc
i )

1−(1−α)(1+xc
i )

−k .

The ML estimators of the parameters can be obtained by setting the score func-
tions to zero and solving them simultaneously with respect to α, c and k. Since
the likelihood equations (sα = 0, sc = 0, sk = 0) cannot be solved analytically, we
need to use some numeric methods to obtain the estimates of the parameters.

3.2. Least Squares Estimation

LS estimation method was used to estimate the parameters of the Burr
distribution [13] and the MOEBXII distribution [9]. The LS estimation method
to estimate the parameters of the MOEBXII distribution can be summarized as
follows. It is basically based on minimizing the following function.

(3.5)
S(α, c, k) =

∑n
i=1

(
F̂ (xi)− F (xi)

)2
=
∑n

i=1

(
F̂ (xi)−

1−(1+xc
i )

−k

1−(1−α)(1+xc
i )

−k

)2
.

Since the cdf of the MOEBXII distribution is a non-linear function, the minimiza-

tion of equation (3.5) is not easy to obtain. To handle this problem, log
(

1
1−F (x)

)
transformation can be used.

Let y(i) = log

(
1

1−F̂(x(i))

)
and u(i) = log

(
1

1−F(x(i))

)
with

(3.6) F̂
(
x(i)
)
=

i− 0.5

n
, i = 1, 2, . . . , n.

Here x(i) denotes the i. order statistics of the sample from the MOEBXII distri-
bution. Thus, the LS estimates of the parameters can be obtained by minimizing
the following objective function

(3.7) S(α, c, k) =

n∑
i=1

(
y(i) − u(i)

)2
.

To obtain the LS estimates, the following equations should be solved with respect
to α,c and k.
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(3.8)

n∑
i=1

(
y(i) − u(i)

) 1−
(
1 + xc(i)

)−k

α

[
1− (1− α)

(
1 + xc(i)

)−k
] = 0,

(3.9)
n∑

i=1

(
y(i) − u(i)

) kxc(i) log
(
x(i)
)

(
1 + xc(i)

)[
1− (1− α)

(
1 + xc(i)

)−k
] = 0,

(3.10)
n∑

i=1

(
y(i) − u(i)

) log
(
1 + xc(i)

)
[
1− (1− α)

(
1 + xc(i)

)−k
] = 0.

3.3. M Estimation

Guney and Arslan [9] have been proposed to estimate the parameters of the
MOEBXII distribution using M estimation method ([14]). The method is based
on minimizing the following objective function with respect to the parameters of
interest

(3.11) Q(α, c, k) =

n∑
i=1

ρ (yi − ui) .

Here ρ is more resistant than the square function in LS method to the outliers in
data set. It is also non-negative, symmetric function and ρ(0) = 0. In this study,
we consider the Tukey’s ρ function given as

(3.12) ρ(x) =

{
1− (1− (x/b)2)3 , |x| ≤ b

1 , |x| > b

(3.13) ρ′(x) = Ψ(x) =

{
x(1− (x/b)2)2 , |x| ≤ b

0 , |x| > b

with the robustness tunning constant b (see Maronna et al.,[18], pp:29). Here
the tuning constant b determines if an observation is an outlier or not. Tukey’s
biweight function truncates the residuals that are larger than b. Therefore, small
values of b imply higher robustness while large values of b provide higher efficiency.
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In literature the suggested choice of b is 4.685 to achieve 95% asymptotic efficiency
at the standard normal distribution [18].

Since ρ is differentiable, M estimates can be obtained by solving the follow-
ing non-linear equations based on the derivatives of objective function (3.11).

(3.14) log α̂ =

∑n
i=1 ωi (yi − k log (1 + xc

i )− log hi)
(

1−(1+xc
i )

−k

αhi

)
∑n

i=1 ωi

(
1−(1+xc

i)
−k

αhi

) ,

(3.15) k̂ =

∑n
i=1 ωi (yi + log (α)− log hi)

log(1+xc
i )

hi∑n
i=1 ωi

(log(1+xc
i ))

2

hi

,

(3.16)

n∑
i=1

ωi (yi − ui)
xci log (xi)

(
1− (1 + xci )

−k
)

(1 + xci )
−khi

= 0,

where hi = 1− (1− α) (1 + xci )
−k and the weights are

(3.17) ωi =

(
1−

(
yi − ui

b

)2
)2

I(|yi − ui| ≤ b) .

3.4. Optimal B-Robust Estimation

The class of the OBR estimators was defined by Hampel et al. [11]. The
OBR estimation method is a robust alternative modification of M estimation
method with bounded influence function. It is also the most efficient one in
the class of robust M-estimators. In literature, Victoria-Feser [30] and Victoria-
Feser and Ronchetti [31] introduced the OBR estimation method to estimate
the parameters of the Pareto and the gamma distributions. Dogru and Arslan [7]
introduced the OBR estimation method for the Burr XII distribution. Dogru and
Arslan [8] also proposed robust estimators by using the OBR estimation method
for the parameters of the generalized half-normal distribution.

According to Hampel et al. [11], there are two ways of defining the optimal
B-robust estimation. The first one is the minimax approach defined by Huber
[14]. The second one is called the infinitesimal approach introduced by Hampel
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et al. [11]. In this paper, we will use the second approach that aims to find
M-estimators with bounded influence function (IF) and minimum asymptotic
variance.

IF can be defined as follows. For a sample of n observations, x = (x1, x2, ..., xn),
the empirical distribution function Fn(x) is

(3.18) Fn(x) =
1

n

n∑
i=1

δxi(x)

where δxi denotes a point mass in x. For a parametric model {Fθ : θ ∈ Θ ⊂ Rp},
estimator of θ; Tn can be represented as a statistical functional of the empirical
distribution, i.e. Tn(x1, x2, ..., xn) = Tn(Fn). In our case θ = (α, c, k). Then, the
IF of Tn is given by

(3.19) IF (x, Tn, Fθ) = limϵ→0
Tn((1− ϵ)Fθ + ϵδx)− Tn(Fθ)

ϵ
.

The IF describes the relative influence of individual observations toward the value
of an estimate [11]. When the IF is unbounded, an outlier can have an overriding
influence on the estimate. The IF of the ML estimator is

(3.20) IF = J(θ)−1s(x, θ)

where J(θ) is the Fisher information matrix and s(x, θ) = ∂
∂θ logf(x, θ) is the

vector of score functions. It is clear that the IF of the ML estimator will not be
bounded if the score function is not bounded.

Concerning the score functions for the MOEBXII distribution given in
(3.2)-(3.4), one can easily observe that the score function for α is bounded but
the score functions for c and k are unbounded functions of x as in the Burr XII
distribution. That is, we have lim

x→∞
sc = −∞ and lim

x→∞
sk = −∞. These unbound-

edness of score functions for the parameter c and k can also be easily observed
in Figure 1.

If α, c and k are estimated by using the ML and LS estimation methods,
these estimators may suffer from possible outliers. Therefore, instead of using
the ML and LS methods we will propose to use the OBR estimation method in
the presence of outliers.
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Figure 1: Plots of the score functions with (α, c, k) = (30, 2, 1)

Consider the following standardized OBR estimating equation

n∑
i=1

Ψb(A(θ)(s(θ, xi)− a(θ))) =

n∑
i=1

W (θ, xi, cB)(s(θ, xi)− a(θ))(3.21)

= 0

where

(3.22) W (θ, xi, cB) = min

(
1,

cB
∥A(θ)(s(θ, xi)− a(θ))∥

)
,

Ψb is the derivative of ρb, is cB ≥
√

dim(θ) is a tuning parameter, ∥ · ∥ denoted
the Euclidean norm, s(·) is the score function, A(θ) is a dim(θ)× dim(θ) scaling
matrix and a(θ) is a dim(θ) centering vector determined by

(3.23) E
[
Ψb(x)Ψb(x)

T
]
=
[
A(θ)TA(θ)

]−1
,

(3.24) E [Ψb(s(θ, x)− a(θ))] = 0.

The OBR estimates for the parameter θ will be the solution of this equa-
tion. The OBR estimator keeps a level of efficiency close to the ML estimator
because of the score function. The constant cB, robustness constant, is typically
fixed by setting the amount of efficiency loss and a bound on the IF. For higher
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values of cB the estimator gains efficiency, but lose robustness and vice versa. If
the bound on the IF is removed, i.e, choose cB = ∞ the OBR estimation method
reduces to the ML estimation method. To compute the OBR estimates of the
parameters, we follow an algorithm proposed by Victoria-Feser and Ronchetti
[31].

OBRE Algorithm:

1. Fix the precision threshold η and the initial value for θ(0) (we can take the
ML estimates as the initial values).

Take initial values a = 0, and A =
([

J−1
]T)1/2

where

(3.25) J =

∫
s(θ, x)s(θ, x)TdFθ(x)

is the Fisher Information Matrix.

2. Solve the following equations with respect to a and A

(3.26) ATA = M−1
2

(3.27) a =

∫
W (θ, x, cB)s(θ, x)dFθ(x)∫

W (θ, x, cB)dFθ(x)

where

(3.28)
Mk =

∫
W (θ, x, cB)

k [s(θ, x)− a(θ)] [s(θ, x)− a(θ)]
T
dFθ(x),

k = 1, 2.

The current values of θ, a and A are used as initial values to solve the given
equations.

3. Now compute M1 and

(3.29) ∆θ = M−1
1

(
1

n

n∑
i=1

W (θ, xi, cB)
k [s(θ, xi)− a(θ)]

)
.

4. If ∥∆θ∥ > ν then θ → θ+∆θ and return to step 2, otherwise terminate the
algorithm.

Victoria-Feser and Ronchetti [30] mentioned that: “The algorithm is con-
vergent provided the starting point is near to the solution” in their study. There-
fore, we used different initial points for the first step of the algorithm. Then we
observed that there are no significant differences between the estimates accord-
ing to the different initial points. In this study, the ML estimates are used as an
initial points.
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4. SIMULATION STUDY

A Monte Carlo simulation study was conducted based on various scenarios
for the number of observations and outliers to examine the performance of the
estimation methods; the ML, LS, robust M estimation with Tukey and the OBR
estimation methods. The superiority of the estimates was assessed by using the
performance measures, bias and Root-mean-square error (RMSE) defined as

(4.1) Bias
(
θ̂
)
=

1

N

N∑
i=1

(
θ̂i − θ

)
,

(4.2) RMSE
(
θ̂
)
=

√√√√ 1

N

N∑
i=1

(
θ̂i − θ

)2
.

We generated N = 100 replications from the MOEBXII distribution with
the sample sizes n = 25, n = 50 and n = 100. We consider the following
parameter values (α, c, k) = (3, 1, 1), (3, 1, 2), (3, 2, 1), (3, 2, 2), (3, 3, 3), (5, 1, 1),
(5, 1, 2), (5, 2, 1) and (5, 2, 2). (One can find the details for generating data set
from the MOEBXII distribution in [9]). In this study, the outliers are generated
by multiplying the largest observations in the data by 5.

To obtain the M estimations in the simulation study, we determine the
tuning constant b = 4.685 for Tukey’s ρ function. For the OBR estimation
method, robustness parameter cB and precision threshold ν were taken as 3 and
10−6 respectively.

The simulation results in all cases are summarized in Tables 1-8. In these
tables, the bias and RMSE values calculated by using the equations (4.1)-(4.2)
are reported for the ML, LS, M estimation with Tukey’s ρ function and the OBR
methods.

Tables 1-3 present the results from the case without outlier. From these
tables, we can observe that the OBR estimation method has superiority in terms
of bias and RMSE in all simulation scenarios for small sample sizes. For moderate
sample size we can still observe the better performance of the OBR estimators
in most of the cases. However, when sample size increases, the superiority of the
ML estimation method in terms of RMSE can be easily observed form Table 3,
which is an expected performance of the ML estimation method.

It is obvious from Table 1 that the OBR estimation method has the best
performance in terms of RMSE for all parameters for the small sample size (n =
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25). The biases of the OBR estimates are lower than that of other methods
for most of the values of the parameters. Table 2 shows that the OBR and the
ML estimation methods are compatible according to the RMSE values under the
assumption of moderate sample sizes (n = 50). According to the results given in
Table 3, as the sample size increases, the ML estimation method seems superior
to the other methods in terms of RMSE in most of the cases as expected.

We recreated the simulation for the same scenarios with outliers and the
results are summarized in Tables 4-7. We generate one outlier to see the perfor-
mance of the estimators in case there is an outlier in the data, for all the sample
sizes. Further, to see the behavior of the estimators under the condition that
there are more than one outlier, we conduct an additional simulation which we
use four outliers in sample size 50. It is already mentioned that the four outliers
are generated by multiplying the four largest observation with 5.

Table 4 shows the simulation results for the sample size n = 25 with one
outlier. We observe that outlier induces a large influence on the bias and RMSE
of the ML and the LS estimators whereas it has a smaller impact on the robust
estimators. If the M and the OBR estimation methods are compared with each
other, the OBR estimation method is superior to the M estimation method in
terms of the RMSE.

Table 5 shows the simulation results with one outlier with the sample size
50. When the data include outlier, the ML and the LS estimators are drastically
worsen which is reflected to the higher RMSE and biases. However, the M and
the OBR estimators still have better performance.

Table 6 represents the simulation results with one outlier with the sample
size 100. According to Table 6, the OBR estimation method outperforms in terms
of bias and RMSE values for the most values of the parameters among the others.

The results given in Table 7 are similar to the results reported in Table 4-6.
The OBR estimator seems superior to the other estimators in terms of bias and
RMSE values.

To sum up, all of these results show that the amount of efficiency we lose
by using the OBR estimation method is negligible in comparison to the other
estimation methods in most of the cases.

According to a anonymous referee’s suggestion, we conduct an additional
simulation study to confirm the results of real data example considered in the next
section. In this simulation design we generate 50 observations from the MOEBXII
distribution by using the following initial parameters (α, c, k) = (30, 2, 1). We
consider two outlier cases about this simulation design, first we add one outlier
and then we add four outliers. The results of this simulation are given in Table 8.
According to Table 8, the OBR and the ML methods show similar performances
when the data set has no outliers. Considering the RMSE values, the OBR and
ML estimators show better performance than the LS and the M estimators. On
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the other hand, when we create one outlier in the data, the performances of the
ML and LS estimators are drastically worsen in terms of the RMSE and the bias
values. Unlike the ML and the LS estimates, M estimates do not affected from
the outlier. Considering the OBR estimator, we observe that it has the best
performance among all the estimators we considered. If the data set has four
outliers, then the OBR estimator has the best performances and it is followed by
the M estimator. In this case, the ML and the LS estimators are worse according
to bias and RMSE values.

In summary, when there are potential outliers in the data the OBR esti-
mation method outperforms among the others in terms of the bias and RMSE
values.

5. REAL DATA EXAMPLE

In this section the application of the MOEBXII distribution to a real data
set is discussed to illustrate the performance of the proposed parameter estimation
method. We use a data set from a pharmacy study of Canaparo et al.[5]. The
sample size is n = 65. The data is related to the ibuprofen which is widely
available as an over-the-counter treatment for pain and fever. It represents the
mean plasma concentration–time profile of Ibuprofen (S) in all healthy subjects
after a single 400 mg oral dose of racemic Ibuprofen. Ibuprofen blood plasma
levels are were computed at various time points using data from pharmacokinetics
trials.

We use the MOEBXII distribution to fit the data. We consider the ML,
LS, M and the OBR estimators to obtain the parameter estimates. The following
steps are used to obtain the OBR estimates of the parameters:

(i) Obtain the ML estimate.

(ii) Take cB = 3, the ML estimate as an initial estimate and calculate the OBR
estimate.

(iii) Take cB = 3, the OBR estimate obtained in step (ii) as a new initial estimate
and calculate the OBR estimate again [11].

Note that one can see [11] and [31] for further details about the selection
of the robustness tuning constant [8].

To further see the performance of the estimator, we consider adding one
and four outliers to the data. The parameter estimates for the real data are
given in Table 9. In this table, we summarize the results for the cases outliers
and without outliers. The fitted densities obtained from the ML, the LS, the
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(a) without outlier

(b) one outlier

(c) four outlier

Figure 2: Histogram of Ibuprofen data and the fitted densities with the ML, LS,
robust M and OBR estimates

robust M and the OBR estimates in case of outliers and without outliers, and
histogram of the ibuprofen data are shown in Figure 2.

Figure 2(a) illustrates the fitted densities when there is no outlier in the
data. From Figure 2(a), it can be seen that the MOEBXII distribution is suitable
to model the mean plasma concentration of ibuprofen. All of the mentioned
estimators are in good agreement in terms of fitting data in the tail. However,
the ML and LS are not provided a good fit in the central portion of the data. The
fitted density obtained from the robust estimator based on Tukey’s ρb function
shows better fit than the ML and LS fits in the central portion of the data. In
particularly, the model obtained from the OBR estimates performs fairly well to
describe the central part of the data set. The fitted densities obtained from the
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ML, LS estimates don’t seem catch Cmax, the pick of the data. Therefore these
estimators can not give reasonable estimate for Tmax, the time taken to reach the
maximum concentration.

Figure 2(b) shows the fitted densities when there is one outlier in the data
set. From this figure, the OBR and M estimators seem not to be affected from one
outlier. In addition, From Table 9, it is clear that the estimates obtained from
the OBR and M estimation with one outlier is closer to the estimates obtained
without outlier. Similar comments can be made for the ML estimates. Adding
one outlier causes a small difference on the ML estimation. However, it does
not still provides better fit than the OBR and M estimators do. The fitted
density obtained from the ML estimates seems not catching the pick of the data.
Concerning the LS estimator, it can be seen that only one outlier has an significant
effect on LS estimator. This can also be observed from Table 9.

Finally, in Figure 2(c) we display the histogram of the data with four out-
liers along with the fitted densities. From this figure, we can clearly see that the
best fitted density is obtained from the OBR estimation method. The OBR is
followed by the M estimator. This figure demonstrates how outliers could poten-
tially distort the ML and the LS estimates. The performance of the ML and the
LS estimators are worse than the OBR and M estimator. Results from Table 9
is also supported this outcome.

From these results, we can conclude that if we have some outliers in the
data, the OBR estimation method can be used safely because the OBR estimation
method are not affected from the outliers as the other methods do. To sum up, we
can clearly observe that the OBR estimation method can be used to find better
fits for the data sets that may have some outliers.

6. CONCLUSION

Two objectives have been considered in this study. First we have proposed
to use the OBR estimation method to estimate the parameters of the MOEBXII
distribution proposed by Al-Saiari et al. [3] with the advantage of flexibility to
fit the data sets with various shapes. Second, we have considered the modeling
the data sets from pharmacokinetics studies represent the changes in plasma
concentrations of drugs with the MOEBXII distribution. When the estimation
problem is addressed, from both the simulation study and the real data example
we observe that the OBR estimator exhibits strong robustness in presence of
observations discordant with the assumed model. These results show that not
only the OBR estimate achieves smaller RMSE for the small sample sizes but
also its RMSE is smaller for the outlier cases for each sample sizes than those
of the ML, LS and robust M estimators. The simulation results of the ML and
LS estimators for the outlier cases are quite different from the cases without
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outlier. The existence of outliers in data results in striking differences in RMSE
of ML and LS estimates, in contrast to robust estimates, especially the OBR
estimates. A general inspection of the table shows that a comparison of the
OBR with the ML, LS and robust M estimation methods reveals the superiority
of the new estimate in the outlier case and/or small sample case. When we
consider the real world data analysis, modeling pharmacokinetics data set with
the MOEBXII distribution, from the real data example we can observe that
the MOEBXII distribution with the OBR estimates can be a good choice for
modeling the changes in plasma concentrations of drugs which is an important
pharmacokinetics variable. Because estimating the parameters with the OBR
estimation method would be more reliable in estimating other variables such as
Cmax and Tmax other pharmacokinetics variables.
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Table 1: The bias and RMSE (Parenthesis) for n=25.

Parameter α
ML LS M (Tukey) OBR

(3,1,1) 0.1081 (0.2221) -0.4797 (0.6033) -0.0864 (0.0623) -0.0845 (0.0464)
(3,1,2) 0.0118 (0.2294) 0.3000 (0.3205) -0.0938 (0.1003) 0.0069 (0.0165)
(3,2,1) 0.1761 (0.2195) -0.0871 (0.4903) -0.0431 (0.2034) -0.0011 (0.0032)
(3,2,2) 0.1778 (0.2142) 0.1685 (0.2696) 0.1198 (0.1808) 0.0100 (0.0036)
(3,3,3) 0.0525 (0.1987) 0.1937 (0.1947) -0.0778 (0.1537) 0.0101 (0.0039)
(5,1,1) 0.0328 (0.2173) -0.0641 (0.6265) -0.0990 (0.2846) -0.0495 (0.1965)
(5,1,2) -0.0668 (0.1981) -0.4701 (0.1622) -0.4683 (0.5792) -0.0102 (0.1415)
(5,2,1) -0.0606 (0.2083) -0.4757 (0.5291) 0.0095 (0.1544) 0.0088 (0.0039)
(5,2,2) -0.0269 (0.2111) -0.0653 (0.7695) -0.4989 (0.6140) 0.0087 (0.0193)
Parameter c

ML LS M (Tukey) OBR
(3,1,1) 0.1229 (0.1026) 0.3267 (0.2359) 0.3239 (0.2059) 0.0690 (0.0841)
(3,1,2) 0.1073 (0.0555) 0.2684 (0.1663) 0.2711 (0.1606) -0.0005 (0.0150)
(3,2,1) 0.1180 (0.1370) 0.4928 (0.4435) 0.4513 (0.3848) -0.0012 (0.0039)
(3,2,2) 0.0801 (0.1123) 0.3417 (0.3475) 0.3760 (0.3220) -0.0011 (0.0001)
(3,3,3) 0.0198 (0.1421) 0.3733 (0.4870) 0.3993 (0.4264) -0.0034 (0.0003)
(5,1,1) 0.0645 (0.0888) 0.3310 (0.3067) 0.4119 (0.3607) 0.1541 (0.0271)
(5,1,2) 0.0947 (0.0531) 0.3728 (0.2557) 0.2709 (0.1452) 0.0010 (0.0007)
(5,2,1) 0.0333 (0.1558) 0.2107 (0.5419) 0.1893 (0.3722) -0.0028 (0.0002)
(5,2,2) 0.1550 (0.1154) 0.1436 (0.5794) 0.4771 (0.3996) -0.0016 (0.0004)
Parameter k

ML LS M (Tukey) OBR
(3,1,1) -0.0403 (0.0739) 0.4731 (0.3267) -0.1742 (0.1155) -0.0320 (0.0635)
(3,1,2) -0.0305 (0.1011) -0.3271 (0.4601) -0.1788 (0.1281) 0.0026 (0.0020)
(3,2,1) -0.0068 (0.0497) 0.2188 (0.3604) -0.1080 (0.1292) 0.0006 (0.0023)
(3,2,2) 0.0312 (0.0941) -0.2834 (0.3071) -0.2902 (0.2239) 0.0025 (0.0037)
(3,3,3) -0.0025 (0.1321) -0.1886 (0.2640) -0.0999 (0.2113) 0.0045 (0.0709)
(5,1,1) -0.2456 (0.1743) -0.3374 (0.4375) -0.3855 (0.3544) 0.0067 (0.0570)
(5,1,2) -0.0290 (0.0966) -0.9483 (0.9097) -0.9361 (0.8912) -0.0017 (0.0078)
(5,2,1) 0.0013 (0.0479) -0.5580 (0.3312) -0.5309 (0.2920) 0.0018 (0.0012)
(5,2,2) -0.0521 (0.0893) -0.0616 (0.1308) -0.0527 (0.1543) 0.0020 (0.0009)
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Table 2: The bias and RMSE (Parenthesis) for n=50.

Parameter α
ML LS M (Tukey) OBR

(3,1,1) 0.0988 (0.2140) -0.3154 (0.1141) -0.0477 (0.0240) -0.0127 (0.0047)
(3,1,2) -0.0183 (0.2215) -0.3803 (0.1631) -0.1934 (0.0724) -0.0066 (0.0628)
(3,2,1) 0.0435 (0.0188) -0.2936 (0.1646) -0.0262 (0.0495) -0.0442 (0.0950)
(3,2,2) -0.0083 (0.2069) 0.0970 (0.1246) -0.1616 (0.0687) 0.0156 (0.0666)
(3,3,3) -0.0537 (0.0210) -0.0713 (0.1523) -0.0840 (0.0774) 0.1114 (0.3523)
(5,1,1) -0.0260 (0.2289) -0.4694 (0.2311) -0.4008 (0.2362) -0.0178 (0.0745)
(5,1,2) -0.0579 (0.2139) -0.1342 (0.2093) -0.4957 (0.2457) -0.0263 (0.0214)
(5,2,1) -0.0264 (0.2139) 0.0147 (0.2217) -0.4142 (0.2188) -0.0259 (0.0013)
(5,2,2) -0.0481 (0.1915) 0.0584 (0.2048) -0.4999 (0.2500) -0.0331 (0.0727)
Parameter c

ML LS M (Tukey) OBR
(3,1,1) 0.0466 (0.0479) 0.2047 (0.0652) 0.1930 (0.0645) 0.0015 (0.0184)
(3,1,2) 0.0267 (0.0423) 0.1867 (0.0529) 0.1461 (0.0529) 0.0011 (0.0096)
(3,2,1) 0.0477 (0.0710) 0.3217 (0.1453) 0.2983 (0.1346) 0.0054 (0.0512)
(3,2,2) 0.0501 (0.0359) 0.3102 (0.1353) 0.2588 (0.1226) -0.0024 (0.0021)
(3,3,3) 0.0307 (0.0582) 0.3692 (0.1865) 0.3227 (0.1811) -0.0287 (0.0215)
(5,1,1) 0.0505 (0.0342) 0.1857 (0.0528) 0.2200 (0.0804) 0.0016 (0.0469)
(5,1,2) 0.0227 (0.0146) 0.1026 (0.0547) 0.3426 (0.1504) 0.0012 (0.0648)
(5,2,1) 0.0592 (0.0816) 0.1588 (0.1661) 0.3253 (0.1614) 0.0043 (0.0387)
(5,2,2) 0.0613 (0.0893) 0.1208 (0.0954) 0.4289 (0.2160) 0.0024 (0.0342)
Parameter k

ML LS M (Tukey) OBR
(3,1,1) -0.0218 (0.0198) -0.0982 (0.0281) -0.2219 (0.0605) -0.0026 (0.0179)
(3,1,2) 0.0469 (0.0505) 0.1787 (0.0472) -0.1068 (0.0315) -0.0021 (0.0059)
(3,2,1) 0.0032 (0.0659) -0.0263 (0.0565) -0.0805 (0.0558) -0.0049 (0.0613)
(3,2,2) 0.0104 (0.0461) -0.2862 (0.1539) -0.1492 (0.0642) 0.0069 (0.0086)
(3,3,3) -0.0239 (0.0933) -0.1003 (0.1198) -0.2754 (0.1172) 0.0456 (0.0650)
(5,1,1) -0.0299 (0.0239) -0.4980 (0.2481) -0.4967 (0.2468) -0.0023 (0.0012)
(5,1,2) -0.0134 (0.0330) -0.0235 (0.0946) -0.4470 (0.2499) -0.0049 (0.0771)
(5,2,1) -0.0006 (0.0210) 0.0010 (0.0487) -0.4959 (0.2462) -0.0033 (0.0246)
(5,2,2) -0.0033 (0.0242) 0.0197 (0.0909) -0.4989 (0.2489) -0.0051 (0.0279)
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Table 3: The bias and RMSE (Parenthesis) for n=100.

Parameter α
ML LS M (Tukey) OBR

(3,1,1) 0.0097 (0.0355) -0.2899 (0.1072) -0.0607 (0.0397) -0.1376 (0.2175)
(3,1,2) -0.0191 (0.0368) -0.3663 (0.1805) -0.2242 (0.0980) 0.0879 (0.2121)
(3,2,1) 0.0325 (0.0347) -0.3331 (0.1830) -0.0721 (0.0711) 0.0540 (0.1974)
(3,2,2) 0.0249 (0.0365) 0.0373 (0.1226) -0.1339 (0.0878) -0.0457 (0.2264)
(3,3,3) -0.0006 (0.0328) -0.1143 (0.1465) -0.1815 (0.1187) -0.0452 (0.2125)
(5,1,1) -0.0487 (0.0357) -0.4458 (0.2158) -0.3646 (0.2165) -0.0300 (0.2173)
(5,1,2) -0.0168 (0.0349) -0.1446 (0.1883) -0.4709 (0.2435) -0.0504 (0.2126)
(5,2,1) 0.0293 (0.0354) 0.0118 (0.2107) -0.3618 (0.2227) 0.0597 (0.2211)
(5,2,2) 0.0137 (0.0368) -0.0741 (0.2187) -0.4960 (0.2468) 0.0701 (0.1997)
Parameter c

ML LS M (Tukey) OBR
(3,1,1) 0.0315 (0.0164) 0.2066 (0.0980) 0.2044 (0.0986) 0.0557 (0.0492)
(3,1,2) 0.0254 (0.0134) 0.1471 (0.0566) 0.1561 (0.0598) 0.0115 (0.0177)
(3,2,1) -0.0001 (0.0282) 0.2233 (0.1595) 0.2116 (0.1534) 0.0666 (0.1013)
(3,2,2) 0.0034 (0.0203) 0.3162 (0.1652) 0.3160 (0.1594) 0.1252 (0.0733)
(3,3,3) 0.0232 (0.0288) 0.3041 (0.1628) 0.2714 (0.1573) 0.1005 (0.1030)
(5,1,1) 0.2304 (0.0941) 0.1675 (0.0636) 0.0613 (0.0446) 0.0152 (0.0211)
(5,1,2) 0.0318 (0.0154) 0.0833 (0.0476) 0.3125 (0.1322) 0.0323 (0.0344)
(5,2,1) 0.3095 (0.1688) 0.0565 (0.1553) 0.0231 (0.0306) 0.1173 (0.1171)
(5,2,2) 0.0069 (0.0290) 0.0375 (0.0949) 0.3916 (0.1986) 0.0320 (0.0849)
Parameter k

ML LS M (Tukey) OBR
(3,1,1) 0.0071 (0.0218) -0.0794 (0.0507) -0.2181 (0.0733) -0.0462 (0.0118)
(3,1,2) -0.0088 (0.0514) 0.1005 (0.0536) -0.1030 (0.0447) -0.0233 (0.0287)
(3,2,1) 0.0049 (0.0128) 0.0109 (0.0759) -0.1993 (0.0722) -0.0009 (0.0382)
(3,2,2) -0.2288 (0.0843) -0.2906 (0.1341) -0.0071 (0.0223) -0.0313 (0.0732)
(3,3,3) -0.0237 (0.0302) -0.1285 (0.1235) -0.1397 (0.1128) -0.0007 (0.0958)
(5,1,1) 0.0130 (0.0226) -0.4924 (0.2428) -0.4952 (0.2455) -0.0218 (0.0363)
(5,1,2) -0.0045 (0.0230) -0.0171 (0.1301) -0.4933 (0.2456) -0.0490 (0.0512)
(5,2,1) 0.0153 (0.0106) 0.0231 (0.0478) -0.4908 (0.2415) -0.0143 (0.0306)
(5,2,2) 0.0152 (0.0215) -0.0074 (0.0779) -0.4995 (0.2495) 0.0207 (0.0566)
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Table 4: The bias and RMSE (Parenthesis) for n=25 with one outlier.

Parameter α
ML LS M (Tukey) OBR

(3,1,1) 0.5260 (0.7583) 0.3937 (0.6005) 0.0648 (0.0974) 0.0675 (0.0334)
(3,1,2) 0.7677 (1.0733) -0.2801 (0.9506) 0.2737 (0.3186) 0.1322 (0.1359)
(3,2,1) 0.6696 (0.8518) 0.7122 (0.5237) 0.0598 (0.0664) 0.0693 (0.0384)
(3,2,2) 0.9541 (0.9890) -0.3073 (0.2022) 0.2807 (0.5148) 0.1792 (0.1211)
(3,3,3) 0.3557 (0.1608) 0.8745 (0.8261) 0.1740 (0.2903) 0.0327 (0.0782)
(5,1,1) 0.7769 (0.8408) 0.6287 (0.5721) 0.3778 (0.2233) 0.1630 (0.0783)
(5,1,2) 0.8666 (0.9375) 0.7299 (0.7325) 0.4934 (0.2456) 0.0133 (0.0215)
(5,2,1) 0.6980 (0.9422) 0.5848 (0.5159) 0.3630 (0.2123) -0.0127 (0.0257)
(5,2,2) 0.9814 (0.9669) 0.8705 (0.8508) 0.4707 (0.7286) 0.2630 (0.2471)
Parameter c

ML LS M (Tukey) OBR
(3,1,1) -0.2184 (0.1522) -0.3247 (0.2277) -0.2399 (0.1012) -0.0170 (0.0016)
(3,1,2) -0.1275 (0.0787) -0.3053 (0.2022) -0.2481 (0.1208) -0.0298 (0.0158)
(3,2,1) -0.2308 (0.3010) -0.4433 (0.4108) -0.2805 (0.1529) -0.0303 (0.0039)
(3,2,2) 0.0665 (0.1365) -0.2382 (0.2869) -0.1332 (0.1106) -0.0491 (0.0328)
(3,3,3) 0.4780 (0.3820) -0.2563 (0.3921) -0.4035 (0.3110) -0.1655 (0.1587)
(5,1,1) -0.2185 (0.2043) -0.4727 (0.3573) -0.2399 (0.1081) -0.0214 (0.0015)
(5,1,2) -0.0734 (0.1097) -0.3024 (0.1942) -0.3290 (0.1483) 0.0227 (0.0528)
(5,2,1) -0.2499 (0.4091) -0.5456 (0.5562) -0.1779 (0.1339) -0.0251 (0.0810)
(5,2,2) -0.0615 (0.2139) -0.5764 (0.5222) -0.3317 (0.1961) -0.0728 (0.0270)
Parameter k

ML LS M (Tukey) OBR
(3,1,1) 0.2541 (0.1131) -0.3756 (0.3442) 0.3033 (0.1241) 0.0213 (0.0048)
(3,1,2) 0.4746 (0.3717) 0.4407 (0.5491) 0.2398 (0.1200) 0.0637 (0.0899)
(3,2,1) 0.2620 (0.1153) -0.5760 (0.4492) 0.2638 (0.1155) 0.0170 (0.0019)
(3,2,2) 0.5505 (0.3801) 0.5809 (0.3841) 0.2605 (0.1061) 0.0583 (0.0551)
(3,3,3) 0.9466 (0.9067) 0.7017 (0.5734) 0.4727 (0.4533) 0.2293 (0.1271)
(5,1,1) 0.2190 (0.1047) 0.6239 (0.4033) 0.4945 (0.2448) 0.0280 (0.0026)
(5,1,2) 0.2445 (0.3798) 0.9613 (0.9299) 0.4976 (0.9480) 0.2095 (0.2479)
(5,2,1) 0.1730 (0.1975) 0.5925 (0.3678) 0.4706 (0.2271) -0.0004 (0.0538)
(5,2,2) 0.4730 (0.3290) 0.9820 (0.9687) 0.4554 (0.2455) 0.0791 (0.0385)
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Table 5: The bias and RMSE (Parenthesis) for n=50 with one outlier.

Parameter α
ML LS M (Tukey) OBR

(3,1,1) 0.7658 (0.7925) 0.2757 (0.5942) 0.0844 (0.0336) 0.0972 (0.0192)
(3,1,2) 0.9122 (0.9377) -0.2170 (0.1263) 0.2961 (0.1128) 0.0691 (0.0969)
(3,2,1) 0.8448 (0.8977) 0.7232 (0.5303) 0.0696 (0.0452) 0.0194 (0.0203)
(3,2,2) 0.9860 (0.9818) -0.2744 (0.1613) 0.1150 (0.1290) 0.3149 (0.0935)
(3,3,3) 0.9464 (0.9216) 0.2705 (0.2294) 0.3848 (0.1637) -0.0039 (0.0482)
(5,1,1) 0.5430 (0.8791) 0.6820 (0.5746) 0.3746 (0.2256) 0.1248 (0.0341)
(5,1,2) 0.8018 (0.9470) 0.9043 (0.8835) 0.4865 (0.2431) 0.1075 (0.2400)
(5,2,1) 0.8957 (0.9413) 0.6427 (0.5411) 0.4286 (0.2280) 0.0585 (0.1521)
(5,2,2) 0.9518 (0.9853) 0.9194 (0.8797) 0.4780 (0.2481) 0.1677 (0.2322)
Parameter c

ML LS M (Tukey) OBR
(3,1,1) -0.1187 (0.1086) -0.2660 (0.1783) -0.1984 (0.0917) -0.0161 (0.0004)
(3,1,2) -0.0095 (0.0199) -0.1356 (0.0502) -0.1181 (0.0473) -0.0036 (0.0008)
(3,2,1) -0.1724 (0.2018) -0.2910 (0.2963) -0.1612 (0.1244) -0.0281 (0.0024)
(3,2,2) -0.1955 (0.1236) -0.2882 (0.2294) 0.0101 (0.0581) -0.0290 (0.0045)
(3,3,3) 0.5491 (0.3680) -0.2338 (0.2683) -0.0770 (0.1276) -0.0786 (0.0182)
(5,1,1) -0.1099 (0.0960) -0.3937 (0.2707) -0.2269 (0.1000) -0.0159 (0.0004)
(5,1,2) -0.0081 (0.0340) -0.3363 (0.1934) -0.3118 (0.1338) -0.0102 (0.0010)
(5,2,1) -0.1651 (0.2883) -0.5914 (0.5327) -0.3109 (0.1790) -0.0341 (0.0034)
(5,2,2) 0.1245 (0.1309) -0.5378 (0.4875) -0.3568 (0.1874) -0.0336 (0.0051)
Parameter k

ML LS M (Tukey) OBR
(3,1,1) 0.2419 (0.1065) -0.3498 (0.3793) 0.2529 (0.0928) 0.0223 (0.0009)
(3,1,2) 0.5264 (0.3272) 0.5314 (0.4231) 0.2287 (0.0853) 0.0217 (0.0074)
(3,2,1) 0.2877 (0.1012) -0.5686 (0.3724) 0.2880 (0.1090) 0.0161 (0.0011)
(3,2,2) 0.6017 (0.4020) 0.6141 (0.4017) 0.2857 (0.1095) 0.0346 (0.0075)
(3,3,3) 0.9529 (0.9132) 0.6530 (0.4790) 0.2459 (0.1222) 0.0912 (0.0250)
(5,1,1) 0.1709 (0.0692) 0.6144 (0.3888) 0.4969 (0.2470) 0.0198 (0.0008)
(5,1,2) 0.3460 (0.1854) 0.9919 (0.9857) 0.4437 (0.2444) 0.0243 (0.0083)
(5,2,1) 0.2067 (0.0796) 0.6092 (0.3788) 0.4968 (0.2470) 0.0118 (0.0081)
(5,2,2) 0.4108 (0.2310) 0.9936 (0.9879) 0.4991 (0.2491) 0.0377 (0.0080)
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Table 6: The bias and RMSE (Parenthesis) for n=100 with one outlier.

Parameter α
ML LS M (Tukey) OBR

(3,1,1) 0.8537 (0.9116) 0.7543 (0.6559) 0.0566 (0.0316) 0.0104 (0.0018)
(3,1,2) 0.9586 (0.9905) -0.3791 (0.2258) 0.2690 (0.1110) 0.0130 (0.0016)
(3,2,1) 0.9976 (0.9954) 0.8250 (0.6824) 0.0300 (0.0309) 0.0137 (0.0290)
(3,2,2) 0.4103 (0.1894) -0.2510 (0.1249) 0.3399 (0.1359) 0.0192 (0.0018)
(3,3,3) 0.9669 (0.9403) -0.2345 (0.1484) 0.4405 (0.1998) 0.0393 (0.0753)
(5,1,1) 0.9206 (0.9225) 0.8001 (0.8085) 0.4078 (0.2375) 0.0153 (0.0003)
(5,1,2) 0.9836 (0.9710) 0.9266 (0.8986) 0.4604 (0.2496) 0.0318 (0.0386)
(5,2,1) 0.9471 (1.0099) 0.7665 (0.6802) 0.4633 (0.2418) 0.0180 (0.0407)
(5,2,2) 0.4346 (0.2033) 0.9036 (0.8763) 0.4800 (0.2500) 0.0268 (0.0034)
Parameter c

ML LS M (Tukey) OBR
(3,1,1) -0.0742 (0.4301) -0.1888 (0.6320) -0.1622 (0.0572) -0.0013 (0.0231)
(3,1,2) -0.0144 (0.0093) -0.1600 (0.4116) -0.1358 (0.0390) -0.0015 (0.0012)
(3,2,1) -0.2041 (0.1376) -0.4140 (0.3012) -0.2573 (0.1460) -0.0035 (0.0155)
(3,2,2) 0.0852 (0.0584) -0.2921 (0.1768) -0.1749 (0.0913) -0.0036 (0.0451)
(3,3,3) 0.5257 (0.3139) -0.3673 (0.3133) -0.1820 (0.1206) -0.0102 (0.0600)
(5,1,1) -0.0490 (0.0431) -0.3632 (0.2194) -0.2476 (0.1015) -0.0014 (0.0245)
(5,1,2) 0.0414 (0.0126) -0.2780 (0.1118) -0.2837 (0.1087) -0.0020 (0.0012)
(5,2,1) -0.1072 (0.1860) -0.6308 (0.5946) -0.3055 (0.1529) -0.0031 (0.0117)
(5,2,2) 0.3992 (0.0753) -0.5101 (0.3795) -0.3966 (0.1878) -0.0032 (0.0343)
Parameter k

ML LS M (Tukey) OBR
(3,1,1) 0.2783 (0.0949) -0.9356 (1.0459) 0.2708 (0.0819) 0.0020 (0.0576)
(3,1,2) 0.5343 (0.3174) 0.6186 (0.4029) 0.2308 (0.1867) 0.0040 (0.0915)
(3,2,1) 0.3315 (0.1188) -1.1387 (1.3363) 0.3016 (0.0988) 0.0025 (0.0857)
(3,2,2) 0.5936 (0.3715) 0.5878 (0.3550) 0.2493 (0.1933) 0.0050 (0.1096)
(3,3,3) 0.9831 (0.9681) 0.8888 (0.8074) 0.2834 (0.1353) 0.0124 (0.0084)
(5,1,1) 0.1908 (0.0588) 0.6082 (0.3774) 0.4993 (0.2493) 0.0019 (0.0458)
(5,1,2) 0.3245 (0.1361) 0.9955 (0.9914) 0.4971 (0.2472) 0.0055 (0.0107)
(5,2,1) 0.2006 (0.0638) 0.6048 (0.3712) 0.4987 (0.2488) 0.0021 (0.0549)
(5,2,2) 0.3428 (0.1376) 0.9992 (0.9985) 0.3428 (0.1376) 0.0041 (0.0679)
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Table 7: The bias and RMSE (Parenthesis) for n=50 with four outliers.

Parameter α
ML LS M (Tukey) OBR

(3,1,1) 1.8192 (1.6599) 0.8780 (0.7723) 0.1795 (0.0634) 0.0834 (0.0116)
(3,1,2) 2.3995 (2.9045) 0.4393 (0.2599) 0.4573 (0.2555) 0.1753 (0.0405)
(3,2,1) 2.1213 (2.6922) 0.8396 (0.7130) 0.2445 (0.1116) 0.1012 (0.0123)
(3,2,2) 2.6898 (2.2763) 0.3345 (0.1911) 0.4635 (0.2822) 0.1896 (0.0679)
(3,3,3) 2.9292 (2.5814) 0.3273 (0.1249) 0.5968 (0.3730) 0.2891 (0.1190)
(5,1,1) 2.9800 (3.0851) 0.8503 (0.7336) 0.2737 (0.1275) 0.1125 (0.0160)
(5,1,2) 3.9945 (4.3873) 0.9993 (0.9986) 0.9991 (0.9982) 0.2696 (0.1125)
(5,2,1) 3.7069 (3.1097) 0.9545 (0.9885) 0.3372 (0.1666) 0.1335 (0.0220)
(5,2,2) 3.5945 (4.1334) 0.9853 (0.9761) 0.9940 (0.9898) 0.2896 (0.1202)
Parameter c

ML LS M (Tukey) OBR
(3,1,1) 0.2709 (0.1274) 0.2205 (0.0778) 0.2232 (0.0878) 0.0150 (0.0005)
(3,1,2) 0.3592 (0.1972) 0.1978 (0.0636) 0.1986 (0.0697) 0.0167 (0.0004)
(3,2,1) 0.7857 (1.1572) 0.5197 (0.6674) 0.3933 (0.2462) 0.0329 (0.0015)
(3,2,2) 0.9072 (1.1683) 0.3664 (0.2268) 0.3465 (0.1961) 0.0417 (0.0044)
(3,3,3) 1.3173 (2.0957) 0.3082 (0.1525) 0.3728 (0.2224) 0.0800 (0.0098)
(5,1,1) 0.3561 (0.2606) 0.3810 (0.2948) 0.3490 (0.2166) 0.0128 (0.0002)
(5,1,2) 0.4625 (0.3055) 0.2670 (0.1102) 0.2925 (0.1343) 0.0162 (0.0004)
(5,2,1) 0.9675 (1.4720) 0.8075 (1.0989) 0.5793 (0.4692) 0.0352 (0.0017)
(5,2,2) 0.9994 (1.2173) 0.4066 (0.2439) 0.4501 (0.3097) 0.0402 (0.0025)
Parameter k

ML LS M (Tukey) OBR
(3,1,1) 0.5637 (0.3516) 1.8390 (1.6041) 0.3359 (0.1325) 0.0196 (0.0008)
(3,1,2) 1.4464 (2.1420) 0.8282 (0.7011) 0.3686 (0.2293) 0.0474 (0.0031)
(3,2,1) 0.6755 (0.4794) 1.4009 (2.7706) 0.3795 (0.1661) 0.0210 (0.0006)
(3,2,2) 1.6785 (2.8440) 0.8418 (0.7197) 0.5169 (0.3583) 0.0521 (0.0067)
(3,3,3) 2.8503 (3.1275) 0.8355 (0.7122) 0.3288 (0.1913) 0.0926 (0.0129)
(5,1,1) 0.5399 (0.3318) 0.6267 (0.4037) 0.6583 (0.4414) 0.0159 (0.0003)
(5,1,2) 1.4151 (2.0741) 0.9999 (0.9998) 0.7133 (0.7656) 0.0454 (0.0032)
(5,2,1) 0.6832 (0.4851) 0.6485 (0.4277) 0.6753 (0.4605) 0.0205 (0.0006)
(5,2,2) 1.6970 (1.8872) 0.9983 (0.9967) 0.1379 (0.1287) 0.0497 (0.0038)

Table 8: The Bias and RMSE (Parenthesis) for n=50 with (α, c, k) = (30, 2, 1).

No outlier
ML LS M (Tukey) OBR

α -0.0911 (0.0189) 0.1513 (0.1769) 0.0941 (0.1980) 0.0728 (0.0185)
c 0.0297 (0.0177) -0.2540 (0.2389) -0.1555 (0.2224) 0.0.064 (0.0083)
k -0.0355 (0.0334) -0.1736 (0.2788) -0.2290 (0.1051) 0.0034 (0.0027)
One outlier

ML LS M (Tukey) OBR
α 0.4326 (0.5467) 0.9932 (0.9774) 0.2994 (0.1121) 0.1264 (0.0404)
c -0.3290 (0.2696) 0.9540 (0.9310) 0.2066 (0.0912) 0.0828 (0.0024)
k 0.2182 (0.1020) 0.6785 (0.5012) 0.1924 (0.0469) 0.0478 (0.0079)
Four outliers

ML LS M (Tukey) OBR
α 0.6399 (0.9130) 1.0653 (1.8696) 0.5462 (0.3189) 0.1545 (0.0821)
c 0.7921 (1.1059) 0.7132 (0.8086) 0.5152 (0.2921) 0.0095 (0.0003)
k 0.3678 (0.2183) 0.5893 (0.5048) 0.1863 (0.0461) 0.0547 (0.0095)
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Table 9: The ML, LS, M and OBR estimates for ibuprofen data.

without outlier with one outlier with four outliers

α̂ ĉ k̂ α̂ ĉ k̂ α̂ ĉ k̂
ML 23.7002 1.7654 0.9243 24.7562 1.5853 0.9899 20.1377 2.2483 0.4986
LS 37.002 1.8365 0.9726 38.1051 1.3580 1.2221 35.8070 3.8365 0.3769
M(Tukey) 41.1842 2.2900 0.8721 40.1748 2.3886 0.8160 41.8742 2.9751 0.6129
OBR 34.5757 2.5723 0.7726 34.7176 2.5421 0.7853 34.8430 2.4720 0.8013


