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1. INTRODUCTION

The Kullback-Leibler (KL) divergence (also known as relative entropy) is
a measure of discrimination between two probability distributions. If the random
variables X and Y have probability density functions f and g, respectively, the
KL divergence of f relative to g is defined as

D (f ||g) =
∫
R

f (x) log
f (x)

g (x)
dx,

for x such that g(x) ̸= 0. The function D (f ||g) is always nonnegative and it is
zero if and only if f = g a.s.

Let fθ belong to a parametric family with p-dimensional parameter vector
θ ∈ Θ ⊂ Rp and fn be a kernel density estimator of fθ based on n random
variables {X1, . . . , Xn} of distribution of X. Basu and Lindsay [3] used KL
divergence of fn relative to fθ as

(1.1) D
(
fn||fθ

)
=

∫
R

fn (x) log
fn (x)

f (x;θ)
dx,

and defined the minimum KL divergence estimator of θ as

θ̂ = arg inf
θ∈Θ

D
(
fn||fθ

)
.

Lindsay [19] proposed a version of (1.1) in discrete setting. In recent years,
many authors such as Morales et al. [21], Jiménez and Shao [17], Broniatowski
and Keziou [6], Broniatowski [5], Cherfi [7, 8, 9] studied the properties of mini-
mum divergence estimators under different conditions. Basu et al. [4] discussed
in their book about the statistical inference with the minimum distance approach.

Although the method of estimation based onD
(
fn||fθ

)
has very interesting

properties, the definition is based on f which, in general, may not exist.

Let X be a random variable with cumulative distribution function (c.d.f)
F (x) = P (X ≤ x) and survival function (s.f) F̄ (x) = 1 − F (x). Based on
n observations {x1, . . . , xn} of distribution F , define the empirical cumulative
distribution and survival functions, respectively, by

(1.2) Fn (x) =

n∑
i=1

i

n
I[x(i),x(i+1)) (x) ,

and

(1.3) F̄n (x) =
n−1∑
i=0

(
1− i

n

)
I[x(i),x(i+1)) (x) ,
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where I is the indicator function and (−∞ = x(0) ≤) x(1) ≤ x(2) ≤ · · · ≤ x(n)
(≤ x(n+1) = ∞) are the order observations corresponding to the sample. The
function Fn (F̄n) is known in the literature as “empirical estimator” of F (F̄ ).

In the case when X and Y are continuous nonnegative random variables
with s.f ’s F̄ and Ḡ, respectively, a version of KL divergence in terms of s.f ’s F̄
and Ḡ can be given as follows:

KLS
(
F̄ ||Ḡ

)
=

∫ ∞

0
F̄ (x) log

F̄ (x)

Ḡ(x)
dx− [E (X)− E (Y )] .

The properties of this divergence measure are studied by some authors such
as Liu [20] and Baratpour and Habibi Rad [1].

In order to estimate the parameters of a statistical model Fθ, Liu [20]
proposed cumulative KL divergence between the empirical survival function F̄n

and survival function F̄θ (we call it CKL
(
F̄n||F̄θ

)
) as

CKL
(
F̄n||F̄θ

)
=

∫ ∞

0

(
F̄n (x) log

F̄n (x)

F̄ (x;θ)
−
[
F̄n (x)− F̄ (x;θ)

])
dx

=

∫ ∞

0
F̄n (x) log F̄n (x) dx−

∫ ∞

0
F̄n (x) log F̄ (x;θ) dx

−
[
x̄− Eθ (X)

]
,

where x is the observed sample mean. The cited author defined minimum CKL
divergence estimator (MCKLE) of θ as

θ̂ = arg inf
θ∈Θ

CKL
(
F̄n (x) ||F̄θ

)
.

If we consider the parts of CKL
(
F̄n||F̄

)
that depends on θ and define

(1.4) g (θ) = Eθ (X)−
∫ ∞

0
F̄n (x) log F̄ (x;θ) dx,

then the MCKLE of θ can equivalently be defined by

θ̂ = arg inf
θ∈Θ

g (θ) .

Two important advantages of this estimator are that one does not need to
have the density function and that for large values of n the empirical estimator Fn

tends to the distribution function F . Liu [20] applied this estimator in uniform
and exponential models and Yari and Saghafi [35] and Yari et al. [34] used it
for estimating parameters of Weibull distribution; see also Park et al. [26] and
Hwang and Park [16]. Yari et al. [34] found a simple form of (1.4) as

(1.5) g (θ) = Eθ (X)− 1

n

n∑
i=1

h (xi) = Eθ (X)− h (x),



Parameter estimation based on cumulative Kullback-Leibler divergence 5

where h (x) = 1
n

∑n
i=1 h (xi), and

(1.6) h (x) =

∫ x

0
log F̄ (y;θ) dy.

They also proved that

E (h (X)) =

∫ ∞

0
F̄ (x;θ) log F̄ (x;θ) dx,

which shows that if n tends to infinity, then CKL
(
F̄n||F̄θ

)
converges to zero.

The aim of the present paper is to extend the definition ofMCKLE to the
case that the random variable of interest has support in whole real line. In the
process of doing so we also investigate asymptotic properties of MCKLE and
provide some examples.

Recently Park et al. [24] extended the cumulative Kullback-Leibler infor-
mation to the whole real line as

CRKL (F : G) =

∫ ∞

−∞
F̄ (x) log

F̄ (x)

Ḡ(x)
dx− [E (X)− E (Y )] ,

and

CKL (F : G) =

∫ ∞

−∞
F (x) log

F (x)

G(x)
dx− [E (Y )− E (X)] .

They proposed a general cumulative Kullback-Leibler information as

GCKLα (F : G) = αCKL (F : G) + (1− α)CRKL (F : G) , 0 ≤ α ≤ 1,

and studied its application to a test for normality in comparison with some com-
peting test statistics based on the empirical distribution function.

The rest of the paper is organized as follows: In Section 2, we propose
an extension of the MCKLE in the case when the support of the distribution
is real line and present some illustrative examples. In Section 3, we show that
the proposed estimator belongs to the class of generalized estimating equations
(GEE). Asymptotic properties of MCKLE such as consistency, normality are
investigated in this section. Several examples are given in this section. We
have shown, among other examples, that when the underlying distribution is
generalized Pareto one can employ MCKLE to estimate the shape parameter
of the model, for a subset of parameter space, while the MLE does not exist in
that subset. In Section 4, we extend the results to the type I censored data.

2. AN EXTENSION OF MCKLE

In this section, we propose an extension of the MCKLE for the case when
X is assumed to be a continuous random variable with support R. It is known
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that [30]

Eθ |X| =
∫ 0

−∞
F (x) dx+

∫ ∞

0
F̄ (x) dx.

We first give an extension of CKL divergence for the case that the random
variables are distributed over real line R.

Definition 2.1. Let X and Y be random variables on R with c.d.f ’s F
and G, s.f ’s F̄ and Ḡ and finite means E (X) and E (Y ), respectively. The CKL
divergence of F̄ relative to Ḡ is defined as

CKL
(
F̄ ||Ḡ

)
=

∫ 0

−∞

{
F (x) log

F (x)

G (x)
− [F (x)−G (x)]

}
dx

+

∫ ∞

0

{
F̄ (x) log

F̄ (x)

Ḡ (x)
−
[
F̄ (x)− Ḡ (x)

]}
dx

=

∫ 0

−∞
F (x) log

F (x)

G (x)
dx+

∫ ∞

0
F̄ (x) log

F̄ (x)

Ḡ (x)
dx− [E |X| − E |Y |] .

An application of the log-sum inequality and the fact that, for all x, y > 0
x log x

y ≥ x− y, (equality holds if and only if x = y) show that the CKL is non-
negative. Using the fact that in log-sum inequality, equality holds if and only if
F = G, a.s., one gets that CKL

(
F̄ ||Ḡ

)
= 0 if and only if F = G, a.s.

Let Fθ be the population c.d.f. with unknown parameter θ ∈ Θ ⊆ Rp and
Fn be the empirical c.d.f. based on a random sample X1, X2, . . . , Xn from Fθ.
Based on the above definition, the CKL divergence of F̄n relative to F̄θ is defined
as

CKL
(
F̄n||F̄θ

)
=

∫ 0

−∞
Fn (x) log

Fn (x)

F (x;θ)
dx+

∫ ∞

0
F̄n (x) log

F̄n (x)

F̄ (x;θ)
dx

−
[
|x| − Eθ |X|

]
,

where |x| is the mean of absolute values of the observations. Let us also define

(2.1) g (θ) = Eθ |X| −
∫ 0

−∞
Fn (x) logF (x;θ) dx−

∫ ∞

0
F̄n (x) log F̄ (x;θ) dx.

Now, we have the following definition which is an extension of CKL estimator in
Liu approach:

Definition 2.2. Assume that Eθ |X| <∞ and g′′(θ) is positive definite.
Then, under the existence, we defineMCKLE of θ to be a value in the parameter
space Θ which minimizes g(θ).

IfX is nonnegative, then g (θ) in (2.1) reduces to (1.4). So the results of Liu
[20], Yari and Saghafi [35], Yari et al. [34], Park et al. [26] and Hwang and Park
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[16] yield as special cases. It should be noted that by the law of large numbers
Fn converges to Fθ and F̄n converges to F̄θ as n tends to infinity. Consequently
CKL

(
F̄n||F̄θ

)
converges to zero as n tends to infinity.

In order to study the properties of the estimator, we first find a simple form
of (2.1). Let us introduce the following notations:

u (x) =

∫ 0

x
logF (y;θ) dy,

for x < 0, and

(2.2) s (x) = I(−∞,0) (x)u (x) + I[0,∞) (x)h (x) ,

for x ∈ R, where h is defined in (1.6). Assuming that x(1), x(2), . . . , x(n) denote
the ordered observed values of the sample and that x(k) < 0 ≤ x(k+1), for some
value of k, k = 0, . . . , n (x(0) = −∞), then by (1.2) and (1.3), we have

∫ 0

−∞
Fn (x) logF (x;θ) dx =

k−1∑
i=1

i

n

x(i+1)∫
x(i)

logF (x;θ) dx+
k

n

0∫
x(k)

logF (x;θ) dx

=
1

n

k−1∑
i=1

i
[
u
(
x(i)
)
− u

(
x(i+1)

)]
+
k

n
u
(
x(k)

)
=

1

n

k∑
i=1

u
(
x(i)
)
.

Using the same steps, we have∫ ∞

0
F̄n (x) log F̄ (x;θ) dx =

1

n

n∑
i=k+1

h
(
x(i)
)
.

So, g (θ) in (2.1) gets the simple form

g (θ) = Eθ |X| − 1

n

k∑
i=1

u
(
x(i)
)
− 1

n

n∑
i=k+1

h
(
x(i)
)

= Eθ |X| − 1

n

n∑
i=1

s (xi) = Eθ |X| − s (x).(2.3)

If k = 0 (i.e., X is nonnegative), then g (θ) in (2.3) reduces to (1.5). It can
be easily seen that

E (s (X)) =

∫ 0

−∞
F (x;θ) logF (x;θ) dx+

∫ ∞

0
F̄ (x;θ) log F̄ (x;θ) dx,

In the following, we give some examples.
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Example 2.1. Let {X1, . . . , Xn} be i.i.d. Normal random variables with
probability density function

ϕ (x;µ, σ) =
1√
2πσ2

exp

(
−1

2

(
x− µ

σ

)2
)
, x ∈ R, µ ∈ R, σ > 0.

In this case E (|X|) = µ
[
2Φ
(µ
σ

)
− 1
]
+2σϕ

(µ
σ

)
, where Φ denotes the distribution

function of standard normal. For this distribution, h (x), u (x) and g (µ, σ) do
not have closed forms. The zeros of the gradient of g (µ, σ) with respect to µ and
σ give respectively

2nΦ
(µ
σ

)
− n−

k∑
i=1
xi<0

log Φ

(
xi − µ

σ

)
+ k log Φ

(
−µ
σ

)

+

n∑
i=k+1
xi≥0

log Φ

(
µ− xi
σ

)
− (n− k) log Φ

(µ
σ

)
= 0,

and

(2.4) 2nϕ
(µ
σ

)
+

k∑
i=1
xi<0

∫ −µ
σ

xi−µ

σ

zϕ (z)

Φ (z)
dz −

n∑
i=k+1
xi≥0

∫ xi−µ

σ

−µ
σ

zϕ (z)

1− Φ(z)
dz = 0.

To obtain our estimators, we need to solve these equations numerically. For
computational purposes, the following equivalent equation can be solved instead
of (2.4).

2ϕ
(µ
σ

)
+

∫ −µ
σ

x(1)−µ

σ

Fn (µ+ σz)
zϕ (z)

Φ (z)
dz −

∫ x(n)−µ

σ

−µ
σ

F̄n (µ+ σz)
zϕ (z)

1− Φ(z)
dz = 0.

Figure 1 compares these estimators with the corresponding MLE’s. In
order to compare our estimators and the MLE’s we made a simulation study
in which we used samples of sizes 10 to 55 by 5 with 10000 repeats, where we
assume that the true values of the model parameters are µtrue = 2 and σtrue = 3.
It is evident from the plots that the MCKLE approximately coincides with the
MLE in both cases.

Example 2.2. Let {X1, . . . , Xn} be i.i.d. Laplace random variables with
probability density function

f (x; θ) =
1

2θ
exp

(
−
∣∣∣x
θ

∣∣∣) , x ∈ R, θ > 0.

We simply have MCKLE of θ as

θ̂ =

√
X2

2
.

This is exactly the moment estimator of θ.
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Figure 1: µ̄/µtrue, S
2 (µ̄), σ̄/σtrue and S2 (σ̄) as functions of sample size

3. ASYMPTOTIC PROPERTIES OF ESTIMATORS

In this section we study asymptotic properties of MCKLE’s. For this
purpose, first we give a brief review on GEE. Some related references on GEE
are Huber [13], Serfling [31], Qin and Lawless [29], van der Vaart [33], Pawitan
[28], Shao [32], Huber and Ronchetti [15] and Hampel et al. [12].

Throughout this section, we use the terminology from Shao [32]. We assume
that X1, ..., Xn represents independent random vectors, in which the dimension
of Xi is di, i = 1, ..., n (supi di <∞). We also assume that in the population
model the vector θ is a p-vector of unknown parameters. The GEE method is a
general method in statistical inference for deriving point estimators. Let Θ ⊂ Rp

be the range of θ, ψi be a Borel function from Rdi ×Θ to Rp, i = 1, ..., n, and

sn(γ) =

n∑
i=1

ψi (Xi,γ) , γ ∈ Θ.

If θ̂ ∈ Θ is an estimator of θ which satisfies sn(θ̂) = 0, then θ̂ is called a
GEE estimator. The equation sn (γ) = 0 is called aGEE. Most of the estimation
methods such as likelihood estimators, moment estimators and M-estimators are
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special cases of GEE estimators. Usually GEE’s are chosen such that

(3.1) E [sn (θ)] =

n∑
i=1

E [ψi (Xi,θ)] = 0.

If the exact expectation does not exist, then the expectation E may be re-
placed by an asymptotic expectation. The consistency and asymptotic normality
of the GEE are studied under different conditions (see, for example Shao [32]).

3.1. Consistency and asymptotic normality of the MCKLE

Let θ̂n be MCKLE which minimizes g in (2.3) with s as defined in (2.2).
Here, we show that the MCKLE’s are special cases of GEE. Using this, we
show the consistency and asymptotic normality of MCKLE’s.

Theorem 3.1. MCKLE’s, by minimizing g in (2.3), are special cases
of GEE estimators.

Proof: In order to minimize g in (2.3), we get the derivative of g, under
the assumption that it exists,

∂

∂θ
g (θ) =

∂

∂θ
Eθ |X| − 1

n

n∑
i=1

∂

∂θ
s (xi) = 0,

which is equivalent to GEE sn (θ) = 0 where

(3.2) sn (θ) =
n∑

i=1

[
∂

∂θ
Eθ |X| − ∂

∂θ
s (xi)

]
=

n∑
i=1

ψ (xi,θ) ,

with

(3.3) ψ (x,θ) =
∂

∂θ
Eθ |X| − ∂

∂θ
s (x) .

Now E [sn (θ)] = 0, since

(3.4) E

[
∂

∂θ
s (X)

]
=

∂

∂θ
Eθ |X| ,

that can be proven by some simple algebra. This proves the result.
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Corollary 3.1. In the special case when the support ofX is R+,MCKLE
is an special case of GEE estimators, where

(3.5) sn (θ) =

n∑
i=1

[
∂

∂θ
Eθ (X)− ∂

∂θ
h (xi)

]
=

n∑
i=1

ψ (xi,θ) ,

with

(3.6) ψ (x,θ) =
∂

∂θ
Eθ (X)− ∂

∂θ
h (x) .

The MCKLE’s are consistent estimators under mild conditions. To see
this, let for each n θ̂n be an MCKLE or equivalently a GEE estimator, i.e.,

sn

(
θ̂n

)
= 0, where sn is defined as (3.2) or (3.5). Suppose that ψ defined in

(3.3) or (3.6) is a bounded and continuous function of θ. Let also

Ψ (θ) = E [ψ (X,θ)] ,

where we assume that Ψ′ (θ) exists and is full rank. Then, from Proposition 5.2

of Shao [32] and using the fact that (3.1) holds, θ̂n
p→ θ.

Asymptotic normality of a consistent sequence of MCKLE’s can be estab-
lished under some conditions. We first consider the special case where θ is scalar
and X1, ..., Xn are i.i.d.

Theorem 3.2. Let θ̂n be a consistent MCKLE of θ. Then

√
n
(
θ̂n − θ

)
d→ N

(
0, σ2F

)
,

where σ2F = A/B2, with

A = E

[
∂

∂θ
s (X)

]2
−
[
∂

∂θ
Eθ |X|

]2
,

and

B =

∫ 0

−∞

[
∂
∂θ
F (x;θ)

]2
F (x;θ)

dx+

∫ ∞

0

[
∂
∂θ
F̄ (x;θ)

]2
F̄ (x;θ)

dx.

Proof: Using Theorem 3.1 we have E [ψ (X,θ)] = 0. So if we consider
ψ defined in (3.3), we have

E [ψ (X,θ)]2 = V ar [ψ (X,θ)]

= V ar

[
∂

∂θ
Eθ |X| − ∂

∂θ
s (X)

]
= V ar

[
∂

∂θ
s (X)

]
= E

[
∂

∂θ
s (X)

]2
−
[
∂

∂θ
Eθ |X|

]2
,
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where the last equality follows from (3.4). On the other hand

Ψ′ (θ) =
∂2

∂θ2
Eθ |X| − E

[
∂2

∂θ2
s (X)

]
,

and

E

[
∂2

∂θ2
s (X)

]
=

∫ 0

−∞

∫ 0

x

∂2

∂θ2
logF (y;θ) dyf (x;θ) dx

+

∫ ∞

0

∫ x

0

∂2

∂θ2
log F̄ (y;θ) dyf (x;θ) dx

=

∫ 0

−∞


∂2

∂θ2F (y;θ)

F (y;θ)
−

[
∂
∂θ
F (y;θ)

F (y;θ)

]2F (y;θ) dy

+

∫ ∞

0


∂2

∂θ2 F̄ (y;θ)

F̄ (y;θ)
−

[
∂
∂θ
F̄ (y;θ)

F̄ (y;θ)

]2 F̄ (y;θ) dy

=
∂2

∂θ2
Eθ |X| −

∫ 0

−∞

[
∂
∂θ
F (x;θ)

]2
F (x;θ)

dx−
∫ ∞

0

[
∂
∂θ
F̄ (x;θ)

]2
F̄ (x;θ)

dx.

So

Ψ′ (θ) =

∫ 0

−∞

[
∂
∂θ
F (x;θ)

]2
F (x;θ)

dx+

∫ ∞

0

[
∂
∂θ
F̄ (x;θ)

]2
F̄ (x;θ)

dx.

Now, using Theorem 5.13 of Shao [32], σ2F is given as

σ2F =
E(ψ2(X,θ))

[Ψ′(θ)]2
.

Similar to Theorem 3.2 it can be shown in the case that θ ∈ Θ ⊆ Rp is
vector and X1, ..., Xn are i.i.d., under the conditions of Theorem 5.14 of Shao
[32],

V −1/2
n

(
θ̂n − θ

)
d→ Np (0, Ip) ,

where Vn = 1
nB

−1AB−1 with

A =

[
∂

∂θ
s (X)

] [
∂

∂θ
s (X)

]T
−
[
∂

∂θ
Eθ |X|

] [
∂

∂θ
Eθ |X|

]T
,

and

B =

∫ 0

−∞

[
∂
∂θ
F (x;θ)

] [
∂
∂θ
F (x;θ)

]T
F (x;θ)

dx+

∫ ∞

0

[
∂
∂θ
F̄ (x;θ)

] [
∂
∂θ
F̄ (x;θ)

]T
F̄ (x;θ)

dx,

provided that B is invertible matrix.
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Remark 3.1. In Theorem 3.2 (and the result stated just after that for
p dimensional parameter) if we assume that the support of X is nonnegative A
and B are given, respectively, by

(3.7) A = E

[
∂

∂θ
h (X)

]2
−
[
∂

∂θ
Eθ (X)

]2
,

B =

∫ ∞

0

[
∂
∂θ
F̄ (x;θ)

]2
F̄ (x;θ)

dx,

and

(3.8) A = E

[
∂

∂θ
h (X)

] [
∂

∂θ
h (X)

]T
−
[
∂

∂θ
Eθ (X)

] [
∂

∂θ
Eθ (X)

]T
,

B =

∫ ∞

0

[
∂
∂θ
F̄ (x;θ)

] [
∂
∂θ
F̄ (x;θ)

]T
F̄ (x;θ)

dx.

Now, following Pawitan [28], we can find sample version of the variance
formula for the MCKLE as follows. Given x1, ..., xn let

J = Ê [ψ (X,θ)]2

=
1

n

n∑
i=1

ψ
(
xi, θ̂

)
ψT
(
xi, θ̂

)
=

{
∂

∂θ
s (x)

}{
∂

∂θ
s (x)

}T
∣∣∣∣∣
θ=θ̂

−
{
∂

∂θ
s (x)

}{
∂

∂θ
s (x)

}T
∣∣∣∣∣
θ=θ̂

,(3.9)

and

I = −Ê ∂

∂θ
ψ (X,θ)

= − 1

n

n∑
i=1

∂

∂θ
ψ
(
xi, θ̂

)
= − ∂2

∂θ2
Eθ |X|

∣∣∣∣
θ=θ̂

+
∂2

∂θ2
s (x)

∣∣∣∣∣
θ=θ̂

.(3.10)

Using notations defined in (3.9) and (3.10) we have

V̂ −1/2
n

(
θ̂n − θ

)
d→ Np (0, Ip) ,

where

(3.11) V̂n =
1

n
I−1JI−1,
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provided that I is invertible matrix, or equivalently g (θ) has infimum value on
parameter space Θ. In particular when the support of X is R+, J and I are
given, respectively, by

(3.12) J =

{
∂

∂θ
h (x)

}{
∂

∂θ
h (x)

}T
∣∣∣∣∣
θ=θ̂

−
{
∂

∂θ
h (x)

}{
∂

∂θ
h (x)

}T
∣∣∣∣∣
θ=θ̂

,

and

(3.13) I = − ∂2

∂θ2
Eθ (X)

∣∣∣∣
θ=θ̂

+
∂2

∂θ2
h (x)

∣∣∣∣∣
θ=θ̂

.

In Theorem 3.2, the estimator V̂n is a sample version of Vn, see also Basu
and Lindsay [3]. It is also known that the sample variance (3.11) is a robust
estimator which is known as the ‘sandwich’ estimator, with I−1 as the bread and
J as the filling [14]. In likelihood approach, the quantity I is the usual observed
Fisher information.

Example 3.1. Let {X1, . . . , Xn} be i.i.d. exponential random variables
with probability density function

f (x;λ) = λe−λx, x > 0, λ > 0.

We simply have MCKLE of λ as

λ̂ =

√
2

X2
.

This estimator is a function of linear combinations of X2
i ’s, and so by strong law

of large numbers (SLLN), λ̂ is strongly consistent for λ.

Now, using the central limit theorem (CLT ) and delta method or using
Theorem 3.2, one can show that

√
n
(
λ̂− λ

)
d→ N

(
0,

5λ2

4

)
,

and the asymptotic bias of λ̂ is of order 1
n : E

(
λ̂− λ

)
= 15λ

8n . It is well known

that the MLE of λ is λ̂m = 1/X̄ with asymptotic distribution

√
n
(
λ̂m − λ

)
d→ N

(
0, λ2

)
,

and the asymptotic bias of λ̂m is of order 1
n : E

(
λ̂m − λ

)
= λ

n .

Notice that using asymptotic bias of λ̂, we can find some unbiasing factors
to improve our estimator. Since the MLE has inverse Gamma distribution,
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Figure 2: λ̄/λtrue and S2
(
λ̄
)
as functions of sample size

the unbiased estimator of λ is λ̂um = (n− 1) /nX̄ [10]. In Liu approach an
approximately unbiased estimator of λ is

(3.14) λ̂u =
8n

8n+ 15

√
2

X2
.

Figure 2 compares these estimators. In order to compare our estimator and
the MLE, we made a simulation study in which we used samples of sizes 10 to
55 by 5 with 10000 repeats, where we assumed that the true value of the model
parameter is λtrue = 5. The plots in Figure 2 show that the MCKLE has more
bias than the MLE. It is evident from the plots that the MCKLE in (3.14)
which is approximately unbiased is very close to the unbiased MLE in the sense
of biased and variance.

Remark 3.2. In Example 2.2, note that |X| has exponential distribu-
tion. So, using Example 3.1, one can easily find asymptotic properties of θ̂ in
Laplace distribution.

Example 3.2. Let {X1, . . . , Xn} be i.i.d. two parameter exponential
random variables with probability density function

f (x;µ, σ) =
1

σ
e−(x−µ)/σ, x ≥ µ, µ ∈ R, σ > 0.

If µ ≥ 0, then we have

g (µ, σ) = µ+ σ +
1

2nσ

n∑
i=1

(xi − µ)2
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and MCKLE of µ and σ are, respectively,

µ̂ = X −
√
X2 −X

2
, σ̂ =

√
X2 −X

2
,

which are also ME’s of (µ, σ). These estimators are functions of linear combi-
nations of Xi’s and X

2
i ’s, and hence by SLLN, (µ̂, σ̂) are strongly consistent for

(µ, σ).

Now, by CLT and delta method or using Theorem 3.2, one can show that

V −1/2
n

(
µ̂− µ
σ̂ − σ

)
d→ N2 (0, I2) ,

where

Vn =
σ2

n

[
1 −1
−1 2

]
.

On the other hand if µ < 0, then we get

g (µ, σ) = 2σ exp
(µ
σ

)
− µ− σ +

1

nσ

 n∑
i=k+1
xi≥0

x2i
2

− µ

n∑
i=k+1
xi≥0

xi


+
σ

n

 k∑
i=1
xi>0

Li2

(
exp

(
−xi − µ

σ

))
− k · Li2

(
exp

(µ
σ

)) ,
where Li2 (·) is the dilogarithm function. In this case, the MCKLE of µ and σ
can be found numerically.

In the following example, we show that in generalized Pareto distribution
while the MLE of the shape parameter of the model does not exist one can use
MCKLE to estimate the shape parameter.

Example 3.3. Suppose that {X1, . . . , Xn} are iid from generalized Pareto
distribution (GPD) with c.d.f.

F (x;σ, k) =

{
1− (1− kx/σ)1/k , if k ̸= 0,

1− e−x/σ, if k = 0,

where σ > 0, k ∈ R, 0 ≤ x < ∞ for k ≤ 0 and 0 ≤ x ≤ σ/k for k > 0. For this
distribution the MLE of the shape parameter k does not exist for k ∈ (1,∞)
[11]. Let σ be fixed. After some algebra we get

gn (k) =
σ

k + 1
− 1

n

n∑
i=1

h (xi) , − 1 < k ≤ σ/x(n),
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where

h (x) =



− σ
k2

[
kx
σ +

(
1− kx

σ

)
log
(
1− kx

σ

)]
, k ̸= 0, σx ,

−x2

2σ , k = 0,

−x2

σ , k = σ
x ,

and MCKLE estimator k̂ can be found numerically. It should be noted that
in this case, for k ≤ −1, k̂ does not exist. Recently Zhang [37] considered the
estimation of for k based on the likelihood method and empirical Bayesian [36],
[38]. Denoting the Zhang’s estimator by k̂Zhang, the cited author shows that the

performance of k̂Zhang is better than other existing methods for −6 ≤ k ≤ 1/2.

In order to compare our estimator (k̂MCKLE) and Zhang’s estimator k̂Zhang,
we evaluated them using simulated samples of sizes 15, 20, 50, 100, 200, 500 and
1000 with 10000 replicates, considering different true values of the population
parameter as k = −0.75,−0.5,−0.25, 0, 0.25, 0.5, 1, 3, 5 and 7. Tables 3.3 and 3.3
compare bias and root mean squared error (RMSE) of estimators, respectively.
It is evident from Table 3.3 that for all values k > 0.25, k̂MCKLE has less bias
than k̂Zhang. Also for k = 0.25, n = 15, 20, 500, 1000, the performance of our
estimator is better than the Zhang’s estimator. On the other hand, it is seen
from table 3.3 that except for k = −0.75, n = 100, 200, 500, 1000, and k = −0.5,
n = 500, 1000, for all values of k, k̂MCKLE has less RMSE than k̂Zhang.

k -0.75 -0.5 -0.25 0 0.25

n Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE

15 0.0478 0.3084 0.0271 0.2136 -0.0002 0.1472 -0.0401 0.1041 -0.1005 0.0761
20 0.0185 0.2714 0.0055 0.1801 -0.0113 0.1189 -0.0366 0.0810 -0.0789 0.0573
50 0.0126 0.1840 0.0066 0.1039 -0.0003 0.0581 -0.0086 0.0346 -0.0217 0.0219
100 0.0051 0.1420 0.0023 0.0698 -0.0012 0.0337 -0.0054 0.0180 -0.0097 0.0103
200 0.0044 0.1135 0.0025 0.0490 0.0002 0.0209 -0.0028 0.0103 -0.0052 0.0056
500 0.0014 0.0845 0.0008 0.0293 -0.0001 0.0100 -0.0013 0.0043 -0.0024 0.0021
1000 0.0010 0.0687 0.0007 0.0200 0.0002 0.0057 -0.0006 0.0023 -0.0012 0.0010

k 0.5 1 3 5 7

n Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE

15 -0.1852 0.0566 -0.4162 0.0306 -1.8133 0.0014 -3.5561 0.0001 -5.4191 2× 10−5

20 -0.1452 0.0412 -0.3430 0.0201 -1.6568 0.0002 -3.3632 −6× 10−6 -5.2066 6× 10−6

50 -0.0499 0.0136 -0.1687 0.0033 -1.2339 -0.0004 -2.8083 −1× 10−5 -4.5742 3× 10−8

100 -0.0208 0.0055 -0.0979 -0.0004 -0.9988 -0.0002 -2.4627 −6× 10−7 -4.1576 2× 10−10

200 -0.0089 0.0025 -0.0620 -0.0012 -0.8251 -0.0001 -2.1764 2× 10−9 -3.7953 3× 10−12

500 -0.0025 0.0005 -0.0396 -0.0012 -0.6514 −8× 10−6 -1.8621 2× 10−11 -3.3789 4× 10−15

1000 -0.0008 0.0001 -0.0303 -0.0010 -0.5518 −2× 10−7 -1.6659 5× 10−13 -3.1068 < 10−16

Table 1: Biases of k̂MCKLE and k̂Zhang for the GPD

4. AN EXTENSION OF MCKLE TO THE TYPE I CENSORED
DATA

In this section, we extendMCKLE for the case when the data are collected
in censored type I scheme, in continuous case. Some authors such as Lim and
Park [18], Cherfi [8], Baratpour and Habibi Rad [2], Park and Shin [27], Park et
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k -0.75 -0.5 -0.25 0 0.25

n Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE

15 0.4672 0.3968 0.4040 0.3267 0.3425 0.2730 0.2893 0.2264 0.2618 0.1852
20 0.4071 0.3496 0.3543 0.2826 0.3030 0.2324 0.2565 0.1893 0.2272 0.1516
50 0.2504 0.2382 0.2167 0.1808 0.1851 0.1409 0.1573 0.1074 0.1352 0.0803
100 0.1753 0.1863 0.1510 0.1354 0.1278 0.1014 0.1073 0.0736 0.0919 0.0527
200 0.1235 0.1501 0.1060 0.1043 0.0889 0.0743 0.0732 0.0514 0.0616 0.0356
500 0.0785 0.1154 0.0674 0.0758 0.0565 0.0498 0.0460 0.0322 0.0374 0.0216
1000 0.0550 0.0957 0.0472 0.0597 0.0395 0.0364 0.0319 0.0227 0.0255 0.0149

k 0.5 1 3 5 7

n Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE Zhang MCKLE

15 0.2824 0.1498 0.4592 0.0948 1.8238 0.0131 3.5606 0.0021 5.4216 0.0004
20 0.2363 0.1198 0.3837 0.0715 1.6671 0.0077 3.3676 0.0010 5.2091 0.0001
50 0.1277 0.0587 0.2060 0.0287 1.2436 0.0016 2.8124 0.0001 4.5764 9× 10−7

100 0.0842 0.0367 0.1313 0.0158 1.0073 0.0008 2.4662 2× 10−5 4.1595 3× 10−9

200 0.0564 0.0239 0.0889 0.0093 0.8321 0.0003 2.1794 3× 10−8 3.7969 1× 10−10

500 0.0336 0.0139 0.0568 0.0049 0.6561 0.0001 1.8641 2× 10−10 3.3800 1× 10−13

1000 0.0228 0.0093 0.0422 0.0031 0.5550 8× 10−6 1.6673 2× 10−10 3.1075 6× 10−16

Table 2: RMSE’s of k̂MCKLE and k̂Zhang for the GPD

al. [22] Park and Lim [23] and Park and Pakyari [25] studied some forms of KL
divergences in different censored data cases. Let T1, ..., Tn be i.i.d. nonnegative
continuous random variables from a c.d.f. F , p.d.f. f and survival function F̄ .
In a variety of applications in biostatistics and life testing, we are only able to
observe X = min (T ,C) where C is the constant censoring point. The density
function of X can be written as

fC (x) =


f (x) , 0 < x < C,
F̄ (C) , x = C,
0, o.w.

It is known that

(4.1) Eθ (X) =

∫ C

0
F̄ (x) dx.

The authors in Lim and Park [18] and Park and Shin [27] presented two
censored versions of KL divergence of density gC relative to fC , respectively, by

I∗ (g, f : C) =

∫ C

−∞
g (x) log

g (x)

f (x)
dx+ F (C)−G (C) ,

and

K(−∞,C) (g : f) =

∫ C

−∞
g (x) log

g (x)

f (x)
dx+ (1−G (C)) log

1−G (C)

1− F (C)
,

which is nonnegative and is monotone in C. Park and Lim [23] defined CKL for
censored data as

CKLC

(
Ḡ||F̄

)
=

∫ C

0
Ḡ (x) log

Ḡ (x)

F̄ (x)
−
[
Ḡ (x)− F̄ (x)

]
dx.
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They also defined the CKLC of Fn relative to F as

CKLC

(
F̄n||F̄θ

)
=

∫ C

0
F̄n (x) log

F̄n (x)

F̄ (x;θ)
−
[
F̄n (x)− F̄ (x;θ)

]
dx

=

∫ C

0
F̄n (x) log F̄n (x) dx−

∫ C

0
F̄n (x) log F̄ (x;θ) dx

+

∫ C

0
F̄ (x;θ) dx−

∫ C

0
F̄n (x) dx,

and considered it in type II censorship. Here we apply CKLC for type I censored
data. Using (4.1) we get

CKLC

(
F̄n||F̄θ

)
=

∫ C

0
F̄n (x) log F̄n (x) dx−

∫ C

0
F̄n (x) log F̄ (x;θ) dx+Eθ (X)−x̄.

Consider the parts of CKLC

(
F̄n||F̄θ

)
that depends on θ and define

(4.2) g (θ) = Eθ (X)−
∫ C

0
F̄n (x) log F̄ (x;θ) dx.

Then the MCKLE of θ is defined as

θ̂ = arg inf
θ∈Θ

CKLC

(
F̄n||F̄θ

)
= arg inf

θ∈Θ
g (θ) ,

provided that Eθ (X) <∞ and g′′(θ) is positive definite; see also Park and Lim
[23].

If C → ∞, then g (θ) in (4.2) reduces to (1.4) and results in non-censored
case yield as special case.

In order to study the properties of the estimator, following non-censored
case, we have simple form of g (θ) as (1.5), with h as (1.6).

Let θ̂n be MCKLE in censored case by minimizing g in (4.2). Here,
MCKLE is also an special case of GEE with ψ (x,θ) as (3.6), and under the
conditions given in non-censored case the MCKLE in censored case is also con-
sistent. Asymptotic normality of a consistent sequence of MCKLE can be es-
tablished under the conditions imposed in non-censored case. We first consider
the special case where θ is scalar and X1, ..., Xn are i.i.d. continuous random
variables.

Theorem 4.1. For each n, let θ̂n be an MCKLE or equivalently a
GEE estimator. Then (

θ̂n − θ
)

d→ N
(
0, σ2F

)
,
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where σ2F = A/B2, with A as (3.7) and

B =

∫ C

0

[
∂
∂θ
F̄ (x;θ)

]2
F̄ (x;θ)

dx.

Proof: The proof is similar to non-censored case.

The next theorem shows asymptotic normality ofMCKLE, when θ ∈ Θ ⊆
Rp is vector and X1, ..., Xn are i.i.d. and continuous.

Theorem 4.2. Under conditions of Theorem 5.14 of Shao [32],

V −1/2
n

(
θ̂n − θ

)
d→ Np (0, Ip) ,

where Vn = B−1AB−1, with A as (3.8) and

B =

∫ C

0

[
∂
∂θ
F̄ (x;θ)

] [
∂
∂θ
F̄ (x;θ)

]T
F̄ (x;θ)

dx,

provided that B is invertible matrix.

Proof: The proof is similar to non-censored case and hence it is omitted.

Remark 4.1. In Theorems 4.1 and 4.2, if C → ∞ (no censoring), then
results in non-censored case yield as special cases.

Now, following Pawitan [28], similar to non-censored case the sample ver-
sion of the variance formula for the MCKLE in censored case is as (3.11), with
I and J as (3.12) and (3.13).

Example 4.1. Let {X1, . . . , Xn} be i.i.d. type I censored Exponential
random variables with probability density function

fC (x) =


λe−λx, 0 < x < C,
e−λC , x = C,
0, o.w.

where λ > 0. After some algebra, we have

g (λ) =
1

λ

(
1− e−λC

)
+
λ (n− r)

2n
C2 +

λ

2n

r∑
i=1

x2(i)

=
1

λ

(
1− e−λC

)
+
λ

2
x2,
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Figure 3: λ̂ as a decreasing function of x2

and λ̂ can be found numerically as a decreasing function of x2, and hence, by
using strong law of large numbers (SLLN), it is strongly consistent. Figure 3
shows λ̂ as a decreasing function of x2.

Now, using Theorem 4.1, one can show that

√
n
(
λ̂− λ

)
d→ N

(
0, σ2F

)
,

where

σ2F =
λ2
(
5− e−2λC (λC + 1)2 − e−λC

(
λ3C3 + 3λ2C2 + 4λC + 4

))
(2− e−λC (λ2C2 + 2λC + 2))

2 .

If C → ∞ (no censoring), then we obtain the results in non-censored case.
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