
REVSTAT – Statistical Journal

Volume 17, Number 2, April 2019, 145-162

MODELING RISK OF EXTREME EVENTS
IN GENERALIZED VERHULST MODELS

Authors: M. Fátima Brilhante
– Faculdade de Ciências e Tecnologia, Universidade dos Açores,
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Abstract:

• A very popular model in population dynamics, which has been around since the
first half of the nineteenth century, is the Verhulst logistic model. However, some
limitations of this model have provided grounds to propose more sophisticated growth
models using, for instance, the former as a basis. Since the Verhulst model and
some generalizations of it are closely connected to extreme value distributions, either
max-geometric-stable or max-stable, we show that the parameter attached to the
retroaction factor of these generalized models establishes, on its own, which extreme
value distribution is adequate to model risks of extreme events in population dynamics.
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1. INTRODUCTION

“It is generally agreed that the specific growth rate [...] declines as
density increases, and hence that the form of the population curve
with time in a limited system has a sigmoid shape. Of the many pro-
posed models only one, the logistic of Verhulst (1838) [...] is widely
used. It is presented in most current ecology texts and is incorporated
into almost all fish and game management theories. Such tacit accep-
tance probably derives from its mathematical simplicity and biological
clarity.”

Smith (1963)

Let N(t) be the size of a population and R(t) the amount of available
resources at time t. It is reasonable to relate R(t) and N(t) by the differential
equation

(1.1)
d

dt
R(t) = −η d

dt
N(t) ,

with η representing the amount of resources consumed to yield a new population
unit. The solution of (1.1) is

R(t) = η
(
K −N(t)

)
= R(0)− ηN(t) ,

and hence K = R(0)/η > 0 is the carrying capacity, i.e. the limiting size the
population may reach without disruptive effects on the availability of resources.

On the other hand, it also makes sense to consider that the population
growth rate is proportional to the amount of available resources, namely

d
dtN(t)

N(t)
= µR(t) .

Therefore,

(1.2)
d

dt
N(t) = ρN(t)

(
1− N(t)

K

)
,

where ρ = µR(0) > 0 is the malthusian intrinsic growth rate, or growth rate per
capita. In the right side of equation (1.2), N(t) is considered to be the growth
factor and 1−N(t)/K the retroaction factor, which is responsible for curbing
down population growth to sustainable levels. The solution of (1.2), known as
the Verhulst model (Verhulst [16]), is

(1.3) N(t) =
KN(0)

N(0) + (K −N(0)) e−ρt
,

which belongs to the logistic family of functions, hence the name logistic model
(N(0) is the initial population size).
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On some occasions, it is more convenient to express the Verhulst logistic
equation (1.2) as a function of the population density δ(t) = N(t)/K, namely

(1.4)
d

dt
δ(t) = ρ δ(t)

(
1− δ(t)

)
.

The solution of (1.4) is

δ(t) =
1

1 + exp(−ρt)
,

which is a member of the logistic family of distributions. As pointed out in
Smith [13], over time the population curve will have a sigmoid shape, which is
typical of continuous distribution functions.

In spite of its popularity, the Verhulst model has some limitations. For
instance, one limitation is only being suitable for modeling sustainable growth, or
modeling stable populations, in the sense that the population sizes are maintained
at sustainable levels. Therefore, over the years the Verhulst model has been used
as a building block for other more sophisticated models, some of which allowing
the possibility of modeling different types of unrestricted population growth.

Many of newer models state that either d
dtN(t) or d

dt lnN(t) is a decreasing
function of the population density (as does the Verhulst model). As an example,
we have the family of models based on the Box-Cox family of transformations
(Box and Cox [3])

(1.5)
d

dt
lnN(t) = ρ

1−
(
N(t)
K

)ν
ν

⇔

 d
dtN(t) = ρN(t)

1−
(
N(t)
K

)ν
ν , ν > 0

d
dtN(t) = ρN(t)

(
− ln

(
N(t)
K

))
, ν = 0

,

which contains the Verhulst model as a special case (ν = 1). The subfamily in
(1.5) for ν > 0 was considered in Richards [12], and the solution for ν = 0 is

N(t) = K exp

(
ln

(
N(0)

K

)
exp (−ρt)

)
,

which is commonly known in population dynamics as the Gompertz growth
model. This model is proportional to the Gumbel distribution, a well known
extreme value (EV) distribution for maxima, and has been used, for instance, to
model the growth of cancer tumors. Note that the Gumbel distribution has the
functional form

(1.6) Λ(x;λ, δ) = exp(− exp(−(x− λ)/δ)), x ∈ R, (λ, δ) ∈ R× R+ ,

where λ and δ are, respectively, location and scale parameters.

A natural extension of Verhulst’s equation (1.2) is the Blumberg hiperlogis-
tic equation (Blumberg [2])

(1.7)
d

dt
N(t) = ρ

(
N(t)

)α(
1− N(t)

K

)β
, α, β > 0 .
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However, Blumberg’s equation does not contain a closed form analytical solution,
except for some values of the parameters α and β. For example, if α+ β = 2 (and
K = 1), the solution of (1.7) belongs to the class of max-geometric-stable distri-
butions, where the shape parameter is a function of the retroaction parameter β
in (1.7).

On the other hand, Brilhante et al. [4] extended the subfamily in (1.5) for
ν = 0 by considering

(1.8)
d

dt
N(t) = ρN(t)

(
− ln

(
N(t)

K

))1+ξ

, ξ ∈ R .

Those authors showed that the solution of (1.8), when K = 1, belongs to the
general EV (GEV) family of distributions for maxima, with the functional form

(1.9) Gξ(x;λ, δ) = exp
(
−
(
1 + ξ(x− λ)/δ

)−1/ξ)
, 1 + ξ(x− λ)/δ > 0,

where ξ ∈ R, λ ∈ R and δ ∈ R+ are, respectively, shape, location and scale pa-
rameters. Observe that equation (1.8) can also be considered a generalization
of Verhulst’s logistic equation, since 1−N(t)/K is a linear approximation of
− ln (N(t)/K), due to the fact that N(t)/K → 1, as t→∞. The effect of re-
placing 1−N(t)/K by − ln (N(t)/K) in (1.2) is that we shall have a weaker
control over population growth than before. This weaker control effect can easily
be explained by noticing that if x ∈ (0, 1), 1− x is proportional to the density
function of the minimum U1:2 = min(U1, U2) and − lnx is the density function
of the product U1U2, where U1 and U2 are two independent standard uniform
random variables, and thus the stochastic ordering U1U2 � U1:2 holds true.

An even more general differential equation for population dynamics, based
on the BetaBoop family of densities, was considered in Brilhante et al. [5], namely

(1.10)
d

dt
N(t) = ρ

(
N(t)

)α[− ln(1−N(t))
]β(

1−N(t)
)γ(− lnN(t)

)δ
,

where α, β, γ, δ > 0. The previous equation includes equations (1.7) and (1.8)
as special cases, but goes even further by allowing simultaneously two different

growth factors depicted in
(
N(t)

)α
and

[
− ln(1−N(t))

]β
, as well as two differ-

ent environmental retroaction factors indicated by
(
1−N(t)

)γ
and

(
− lnN(t)

)δ
.

Observe now that the growth factor N(t) can be considered as a linear approxi-
mation of the growth factor − ln(1−N(t)), but with the latter stimulating more
growth than the former. However, equation (1.10) does not contain a closed form
analytical solution, unless for some special combinations of the parameters α, β,
γ and δ. For more information on other population growth models, cf. Lotka [10],
Tsoularis [14] and Tsoularis and Wallace [15].
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The EV distributions that arise as solutions to the Verhulst and some gener-
alized Verhulst equations seem to indicate that there is a close connection between
population dynamics and forms of extreme stability. This was our motivation to
investigate what kind of relationship is indeed present. Therefore, in Section 2,
we shall show that the parameter attached to the retroaction factor of some
generalized Verhulst equations determines, on its own, and in most situations,
which EV distribution for maxima is suitable to model risks of extreme events in
population dynamics. Finally, in Section 3, some overall comments are further
provided.

2. EXTREME STABILITY IN SOME GENERALIZED
VERHULST MODELS

2.1. Some basic facts in extreme value theory

In extreme value theory (EVT) the logistic distribution, which arises as
the solution of Verhulst’s normalized logistic equation (1.4), is known to be one
of three types of max-geometric-stable distributions, the other two being the
log-logistic and backward log-logistic distributions (Rachev and Resnick [11]).

Definition 2.1. A distribution function H is a max-geometric-stable
distribution if for all θ ∈ (0, 1), there exist real numbers aθ=a(θ) > 0 and bθ=b(θ)
such that

H(aθx+ bθ) =
θH(x)

1− (1− θ)H(x)
.

Basically, if {Xn}n∈N is a sequence of independent and identically dis-
tributed random variables and XN :N = max(X1, . . . , XN ) is the random max-
imum, where N is a geometric random variable of mean 1/θ, independent of
each Xn, then, as θ → 0, max-geometric-stable distributions are the only pos-
sible non-degenerate limiting distributions for sequences of linearly normalized
random maxima (XN :N − bθ)/aθ.

Another well known fact in EVT is that GEV distributions for maxima,
defined in (1.9), are the unique max-stable distributions.

Definition 2.2. A distribution function G is a max-stable distribution
if for all n ∈ N, there exist real numbers αn = α(n) > 0 and βn = β(n) such that

Gn(αnx+ βn) = G(x) .

In other words, and as n→∞, max-stable distributions are the only pos-
sible non-degenerate limiting distributions for sequences of linearly normalized
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maxima (Xn:n − bn)/an, with Xn:n = max(X1, . . . , Xn), for {Xn}n∈N a sequence
of independent and identically distributed random variables (Gnedenko [7]), or
more generally, for stationary weakly dependent random variables with distri-
bution function F (Leadbetter et al. [9]). If the aforementioned non-degenerate
limit exists, we then say that F is in the domain of attraction for maxima of Gξ,
in (1.9).

Initially, in Gnedenko’s seminal paper, there appeared three types of max-
stable distributions, which can indeed be combined into a single family, the GEV
family of distributions for maxima in (1.9). In particular, if ξ > 0, we have the
so-called Fréchet distribution, if ξ < 0, we obtain the Weibull distribution for
maxima and if ξ = 0, we get the Gumbel distribution, already defined in (1.6),
by taking the limit of (1.9) as ξ → 0. The shape parameter ξ in (1.9) is the
extreme value index (EVI), a very important parameter associated with extreme
events.

Remark 2.1. From the relation between the minimum and the maxi-
mum, namely min(X1, . . . , Xn) = −max(−X1, . . . ,−Xn), we get the GEV dis-
tribution for minima, defined by G∗ξ(x;λ, δ) = 1−Gξ(−x;λ, δ), with Gξ(x;λ, δ)
given in (1.9).

In Section 1 we mentioned that, when K = 1, the GEV distribution for
maxima appears as the solution of equation (1.8), which can be regarded as a
generalized Verhulst equation. This makes some sense because there is a strong
connection between max-geometric-stable and max-stable distributions. More
precisely, if Gξ represents the distribution function of a GEV distribution for
maxima, with EVI ξ, and H = Hξ represents the distribution function of a max-
geometric-stable distribution, we have

Hξ(x;λ, δ) =
1

1−lnGξ(x;λ, δ)
=

1

1 +
(
1 + ξ(x−λ)/δ

)−1/ξ , 1+ξ(x−λ)/δ > 0,

with (ξ, λ, δ) ∈ R× R× R+. Therefore, we have a close relationship between the
log-logistic and Fréchet distributions (ξ > 0), between the backward log-logistic
and Weibull for maxima distributions (ξ < 0) and between the logistic and Gum-
bel distributions (ξ = 0).

In the next subsection we shall be particularly interested in investigating
which EV distribution is adequate to model risks of extreme events in population
dynamics, when using some generalized Verhulst models. To this end, we recall
one of the first order condition for establishing domains of attraction for maxima
(or simply max-domains of attraction). In particular, we shall work with the
first order condition given in de Haan [6], which is equivalent to the first order
condition given in Gnedenko [7].
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We say that a distribution function F belongs to the max-domain of at-
traction of a GEV distribution Gξ, and we use the notation F ∈ DM(Gξ), if, and
only if,

(2.1) lim
t→∞

U(tx)− U(t)

a(t)
=

{
xξ−1
ξ , ξ 6= 0

lnx , ξ = 0
, x > 0 ,

where U(t) = F←
(
1− 1

t

)
, t ≥ 1, is the reciprocal tail quantile function, F←(y) =

inf{x : F (x) ≥ y} is the generalized inverse function of F and a(.) is an adequate
positive function.

If ξ 6= 0, sometimes it is more convenient to consider the following condi-
tions instead, which are equivalent to (2.1):

a) If ξ > 0, we can choose a(t) = U(t), in (2.1), and then F ∈ DM(Gξ>0) if,

and only if, lim
t→∞

U(tx)
U(t) = xξ for x > 0;

b) If ξ < 0, U(∞) <∞ and lim
t→∞

U(∞)−U(t)
a(t) = −1/ξ: Then F ∈ DM(Gξ<0) if,

and only if, lim
t→∞

U(∞)−U(tx)
U(∞)−U(t) = xξ, for x > 0.

Remark 2.2. In spite of the close connection between max-geometric-
stable and max-stable distributions, the former class does have their own set of
characterizations for domains of attraction. However, Hξ ∈ DM(Gξ). Indeed,
and with the notation F = 1− F for the right tail function, Hξ = − lnGξ/(1 −
lnGξ) ∼ Gξ/(1− lnGξ).

2.2. EV distributions in generalized Verhulst models

Let us consider again the Blumberg hiperlogistic equation

(2.2)
d

dt
N(t) = ρ

(
N(t)

)α
(1−N(t))β , α, β > 0 .

Henceforth, we shall assume that K = 1 in all differential equations in order to
get a normalized solution, i.e. a distribution function N .

If α 6∈ N, the solution of (2.2) satisfies the equation

(2.3)
(N(t))1−α

1− α 2F1

(
1− α, β; 2− α;N(t)

)
= ρt+ C ,

where 2F1(a, b; c; z) =
∑∞

n=0
(a)n(b)n

(c)n
zn

n! , with (x)n = x(x+ 1) · · · (x+ n− 1), is the
hypergeometric function and C is a real number. Without loss of generality, we
can assume that C = 0.
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Since 2F1(a, b; b; z) = (1− z)−a, it follows that if α+ β = 2 (β = 2− α), we
get the closed form analytical solution

N(t) =
1

1 +
(
(1− α)ρt

)−1/(1−α) =
1

1 +
(

1 + (1− α)
(
ρt− 1

1−α

))−1/(1−α)
for (2.2), which belongs to the max-geometric-stable family of distributions, with
an EVI ξ = 1− α = β − 1. Consequently, N ∈ DM(Gξ=1−α=β−1) (see Remark
2.2).

Remark 2.3. Observe that the Verhulst logistic equation (1.2), which
is just the Blumberg hiperlogistic equation in (2.2) for α = β = 1, satisfies the
condition α+ β = 2, assumed in Theorem 2.1, with ξ = 1− α = β − 1 = 0.

We shall next generalize the result above on the basis of the reciprocal
tail quantile function associated with the solution that comes out of (2.3) when
α 6∈ N, which is given by

U(t) = N←
(
1− 1

t

)
=

1

ρ

(
1

1− α
(
1− 1

t

)1−α
2F1

(
1− α, β; 2− α; 1− 1

t

)
− C

)
.

Hence, if β < 1, we have U(∞) <∞ and if β ≥ 1, U(∞) =∞. These results fol-
low from the properties of the hypergeometric function, namely 2F1(a, b; c; 1) <∞
if a+ b− c < 0 and 2F1(a, b; c; 1) =∞ if a+ b− c ≥ 0.

We first state:

Theorem 2.1. If α 6∈ N in the Blumberg hiperlogistic equation (2.2),
then N ∈ DM(Gξ=β−1).

Proof: a) For β < 1,

lim
t→∞

U(∞)− U(tx)

U(∞)− U(t)
=

= lim
t→∞

2F1(1− α, β; 2− α; 1)−
(
1− 1

tx

)1−α
2F1

(
1− α, β; 2− α; 1− 1

tx

)
2F1(1− α, β; 2− α; 1)−

(
1− 1

t

)1−α
2F1

(
1− α, β; 2− α; 1− 1

t

)
= xβ−1 lim

t→∞

(
1− 1

tx

1− 1
t

)−α
= xβ−1 .

Therefore, N ∈ DM(Gξ=β−1<0). To obtain the limit above we took into
consideration the fact that

∂

∂t

(
1− 1

t

)1−α
2F1

(
1− α, β; 2− α; 1− 1

t

)
= (1− α)

(
1− 1

t

)−α
tβ−2 .
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b) If β > 1,

lim
t→∞

U(tx)

U(t)
= lim

t→∞

1
1−α

(
1− 1

tx

)1−α
2F1

(
1− α, β; 2− α; 1− 1

tx

)
− C

1
1−α

(
1− 1

t

)1−α
2F1

(
1− α, β; 2− α; 1− 1

t

)
− C

= xβ−1 lim
t→∞

(
1− 1

tx

1− 1
t

)−α
= xβ−1 .

Consequently, N ∈ DM(Gξ=β−1>0).

c) If β = 1,

lim
t→∞

(
U(tx)− U(t)

)
=

1

(1− α)ρ

[(
1− 1

tx

)1−α
2F1

(
1− α, 1; 2− α, 1− 1

tx

)
−

−
(
1− 1

t

)1−α
2F1

(
1− α, 1; 2− α, 1− 1

t

)]
=

lnx

ρ
.

Thus, if we consider a(t) = 1/ρ > 0, we have

lim
t→∞

U(tx)− U(t)

a(t)
= lnx ,

which means that N ∈ DM(Gξ=β−1=0).

Note 2.1. The previous limit was obtained with the help of the soft-
ware Mathematica, since there are series expansions involved and the use
of relations between contiguous hypergeometric functions.

We next state:

Theorem 2.2. If α, β ∈ N in the Blumberg hiperlogistic equation (2.2),
then we also get N ∈ DM(Gξ=β−1).

Proof: a) If α = n = 2, 3, . . . and β = 1, the solution of (2.2) satisfies
now the equation

n∑
k=2

1

1− k
1

(N(t))k−1
+ ln

(
N(t)

1−N(t)

)
= ρt+ C.

Hence, the reciprocal tail quantile function associated with the solution is,
in this case,

U(t) =
1

ρ

(
n∑
k=2

1

1− k
1(

1− 1
t

)k−1 + ln(t− 1)− C

)
,
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with U(∞) =∞. It is quite straightforward to prove that

lim
t→∞

U(tx)− U(t)

1/ρ
= lnx ,

from which follows that N ∈ DM(Gξ=β−1=0).

b) When α = 1 and β = m = 2, 3, . . . , we have a solution satisfying the equa-
tion

m∑
k=2

1

k − 1

1

(1−N(t))k−1
+ ln

(
N(t)

1−N(t)

)
= ρt+ C ,

which in turn yields the reciprocal tail quantile function

U(t) =
1

ρ

(
m∑
k=2

1

k − 1
tk−1 + ln(t− 1)− C

)
,

with U(∞) =∞. It is also quite straightforward to prove that

lim
t→∞

U(tx)

U(t)
= xm−1 ,

which means that N ∈ DM(Gξ=β−1>0).

c) For the more general case α = n = 2, 3, . . . and β = m = 2, 3 . . . , we get a
solution that verifies the equation

n∑
k=2

ak
1− k

1

(N(t))k−1
+

m∑
j=2

bj
j − 1

1

(1−N(t))j−1
+A ln

(
N(t)

1−N(t)

)
= ρt+C ,

where the ak and bj ’s are real numbers and A > 0. The reciprocal tail
quantile function is now defined by

U(t) =
1

ρ

 n∑
k=2

ak
1− k

1(
1− 1

t

)k−1 +

m∑
j=2

bj
j − 1

tj−1 +A ln(t− 1)− C

 ,

with U(∞) =∞. It easily follows that

lim
t→∞

U(tx)

U(t)
= xm−1 ,

which means, once again, that N ∈ DM(Gξ=β−1>0).

Remark 2.4. All previous results lead us to conjecture that for all
α, β > 0, the solution of equation (2.2) will be in the max-domain of attrac-
tion of a GEV distribution with an EVI ξ = β − 1, where β is the retroaction
parameter. However, the case α = 2, 3, . . . and β 6∈ N is still left to be proved.
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Unfortunately, we cannot use equation (2.3) because the hypergeometric function
diverges for the parameters involved. So far we were not able to obtain a general
equation as the ones obtained for different scenarios of α, β ∈ N. Nevertheless,
the results above, and all particular cases we have tried, indicate that we should
have a solution N ∈ DM(Gξ=β−1). This seems very likely, since it holds true for
β ∈ N and there is no apparent reason why it should not also hold for β 6∈ N.

For example, if α = 2 and β = 1/2, the solution of (2.2) satisfies the equa-
tion

−
√

1−N(t)

N(t)
− arctanh

(√
1−N(t)

)
= ρt+ C ,

which yields the reciprocal tail quantile function

U(t) = −1

ρ


√

1
t

1− 1
t

+ arctanh

(√
1
t

)
+ C

 ,

with U(∞) <∞. Given that

lim
t→∞

U(∞)− U(tx)

U(∞)− U(t)
= x−1/2 = x1/2−1 ,

we have N ∈ DM(Gξ=−1/2). On the other hand, if, for instance, α = 3 and
β = 3/2, the solution of (2.2) satisfies now the equation

−2− 5N(t) + 15(N(t))2

4(N(t))2
√

1−N(t)
− 15

4
arctanh

(√
1−N(t)

)
= ρt+ C ,

from which the reciprocal tail quantile function is

U(t) =
1

ρ

−2− 5
(
1− 1

t

)
+ 15

(
1− 1

t

)2
4
(
1− 1

t

)2√1
t

− 15

4
arctanh

(√
1
t

)
− C

 ,

with U(∞) =∞. Since

lim
t→∞

U(tx)

U(t)
= x1/2 = x3/2−1 ,

we conclude that N ∈ DM(Gξ=1/2).

Remark 2.5. In Blumberg’s hiperlogistic equation (2.2) we are not con-
sidering the possibility of an absent growth or retroaction factor, i.e. α = 0 or
β = 0. For example, if we assume that α = 0 in (2.2), it is interesting to see that
the solution is (for C = 0)

N(t) = 1−
(
(β − 1)ρt

)−1/(β−1)
= 1−

(
1 + (β − 1)

(
ρt− 1

β − 1

))−1/(β−1)
,
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which is a member of the generalized Pareto (GP) family of distributions with
shape parameter β − 1.

The GP family of distributions has the functional form

(2.4) Fξ(x;λ, δ) = 1−
(
1 + ξ(x− λ)/δ

)−1/ξ
, 1 + ξ(x− λ)/δ > 0 , x > λ ,

with (ξ, λ, δ) ∈ R× R× R+. Once more, ξ, λ and δ are shape, location and scale
parameters, respectively. The GP family defined in (2.4) combines into a single
family three families of distributions, namely the exponential family, which is the
limiting case of (2.4) as ξ → 0, the classical Pareto family (ξ > 0) and the so-
called Pareto type II family (ξ < 0). Note that the uniform distribution, which is
the solution of equation (2.2) for α = β = 0, is a GP distribution when ξ = −1.

In EVT, GP distributions also play an important role, more precisely,
in modeling peaks over high thresholds. In fact, if X is a random variable
with distribution function F , GP distributions arise as the limiting distribu-
tion for the distribution of conditional excesses X − u|X > u, as u→ xF , where
xF = sup{x : F (x) < 1} is the right endpoint of the underlying model F .

In a population dynamics context what matters to know is that
Fξ ∈ DM(Gξ). Therefore, when dealing with the case α = 0 in equation (2.2), we
have a solution N ∈ DM(Gξ=β−1). Note also that if β = 0 in (2.2), the solution
is now

N(t) =
(
(α− 1)(−ρt)

)−1/(α−1)
,

which is of the type 1− Fξ(−x, λ, δ), with Fξ defined in (2.4), and remind-
ing us of the relation between GEV distributions for minima and for maxima,
namely G∗ξ(x;λ, δ) = 1−Gξ(−x;λ, δ). In particular, if α = 1, we get as solution
N(t) = exp(ρt), i.e. an exponential growth.

Let us next consider the differential equation

(2.5)
d

dt
N(t) = ρ

(
N(t)

)α
(− lnN(t))β , α, β > 0 ,

which generalizes equation (1.8) considered in Brilhante et al. [4]. We have now
the validity of the following:

Theorem 2.3. If N is the solution of the differential equation (2.5),
then N ∈ DM(Gξ=β−1).

Proof: If α = 1 (and β > 0), we get the closed form analytical solution
(for C = 0),

N(t) = exp
(
−
(
(β−1)ρt

)−1/(β−1))
= exp

(
−
(

1 + (β−1)
(
ρt− 1

β−1

))−1/(β−1))
,

which is a GEV distribution for maxima with an EVI ξ=β−1, i.e. N ∈DM(Gξ=β−1).
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On the other hand, if α 6= 1 and:

a) β < 1, the solution satisfies the equation

(2.6) (1− α)β−1Γ
(
1− β, (α− 1) lnN(t)

)
= ρt+ C ,

where Γ(a, z) =
∫∞
z ta−1e−tdt, a > 0, is the incomplete gamma function, or

equivalently, the solution satisfies the equation

(2.7) −(1− α)β−1γ(1− β, (α− 1) lnN(t)) = ρt+ C ,

where γ(a, z) =
∫ z
0 t

a−1e−tdt = Γ(a)− Γ(a, z) is another type of incomplete
gamma function and Γ(a) =

∫∞
0 ta−1e−tdt, α > 0, is the (complete) gamma

function.

The reciprocal tail quantile function associated with (2.6) is

U(t) =
1

ρ

(
(1− α)β−1Γ

(
1− β, (α− 1) ln

(
1− 1

t

))
− C

)
,

with U(∞) <∞. In this case,

lim
t→∞

U(∞)− U(tx)

U(∞)− U(t)
=

1

x
lim
t→∞

(
ln(1− 1

tx)

ln(1− 1
t )

)−β (
t− 1

x

t− 1

)−α
= xβ−1 ,

since

∂

∂t
Γ
(

1− β, (α− 1) ln
(
1− 1

t

))
= −

(α− 1)1−β
(
1− 1

t

)−α (
ln
(
1− 1

t

))−β
t2

.

Therefore, we have N ∈ DM(Gξ=β−1<0).

b) β > 1, the solution satisfies now the equation

(− lnN(t))1−β

β − 1
1F1

(
1− β, 2− β; (1− α) lnN(t)

)
= ρt+ C ,

where 1F1(a, b; z) =
∑∞

n=0
(a)n
(b)n

zn

n! is the confluent hypergeometric function.

In this case we are using equation (2.7) because if a < 0,
γ(a, z) = za

a 1F1(a, a+ 1;−z).
The reciprocal tail quantile function is

U(t) =
1

ρ

((
− ln

(
1− 1

t

))1−β
β − 1

1F1

(
1− β, 2− β; (1− α) ln(1− 1

t )
)
− C

)
,

with U(∞) =∞, since we have 1F1(a, b; 0) = 1. Therefore, without loss of
generality, if C = 0,

lim
t→∞

U(tx)

U(t)
= lim

t→∞

(
ln
(
1− 1

t

)
ln
(
1− 1

tx

))β−1 1F1

(
1− β, 2− β; (1− α) ln(1− 1

tx)
)

1F1

(
1− β, 2− β; (1− α) ln(1− 1

t )
)

= xβ−1 .

Hence, N ∈ DM(Gξ=β−1>0).
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c) β = 1, the solution satisfies the equation

−Ei
(
(1− α) lnN(t)

)
= ρt+ C ,

where Ei(x) = −
∫∞
−x

e−t

t dt, x > 0, is the exponential integral function. Thus,
the reciprocal tail quantile function is

U(t) = −1

ρ

(
Ei
(
(1− α) lnN(t)

)
+ C

)
,

with U(∞) =∞. Since the exponential integral function series expansion
is

Ei(x) = γ + lnx+
∞∑
n=1

xn

n!n
,

where γ = 0.57721 . . . is Euler’s constant (cf. Abramowitz and Stegun [1]),
it follows that

lim
t→∞

(
U(tx)− U(t)

)
=

1

ρ
lim
t→∞

ln

(
ln(1− 1

t )

ln(1− 1
tx)

)
=

lnx

ρ
.

Therefore,

lim
t→∞

U(tx)− U(t)

1/ρ
= lnx ,

meaning that N ∈ DM(Gξ=β−1=0).

As proved above, the retroaction parameter β of the generalized Verhulst
equation (2.5) is the only parameter that establishes which GEV distribution for
maxima is adequate to model the risk of extreme events in population dynamics,
with the EVI being equal to β − 1. We saw earlier that, for a large variety of
situations, this also happens to be the case when using equation (2.2). Now, this
might seem at first sight a bit strange, in the sense that the growth parameter α
has no involvement whatsoever in establishing the limit distribution. However,
this apparent “abnormality” can be explained by noticing that we are working
with normalized equations, and therefore getting normalized solutions, meaning
that N(t) ∈ (0, 1). In light of this, we have (1−N(t))β → 0 as β →∞, which
in this context is translated into a weaker control on population growth, and
therefore the possibility of occurrence of more extreme events. This situation will
also be mirrored in the case of working with the retroaction factor (− lnN(t))β.

Remark 2.6. It is also interesting to see that the solution of the sub-
family of models defined in (1.5) for ν > 0, i.e.

(2.8)
d

dt
N(t) = ρN(t)

1− (N(t))ν

ν
,
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and which contains the Verhulst logistic equation as a special case (ν = 1), belongs
to the max-domain of attraction of a GEV distribution, with EVI ξ = 0. In fact,
we already know that the solution for ν = 1 is a member of the logistic family
of distributions, and which in turn belongs to the max-domain of attraction of
a GEV distribution with EVI ξ = 0. But, more generally, the solution of (2.8)
satisfies the equation

ν lnN(t)− ln
(
1− (N(t))ν

)
= ρt+ C ,

and therefore the reciprocal tail quantile function associated is

U(t) =
1

ρ

[
ν ln

(
1− 1

t

)
− ln

(
1−

(
1− 1

t

)ν)
− C

]
,

with U(∞) =∞. Since

lim
t→∞

U(tx)− U(t)

1/ρ
= lnx ,

it follows that N ∈ DM(Gξ=0).

3. COMMENTS AND FURTHER RESULTS

As mentioned in Section 1, N(t) is a linear approximation of − ln(1−N(t)),
with N(t) ∈ (0, 1). So a valid question is, what happens if N(t) is replaced by
− ln(1−N(t)) in (2.2)? In other words, what kind of solution do we get for the
generalized Verhulst equation

(3.1)
d

dt
N(t) = ρ

[
− ln(1−N(t))

]α
(1−N(t))β , α, β > 0 ?

What happens is that the roles between β and α are switched, in the sense that
now the growth parameter α establishes, on its own, which EV distribution for
minima, not for maxima, is at stake.

In fact, if β = 1, the solution of (3.1) is a GEV distribution for minima
G∗ξ , with ξ = α− 1. As an immediate consequence of the close connection be-
tween maxima and minima, there are only three types of stable distributions for
minima, namely the Fréchet for minima (ξ > 0), the Weibull (ξ < 0) and the
Gumbel for minima (ξ = 0). On the other hand, if β 6= 1, the solution of (3.1)
will belong to the min-domain of attraction of a G∗ξ , with ξ = α− 1. Note that
in this new setting we can still have uncontrolled population growth, although
this growth will be somehow restricted to minimum levels, due to “lack of space”
to accommodate more explosive population growths.

An interesting and open topic of research lies now on the estimation of β
on the basis of the estimation of ξ, or the other way round, the estimation of
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ξ on the basis of the estimation of β. (For the estimation of ξ, see the recent
overview on statistical EVT by Gomes and Guillou [8], among others.) In fact,
an adequate estimation of the parameter β is fundamental so that the generalized
Verhulst models considered here can be applicable to real data. This is the case,
since we have established that the retroaction parameter β is the only parameter
that determines which GEV distribution for maxima is appropriate to model the
risk of extreme large events in population dynamics, with the EVI (for maxima)
being equal to β − 1. A similar comment applies to the growth parameter α and
the modeling of extreme small events in population dynamics, with the EVI for
minima being then equal to α− 1. Tsoularis and Wallace [15] investigated how
the inflection point of the population growth curve is related to its malthusian
growth and retroaction parameters, and their results may be exploited in this
context.
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