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Abstract:

• This work proposes an estimation method to obtain the optimal parameter estimates
of a mathematical model, from a set of CD4+T values collected in a HIV patient. To
this end, the following scheme is adopted: the first step consists in selecting an initial
estimate for the model’s parameters as that having minimum square error, from a set
of uniform randomly generated candidates. In the second step, the initial solution
is refined by an optimization algorithm with constraints and bounds (imposed by
physiology), resulting on the optimal estimate. The proposed method is validated
through a simulation study and illustrated with an application to a real data set of
CD4+T cells counts for several HIV patients.
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1. INTRODUCTION

In the clinical follow-up of a HIV/AIDS patient, the viral load values and
the CD4+T cells count, observed over time, constitute a set of non-equally spaced
observations. In general, no information between consultations is available. In
this context, it is clinically relevant to develop methods able to obtain a more
complete description of the individual time evolution, either between consecu-
tive consultations or for the prediction of evolution or disease progression. Vi-
ral dynamic models can be formulated through a system of nonlinear ordinary
differential equations, which enables to describe the temporal evolution of the
clinical parameters of a HIV patient [2, 10, 11]. In the last decades, a few lit-
erature studies show applications and developments in statistical methodologies
for model inference including those based on Bayesian inference [6]. Briefly, the
Bayesian approach incorporates non-informative prior distributions and yet the
corresponding algorithms require initial estimates for model’s parameters in or-
der to carry out the iterative updates of the parameters. For the estimation of
this initial estimates, the most commonly used approaches in practice are based
on nonlinear least squares [7, 8]. In this context, this work presents a nonlin-
ear programming approach to obtain the optimal estimates for the parameters
of a HIV dynamic model. Our proposal differs from previous approaches in the
fact that we add restrictions on the optimal estimate so that it verifies an equal
contribution of negative and positive deviations from observations. Furthermore,
the optimal estimate is restricted to be in-between lower and upper physiological
bounds. Note that the least square methods are implemented as optimization
problems requiring initial solutions to start the iterations. To cope with this lim-
itation, we consider as initial solution the minimum square error solution from
a set of 1000 uniform randomly-generated candidates on a uniform distribution
delimited by the lower and upper physiological bounds. Therefore, the proposed
method is fully automatic and does not require any other information to provide
the optimal estimate of the model’s parameters besides the data.

This paper is organized as follows: the methods concerning the description
of the mathematical HIV model and the estimation approach developed to obtain
the initial conditions for the model’s parameters are presented in Section 2. The
estimation approach is illustrated with simulated data that mimics the individual
temporal trajectories of three HIV patients. The simulation strategy is described
in Section 3, whereas the results on simulation and on real data from six HIV
patients [12] are presented in Section 4. The selected patients were chosen ac-
cording to some conditions, namely having started an antiretroviral treatment at
the beginning of the trial [12]. Finally, Section 5 is devoted to conclusions.
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2. METHODS

The dynamics of the HIV/AIDS infection is described through the math-
ematical model presented in Section 2.1. Model’s parameters are estimated
from the nonlinear programming approach described in Section 2.2. The de-
veloped algorithms and other software code used in this work were implemented
in MATLABTM (version R2015a), The Mathworks Inc., MA, USA.

2.1. Mathematical model

The mathematical model considered in this work translates known physi-
ological relationships between viral load and CD4+T cells and incorporates pa-
rameters having clinical interpretation. We consider a modified version of the
mathematical model in Stafford et al. [14] for the dynamics of HIV/AIDS infec-
tion, including an additional parameter ε that denotes the effectiveness of the
antiretroviral therapy [9]. The model is represented as

dT (t)

dt
= λ− d1T (t)− (1− ε)k1T (t)V (t),

dT ∗(t)

dt
= (1− ε)k1T (t)V (t)− δT ∗(t),(2.1)

dV (t)

dt
= π1T

∗(t)− cV (t),

where the state variables are the viral load V (t) and the number of CD4+T cells
defined as CD4(t) = T (t) + T ∗(t), with T (t) and T ∗(t) representing the number
of uninfected and infected CD4+T cells, respectively. Furthermore, for simplicity
in notation we denote (T (0), T ∗(0), V (0)) = (T0, T

∗
0 , V0) as the initial condition

of the model. Along with the states variables, the mathematical model also in-
corporates parameters with clinical interpretation, namely θθθ = (d1, ε, k1, δ, π1, c),
with definition and units listed in Table 1.

The mathematical model in (2.1) can be alternatively defined from the
flow-chart displayed in Figure 1.

T T∗ V
(1− ε)k1 π1

d1 δ c
λ

Figure 1: Schematic diagram of the model (2.1).

The chart presents a compartmental description of the model that trans-
lates the evolution of the disease at the patient level. Within each compartment
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Parameter Definition Units

d1 difference between rate loss from cell death and
rate gain due to cell division

day−1

λ = T0d1 proliferation rate of uninfected target cells cells ml−1

day−1

ε effectiveness of therapy

k1 infectivity rate ml day−1

δ death rate of infected cells day−1

π1 average number of virions produced by a single
infected cell

day−1

c clearance rate of free virions day−1

Table 1: Definition and units of the parameters included in (2.1).

there are CD4+T cells (non-infected or infected) or viral load. In this representa-
tion, these units can move between compartments. For instance, the susceptible
CD4+T cells in compartment T move to compartment T ∗ (infected cells) after
being infected with HIV at a rate equal to (1 − ε)k1, and infected CD4+T cells
of compartment T ∗ die at rate δ.

2.2. Nonlinear programming

The parameters in θθθ can be estimated from a set of CD4(t) values col-
lected in one HIV patient at its clinical follow-up appointments over time. Let
CD4(ti) be the observed number of CD4+T cells at time ti, i = 1, 2, . . . , n. Fur-

thermore, define ĈD4(ti) = T (ti) + T ∗(ti) as the estimate of CD4(ti) provided

by the mathematical model (2.1). The optimal parameter estimates, say θ̂̂θ̂θ, can
be obtained by minimizing the square error between model estimates and ob-
served CD4 values. In accordance with other literature studies [6], we considered
a log10-transformation on the parameters to ensure their positiveness and to sta-
bilize the CD4(t) variance. Thus, the nonlinear programming algorithm can be
formulated as

minimize f(θθθ) =
n∑

i=1

(ĈD4(ti)− CD4(ti))
2 =

n∑
i=1

e2ti

subject to
n∑

i=1

eti = 0(2.2)

and lblblb ≤ θθθ ≤ ububub

where the restriction guarantees that θ̂̂θ̂θ verifies equal contribution of negative
and positive deviations from observations. Also, θ̂̂θ̂θ is restricted to physiologi-
cal lower and upper bounds, respectively lblblb = (0.01, 0, 10−11, 0.24, 50, 2.39) and
ububub = (0.02, 1, 10−5, 0.7, 10000, 23) [5, 14]. This optimization procedure was imple-
mented with the MATLABTM function fmincon, that starts at an initial solution
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θθθ∗ to find a minimizer θ̂̂θ̂θ of f(θθθ) subject to the above-mentioned restrictions and
bounds. The initial solution θθθ∗ was obtained as that minimizing f(θθθ) in a set of
1000 candidates randomly generated from a multivariate uniform distribution on
lblblb and ububub.

The HIV dynamic model (2.1) was implemented with MATLABTM function
ode45. This function makes use of an explicit Runge-Kutta formula, namely the
Dormand-Prince pair [4], that computes the solution at time tk based on the
solution at time tk−1. Furthermore, when the integration is considered in a time
span, the algorithm runs with a variable time step for efficient computation.
In this case, temporal resampling is needed to obtain the solutions at specific
ti, i = 1, 2, . . . , n (continuous time). Alternatively, the solver can provide the
solution at requested time points ti with its own built-in interpolation algorithm
(discrete time). The differences between continuous/discrete time solutions were

used to determine if differences between solutions evaluated at θθθ and at θ̂̂θ̂θ are
numerically relevant.

3. SIMULATED DATA

The estimation procedure described above is illustrated through a simu-
lation study. In this work, regularly spaced CD4(t) and V (t) observations are
obtained within the interval [0, 120](days), by numerical Runge-Kutta integration
of Equation (2.1). Note that simulating data for regularly spaced observations is
not a limitation, as the model (2.1) can, in the same way, be applied to obtain
non-equally spaced measurements. We reproduce the evolution of three HIV pa-
tients with parameters θθθ0 presented in Table 2 [14]. Moreover, we considered the
initial conditions (T0, T

∗
0 , V0) = (11 × 103, 0, 10−6) with units ( cellsml ,

cells
ml ,

copies
ml ),

respectively, that mimics a condition with a large initial number of uninfected
cells T0 and low values for the initial number of infected cells T ∗0 and viral load
V0.

Patient d1 k1 δ π1 c

1 0.013 0.46× 10−6 0.40 980 3
2 0.012 0.75× 10−6 0.39 790 3
3 0.017 0.80× 10−6 0.31 730 3

Table 2: Parameter values used for the simulation of 100 replicas for 3
patients [14], in a total of 300 simulations. ε = 0 is considered.
Further description of the parameters can be found in Table 1.

Within this setting, we obtain a set of n = 18 observations represent-
ing the temporal trajectory of each patient in a clinical follow-up every 7 days
(ti ∈ {0, 7, 14, 21, 28, . . . , 119}, i = 1, 2, . . . , 18 and t1 = 0 is the time instant of the
first CD4+T observation of the patient). Afterwards, 300 replicas (100 replicas
for each patient) of that trajectory are randomly generated, by adding an error
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to the CD4+T values, in accordance with the fact that laboratory CD4+T mea-
surements have an error of about 20% of the measured value (i.e. e ∼ N(0,σσσ2e))
[15]. Note that the quadratic deviation (of the realizations) of e from zero is
such that

∑n
i=1 e

2
ti = f(θθθ0) ≈ σσσ2e(n − 1), as θθθ0 is the simulation reference. For

each replica, we obtain θ̂̂θ̂θ0 as the solution of the optimization problem. For the
purpose of illustration, Figure 2 shows one replica of each patient and highlights
the similarities and differences between patients.
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Figure 2: CD4(t) trajectory over time for the reference patients with the
θθθ parameters in Table 2. The circles represent the observations
obtained for one replica of that patient [13].

After infection with HIV, there is an acute phase characterized by an ac-
centuated decay of the number of CD4+T cells, since they are HIV preferred
target. This can be observed, in the graphs, between 30 and 40 days approx-
imately. The immune system tries to fight the virus by producing antibodies.
After this phase, the chronic phase of infection starts, defined by the body recov-
ery. It is observed a slight increase in the number of CD4+T cells. This feature is
shared for the three patients although the minimum and the maximum values of
the CD4+T cells vary between patients, before the CD4+T cells reach an almost
constant value. Biologically, since the CD4+T cells play a key role in the immune
response to pathogens, the differences in those values (namely, the minima) may
induce the development of more severe infections, e.g., certain types of cancers
and non-AIDS diseases.

4. RESULTS

In this section, the results are detailed for the simulations produced for
patient 2 (see corresponding set of reference parameters θθθ0 in Table 2). The per-
formance evaluation of the model with respect to simulated data was assessed
by f(θθθ) either appraised for θθθ0 (the reference simulation parameters) or θ̂̂θ̂θ0 (the
parameters estimated from simulated data). The function f(θθθ) translates the
goodness-of-fit of the model-based observations with respect to simulated data
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(see equation 2.2). Figure 3(a) shows the distribution of f(θθθ0) for the 100 repli-
cas of patient 2, where it is possible to observe that the values obtained for all
replicas are centered around that evaluated for the reference parameters in θθθ0.
Figures 3(b–c) display the CD4 trajectory lines obtained from θθθ0 and from θ̂̂θ̂θ0 for

two replicas with f(θθθ0) close to and higher than the reference value f(θ̂̂θ̂θ0), respec-
tively. As is illustrated in Figure 3(b), the estimation procedure provided similar

curves for f(θθθ0) close to f(θ̂̂θ̂θ0). Moreover, as presented in Figure 3(c) for a replica

with f(θθθ0) higher than f(θ̂̂θ̂θ0) (f(θθθ0) = 1.6×107 and f(θ̂̂θ̂θ0) = 1.0×107), there is a

relevant improvement of fit from θθθ0 to θ̂̂θ̂θ0, as θ̂̂θ̂θ0 produces a curve which is clearly
more adjusted to the simulated data than that obtained with θθθ0. Figure 3(c)
also suggests that the observations do not contribute equally to the performance
increase e.g. residuals at high derivative values (black dots) are increased for

f(θθθ0) and reduced when θθθ0 is replaced by θ̂̂θ̂θ0.

f (θ0) =
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i=1 e
2
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Figure 3: (a) Distribution of f(θθθ0) evaluated for 100 replicas of patient
2 (i.e. sss2ê(n − 1) where ê are the residuals of the model with
parameters θθθ0, for each replica). The vertical line locates σσσ2

e(n−
1) = 1.2×107 used in the simulation. (b–c) CD4 trajectory line

from θθθ0 and optimized θ̂̂θ̂θ0 for two different replicas: (b) f(θθθ0) =

f(θ̂̂θ̂θ0) = 1.2×107 and (c) f(θθθ0) = 1.6×107 and f(θ̂̂θ̂θ0) = 1.0×107.
The circles represent the simulated observations and the black
dot highlights time t5.

Figure 4 further compares the modeling results for the replicas for patient
2. As observed in Figures 4(a–b), the distribution of f(θ̂̂θ̂θ0) is more shifted to-
wards the small deviations than f(θθθ0) and f(θθθ0) − f(θ̂̂θ̂θ0) is positive for almost
all replicas, thus evidencing that lower squared errors are achieved for θ̂̂θ̂θ0. More-
over, as illustrated in Figures 4(c–d), the f(θθθ0)−f(θ̂̂θ̂θ0) differences become higher
than those obtained by choosing continuous/discrete time option for the model
numerical resolution. This suggests that differences between f(θθθ0) and f(θ̂̂θ̂θ0) are
indeed relevant.

The result illustrated in Figure 3(c) suggested that the observations do not
contribute equally to the performance increase with special emphasis on high
derivative CD4 values. Figure 5(a) shows the association between performance
increase of θ̂̂θ̂θ0 with respect to θθθ0, as measured by f(θθθ0)−f(θ̂̂θ̂θ0), and the dispersion
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Figure 4: (a) Distribution of f(θθθ0) and f(θ̂̂θ̂θ0) for 100 replicas of patient

2. (b) Boxplot of the paired differences f(θθθ0) − f(θ̂̂θ̂θ0). (c–d)

Same representation as (a-b) for f(θ̂̂θ̂θ0) and continuous/discrete
time.

of the residuals introduced in the simulation process. The correlation turns out
to be moderate for this patient (r = 0.60). The effect of the residual at each time
ti was further investigated, by computing the correlation between f(θθθ0) − f(θ̂̂θ̂θ0)
and the squared residual value at time ti. Figure 5(b) shows a high correlation
between e2t5 and performance increase (r = 0.91), where higher e2t5 values are as-
sociated with higher performance improvement. Furthermore, note that the large
part of the residuals dispersion is due to the contribution of et5 . This analysis
corroborates that the observations do not contribute equally to the performance
increase. In this case, t5 corresponds to the time point with the largest residual
values for θθθ0 and highest derivate in the CD4 curve (Figures 3(b–c)).
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Figure 5: Dispersion diagram of f(θθθ0)−f(θ̂̂θ̂θ0) as a function of a)
∑n

i=1 e
2
ti

and b) e2t5 , the time that maximizes correlation between f(θθθ0)−
f(θ̂̂θ̂θ0) and ti, i = 1, 2, . . . , n. For the remaining time points the
absolute correlation was < 0.20. Each dot represents one of the
100 replicas for patient 2.

An overall comparison of the 100 replicas simulated for the 3 patients (in
a total of 300 replicas) is presented in Figure 6. As observed in Figure 6(a), the
distribution of f(θ̂̂θ̂θ0) is more shifted towards the small deviations than f(θθθ0) for
all patients such that f(θθθ0)−f(θ̂̂θ̂θ0) is positive for almost all replicas. Again, that
lower squared errors are achieved for θ̂̂θ̂θ0 for all patients. Moreover, as illustrated
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in Figure 6(b), the differences f(θθθ0) − f(θ̂̂θ̂θ0) are higher than those obtained by
choosing continuous/discrete time option on the model numerical resolution. This
suggests that differences between f(θθθ0) and f(θ̂̂θ̂θ0) are indeed relevant regardless
of the simulated patient.

Patient
1 2 3

f
(θ

0
)
−

f
(θ̂

0
)

×106

0

5

10

15

a)

Patient
1 2 3

f
(c
o
n
ti
n
u
o
u
s
)
−

f
(d
is
cr
e
te
)

×106

0

5

10

15

b)

Figure 6: Boxplots of the paired differences (a) f(θθθ0) − f(θ̂̂θ̂θ0) (b) f(θ̂̂θ̂θ0)
and continuous/discrete time, for each patient.

Finally, the contribution of the different observations to the performance
increase is shown in Figure 7 for the 3 patients. Again, the results point out
that the correlation between f(θθθ0) − f(θ̂̂θ̂θ0) and the squared residual value at a
given time ti is highest for the time point with the largest residual values for θθθ0
and highest derivate in the CD4 curve. The maximum correlation between these
variables reach 0.86 for patient 1 and 0.90 for patient 3. For the remaining time
points, the absolute correlation is lower than 0.2 for all patients.
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Figure 7: Dispersion diagram of f(θθθ0)−f(θ̂̂θ̂θ0) as a function of the squared
error evaluated for the time that maximizes correlation between
these variables. Data for patient (a) 1, (b) 2 and (c) 3.

In this work, the methods were also applied to a real data set of CD4+T
cells count from six HIV patients [12]. The patients involved in the trial were
chosen according to some conditions, namely being infected either by HIV-1 or
HIV-2 type virus, being naive of any treatment at the beginning of the trial, not
having hepatitis B or C virus co-infections during the 6 months before the inclu-
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sion into the trial and having started an antiretroviral treatment at the beginning
of the trial (therefore, we considered ε > 0 in equation 2.1). The follow-up of the
CD4+T cells data for all patients can be found in the study of Rivadeneira et
al. [12]. Table 3 presents the follow-up of Patient 6.

Day 0 1 2 4 11 21 31 44 59 74 92 199

CD4 405 403 480 522 510 436 479 661 615 445 686 716

Table 3: CD4+T cells count ( cells
mm3 ) per time of observation (days) for

Patient 6 [12]. The data for the remaining patients used in this
work correspond to Patients 1, 2, 3, 4 and 8 and can be obtained
in the paper of Rivadeneira and colleagues [12].

Since these patients start an antiretroviral treatment at the beginning of
the trial, it is necessary to estimate the time of the infection. To this end, we
start the optimization from the minimum value of ĈD4(ti) = T (ti)+T

∗(ti), where

ĈD4(ti) is the estimate of CD4(ti) provided by the mathematical model (2.1) at
time ti, i = 1, 2, . . . , n. Moreover, we also need to estimate the initial value T0 for
that specific patient. This can be done by estimating additionally the parameter
T0 (besides the vector of parameters θ̂̂θ̂θ) with lower and upper bounds given by
lb = 100 and ub = 1200000, respectively [3].

Figure 8(a) shows the estimated trajectory for Patient 6, with units’ cells
ml

( cells
mm3 = cells

ml ×103), obtained from the optimal estimates θ̂̂θ̂θ6 = (0.013, 0.908, 3.2×
10−9, 0.693, 9999.999, 2.390) and initial number of uninfected cells T̂ 6

0 = 787728
cells
ml . The results indicate that the effectiveness of therapy is approximately

91% (ε̂6 = 0.908) and that the infected cells die at a rate of 0.693 per day
(δ̂6 = 0.693). Also, the analysis of the curve suggests that Patient 6 was infected
around 68 days before being included in the trial (t = 0). Figure 8 (b) resumes
the results obtained for Patients 1, 2, 3, 4 and 8 [12] and illustrates the inter-
subject variability of HIV individual patterns before and during antiretroviral
treatment. The effectiveness of therapy ε̂ is above 90% for all patients whereas
the daily death rate of infected cells δ̂ varies between 0.24 and 0.69. The analysis
of the curves provides an estimate time of infection of approximately 28 days for
Patient 2, 49 days for Patients 4 and 8 and 55 days for the remaining patients.
Finally, T̂0 varies between 237902 (Patient 3) and 980902 (Patient 2). In all
cases, f(θ̂̂θ̂θ) varies between 0.001 × 107 and 0.021 × 107 which is lower than that
observed in the simulated data. Such result is expected because in real data
there are no points of very large residuals like in the simulation condition (e.g.
t5 or t6 in the simulation condition, depending of the patient). Therefore, the
results suggest that methods’ performance in real data is not worse than that in
simulated replicas of the same patient. This is an important result because the
simulated data is drawn from the mathematical model, on the contrary of the
real data, and thus good performances in terms of goodness-of-fit are expected for
the curves estimated from the simulated data. Note that the order of magnitude
of Figure 8 is different from that of Figure 2, since CD4 values vary between 100
and 1200000 [3]. Thus, we conclude that the patients of the simulation are worse
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off than the patients in the study of Rivadeneira et al. [12].
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Figure 8: (a) CD4(t) trajectory over time for Patient 6 with the θ̂̂θ̂θ6 pa-
rameters. The circles represent the observations for Patient 6
in Table 3. (b) Same representation for Patients 1, 2, 3, 4 and
8 [12].

5. CONCLUSION

This work addresses the problem of estimating the parameters of a HIV
dynamic model from a set of observations. Our method considers the minimiza-
tion of the square error between model estimates and observed CD4 values, with
a restriction that guarantees that the optimal solution θ̂̂θ̂θ0 verifies equal contribu-
tion of negative and positive deviations from observations. Furthermore, the θ̂̂θ̂θ0
estimates are restricted to lower and upper physiological bounds, which allows
us to obtain a fully automatic method, in which it is not necessary to introduce
an initial condition. The proposed method is validated via a data simulated with
reference parameters θθθ0 to mimic 3 different patients. The results indicate that
the replacement of θθθ0 by θ̂̂θ̂θ0 decreases the fit error in a value that is greater than
the difference between the fit errors obtained in the continuous and in the discrete
options on the model numerical resolution. Therefore, the performance increase
when replacing θθθ0 by θ̂̂θ̂θ0 is numerically relevant. Finally, the algorithm provides
adequate θ̂̂θ̂θ0 estimates (i.e. with low fit error to simulated and to real data), which
enables a proper characterization of the temporal trajectory of a HIV patient.
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