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1. INTRODUCTION

One of the most important references in models of adopting timing of inno-
vations is the model of Bass [1]. From this model, Bemmaor [3] formulated that
the individual-level model of adopting timing of a new product in a market is ran-
domly distributed according to the shifted Gompertz distribution. More recently,
Lover et al. [6] show that modeling studies of period of time to first relapse in
human infections with malaria in the New World tropical region, can support the
shifted Gompertz distribution.

Some statistical properties of the shifted Gompertz distribution were ob-
tained in Bemmaor [3]. Jiménez Torres and Jodrá [8] gave explicit expressions for
the first and second moment, a closed form expression for the quantile function
was derived, and the limit distributions of extreme order statistics were conside-
red.

In Jiménez Torres [7] the method of least squares, method of maximum
likelihood and method of moments to estimate the parameters of the shifted
Gompertz distribution were used. In this paper we want to expand and complete
the knowledge and statistical properties of the shifted Gompertz distribution,
solving the three conjectures presented in Jiménez Torres and Jodrá [8] and ob-
taining a general expression for the moments.

Although the Gompertz distribution Z has been given in different forms
in the literature, the cumulative distribution function (cdf) FZ(z) = P (Z ≤
z) = e−αe−βz

, −∞ < z < +∞, found in Bemmaor [3], satisfies that its standard
deviation, skewness and excess kurtosis are equals to π/(

√
6β), 12

√
6ζ(3)/π3 and

2.4, respectively, where ζ(·) denotes the Riemann zeta function. The skewness of
a random variable X is defined by γ1 = E[(X − µ)3]/σ3 and is a measure of the
asymmetry of the probability distribution. The excess kurtosis of X is given by
γ2 = E[(X −µ)4]/σ4− 3 and it describes the shape of the tails of the probability
distribution.

Let X be a random variable having the shifted Gompertz distribution with
parameters α and β, where α > 0 is a shape parameter and β > 0 is a scale
parameter. The probability density function of X is

(1.1) fX(x) = βe−(βx+αe−βx)(1 + α
(
1− e−βx)

)
x > 0.

This model can be characterized as the maximum of two independent ran-
dom variables with Gompertz distribution (parameters α > 0 and β > 0) and ex-
ponential distribution (parameter β > 0). From (1.1), given that limα→0 fX(x) =
βe−βx, it may be noted that the shifted Gompertz distribution gets close to an
exponential distribution with mean 1/β, as the parameter α decreases to 0. So,
for a fixed value of β, limα→0 σ = 1/β, where σ is the standard deviation of X.
For the shifted Gompertz distribution we have limα→0 γ1 = 2 and limα→0 γ2 = 6,



4 F. Jiménez Torres

which are the skewness and kurtosis of the exponential distribution. If the shape
parameter α increases to infinity, the asymptotic behavior of the shifted Gom-
pertz distribution is nontrivial and these limits require analytic tools for their
calculation.

Based on numerical evidence showed in Jiménez Torres and Jodrá [8] the
next three conjectures were presented:

Conjecture 1 : lim
α→+∞

σ =
π√
6β

Conjecture 2 : lim
α→+∞

γ1 =
12

√
6ζ(3)

π3

Conjecture 3 : lim
α→+∞

γ2 = 2.4

The remainder of this note is organized as follows. In Section 2, we prove
Conjecture 1. In Section 3, we provide an explicit expression for the ith moment
of the shifted Gompertz distribution. In Section 4 and Section 5, we prove Con-
jecture 2 and Conjecture 3, respectively. In Section 6 we show the importance of
these results in the choice of the shifted Gompertz distribution among the models
to fit a real data set and finally, the main conclusions are presented in Section 7.

2. PROOF OF CONJECTURE 1

In Jiménez Torres and Jodrá [8] explicit expressions for the moments of
orders 1 and 2 of X were obtained. The first moment of X, or mean µ of X, is

(2.1) E[X] =
1

β

(
γ + log(α) + E1(α) +

1− e−α

α

)
,

where γ ≈ 0.57721 is the Euler–Mascheroni constant and E1(x) is the exponential

integral function, defined by E1(x) =
∫ +∞
x

e−t

t dt, x > 0. The second moment of
X is

(2.2) E[X2] =
2

αβ2

(
γ + log(α) + E1(α) + 3F3[1, 1, 1; 2, 2, 2;−α]α2

)
,

where 3F3[1, 1, 1; 2, 2, 2;−α] =
∑+∞

k=1
(−α)k−1

k!k2
is a generalized hypergeometric func-

tion. Moreover, we need the next expression (see Geller and Ng [5]) for a > 0
and b > 0

(2.3)

∫ +∞

b

E1(ax)

x
dx =

1

2

(
(γ + log(ab))2 + ζ(2)

)
+

+∞∑
k=1

(−ab)k

k!k2
,



Proof of conjectures of the shifted Gompertz distribution 5

where ζ(2) =
π2

6
. In particular, using (2.3) with a = 1 and b = α, we obtain

(2.4)

∫ +∞

α

E1(x)

x
dx =

1

2

(
(γ + log(α))2 + ζ(2)

)
+

+∞∑
k=1

(−α)k

k!k2
,

and in the next theorem, we prove Conjecture 1.

Theorem 2.1. The limit of the standard deviation, σ, of the shifted Gom-
pertz distribution X as the shape parameter α increases to +∞ is finite and its
value is

(2.5) lim
α→+∞

σ =
π√
6β
.

Proof: The variance of a random variable X is σ2 = E[X2]− (E[X])2.
From (2.1), (2.2) and (2.4) we have

σ2 =
2

αβ2

[
γ + log(α) + E1(α)− α

∫ +∞

α

E1(x)

x
dx+

α

2

(
(γ + log(α))2 + ζ(2)

)]
− 1

β2

(
γ + log(α) + E1(α) +

1− e−α

α

)2

(2.6)

=
ζ(2)

β2
+R(α),

where

R(α) =
2

αβ2
(
γ + log(α) + E1(α)

)
− 2

β2

∫ +∞

α

E1(x)

x
dx(2.7)

+
1

β2
(
(γ + log(α)

)2 − 1

β2

(
γ + log(α) + E1(α) +

1− e−α

α

)2

.

So, lim
α→+∞

σ2 = ζ(2)/β2 + lim
α→+∞

R(α). Now, in (2.7) we take limit as α increases

to +∞, taking into account the next limits related to the exponential integral
function (see Geller and Ng [5]):

(2.8) lim
x→+∞

(
log(x)E1(x)

)
= lim

x→+∞

(
e−xE1(x)

)
= lim

x→+∞

(
xpE1(x)

)
= 0.

So, lim
α→+∞

R(α) = 0, and Conjecture 1 is proved.

To prove Conjecture 2 and Conjecture 3 we need expressions of the moments of
orders 3 and 4, respectively. In Section 3 we are more ambitious and obtain a
general expression for the moment of order i of the shifted Gompertz distribution.
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3. MOMENT OF ORDER i OF X

The ith moment of X, denoted and defined by E[Xi] =
∫ +∞
0 xifX(x)dx,

i = 1, 2, . . ., where fX(x) is given in (1.1), does not seem to have a closed-form
expression in terms of elementary functions, but we can find a series expansion.
Let γ(a, b) be the lower incomplete gamma function defined for any a > 0 and
b > 0 by

(3.1) γ(a, b) =

∫ b

0
va−1e−vdv,

and let MX(t) be the moment generating function of X, i.e., MX(t) = E
[
etX
]
.

In the next theorem we obtain an expression of this function.

Theorem 3.1. The moment generating function of the shifted Gompertz
distribution X for |t| < β is

(3.2) MX(t) = αt/β−1(α+ t/β)γ(1− t/β, α) + e−α.

Proof: By definition, we have

E
[
etX
]
=

∫ +∞

0
etxfX(x)dx = β

∫ +∞

0
etx−βx−αe−βx

(1 + α(1− e−βx))dx

= (1 + α)β

∫ +∞

0
etx−βx−αe−βx

dx− αβ

∫ +∞

0
etx−2βx−αe−βx

dx.(3.3)

The change of variable v = αe−βx in (3.3) provides

E
[
etX
]
= αt/β−1(1 + α)

∫ α

0
e−vv−t/βdv − αt/β−1

∫ α

0
e−vv1−t/βdv

= αt/β−1
(
(1 + α)γ(1− t/β, α)− γ(2− t/β, α)

)
.(3.4)

Integrating by parts in (3.1) yields the recurrence relation γ(a+1, b) = aγ(a, b)−
bae−b. So, we have

(3.5) E
[
etX
]
= αt/β−1

(
(α+ t/β)γ(1− t/β, α) + α1−t/βe−α

)
,

thereby completing the proof.

According to Theorem 3.1, the moment generating function of the shifted Gom-
pertz distribution, MX(t), is finite in the open neighborhood (−β, β) of 0. In
particular, it implies that moments of all orders exist. In the next result, we
provide an explicit expression of the moment of order i.
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Theorem 3.2. The moment of order i, i = 1, 2, . . ., of the shifted Gom-
pertz distribution X is

(3.6) E[Xi] =
i!

βi

(
1 +

+∞∑
k=1

(
1

(k + 1)i
− 1

ki

)
(−α)k

k!

)
.

Proof: Since MX(t) is finite for t in (−β, β), it can be expanded in a
Taylor series about 0 and the moments of X can be computed by differentiation

ofMX(t) at t = 0, i.e., M
(i)
X (t)|t=0 =M

(i)
X (0) = E[Xi], i = 1, 2, . . ., whereM

(i)
X (t)

denotes the ith derivative of the moment generating function of X. That is,

(3.7) MX(t) = 1 +
+∞∑
i=1

E[Xi]

i!
ti |t| < β.

Given the Taylor series of the exponential function e−v in (3.1), we have the
following series expansion of the lower incomplete gamma function

(3.8) γ(a, b) =

∫ b

0

+∞∑
k=0

(−1)k
va+k−1

k!
dv =

+∞∑
k=0

(−1)kba+k

(a+ k)k!
.

From (3.8), we have

(3.9) γ(1− t/β, α) =
+∞∑
k=0

(−1)kα1−t/β+k

(1− t/β + k)k!
|t| < β,

and substituting (3.9) in (3.2), we obtain

(3.10) MX(t) = (α+ t/β)

+∞∑
k=0

(−1)kαk

(1− t/β + k)k!
+ e−α |t| < β.

But the real number (1− t/β+ k)−1 can be expressed as the sum of the terms of
a geometric series, i.e.,

(3.11)
1

1− t/β + k
=

1

k + 1

+∞∑
i=0

ti

(k + 1)iβi
|t| < β.

Finally, substituting (3.11) in (3.10),

(3.12) MX(t) = (α+ t/β)

+∞∑
k=0

(−α)k

(k + 1)!

+∞∑
i=0

ti

(k + 1)iβi
+ e−α |t| < β.
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Identifying term to term of (3.7) and (3.12), we have

(3.13) E[Xi] =
i!

βi

(
1−

+∞∑
k=1

(
1

k!ki
− 1

(k + 1)!(k + 1)i−1

)
(−α)k

)
,

thereby completing the proof of Theorem 3.2.

4. PROOF OF CONJECTURE 2

To prove Conjecture 2 we need the next expression (see Geller [4]) for a > 0
and ρ > 0∫ ρ

0
e−axlog3(x)dx = −6ρ

(
+∞∑
k=0

(−aρ)k

k!(k + 1)4
− log(ρ)

+∞∑
k=0

(−aρ)k

k!(k + 1)3

)

−3

a
log2(ρ)

(
γ + log(aρ) + E1(aρ)−

1

3
log(ρ)(1− e−aρ)

)
.(4.1)

It may be noted that (4.1) corrects one misprint in Geller [4] (the sign of 1
3 log(ρ)(1−

e−aρ)). In particular, using (4.1) with a = 1 and ρ = α, we have∫ α

0
e−xlog3(x)dx = −6α

(
+∞∑
k=0

(−α)k

k!(k + 1)4
− log(α)

+∞∑
k=0

(−α)k

k!(k + 1)3

)

−3log2(α)
(
γ + log(α) + E1(α)−

1

3
log(α)(1− e−α)

)
.(4.2)

Moreover, we need the value of (4.2) as α increases to +∞, i.e.,
∫ +∞
0 e−xlog3(x)dx.

This integral es Γ(3)(1), the third derivative of gamma function evaluated at 1,
where the gamma function is defined by Γ(p) =

∫ +∞
0 tp−1e−tdt, for a real number

p > 0. To know the value of Γ(3)(1) we can use the digamma function, define by
ψ(p) = Γ′(p)/Γ(p) and polygamma functions, ψ′(p), ψ(2)(p), ψ(3)(p) . . .. These
functions are derivatives of the logarithm of the gamma function. In particular,
we have ψ(1) = −γ and ψ(n)(1) = (−1)n+1n!ζ(n+ 1), for n = 1, 2, 3 . . . (see, e.g.
[9, 5.15.2]). Using this relation we have ψ′(1) = ζ(2) and ψ(2)(1) = −2ζ(3). So,
the value of Γ(3)(1) is

(4.3) Γ(3)(1) = (ψ(1))3 + 3ψ(1)ψ′(1) + ψ(2)(1) = −γ3 − 3γζ(2)− 2ζ(3),

where ζ(3) ≈ 1.20205 is a real number known as Apéry’s constant. In the next
theorem, we prove Conjecture 2.
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Theorem 4.1. The limit of the coefficient of skewness, γ1, of the shifted
Gompertz distribution X as the shape parameter α increases to +∞ is finite and
its value is

(4.4) lim
α→+∞

γ1 =
12

√
6ζ(3)

π3
.

Proof: The coefficient of skewness of X is

(4.5) γ1 = E[(X − µ)3]/σ3 =
(
E[X3]− 3µE[X2] + 2µ3

)
/σ3.

We can study every term of this equation. The first term of (4.5) is E[X3].
According to (3.6), the moment of order 3 of X is

(4.6) E[X3] =
3!

β3

(
1 +

+∞∑
k=1

(
1

(k + 1)3
− 1

k3

)
(−α)k

k!

)
.

From (4.2), we have

+∞∑
k=0

(−α)k

k!(k + 1)4
= − 1

6α

(∫ α

0
e−xlog3(x)dx− 6αlog(α)

+∞∑
k=0

(−α)k

k!(k + 1)3

+3log2(α)
(
γ + log(α) + E1(α)−

1

3
log(α)(1− e−α)

))
.(4.7)

Given that
∑+∞

k=1
(−α)k

k!ki
= −α

∑+∞
k=0

(−α)k

k!(k+1)i+1 , i = 0, 1, 2, . . ., from (2.4), (4.6) and

(4.7)

E[X3] = − 1

β3

[
6
(
α−1 + log(α))

(∫ +∞

α

E1(x)

x
dx− 1

2

(
(γ + log(α))2 + ζ(2)

))
+

∫ α

0
e−xlog3(x)dx+ 3log2(α)

(
γ + log(α) + E1(α)

)
− log3(α)(1− e−α)

]
.(4.8)

Now, we study −3µE[X2], the second term of (4.5). From (2.1) and (2.2), it is

−3µE[X2] = − 6

αβ3

(
γ + log(α) + E1(α) +

1− e−α

α

)
×
(
γ + log(α) + E1(α)− α

+∞∑
k=1

(−α)k

k!k2

)
,(4.9)

and from (2.4), we have

−3µE[X2] = − 6

αβ3

(
γ + log(α) + E1(α) +

1− e−α

α

)
×
(
γ + log(α) + E1(α)− α

∫ +∞

α

E1(x)

x
dx+

α

2

(
(γ + log(α))2 + ζ(2)

))
.(4.10)



10 F. Jiménez Torres

The third term of (4.5) is 2µ3. From (2.1), it is

(4.11) 2µ3 =
2

β3

(
γ + log(α) + E1(α) +

1− e−α

α

)3

.

Finally, taking into account the three terms of (4.5), i.e., (4.8), (4.10) and (4.11),
that limα→+∞

∫ α
0 e

−xlog3(x)dx = Γ(3)(1) given in (4.3) and the limits (2.8), we
have

(4.12) lim
α→+∞

E[(X − µ)3] =
2ζ(3)

β3
.

According to Theorem 2.1, lim
α→+∞

σ3 =
π3

6
√
6β3

, and Conjecture 2 is proved.

5. Proof of Conjecture 3

To prove Conjecture 3 we need the next expression (see Geller [4]), valid
for a > 0, ρ > 0, p > −1 and n = 0, 1, 2, 3, . . .
(5.1)∫ ρ

0
xpe−axlogn(x)dx = (−1)nn!ρp+1

n∑
k=0

(−1)klogk(ρ)

k!

+∞∑
l=0

(−aρ)l

l!(p+ l + 1)n−k+1
.

In particular, we need (5.1) for a = 1, ρ = α, p = 0 and n = 4, i.e.,∫ α

0
e−xlog4(x)dx = 4!α

4∑
k=0

(−1)klogk(α)

k!

+∞∑
l=0

(−α)l

l!(l + 1)5−k

= 4!α

[
+∞∑
k=0

(−α)k

k!(k + 1)5
− log(α)

+∞∑
k=0

(−α)k

k!(k + 1)4

+
log2(α)

2

+∞∑
k=0

(−α)k

k!(k + 1)3
− log3(α)

3!

+∞∑
k=0

(−α)k

k!(k + 1)2

+
log4(α)

4!

+∞∑
k=0

(−α)k

k!(k + 1)

]
.(5.2)

Moreover, we need the value of (5.2) as α increases to +∞, i.e.,
∫ +∞
0 e−xlog4(x)dx,

the 4th Euler–Mascheroni integral. This integral is Γ(4)(1), the fourth derivative

of Γ(p), evaluated at p = 1. Given that ψ(3)(1) = 6ζ(4),
(
ζ(2)

)2
= 5ζ(4)/2 and

ζ(4) = π4/90, the value of Γ(4)(1) is

Γ(4)(1) =
(
ψ(1)

)4
+ 6ψ′(1)

(
ψ(1)

)2
+ 4ψ(2)(1)ψ(1) + ψ(3)(1) + 3

(
ψ′(1)

)2
= γ4 + 6γ2ζ(2) + 8γζ(3) +

27

2
ζ(4).(5.3)
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In the next theorem, we prove Conjecture 3.

Theorem 5.1. The limit of the excess kurtosis, γ2, of the shifted Gom-
pertz distribution X as the shape parameter α increases to +∞ is finite and its
value is

(5.4) lim
α→+∞

γ2 = 2.4.

Proof: The excess kurtosis of X is

(5.5) γ2 = E[(X − µ)4]/σ4 − 3 = (E[X4]− 4µE[X3] + 6µ2E[X2]− 3µ4)/σ4 − 3.

We can study every term of this equation. The first term of (5.5) is E[X4].
According to (3.6), the fourth moment of X is

E[X4] =
4!

β4

(
1 +

+∞∑
k=1

( 1

(k + 1)4
− 1

k4

)(−α)k
k!

)

=
4!

αβ4

(
α

+∞∑
k=1

(−α)k

k!(k + 1)4
+ α2

+∞∑
k=0

(−α)k

k!(k + 1)5

)
.(5.6)

From (5.2), we have

+∞∑
k=0

(−α)k

k!(k + 1)5
=

1

24α

[∫ α

0
e−xlog4(x)dx+ 24αlog(α)

+∞∑
k=0

(−α)k

k!(k + 1)4

−12αlog2(α)
+∞∑
k=0

(−α)k

k!(k + 1)3
+ 4αlog3(α)

+∞∑
k=0

(−α)k

k!(k + 1)2

−αlog4(α)
+∞∑
k=0

(−α)k

k!(k + 1)

]
.(5.7)

From (4.7) and (5.7),

E[X4] =
24

αβ4

[
− 1

6

∫ α

0
e−xlog3(x)dx− 1

2
log2(α)

(
γ + log(α) + E1(α)

)
−1

6
log3(α)(1− e−α)− log(α)

(∫ +∞

α

E1(x)

x
dx− 1

2

(
(γ + log(α)

)2
+ζ(2)

))
+
α

24

(∫ α

0
e−xlog4(x)dx− 4log(α)

∫ α

0
e−xlog3(x)dx

−12log2(α)

∫ +∞

α

E1(x)

x
dx+ 6log2(α)

(
(γ + log(α))2 + ζ(2)

)
−8log3(α)

(
γ + log(α) + E1(α)

)
+ 3log4(α)(1− e−α)

]
.(5.8)
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Now, we study −4µE[X3], the second term of (5.5). From (2.1) and (4.8), it is

−4µE[X3] = − 4

β4

(
γ + log(α) + E1(α) +

1− e−α

α

)
×
[
− 6
(
α−1 + log(α))

(∫ +∞

α

E1(x)

x
dx− 1

2

(
(γ + log(α))2 + ζ(2)

))
(5.9)

−
∫ α

0
e−xlog3(x)dx− 3log2(α)

(
γ + log(α) + E1(α)

)
+ log3(α)(1− e−α)

)]
.

The third term of (5.5) is 6µ2E[X2]. From (2.1), (2.2) and (2.4), it is

6µ2E[X2] =
12

β4

(
γ + log(α) + E1(α) +

1− e−α

α

)2

×
[
γ + log(α) + E1(α)

α
−
∫ +∞

α

E1(x)

x
dx+

1

2

(
(γ + log(α))2 + ζ(2)

)]
.(5.10)

The fourth and last term of (5.5) is −3µ4. From (2.1), it is

(5.11) −3µ4 = − 3

β4

(
γ + log(α) + E1(α) +

1− e−α

α

)4

.

Finally, taking into account that limα→+∞
∫ α
0 e−xlog4(x)dx = Γ(4)(1) given in

(5.3), the four terms of (5.5), i.e., (5.8), (5.9), (5.10) and (5.11), and the limits
(2.8), we have

(5.12) lim
α→+∞

E[(X − µ)4] =
27ζ(4)

2β4
.

According to Theorem 2.1, lim
α→+∞

σ4 =
π4

36β4
. Given the value of ζ(4) =

π4

90
,

Conjecture 3 is proved.

6. REAL DATA APPLICATION

One of the human malaria parasites with the widest geographic distribution
in the world is plasmodium vivax. If a patient was not fully cured or insuffi-
ciently treated, he can relapse in a few weeks after the initial infection, i.e., new
clinical symptoms begin after the disease disappeared from the blood following
the primary infection. In this section, we have considered an application with
periods of time to first relapse or recurrence in 38 patients located at Brazil.
We have chosen Brazil since it is located geographically in the New World tro-
pical region, where following Lover et al. [6], the shifted Gompertz distribution
is suitable for modeling times to first relapse. Tropical region is delimited by
the ±23.5◦ latitude lines. Table 1 shows times (days) to first relapse observed,
reported in Battle et al. [2].
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31 32 32 33 34 35 37 37 44 45 48 53 57 57 58 62 63 64 68
69 70 70 70 71 75 78 80 82 83 86 91 97 97 112 124 132 158 185

Table 1: Real data set: Times (days) to first relapse observed (malaria
parasite plasmodium vivax) in 38 patients located at Brazil.
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Figure 1: Skewness (γ1) versus excess kurtosis (γ2) for some probabilistic
models and the locus of the malaria data set.

According to Theorem 4.1, the values of γ1 of the shifted Gompertz dis-
tribution are greater than 12

√
6ζ(3)/π3 ≈ 1.1395, i.e., are always positive and

possibly this can be a good model to fit a data set with positive asymmetry.
Similarly, according to Theorem 5.1, the values of γ2 of the shifted Gompertz
distribution are greater than 2.4, i.e., are always positive. This means that the
shifted Gompertz distribution is a fat-tailed probability distribution, and possibly
it can be a good model to fit a data set with positive excess kurtosis.

The results proved in this paper allow to place the shifted Gompertz distri-
bution in the Skewness–Kurtosis diagram (see Vargo et al. [11]). This moment-
ratio diagram (see Figure 1) is a plot containing the (γ1, γ2) values for probability
distributions. When a probabilistic model has no shape parameter (for example,
normal, logistic, Gompertz, exponential or Gumbell distribution, among other),
its locus in this diagram corresponds to a point. When a probabilistic model has
one shape parameter (for example, log-logistic, gamma, Weibull, Lindley, Lomax
or shifted Gompertz distribution, among other), its locus in this diagram corres-
ponds to a curve. In this diagram, the shifted Gompertz distribution starts at
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the locus of the exponential distribution and ends at the locus of Gompertz dis-
tribution. Also, in Figure 1 there is a curve representing the frontier γ2 ≥ γ21 − 2
for all distributions (see Stuart and Ord [10]).

Given the observed values of skewness and excess kurtosis for malaria data
set (γ1 = 1.3317, γ2 = 1.9009), we can place it in this diagram (see Figure 1) and
use it as valuable help in model selection (see chosen models in Table 2).

Model Shape parameter F (x)

Exponential: E(λ) - 1− e−λx

Gamma: G(α, β) α γ(α, x/β)/Γ(α)

Gompertz: GO(α, β) - e−αe−βx

Gumbell: GU(α, β) - 1− e−αeβx

Lindley: LD(θ) θ 1− (1 + θ + θx)e−θx/(1 + θ)

Logistic: LG(µ, s) - (1 + e−(x−µ)/s)−1

Log-logistic: LL(λ, p) p 1− (1 + (λx)p)−1

Lomax: LO(α, β) α 1− (1 + βx)−α

Normal: N(µ, σ) - Φ((x− µ)/σ)

Weibull: W(α, β) α 1− e−(x/β)α

Shifted Gompertz: SG(α, β) α e−αe−βx
(1− e−βx)

Table 2: Models and their cumulative distribution functions F (x).

Model MLE parameter −LogL AIC BIC K-S p-val(K-S) W* A*

Malaria data set

E 0.0139 - 200.290 402.580 404.218 0.351 10−4 1.113 5.749
G 4.965 14.414 183.079 370.158 373.434 0.089 0.923 0.054 0.448
GO 10.024 0.040 182.983 369.967 373.242 0.102 0.823 0.047 0.425
GU 0.126 0.022 198.302 400.605 403.880 0.226 0.041 0.492 2.899
LD 0.0275 - 189.961 381.923 383.561 0.220 0.049 0.386 2.359
LG 67.520 18.091 186.779 377.558 380.834 0.117 0.673 0.056 0.667
LL 0.015 3.821 221.181 446.363 449.638 0.103 0.811 1.606 8.397
LO 0.114 99.634 278.846 561.693 564.968 0.600 10−12 3.477 16.062
N 71.578 34.505 188.481 380.963 384.238 0.138 0.461 0.169 1.156
W 2.202 81.129 185.522 375.045 378.320 0.113 0.714 0.107 0.779
SG 8.709 0.040 182.759 369.518 372.793 0.101 0.831 0.046 0.419

Best fitting model is shown in bold.

Table 3: The MLEs of the parameters and goodness-of-fit tests.

It is reasonable to think that models located relatively near the locus of
malaria data set (for example, Weibull, gamma, Gompertz or shifted Gompertz
distribution) can provide a better fit than models located farther away (for exam-
ple, Gumbell, logistic, normal or Lomax, among other). To accept or rejected
this surmise, we estimate the parameters of the shifted Gompertz distribution
and of all models represented in Figure 1 by the maximum likelihood method.
We obtain the performance of each model based on the following goodness-of-fit
measures: log-likelihood function (LogL), Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), Kolmogorov–Smirnov (K-S) statistic with
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the corresponding p-value, Cramer von Mises (W*) and Anderson-Darling (A*).

The results obtained (see Table 3) show that the shifted Gompertz distri-
bution presents the best fit in almost all goodness-of-fit measures. The smallest
values of −LogL, AIC, BIC, W* and A* correspond to the shifted Gompertz
distributions. The best values of K-S and its p-value are obtained by gamma and
shifted Gompertz distribution. In addition, Weibull, gamma or Gompertz dis-
tribution present, in general, better fit than Gumbell, logistic, normal, Lindley,
exponential, log-logistic or Lomax distribution.

7. Conclusions

Three conjectures on the standard deviation, skewness and kurtosis of the
shifted Gompertz distribution, as the shape parameter α increases to +∞, have
been proved, solving the asymptotic problems found in Jiménez Torres and Jodrá
[8]. In addition, an explicit expression for the ith moment of the shifted Gom-
pertz distribution has been obtained. These results allow to place the shifted
Gompertz distribution in the Skewness–Kurtosis diagram, starting at the locus
of the exponential distribution and ending at the locus of Gompertz distribution.
To check their usefulness, a real malaria data set has been fitted, estimating the
parameters by maximum likelihood. The results obtained show that the shifted
Gompertz distribution presents a very good fit among the analyzed models, su-
ggesting that the results proved in this paper can play an important rule in the
decision to choose this model to fit data.
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