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distribution according to one of its outstanding properties and take advantage of this
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set follows a GBS distribution. We further develop a goodness-of-fit test for the hy-
pothesis that the data follow a BS distribution with unknown parameters and apply
the results to real data sets.
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1. INTRODUCTION

Birnbaum and Saunders [10] proposed a fatigue life distribution represent-

ing time to failure of materials exposed to a cyclically repeated stress pattern.

They obtained a nonnegative transformation of a standard normal random vari-

able (RV) with a scale and a shape parameter known as the Birnbaum–Saunders

(BS) distribution; see also Johnson et al. [25], pp. 651–663. The BS distribution

is positively skewed allowing for different degrees of kurtosis and its hazard or

failure rate (FR) has an inverse bathtub shape (see Kundu et al. [27] and Beb-

bington et al. [9]). The BS distribution is closed under scale transformations and

under reciprocation.

Seshadri [39] and Saunders [38] considered classes of absolutely continuous

non-negative RVs closed under reciprocation and ways of generating such classes.

Common RVs satisfying the “reciprocal property”, meaning that the RV and its

own reciprocal are identically distributed, are the Fisher–Snedecor Fn,n and the

lognormal with appropriate mean, as well as the quotient of two independent

and identically distributed (IID) non-negative (and unlimited to the right) RVs,

discussed by Gumbel and Keeney [21]. Some other examples of distributions

satisfying the reciprocal property can be found in Jones [26] and Vanegas et al.

[42].

The generalized Birnbaum–Saunders distribution (GBS), introduced by

Dı́az-Garćıa and Leiva [16], is obtained replacing the normal generator in the

BS distribution by any symmetric absolutely continuous RV. It is a highly flexi-

ble class of positively skewed distributions allowing for a wide range of kurtosis.

The probability density functions include unimodal and bimodal cases and FRs

can be monotone, inverse bathtub or have more than one change-point. Heavy

tails are also allowed depending on the tails of the generating RV. The GBS

distribution is also closed under scale transformations and under reciprocation.

As a consequence, any GBS distributed RV, suitably scaled, satisfies the recip-

rocal property. See also Sanhueza et al. [36] for a discussion of its theory and

applications, Balakrishnan et al. [6] for the case generated by scale-mixtures of

normal distributions and Leiva et al. [30] for a family related to scale-mixture BS

distributions.

Among several extensions of the BS distributions that have appeared in the

literature, we point out the three-parameter model of power transformations of

BS distributed RVs introduced by Owen [34], obtained by relaxing the assumption

of independent crack extensions to a long memory process and related to sinh-

spherical distributions (see Dı́az-Garćıa et al. [17]) and the four-parameter exten-

sion based on the Johnson system (Athayde et al. [4]). The BS distribution also

belongs to the family of cumulative damage distributions (see Leiva et al. [32]).
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Truncated BS and shifted BS distributions have been considered as well; see

Ahmed et al. [2] and Leiva et al. [28]. The case generated by non-symmetric RVs

has also been addressed; see Ferreira et al. [20] and Leiva et al. [31]. However in

this case the resulting RV does not satisfy the reciprocal property for any scale

transformation.

Reparameterizations of the BS model have also appeared; see Leiva et al.

[29], Santos-Neto et al. [37] and references therein.

Considering the problem of fitting a distribution to univariate data and

assuming it comes from a nonnegative RV, we would like to assess whether a

GBS distribution is a good candidate to model the data, and then find an appro-

priate way to test for goodness-of-fit (GOF). Notice that the BS and the GBS

distributions are not in the location-scale (LS) family. For the case of para-

metric distributions with unknown parameters, GOF techniques have also been

addressed in the literature for non LS models, including graphical techniques; see

Barros et al. [8] and Castro-Kuriss et al. [12] for an overview of available tests and

graphical tools to assess GOF in non LS distributions. These techniques can be

applied to the case of a BS distribution or a GBS generated by a parameterized

distribution, such as the Student or logistic ones, provided a proper estimation

procedure and the inverse cumulative distribution function are available, but are

not designed to test for the GBS class as a whole.

As mentioned before, any GBS distributed RV, suitably scaled, has the

reciprocal property, and we prove that the converse is also true, i.e., any RV that

upon a suitable change of scale is equally distributed to its own reciprocal admits

a representation as a GBS distribution. This characterization was the starting

point that led us to tackle the proposed problem. Namely, it enabled us to find an

alternative estimator for the scale parameter, to consider an empirical graphical

technique that requires no estimation of the scale parameter and to test whether

the data come from a GBS distribution using symmetry tests about an unknown

constant. In addition, we consider a test for the null hypothesis that the data

come from a BS distribution with unknown parameters and carry out a study of

its asymptotic behavior.

The remainder of this paper is organized as follows. In Section 2 we present

some well known results about BS and GBS distributions. In Section 3 we estab-

lish a characterization of the GBS model related to the reciprocal property and

analyze some of its consequences. In Section 4 we discuss the problem of finding

out whether this model is suitable to fit a given data set and develop an asymp-

totic GOF test for the case of the BS distribution with unknown parameters.

In Section 5 we apply the results to real data sets and finally in Section 6 we

draw some conclusions.
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2. BACKGROUND

The BS distribution is a transformation T of a standard normal RV given

by

(2.1) T = β


αZ

2
+

√(
αZ

2

)2
+ 1




2

,

where Z ∼ N(0, 1), α (α > 0) is a shape parameter and β (β > 0) is a scale

parameter (and also the median), denoted here by T ∼ BS(α, β), with inverse

transformation given by

(2.2) Z =
1

α

(√
T

β
−
√

β

T

)
∼ N(0, 1) .

As mentioned in the previous section, the distribution of T given by (2.1) is

positively skewed allowing for different degrees of kurtosis (greater than 3) and

its FR has an inverse bathtub shape. Among the properties of this distribu-

tion, we highlight that if T ∼ BS(α, β) then (i) cT ∼ BS(α, cβ) with c > 0 and

(ii) T−1 ∼ BS(α, β−1), i.e., the BS distribution is closed under scale transfor-

mations and under reciprocation. Thus, denoting Y = T/β, Y and 1/Y are

identically distributed, i.e., Y has the reciprocal property (see Saunders [38]).

Analogously we say that T ∼ BS(α, β), suitably scaled, satisfies the reciprocal

property.

The GBS distribution, introduced by Dı́az-Garćıa and Leiva [16], is ob-

tained replacing Z in (2.1) by any symmetric absolutely continuous RV X, thus

leading to

(2.3) T = β


αX

2
+

√(
αX

2

)2
+ 1




2

,

where α (α > 0) is a shape parameter and β (β > 0) is a scale parameter (and

also the median). We say that T given by (2.3) is generated by X and denote it

by T ∼ GBS(α, β, gX), where gX(·) is the probability density function (PDF)

of X.

The cumulative distribution function (CDF) of T ∼ GBS(α, β, gX) is given

by FT (t) = GX(ξ(t; α, β)), t > 0, where GX(·) is the CDF of X and ξ(t; α, β) =

1
α

(√
t
β −

√
β
t

)
, t > 0, and the PDF is given by fT (t) = gX(ξ(t; α, β)) ξ′(t; α, β),

t > 0, where ξ′(t; α, β) = t+β
2α

√
β

t−3/2, t > 0. The GBS distribution is implemented

in the R software package gbs (http://www.R-project.org).
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Once again letting T ∼ GBS(α, β, gX), then T , suitably scaled, satisfies

the reciprocal property considering like before Y = T/β. Notice further that

in formula (2.3) we may assume α = 1 without loss of generality since letting

Xα = αX, the distributions GBS(α, β, gX) and GBS(1, β, gXα) are clearly the

same.

The main result in Seshadri [39] states that for absolutely continuous non-

negative RVs the reciprocal property is equivalent with the logarithm of that

RV being symmetric about zero. In other words, a RV Y satisfies the reciprocal

property if and only if W = log(Y ) is symmetric (i.e., W and −W are equally

distributed).

3. MAIN RESULTS

As mentioned before, the GBS distribution given by (2.3), where X is

a symmetric absolutely continuous RV, is such that T/β and β/T are equally

distributed. We prove that the converse is also true, and consequently that this

remarkable property characterizes the class of GBS distributions.

Theorem 3.1. Let T be a non-negative absolutely continuous random

variable. Then T ∼ GBS(α, β, gX) if and only if T , suitably scaled, satisfies the

reciprocal property.

Proof: It suffices to prove that if for some β (β > 0), T/β and β/T

are equally distributed RVs then T ∼ GBS(1, β, gX), i.e., T can be written as

T = β

(
X
2 +

√(
X
2

)2
+ 1

)2
for some symmetric RV X with PDF gX(·), where

the inverse transformation is X =
√

T
β −

√
β
T . So let T be a nonnegative ab-

solutely continuous RV with CDF HT (·), such that T/β and β/T are equally

distributed for some positive constant β. Let ξ(t) = ξ(t; 1, β) =
√

t
β −

√
β
t for

t > 0 and F (·) be the CDF of X = ξ(T ), given by F (z) = HT (ξ−1(z)), z ∈ R,

or equivalently HT (t) = F (ξ(t)), t > 0. Now, denoting by FT
β
(·) and F β

T
(·) the

CDFs of T/β and β/T respectively, we then have FT
β
(x) = F β

T
(x) = P

(
β
T ≤ x

)
=

P
(

T
β ≥ 1

x

)
= 1−FT

β
(1/x), x > 0. Consequently HT (βx) = 1−HT

(
β
x

)
and thus

F (ξ(βx)) = 1 − F (ξ(β/x)). From the fact that ξ(β/x) = −ξ(βx), it follows that

F (ξ(βx)) = 1 − F (−ξ(βx)), i.e., F (z) = 1 − F (−z), z ∈ R. This proves that

X is a symmetric RV such that T = β

(
X
2 +

√(
X
2

)2
+ 1

)2
, and therefore T ∼

GBS(1, β, gX).
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Corollary 3.1. Let T be a non-negative absolutely continuous random

variable. Then T ∼ GBS(α, β, gX) if and only if log(T ) − log(β) is a symmetric

RV.

Remark 3.1. From the characterization in Theorem 3.1, it follows that

any class of non-negative absolutely continuous RVs satisfying the reciprocal

property belongs to the GBS class. In this case, its median is necessarily 1

(β = 1). Notice that the support of a GBS distribution can be a proper subset

of [0, +∞). In fact, an example follows directly from Habibullah [23] who in-

troduced a one-parameter family of RVs with support [a, 1/a], where 0 < a < 1,

that satisfy the reciprocal property, and thus belongs to the GBS class. Its CDF

is given by Ha(x; θ) = 1
3 α1(log x)3 + α2 log x + 1

2 , a < x < 1
a , where α1 = 3(1−θ)

4(log a)3
,

α2 = θ−3
4 log a and 0 ≤ θ ≤ 1. Notice further that if we extend this family by adding

a scale parameter β, we get a GBS(1, β, gX) distribution with CDF given by

Ha,β(x; θ) = Ha(x/β; θ).

Other results follow immediately from this characterization, as stated in the

next three corollaries to Theorem 3.1. Recall that for a random sample T1, ..., Tn

from a GBS distribution, the modified moment (MM) estimator of β is given by

(3.1) β̃ =
√

SR ,

where S and R are the sample arithmetic and harmonic mean, respectively, i.e.,

S = T = 1
n(T1 + ··· + Tn) and R−1 = T−1 = 1

n

(
1
T1

+ ··· + 1
Tn

)
. See Birnbaum &

Saunders [11], Ng et al. [33] and Sanhueza et al. [36] for the case of BS and GBS

distributions. Notice that β̃/β and β/β̃ are identically distributed (see Saunders

[38], Theorem 3.2).

Corollary 3.2. Let T and U be two independent GBS distributed RVs

and a 6= 0. Then T a, TU and T/U are also GBS distributed RVs.

Corollary 3.3. Any non-negative RV that is written as a quotient of two

IID RVs is GBS distributed.

Corollary 3.4. The MM estimator of β is GBS distributed.

Notice that Corollary 3.2 states that the GBS class is closed under power

transformations, as well as under products and quotients of independent RVs.

As an example, any power of T ∼ BS(α, β) belongs to the GBS class. Another

example (see also Seshadri [39]), following from Corollary 3.3, is that the half-

Cauchy distribution with PDF f(t) = 2
π

1
1+t2

, t > 0, belongs to the GBS class since

it is obtained as a quotient of two IID half-normal RVs. Clearly, its logarithm is

a symmetric RV, since its PDF is given by g(x) = exf(ex) = 2
π

1
ex+e−x , x ∈ R.
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Remark 3.2. Another consequence of Corollary 3.2 is that any mem-

ber of the three-parameter extended BS distribution in the sense of Owen [34],

consisting of power transformations of BS RVs, given by

T = β


αZ

2
+

√(
αZ

2

)2
+ 1




σ

or Z =
1

α

((
T

β

)1/σ

−
(

β

T

)1/σ
)

,

where Z ∼ N(0, 1) and α, β and σ are non-negative parameters, also admits a

representation as a GBS(1, β, gW ) for some symmetric absolutely continuous RV

W that depends on α, σ and Z. In fact, we have explicitly

W =


αZ

2
+

√(
αZ

2

)2
+ 1




σ/2

−


αZ

2
+

√(
αZ

2

)2
+ 1



−σ/2

.

An analogous result holds for the three-parameter extension of GBS distributions

referred in Sanhueza et al. [36], related to sinh-spherical laws (see Dı́az-Garćıa et

al. [17]), obtained replacing Z by a symmetric RV X.

Theorem 3.2. For a random sample from the GBS(α, β, gX) distribu-

tion and assuming E(X4) < +∞, the MM estimator of β is asymptotically

BS(n−1/2αθ, β) distributed, where θ2 =
u1+ 1

4
α2u2

1+ 1

2
α2u1

, and ui = E(X2i), i = 1, 2.

Proof: The proof is analogous to the proof of Theorem 3.7 in Birnbaum &

Saunders [11], replacing Zi by Xi. In fact, notice that now 1+ α2

2n

∑
X2

i converges

in probability to 1 + 1
2 α2u1, where ui = E(X2i), and letting again Ui = Xi(1 +

1
4 α2X2

i )1/2, then var(Ui) = u1 + 1
4 α2u2. This leads to the limiting distribution

BS(n−1/2αθ, β) with θ2 =
u1+ 1

4
α2u2

1+ 1

2
α2u1

.

Corollary 3.5. For a random sample of the GBS(α, β, gX) distribution,

the MM estimator of β is asymptotically N(β, n−1/2αθβ).

Remark 3.3. Theorem 3.2 states that the asymptotic GBS distribution

for β̃ mentioned in Corollary 3.4 is precisely a BS(n−1/2αθ, β). It extends the

result by Birnbaum & Saunders [11] stating that β̃, in the BS case, is asymp-

totically distributed as a BS(αθn−1/2, β), where θ2 = 4+3α2

(2+α2)2
. Moreover, it is in

agreement with the more general asymptotic bivariate normal distribution for

the MM estimators of α and β (see Ng et al. [33] and Sanhueza et al. [36]),

since a BS(α, β) distribution is asymptotically N(β, αβ), as α → 0. In fact,

this result follows immediately from the power series expansion of (2.1), namely

T = β
(
1 + αZ + 1

2α2Z2 + 1
8α3Z3 − 1

128α5Z5 + ···
)
; see Engelhardt et al. [19].
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4. GOODNESS-OF-FIT

When dealing with a univariate lifetime random sample, t = (t1, t2, ..., tn)

from a RV T , a natural question to consider is whether a member of the GBS class

is suitable to model these data. Let Y = log(T ), and let t−1 and y denote the

transformed samples
(

1
t1

, 1
t2

, ..., 1
tn

)
and (log(t1), log(t2), ..., log(tn)), respectively.

Theorem 3.1 and Corollary 3.1 leads us to tackle this problem (i) testing for equal

distributions of T/β and β/T with unknown β, or (ii) testing Y for symmetry

about an unknown constant. Both these procedures rely on estimating β or

log(β), and the same applies from an empirical point of view using a graphical

approach such as a quantile-quantile plot (QQ-plot) for the two samples, β−1t

and βt−1 . A graphical procedure known as the total time on test (TTT) plot

can also be used and this plot requires no estimation of β.

To test for equal distributions for T/β and β/T , β may be estimated by

minimizing some “distance” between the two samples, β−1t and βt−1. Two pos-

sible distances are:

• The square of the difference between the sample means of β−1t and

βt−1. This leads to the usual MM estimator of β, given by (3.1) with

S = T and R−1 = T−1 as before. This is not surprising since the MM

estimator of β in the GBS(α, β, fX) model does not depend on either

fX or α.

• A Kolmogorov–Smirnov (KS) type distance between the empirical CDF

(ECDF) of the samples T1/β, ..., Tn/β and β/T1, ..., β/Tn, given by

DKS = sup
x

∣∣F1(x) − F2(x)
∣∣ ,

where F1(x) and F2(x) are the ECDFs of the two samples. Notice that

these two samples are not independent.

To test Y = log(T ) for symmetry about unknown location, we highlight two

tests with asymptotically distribution-free test statistics, namely (i) a classical

test based on the sample skewness coefficient b1 (Gupta [22]) and (ii) the triples

test (see Davis et al. [15] and Randles et al. [35]). In the first case, the test

statistic
√

n b1
τ , where b1 = m3

m
3/2

2

, τ =
m6−6m2m4+9m3

2

m2

3

and mi is the central moment

of order i, i ∈ N, is asymptotically N(0, 1) under the null hypothesis of symmetry,

provided µ6 = E(Y 6) exists. The second test is based on the difference D between

the number of “right triples” and the number of “left triples” in the sample, where

each triple (Yi, Yj , Yk), 1 ≤ i < j < k ≤ n, is defined as a “right triple” if the

middle ordered observation in (Yi, Yj , Yk) is closer to the smallest than to the

largest of the three observations, and as a “left triple” if the middle ordered

observation is closer to the largest than to the smallest of the three observations.
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The test statistic, V = D/σ̂, where σ̂ is given in formula (3.78) in Hollander

et al. [24], is asymptotically N(0, 1) under the null hypothesis of symmetry. Notice

further that these two tests are unsensitive to power transformations in T , as well

as to scale changes.

4.1. A graphical procedure based on the TTT plot

As mentioned in Section 2, the FR is an important indicator in lifetime

analysis. Some particular outstanding FR shapes include increasing (IFR), de-

creasing (DFR), bathtub (BT) and inverse bathtub (IBT) ones. For a RV T with

finite expectation, it is possible to identify the shape of its FR by the scaled TTT

curve (Barlow et al. [7]), given by

(4.1) WT (y) =

∫ F−1

T (y)
0

[
1 − FT (t)

]
dt

∫ F−1

T (1)
0

[
1 − FT (t)

]
dt

, 0 ≤ y ≤ 1 .

This function can be empirically approximated by

(4.2) Wn(k/n) =

∑k
i=1 Ti:n + [n−k] Tk:n∑n

i=1 Ti:n
, k = 0, ..., n ,

where T1:n, T2:n, ..., Tn:n denote the order statistics associated to a random sam-

ple T1, T2, ..., Tn (see Figure 1). Thus, the plot of
[
k/n, Wn(k/n)

]
, where the

consecutive points are connected by straight lines, gives us information about the

underlying FR (see Aarset [1]).

0

1

y

F
−1(y) t

F(t)

0

1

k n

x(k) x

F*(x)

Figure 1: Shaded areas corresponding to
∫ F

−1

T
(y)

0
[1 − FT (t)] dt (left) and

1
n

[∑k

i=1 Ti:n + [n−k]Tk:n

]
(right) in Equations 4.1 and 4.2.

The scaled TTT plot is a straight line in the case of the exponential distribution,

a concave (convex) function in the case of an increasing (decreasing) FR, first

concave (convex) and then convex (concave) in the case of an inverse bathtub

(bathtub) FR, thus providing a useful tool in identifying the shape of the FR
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(see Figure 2). Further, the scaled TTT is invariant under change of scale, and

so in the case of a GBS distribution no estimation of β is required for the plot.

The only drawback is that it requires T to have a finite expectation.

0 1

1

IFR

DFR

IBT

BT

co
nst

ant

y

W(y)

Figure 2: Scaled TTT plot for indicated shape of FR – bathtub (BT),
decreasing (DFR), inverse bathtub (IBT), increasing (IFR).

Once again, it follows from Theorem (3.1) that the TTT curves are the same

for T/β and β/T if and only if T ∼ GBS(1, β, gX) for some symmetric X. Based

on this result, we propose to assess the fit to the GBS distribution by comparing

the empirical scaled TTTs of the samples t and t−1. If the data do follow a GBS

distribution, these two plots should look alike, regardless of β. We denote by

DTTT the maximum vertical distance between these two scaled TTT plots.
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Figure 3: Scaled TTT plot for some GBS (top) and non-GBS (bottom)
simulated samples and reciprocals, with n = 103.
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See Figure 3 for plots of the empirical scaled TTT for simulated random samples

(n = 103) for some GBS distributions (namely, a BS(1, 1), a BS-t3 generated by

the Student t with 3 degrees of freedom, and the GBS distribution with CDF

Ha(.; θ) for a = θ = 0.2, mentioned in Remark 3.1) and non-GBS distributions

(half-normal, half-Student t3 and exponential). The behavior of the statistic

DTTT is under investigation.

4.2. Testing for the BS model

For the case of an absolutely continuous lifetime RV T , to test the null hy-

pothesis H0 that the CDF of T is F (·; θ), based on a random sample (t1, t2, ..., tn),

we consider the Cramér–von Mises (CM) statistic given by

(4.3) W 2
n = n

∫ +∞

0

(
F ∗

n(t) − F (t; θ)
)2

dF (t; θ) ,

where F ∗
n(·) is the ECDF associated to the sample. This reduces to

W 2
n =

1

12 n
+

n∑

j=1

(
2j − 1

2n
− F (tj:n; θ)

)2

,

where t1:n, t2:n, ..., tn:n denote the corresponding order statistics. If θ is known,

W 2
n is distribution-free, in the sense that its distribution depends only on n but

not on the true F (·; θ), since F (T ) is uniformly distributed in [0, 1] under H0.

The asymptotic distributions were derived by Anderson and Darling [3].

As is well known, the ECDF statistics, such as W 2
n , for the case of unknown

parameters usually depend on the CDF F (·; θ) in H0 as well as on n. However,

in the case of a location-scale family, these statistics depend only on the family

itself and n but not on the true values of the location and scale parameters,

as long as an appropriate estimation method is provided (David and Johnson

[14]). In some cases of a shape parameter, such as in the Gamma family, the

dependence of the asymptotic and finite sample ECDF statistics on the shape

parameter is slight, and tables of asymptotic percentage points were provided

for different values of the parameter, to be used with the estimated values; see

Stephens [41]. Another way to overcome this problem with shape parameters is

to use the half-sample method introduced by Durbin [18]. This method uses a

randomly chosen half of the original sample to compute the parameter estimates,

say θ∗, by asymptotically efficient methods, such as maximum likelihood (ML).

Then the ECDF statistics are computed with F (·; θ∗) using the whole sample.

The remarkable result is that asymptotically these ECDF statistics will behave

like the ones for the case of known parameters. However, besides the dependence
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of the test conclusion on the choice of the half-sample, a considerable loss in

power has been reported, namely in the case of testing for a normal or exponential

distribution (see Stephens, [40] and [41]).

For a random sample T1, T2, ..., Tn from T ∼ BS(α, β), let θ = (α, β) and θ̂

and θ̃ denote respectively the ML and MM estimators of θ, and θ∗ denote the ML

estimator based on a randomly chosen half-sample. We shall carry out a study

of the asymptotic distribution of W 2
n in (4.3) for the case of unknown θ, using

these three statistics. Thus let

(4.4) C2
n = n

∫ +∞

0

(
Fn(t) − F (t; θ̂)

)2
dF (t; θ̂)

instead of (4.3), as in Darling ([13]), or alternatively

(4.5) C
′2
n = n

∫ +∞

0

(
Fn(t) − F (t; θ̃)

)2
dF (t; θ̃)

or

(4.6) C∗2
n = n

∫ +∞

0

(
Fn(t) − F (t; θ∗)

)2
dF (t; θ∗) .

Remark 4.1. For the BS(α, β) distribution, using the asymptotic dis-

tributions of β̂ and β̃ (see Engelhardt [19] and Ng et al. [33], respectively), we

have var(β̃) ∼ var(β̂) as α → 0, so the relative efficiency of these two estimators

tends to 1 as α decreases. Moreover, quoting Birnbaum & Saunders [11] “under

this condition [α < 1/2], which we shall later empirically verify, β̃ is virtually the

ML estimator whose optimal properties are well known”, we then expect to have

similar asymptotic distributions (as n → ∞) in (4.4) and (4.5) when using either

β̂ or β̃, at least for small values of α.

We have computed the asymptotic percentage points for C2
n for testing

H0 : T ∼ BS(α, β) with unknown parameters, based on 105 simulations, by the

method described in Stephens [41], for significance levels 0.10, 0.05 and 0.01.

This was achieved, for fixed α (α = 0.05, 0.1, 0.2, ..., 1.0), by plotting the points

obtained with simulated samples of size n (n = 30, 40, ..., 120) against m = 1/n

and extrapolating to m = 0. Then, the values obtained for each fixed significance

level were plotted against α to extrapolate to α = 0 by means of a polynomial

fit (see Table 1). Notice that these values for α → 0 are almost exactly the same

as for the case of a normal distribution with unknown parameters (see Table 4.7

in Stephens [41]), as expected, due to the asymptotic normality of the BS(α, β)

distribution as α → 0 (see Remark 3.3). We also report that, for the range of α

values considered, the dependence of the percentage points on n (n ≥ 30) is slight,

being negligible as α decreases and as the significance level increases. Table 1 is

to be used with estimated α from the data, as mentioned before. In general, the



346 Emilia Athayde

well known data that have been fitted to a BS model have α̂ < 1, for example

the lifetime data sets psi31, psi26 and psi21 in Birnbaum & Saunders [11] or the

survival data set in Kundu et al. [27].

Table 1: Asymptotic upper-tail percentage points for C2
n for testing H0 : T ∼ BS(α, β),

both parameters unknown, based on 105 simulations.

α
Significance level

0.10 0.05 0.01

1.0 0.136 0.170 0.256
0.9 0.130 0.163 0.242
0.8 0.125 0.155 0.228
0.7 0.120 0.147 0.214
0.6 0.115 0.142 0.206
0.5 0.111 0.136 0.197
0.4 0.109 0.133 0.190
0.3 0.106 0.129 0.185
0.2 0.105 0.127 0.181
0.1 0.104 0.127 0.179
0.05 0.103 0.126 0.178

α → 0 0.103 0.126 0.179

We then repeated this procedure using MM instead of ML estimates of

both parameters, and obtained the asymptotic percentage points for C
′2
n . The

results, shown in Table 2, are similar to the former ones for small α values and

the similarity is stronger as α decreases to 0, as expected (see Remark 4.1).

Table 2: Asymptotic upper-tail percentage points for C
′2
n for testing H0 : T ∼ BS(α, β),

both parameters unknown, based on 105 simulations.

α
Significance level

0.10 0.05 0.01

1.0 0.126 0.156 0.230
0.9 0.123 0.151 0.222
0.8 0.120 0.148 0.215
0.7 0.117 0.144 0.208
0.6 0.113 0.139 0.200
0.5 0.111 0.136 0.194
0.4 0.109 0.133 0.190
0.3 0.106 0.130 0.186
0.2 0.105 0.127 0.181
0.1 0.103 0.126 0.179
0.05 0.103 0.126 0.179

α → 0 0.102 0.125 0.177
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In the case of the GBS family, the percentage points for C2
n strongly depend

on the true shape parameter α for a fixed generator X. However, if the parameters

α and β are estimated by ML via the split-sample method (Durbin [18]; see also

Stephens [41]), then similar results to the ones reported for testing normality and

exponentiality based on CM statistic (see Stephens [40], Tables 1 and 2) were

obtained. We illustrate this feature for the BS case with Table 3. This table shows

the percentage points for C∗2
n for α = 0.1, 0.5, 1.0, 2.0, 3.0 and n = 20, 50, 100,

each one computed from 105 simulated samples at significance levels 0.10, 0.05

and 0.01, for unknown parameters estimated by the split-sample method.

Table 3: Upper-tail percentage points for C∗2
n for testing H0 : T ∼ BS(α, β),

both parameters unknown, and upper-tail asymptotic percentage
points for W 2

n for testing H0 : T ∼BS(α, β), both parameters known.

C∗2

n n α
Significance level

0.10 0.05 0.01

0.1 0.373 0.490 0.755
0.5 0.374 0.490 0.768

20 1.0 0.376 0.495 0.776
2.0 0.383 0.506 0.791
3.0 0.372 0.491 0.778

0.1 0.357 0.476 0.759
0.5 0.355 0.472 0.745

50 1.0 0.359 0.479 0.770
2.0 0.361 0.479 0.770
3.0 0.357 0.469 0.756

0.1 0.353 0.471 0.755
0.5 0.353 0.466 0.753

100 1.0 0.354 0.473 0.761
2.0 0.354 0.469 0.749
3.0 0.351 0.462 0.751

W 2

n ∞ 0.34730 0.46136 0.74346

The asymptotic percentage points for W 2
n (Anderson and Darling [3]) are shown

in the last row of the table. We observe that the dependence of upper-percentage

points on α values is no longer strong, that it decreases as n increases and that

the upper-percentage points are fairly close to the asymptotic ones for W 2
n .

We realize that a drawback of these methods is the dependence of the criti-

cal points on the unknown parameter and that there are other possible goodness-

of-fit tests that can be useful in such cases; see Barros et al. [8] and Castro-Kuriss

et al. [12].
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5. SOME APPLICATIONS WITH DATA

In this section we analyze three well-known data sets from different areas

and apply the procedures described in the previous sections to these data.

5.1. The data sets

The three data sets under analysis are (i) the survival times of 72 guinea

pigs infected with tubercle bacilli in regimen 6.6 (corresponding to 4.0×106 bacil-

lary units per 0.5ml), analyzed by Kundu et al. [27], denoted by survpig, (ii) the

data set of lifetimes in cycles of aluminum coupons (maximum stress per cycle

31,000 psi) analyzed by Birnbaum & Saunders [11] and other authors (e.g., Ng

et al. [33], Sanhueza et al. [36] and Balakrishnan et al. [6]), denoted by psi31

and (iii) the data set of daily ozone concentrations collected in New York dur-

ing May–September 1973, analyzed by Ferreira et al. [20], denoted by ozone.

The sample dimensions are respectively n = 72, n = 101 and n = 116.

5.2. An introductory example

The estimation procedure based on the KS-type distance DKS described in

Section 4 is illustrated here by means of the data set survpig. For these data,

all β values in the interval [72.35, 72.92] minimize DKS , so we took the center of

this interval as its estimate, say βKS = 72.635. This corresponds to a distance

DKS = 6/72 = 0.0833. See Figure 4.
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Figure 4: DKS (KS-type distance) as a function of β (left) for survpig

data and ECDF for the β-scaled sample and its reciprocal, with
β estimated by minimizing DKS (right).
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5.3. Analyzing the data

For each of the samples, say t = (t1, t2, ..., tn), we applied the procedures

described in the previous sections. The results are summarized in Table 4.

See also the scaled TTT plots for t and t−1 (Figure 5) and the QQ-plots for

x = t/β̂ and y = β̂/t (Figure 6). Estimates β̃ and βKS (for βKS we took the

center of the interval of β values corresponding to a minimum distance DKS , as

explained before) were computed, as well as ML estimates of α and β for the

parametric models BS(α, β) and BS-tν(α, β), with ν estimated as in Azevedo et

al. [5]. The CM-type statistics C2
n, C

′2
n and C∗2

n have also been computed and

critical values for these statistics at significance level 5% are shown in paren-

theses. These values were obtained by interpolation, using Tables 1 and 2, in

the first two cases, and from 105 simulated samples for each n (n = 72, 101, 116)

and α (α = 0.76, 0.17, 0.98), respectively. The classical test for symmetry about

unknown location based on b1 and the triples test were also applied to the trans-

formed sample y = log(t).

Table 4: Results for samples survpig, psi31 and ozone.

Data set

survpig psi31 ozone

n 72 101 116eβ 77.4526 131.8193 28.4213
βKS 72.635 132.995 31.530

DKS 0.083 0.059 0.051bβ 77.5348 131.8190 28.0234
BS(α, β) bα 0.7600 0.1704 0.9823eα 0.7600 0.1704 0.9822

BS-tν(α, β)

ν 5 8 7bβ 75.5880 132.4297 30.9047bα 0.6085 0.1475 0.8074eα 0.5887 0.1476 0.8301

C2

n
0.1874 0.0857 0.2071
(0.152) (0.127) (0.169)

C
′
2

n
0.1865 0.0857 0.1695
(0.145) (0.127) (0.156)

C∗2

n
0.241 0.138 0.327

(0.470) (0.472) (0.471)

b1 test p-value 0.5886 0.3701 0.2258
triples test p-value 0.170 0.691 0.388

DTTT 0.1068 0.0895 0.1989
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Figure 5: TTT for samples t and t−1 for survpig (left),
psi31 (center) and ozone (right).
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Figure 6: QQ-plots for x = t/β̃ and y = β̃t−1, for survpig (left),
psi31 (center) and ozone (right).

The CM-type tests based on C2
n and C

′2
n both reject the BS model for

samples survpig and ozone, but not for psi31. The symmetry tests do not

reject a GBS model for any of these samples.

Finally, the distance DTTT has been computed for each sample. We also

simulated the upper 5% percentage points for the distance DTTT in the BS(α, β)

and BS-tν(α, β) models for each n (72, 101 and 116, respectively) with α = α̂ and

β = β̂ in each case (ν = 5, 8 and 7, respectively) with 104 simulations (see Table 5).

This rules out these two particular models for ozone. The graphical analysis

(Figures 5 and 6) also indicates that a GBS model seems reasonable for survpig,

excellent for psi31 and not adequate for ozone.

Table 5: Simulated upper-tail percentage points (at significance level 5%)

for DTTT assuming T ∼ BS(α̂, β̂) or T ∼ BS-tν(α̂, β̂) (α̂ and β̂
estimated from the three samples).

sample

survpig psi31 ozone

BS 0.156 0.122 0.157
BS-tν 0.218 0.197 0.184

(ν = 5) (ν = 8) (ν = 7)
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On the other side, as the classical symmetry b1 test does not reject a GBS

model for ozone, we have carried out a brief simulation study on the power of

this test against several alternatives, for n = 116, including the extreme value

Birnbaum–Saunders model generated by the Gumbel distribution for minima,

denoted by EVBS∗(α, β, 0). This model was proposed by Ferreira et al. [20] as

the best among several other models, including the BS one. The power of the

test, based on 105 simulations, was estimated as 0.762 supposing the true model

is EVBS∗(α̂, β̂, 0). If the true α in this model lies in the interval [0.6,1.0], the

power decreases from 0.811 to 0.659, and can be as low as 0.044 for α = exp(1).

Finally, the simulated 5% upper percentage point for DTTT with this model,

0.3142, also sustains the EVBS∗ fit since the observed value for ozone is much

lower (see Table 4).

6. CONCLUDING REMARKS

In this paper we derived a characterization of the GBS class related to

the reciprocal property and analyzed some of its consequences. We discussed

some graphical procedures to assess the fit of the GBS model to observed data,

we tabulated the asymptotic percentage points for a test of the null hypothesis

that the data come from a BS distribution with unknown parameters, and fi-

nally we applied the results to three well-known data sets. The case of tests for

other GBS distributions, such as the ones generated by the Student tν or logistic

distributions, is under investigation.
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