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1. INTRODUCTION

Post-market drug and vaccine safety surveillance is important in order to

detect rare but serious adverse events not found during pre-licensure clinical trials.

Safety problems may go undetected either because an adverse reaction is too

rare to occur in sufficient numbers among the limited sample size of a phase

three clinical trial, or because the adverse reaction only occur in a certain sub

population that was excluded from the trial, such as frail individuals.

In order to detect a safety problem as soon as possible, the CDC Vaccine

Safety Datalink project pioneered the use of near real-time safety surveillance

using automated weekly data feeds from electronic health records [1, 2, 3]. In such

surveillance, the goal is to detect serious adverse reactions as early as possible

without too many false signals. It is then necessary to use sequential statistical

analysis, which adjusts for the multiple testing inherent in the many looks at the

data. Using the maximized sequential probability ratio test (MaxSPRT) [4], all

new childhood vaccines and some adult vaccines are now monitored in this fashion

[1, 5, 6, 7, 8, 9, 10, 11, 12, 13]. There is also interest in using sequential statistical

methods for post-market drug safety surveillance [20, 14, 15, 16, 17, 18], and the

methods presented in this paper may also be used in either settings.

In contrast to group sequential analyses, continuous sequential methods

can signal after a single adverse event, if that event occurs sufficiently early.

In some settings, such as a phase 2 clinical trial, that may be appropriate, but in

post-market safety surveillance it is not. In post-market vaccine surveillance, an

ad-hoc rule that require at least two or three events to signal has sometimes been

used, but that leads to a conservative type 1 error (alpha level). In this paper

we provide exact critical values for continues sequential analysis when a signal is

required to have a certain minimum number of adverse events. We also evaluate

power and expected time to signal for various alternative hypotheses. It is shown

that it is possible to simultaneously improve both of these by requiring at least 3

or 4 events to signal. Note that it is still necessary to start surveillance as soon as

the first few individuals are exposed, since they all could have the adverse event.

For logistical reasons, there is sometimes a delay in the start of post-

marketing safety surveillance, so that the first analysis is not conducted until

a group of people have already been exposed to the drug or vaccine. This is not

a problem when using group sequential methods, as the first group is then sim-

ply defined to correspond to the start of surveillance. For continuous sequential

surveillance, a delayed start needs to be taken into account when calculating the

critical values. In this paper, we present exact critical values when there is a

delayed start in the sequential analysis. We also calculate the power and time to

signal for different relative risks.
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In addition to ensuring that the sequential analysis maintains the correct

overall alpha level, it is important to consider the statistical power to reject the

null hypothesis; the average time until a signal occurs when the null hypothesis

is rejected; and the final sample size when the null hypothesis is not rejected. For

any fixed alpha, there is a trade-off between these three metrics, and the trade-off

depends on the true relative risks. In clinical trials, where sequential analyses are

commonly used, statistical power and the final sample size are usually the most

important design criteria. The latter is important because patient recruitment

is costly. The time to signal is usually the least important, as a slight delay

in finding an adverse event only affects the relatively small number of patients

participating in the clinical trial, but not the population-at-large. In post-market

safety surveillance, the trade-off is very different. Statistical power is still very

important, but once the surveillance system is up and running, it is easy and

cheap to prolong the length of the study by a few extra months or years to

achieve a final sample size that provides the desired power. Instead, the second

most critical metric is the time to signal when the null is rejected. Since the

product is already in use by the population-at-large, most of which are not part

of the surveillance system, a lot of people may be spared the adverse event if a

safety problem can be detected a few weeks or months earlier. This means that

for post-market vaccine and drug safety surveillance, the final sample size when

the null is not rejected is the least important of the three metrics.

All calculations in this paper are exact, and none are based on simula-

tions or asymptotic statistical theory. The numerical calculation of the ex-

act critical values is a somewhat cumbersome process. So that users do not

have to do these calculations themselves, we present tables with exact crit-

ical values for a wide range of parameters. For other parameters, we have

developed the open source R package ‘Sequential’, freely available at ‘cran.r-

project.org/web/packages/Sequential’.

2. CONTINUOUS SEQUENTIAL ANALYSIS FOR POISSON DATA

Sequential analysis was first developed by Wald [19, 21], who introduced

the sequential probability ratio test (SPRT) for continuous surveillance. The

likelihood based SPRT proposed by Wald is very general in that it can be used

for many different probability distributions. The SPRT is very sensitive to the

definition of the alternative hypothesis of a particular excess risk. For post-market

safety surveillance, a maximized sequential probability ratio test with a composite

alternative hypothesis has often been used instead. This is both a ‘generalized

sequential probability ratio test’ [22] and ‘sequential generalized likelihood ratio

test’ [23, 24]. In our setting, it is defined as follows, using the Poisson distribution

to model the number of adverse events seen [4].
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Let Ct be the random variable representing the number of adverse events in

a pre-defined risk window from 1 to W days after an incident drug dispensing that

was initiated during the time period [0, t]. Let ct be the corresponding observed

number of adverse events. Note that time is defined in terms of the time of

the drug dispensing rather than the time of the adverse event, and that hence,

we actually do not know the value of ct until time t+W .

Under the null hypothesis (H0), Ct follows a Poisson distribution with mean

µt, where µt is a known function reflecting the population at risk. In our setting,

µt reflects the number of people who initiated their drug use during the time

interval [0, t] and a baseline risk for those individuals, adjusting for age, gender

and any other covariates of interest. Under the alternative hypothesis (HA),

the mean is instead RRµt, where RR is the increased relative risk due to the

drug/vaccine. Note that C0 = c0 = µ0 = 0.

For the Poisson model, the MaxSPRT likelihood ratio based test statistic

is

LRt = max
HA

P
(

Ct = ct |HA

)

P (Ct = ct |H0)
= max

RR>1

e−RRµt(RRµt)
ct/ct!

e−µtµct

t /ct!

= max
RR>1

e(1−RR)µt(RR)ct .

The maximum likelihood estimate of RR is ct/µt, so

LRt = eµt−ct(ct/µt)
ct .

Equivalently, when defined using the log likelihood ratio

LLRt(ct) = ln(LRt) = max
RR>1

(

(1−RR)µt + ct ln(RR)
)

= (µt − ct) + ct ln(ct/µt) .

Note that, since µt is known, the test statistic is only a function of ct. This shall be

useful when calculating exact critical values, in Section 3.1. The MaxSPRT test

statistic is sequentially monitored for all values of t > 0, until either LLRt ≥ CV ,

in which case the null hypothesis is rejected, or until µt = T , in which case the

alternative hypothesis is rejected. T is a predefined upper limit on the length

of surveillance, defined in terms of the sample size, expressed as the expected

number of adverse events under the null hypothesis. It is roughly equivalent

to a certain number of exposed individuals, but adjusted for covariates. Exact

critical values (CV) are available for the MaxSPRT [4], obtained through iterative

numerical calculations.
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3. MINIMUM NUMBER OF EVENTS REQUIRED TO SIGNAL

Continuous sequential probability ratio tests may signal at the time of the

first event, if that event appears sufficiently early. One could add a requirement

that there need to be a minimum of M events before one can reject the null

hypothesis. This still requires continuous monitoring of the data from the very

start, as M events could appear arbitrarily early. Hence, there is no logistical

advantage of imposing this minimum number. The potential advantage is instead

that it may reduce the time to signal and/or increase the statistical power of the

study. Below, in Section 3.2, it is shown that both of these can be achieved

simultaneously.

3.1. Exact Critical Values

In brief, first note that the time when the critical value is reached and the

null hypothesis is rejected can only happen at the time when an event occurs. For

any specified critical value CV and maximum sample size T , it is then possible to

calculate the probability of rejecting the null, using a bisection iterative approach.

As mentioned in the last section, the exact critical value can be obtained

analytically, and the details for doing so are described in the present section.

Firstly, it is important to note that, for each fixed CV , the signaling threshold

can be written in the time scale. This is so because the MaxSPRT statistic,

LLRt(ct), is monotone non-increasing with µt for each fixed ct > 0, which means

that the null hypothesis is rejected when an event arrives too fast in compari-

son to its expected time of arrival when the null is true. Thus, let τn denote

the arrival time of the n-th event. Once CV > 0 is fixed, there are constants

0 < µ(1) ≤ µ(2) ≤ ··· ≤ µ(N) such that the probability of rejecting the null hy-

pothesis can be expressed as:

Pr
[

rejecting H0 |RR
]

= Pr
[

LLRt ≥ CV for some t ∈ (0, T ) |RR
]

= Pr

[

N
⋃

n=1

{

τn ≤µ(n)

}

|RR

]

,(3.1)

where, for a minimum number M of events required to reject the null, N is the

maximum length of surveillance given in the scale of the number of events such

that N := max{c ∈ N : LLRT (c) ≤ CV }, µ(1) = ··· = µ(M), µ(n) = sup{µ∗ > 0 :

LLRµ∗(n) ≥ CV } for n = M, ..., (N−1), and µ(N) = T . Because Ct is a Poisson-

based process, we can write µt = λ t, where λ is a known constant. Then, the

joint probability density function of the random vector (τ1, ..., τN ), denoted here
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with fτ̃ (y1, ..., yN ), can be expressed as following:

(3.2) fτ̃

(

y1, ..., yN |RR
)

= (RRλ)Ne−yNRRλ I(yN > 0) .

Now, consider the new random vector T̃ = λτ̃ = (T1, ..., TN ), which, by its turn,

has density:

(3.3) fT̃

(

t1, ..., tN |RR
)

= RRNe−tNRR I(tN > 0) .

With the last expression, the probability of rejecting the null hypothesis, say

π(RR,CV ), is simply:

π(RR,CV ) = Pr
[

rejecting H0 |RR
]

= Pr

(

N
⋃

n=1

{

Tn ≤µ(n)

}

|RR

)

=

N
∑

n=1

Pr
(

N=n |RR
)

,(3.4)

where N is the total number of events observed until the signaling moment.

In order to understand the behaviour of π(RR,CV ) as a function of N, let us

evaluate it for N = 1, 2, 3, 4. For N = 1:

Pr
(

N= 1 |RR
)

= Pr
(

T1 ≤µ(1)

)

= 1 − e−µ(1)RR .(3.5)

For N = 2:

Pr
(

N= 2 |RR
)

= Pr
(

T1>µ(1) ∩ T2 ≤µ(2)

)

=

∫ µ(2)

µ(1)

∫ t2

µ(1)

RR2e−RRt2 dt1 dt2(3.6)

= Pr
(

µ(1) ≤T2 ≤µ(2) |RR
)

− RR−1µ(1)

[

Pr
(

µ(1) ≤T1 ≤µ(2) |RR
)]

.

For N = 3:

Pr
(

N= 3 |RR
)

= RR−1 Pr
(

T1>µ(1) ∩ T2>µ(2) ∩ T3 ≤µ(3)

)

=

∫ µ(3)

µ(2)

∫ t3

µ(2)

∫ t2

µ(1)

RR3e−RRt3 dt1 dt2 dt3

= Pr
(

µ(2) ≤T3 ≤µ(3) |RR
)

(3.7)

− RR−1µ(1) Pr
(

µ(2) ≤T2 ≤µ(3) |RR
)

+ RR−2
(

µ(1)µ(2) − µ2
(2)/2

)

Pr
(

µ(2) ≤T1 ≤µ(3) |RR
)

.
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Finally, for N = 4:

Pr
(

N= 4 |RR
)

= RR−1 Pr
(

T1>µ(1) ∩ T2>µ(2) ∩ T3>µ(3) ∩ T4 ≤µ(4)

)

=

∫ µ(4)

µ(3)

∫ t4

µ(3)

∫ t3

µ(2)

∫ t2

µ(1)

RR4e−RRt4 dt1 dt2 dt3 dt4

= Pr
(

µ(3) ≤T4 ≤µ(4) |RR
)

(3.8)

− RR−1µ(1) Pr
(

µ(3) ≤T3 ≤µ(4) |RR
)

+ RR−2
(

µ(1)µ(2) − µ2
(2)/2

)

Pr
(

µ(3) ≤T2 ≤µ(4) |RR
)

− RR−3

[

µ3
(3)

3!
−
µ(1)µ

2
(3)

2
+ µ(3)

(

µ(1)µ(2) −
µ2

(2)

2

)]

× Pr
(

µ(3) ≤T1 ≤µ(4) |RR
)

.

Thus, a recursive expression, with respect to N, can be written to express

π(RR,N):

(3.9) π(RR,CV ) =
N
∑

N=1

N
∑

i=1

(−1)i+1 ψi Pr
(

µ(N−1) ≤TN+1−i ≤µ(N) |RR
)

,

where µ0 = 0, ψ1 = 1, and, for i = 2, ..., N ,

ψi =

i−1
∑

j=1

(−1)j+1

(

rµ(i−1)

)j

j!
ψi−j .

Because (3.9) is monotone decreasing with respect to CV , we can obtain the

critical value, under a fixed precision ǫ, for any α ∈ (0, 1) through numerical

calculation. For an alpha level of 0.05, the magnitude of CV is about 3 or 4

depending on the value of T , and it will usually not take values larger than 20

even for very small alpha level and very large T like α = 0.00001 and T = 1000.

The following steps can be used for finding the exact critical value for fixed T > 0,

α ∈ (0, 1), M ∈ N, and ǫ > 0:

• Step (i) — set CV1 := 0 and CV2 := 50.

• Step (ii) — set CVm := (CV1 + CV2)/2. Set c = (M−1) and µ(c) = 0.

• Step (iii) — while µ(c) ≤ T , update c := c+ 1 and find µ(c) such that

µ(c) = sup
{

µ∗> 0: LLRµ∗(c) ≥ CVm

}

. Then, set µ(1) = ··· = µ(M).

• Step (iv) — set µ(c) := T . Using expression (3.9), calculate π(RR= 1,

CV =CVm). If |π(1, CVm) − α| ≤ ǫ, stop and take CVm as the critical

value solution. Otherwise, proceed to Step (v).

• Step (v) — if π(RR=1, CV =CVm) > α, then update CV1 := CVm,

otherwise, update CV2 := CVm. Go to Step (ii).

Table 1 presents the exact critical values for the maximized SPRT when

requiring a minimum number of events M to signal, for M = 1, 2, 3, 4, 6, 8, 10.
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Table 1: Exact critical values for the Poisson based maximized SPRT, when a mini-
mum of M events is required before the null hypothesis can be rejected.
T is the upper limit on the sample size (length of surveillance), expressed
in terms of the expected number of events under the null. The type 1 error
is α = 0.05. When T is small and M is large, no critical value will result in
α ≤ 0.05, which is denoted by ‘..’ .

T
Minimum Number of Events Required to Reject the Null

M = 1 2 3 4 6 8 10

1 2.853937 2.366638 1.774218 .. .. .. ..

1.5 2.964971 2.576390 2.150707 1.683209 .. .. ..

2 3.046977 2.689354 2.349679 2.000158 .. .. ..

2.5 3.110419 2.777483 2.474873 2.187328 .. .. ..

3 3.162106 2.849327 2.565320 2.317139 1.766485 .. ..

4 3.245004 2.937410 2.699182 2.498892 2.089473 1.564636 ..

5 3.297183 3.012909 2.803955 2.623668 2.267595 1.936447 ..

6 3.342729 3.082099 2.873904 2.699350 2.406810 2.093835 1.740551

8 3.413782 3.170062 2.985560 2.829259 2.572627 2.337771 2.086032

10 3.467952 3.238009 3.064248 2.921561 2.690586 2.484834 2.281441

12 3.511749 3.290551 3.125253 2.993106 2.781435 2.589388 2.415402

15 3.562591 3.353265 3.199953 3.075613 2.877939 2.711996 2.556634

20 3.628123 3.430141 3.288216 3.176370 2.997792 2.846858 2.717137

25 3.676320 3.487961 3.356677 3.249634 3.081051 2.947270 2.827711

30 3.715764 3.534150 3.406715 3.307135 3.147801 3.019639 2.911222

40 3.774663 3.605056 3.485960 3.391974 3.246619 3.130495 3.030735

50 3.819903 3.657142 3.544826 3.455521 3.317955 3.210428 3.117553

60 3.855755 3.698885 3.590567 3.505220 3.374194 3.271486 3.184196

80 3.910853 3.762474 3.659939 3.580900 3.458087 3.362888 3.284030

100 3.952321 3.810141 3.711993 3.636508 3.520081 3.430065 3.355794

120 3.985577 3.847748 3.753329 3.680584 3.568679 3.482966 3.411235

150 4.025338 3.892715 3.802412 3.732386 3.626150 3.544308 3.476655

200 4.074828 3.948930 3.862762 3.796835 3.696511 3.619825 3.556799

250 4.112234 3.990901 3.908065 3.844847 3.748757 3.675703 3.615513

300 4.142134 4.024153 3.944135 3.882710 3.790143 3.719452 3.661830

400 4.188031 4.075297 3.998950 3.940563 3.852658 3.785930 3.731524

500 4.222632 4.113692 4.040021 3.983778 3.899239 3.835265 3.783126

600 4.250310 4.144317 4.072638 4.018090 3.936175 3.874183 3.823908

800 4.292829 4.191167 4.122559 4.070466 3.992272 3.933364 3.885600

1000 4.324917 4.226412 4.160022 4.109665 4.034210 3.977453 3.931529

Using the approach described above, these were calculated using the ‘R Sequen-

tial’ package, which can also be used for other values of ‘M ’. When M = 1, we

get the standard maximized SPRT, whose previously calculated critical values [4]

are included for comparison purposes. The expression for the maximum num-

ber of iterations until finding the CV solution is ln(1/ǫ)/ ln(2). For a precision

of ǫ = 0.00000001, which is the precision adopted in this paper, the number of

iterations is of at most ⌈ln(1/0.00000001)/ ln(2)⌉ = 27. Note that these numer-

ical calculations only have to be done once for each T and M . Hence, users do

not need to do their own numerical calculations, as long as they use one of the

parameter combinations presented in Table 1.
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The critical values are lower for higher values of M . This is natural. Since

we do not allow the null hypothesis to be rejected based on only a small number

of adverse events, it allows us to be more inclined to reject the null later on when

there are a larger number of events, while still maintaining the correct overall

alpha level. In essence, we are trading the ability to reject the null with a very

small number of events for the ability to more easily reject the null when there

are a medium or large number of events. Note also that the critical values are

higher for larger values of the maximum sample size T . This is also natural, as

there is more multiple testing that needs to be adjusted for when T is large.

3.2. Statistical Power and Expected Time to Signal

For fixed CV , T , M , and RR, one can also calculate the statistical power

using expression (3.9). The same reasoning that was applied to calculate the

probability of rejecting H0 can be used to obtain an expression for the average

time to signal. Let L denote the time when the sequential analysis is interrupted

to reject the null. Then the average time to signal is given by:

E(L) =
RR−1

∑N
N=1

∫ µ(N)

µ(N−1)

∫ tN
µ(N−1)

∫ tN−1

µ(N−2)
···
∫ t2
µ(1)

RRN+1 tN e
−RRtN dt1 dt2 ··· dtN

π(RR,CV )

=
RR−1

∑N
N=1

∑

N

i=1 −1i+1 ψi Pr
(

µ(N−1) ≤WN+1−i ≤µ(N) |RR
)

π(RR,CV )
,

where WN ∼ Gamma(N+1, RR), i.e., fW (w) = RRe−RR(RRw)N/N! .

Table 2 presents statistical power and average time to signal for different

values of M , the minimum number of events needed to signal. These are exact

calculations, done for different relative risks and for different upper limits T on

the length of surveillance. When T increases, power increases, since the maximum

sample size increases. For fixed T , the power always increases with increasing M .

This is natural, since power increases by default when there are fewer looks at

the data, as there is less multiple testing to adjust for. The average time to signal

may either increase or decrease with increasing values of M . For example, with

T = 20 and a true RR = 2, the average time of signal is 6.96, 6.62, 6.57 and

6.96 for M = 1, 3, 6 and 10, respectively. For the same parameters, the statistical

power is 0.921, 0.936, 0.948 and 0.957 respectively. Hence, when the true RR = 2

and when T = 20, both power and the average time to signal is better if we use

M = 3 rather than M = 1. The same is true for M = 6 versus M = 3, but not

for M = 10 versus M = 6.

The trade-off between statistical power and average time to signal is not

easily deciphered from Table 2, and it is hence hard to judge which value of M is

best. Since T , the upper limit on the length of surveillance, is the least important



Sequential Surveillance with Minimum Events to Signal 383

metric, let’s ignore that for the moment, and see what happens to the average

time to signal if we keep both the alpha level and the power fixed. That will make

it easier to find a good choice for M , which will depend on the true relative risk.

Table 2: Statistical power and average time to signal, when the null hypothesis
is rejected, for the Poisson based maximized SPRT when a minimum of
M events is required before the null hypothesis can be rejected. T is the
upper limit on the sample size (length of surveillance), expressed in terms
of the expected number of events under the null. The type 1 error is α=0.05.

T M
Statistical Power Average Time to Signal

RR = 1.5 2 3 4 RR = 1.5 2 3 4

1 1 0.107 0.185 0.379 0.573 0.30 0.35 0.39 0.39

1 3 0.129 0.234 0.466 0.665 0.59 0.58 0.55 0.51

2 1 0.130 0.255 0.561 0.799 0.63 0.75 0.79 0.73

2 3 0.157 0.315 0.645 0.857 0.92 0.94 0.89 0.78

5 1 0.190 0.447 0.876 0.987 1.82 2.09 1.78 1.22

5 3 0.224 0.507 0.905 0.991 2.10 2.17 1.73 1.17

5 6 0.255 0.559 0.928 0.994 2.71 2.58 2.05 1.54

10 1 0.280 0.685 0.989 1.000 4.02 4.13 2.45 1.35

10 3 0.321 0.733 0.993 1.000 4.25 4.07 2.31 1.30

10 6 0.358 0.770 0.995 1.000 4.71 4.25 2.50 1.61

10 10 0.391 0.803 0.996 1.000 5.67 5.03 3.40 2.50

20 1 0.450 0.921 1.000 1.000 8.68 6.96 2.67 1.41

20 3 0.492 0.936 1.000 1.000 8.65 6.62 2.53 1.37

20 6 0.531 0.948 1.000 1.000 8.92 6.57 2.69 1.65

20 10 0.562 0.957 1.000 1.000 9.47 6.96 3.50 2.51

50 1 0.803 1.000 1.000 1.000 20.45 8.94 2.82 1.48

50 3 0.829 1.000 1.000 1.000 19.82 8.45 2.71 1.45

50 6 0.847 1.000 1.000 1.000 19.41 8.24 2.86 1.71

50 10 0.863 1.000 1.000 1.000 19.35 8.46 3.59 2.52

100 1 0.978 1.000 1.000 1.000 29.93 9.30 2.92 1.53

100 3 0.982 1.000 1.000 1.000 28.52 8.87 2.82 1.51

100 6 0.985 1.000 1.000 1.000 27.58 8.71 2.97 1.75

100 10 0.987 1.000 1.000 1.000 27.04 8.93 3.65 2.53

200 1 1.000 1.000 1.000 1.000 33.00 9.62 3.01 1.58

200 3 1.000 1.000 1.000 1.000 31.47 9.25 2.93 1.56

200 6 1.000 1.000 1.000 1.000 30.47 9.11 3.07 1.78

200 10 1.000 1.000 1.000 1.000 29.88 9.33 3.71 2.54

Figure 1 shows the average time to signal as a function of statistical power, for

different values of M . The lower curves are better, since the expected time to

signal is shorter. Suppose we design the sequential analysis to have 95 percent

power to detect a relative risk of 1.5. We can then look at the left side of Figure 1

to see the average time to signal for different true relative risks. We see that for a

true relative risk of 1.5, time to signal is shortest for M = 10. On the other hand,

for a true relative risk of 2, it is shortest for M = 6, for a true relative risk of 3,

it is shortest for M = 3 and for a true relative risk of 4, it is shortest for M = 2.
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On the right side of Figure 1, we show the expected time to signal when the

surveillance has been designed to attain a certain power for a relative risk of 2.

The results are similar.

10

15

20

25

30

Signal Time
 RR= 1.5

Power, RR= 1.5

S
ig

n
a
l 
T

im
e
, 
R

R
=

 1
.5

0
.5

0
.8

5
0

.9
5

0
.9

9

0
.9

9
9 1

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Signal Time
 RR= 2

Power, RR= 1.5

S
ig

n
a
l 
T

im
e
, 
R

R
=

 2

0
.5

0
.8

5
0

.9
5

0
.9

9

0
.9

9
9 1

2.6

2.8

3.0

3.2

3.4

3.6

Signal Time
 RR= 3

Power, RR= 1.5

S
ig

n
a
l 
T

im
e
, 
R

R
=

 3

0
.5

0
.8

5
0

.9
5

0
.9

9

0
.9

9
9 1

1.4

1.6

1.8

2.0

2.2

2.4

Signal Time
 RR= 4

Power, RR= 1.5

S
ig

n
a
l 
T

im
e
, 
R

R
=

 4

0
.5

0
.8

5
0

.9
5

0
.9

9

0
.9

9
9 1

5

10

15

20

Signal Time
 RR= 1.5

Power, RR= 2

S
ig

n
a
l 
T

im
e
, 
R

R
=

 1
.5

0
.5

0
.8

5
0

.9
5

0
.9

9

0
.9

9
9 1

2

3

4

5

6

7

8

9

Signal Time
 RR= 2

Power, RR= 2

S
ig

n
a
l 
T

im
e
, 
R

R
=

 2

0
.5

0
.8

5
0

.9
5

0
.9

9

0
.9

9
9 1

1.5

2.0

2.5

3.0

3.5

Signal Time
 RR= 3

Power, RR= 2

S
ig

n
a
l 
T

im
e
, 
R

R
=

 3

0
.5

0
.8

5
0

.9
5

0
.9

9

0
.9

9
9 1

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Signal Time
 RR= 4

Power, RR= 2

S
ig

n
a
l 
T

im
e
, 
R

R
=

 4

0
.5

0
.8

5
0

.9
5

0
.9

9

0
.9

9
9 1

M

1 2 3 4 6 8 10

Figure 1: The average time to signal, as a function of statistical power,
for the Poisson based MaxSPRT when a minimum ofM events is
required before the null hypothesis can be rejected. The type 1
error is α = 0.05.

When the true relative risk is higher, it is a more serious safety problem,

and hence, it is more important to detect it earlier. So, while there is no single

value of M that is best overall, anywhere in the 3 to 6 range may be a reasonable

choice for M . The cost of this reduced time to signal when the null is rejected is

a slight delay until the surveillance ends when the null is not rejected.
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4. DELAYED START OF SURVEILLANCE

For logistical or other reasons, it is not always possible to start post-

marketing safety surveillance at the time that the first vaccine or drug is given.

If the delay is short, one could ignore this and pretend that the sequential anal-

yses started with the first exposed person. One could do this either by starting

to calculate the test statistic at time D or by calculating it retroactively for all

times before D. The former will be conservative, not maintaining the correct

alpha level. The latter will maintain the correct alpha level, but, some signals

will be unnecessarily delayed without a compensatory improvement in any of the

other metrics. A better solution is to use critical values that take the delayed

start of surveillance into account.

4.1. Exact Critical Values

In order to calculate the critical values, statistical power and average time

to signal in this case, it is sufficient to replace M by M∗ in the expressions of

Sections 3.1 and 3.2, where M∗ := min{c ∈ N : LLRD(c) ≥ CV }.

Table 3 presents exact critical values for the maximized SPRT when surveil-

lance does not start until the expected number of events under the null hypothesis

is D, without any requirement on having a minimum umber of events to signal.

When D = 0, we get the standard maximized SPRT, whose critical values [4]

are included for comparison purposes. Note that the critical values are lower for

higher values of D. Since surveillance is not performed until the sample size have

reached D expected counts under the null, one can afford to use a lower critical

value for the remaining time while still maintaining the same overall alpha level.

As before, the critical values are higher for larger values of T . When D > T , the

surveillance would not start until after the end of surveillance, so those entries

are blank in Table 3. When D = T , there is only one non-sequential analysis

performed, so there are no critical values for a sequential test procedure. Hence,

they are also left blank in the Table.

With a delayed start, there are some values of T and D for which there is no

critical value that gives an alpha level of exactly 0.05. For those combinations,

denoted with italics, Table 3 presents the critical value that gives the largest

possible alpha less than 0.05. In Table 4, we present the exact alpha levels

obtained for those scenarios, as well as the α > 0.05 obtained for a slightly smaller

liberal critical value.
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Table 3: Exact critical values for the Poisson based maximized SPRT,
when surveillance does not start until the sample size is
large enough to generate D expected events under the null
hypothesis. T > D is the upper limit on the sample size.
The minimum number of events needed to reject is set to
M = 1. The type 1 error is α = 0.05. For some values of T
and D, the critical values are conservative with α < 0.05.
These are denoted in italics.

T
D

0 1 2 3 4 6 10

1.5 2.964971 1.683208 .. .. .. .. ..

2 3.046977 2.000158 .. .. .. .. ..

2.5 3.110419 2.187328 1.600544 .. .. .. ..

3 3.162106 2.317139 1.766484 .. .. .. ..

4 3.245004 2.498892 2.089473 1.842319 .. .. ..

5 3.297183 2.545178 2.267595 1.936447 1.611553 .. ..

6 3.342729 2.546307 2.406809 2.093835 1.921859 .. ..

8 3.413782 2.694074 2.572627 2.337771 2.211199 1.829011 ..

10 3.467952 2.799333 2.591675 2.484834 2.298373 2.087405 ..

12 3.511749 2.880721 2.683713 2.589388 2.415402 2.254018 1.755455

15 3.562591 2.970411 2.794546 2.711996 2.556634 2.347591 2.020681

20 3.628123 3.082511 2.918988 2.846635 2.717137 2.542045 2.260811

25 3.676320 3.159490 3.011001 2.886783 2.827711 2.668487 2.432668

30 3.715764 3.223171 3.080629 2.963485 2.911222 2.765594 2.553373

40 3.774663 3.313966 3.186878 3.078748 3.030735 2.903286 2.684730

50 3.819903 3.381606 3.261665 3.162197 3.117553 2.999580 2.802863

60 3.855755 3.434748 3.320749 3.226113 3.162908 3.051470 2.890933

80 3.910853 3.515052 3.407923 3.321868 3.247872 3.151820 3.019184

100 3.952321 3.574091 3.472610 3.391377 3.321971 3.232345 3.109251

120 3.985577 3.620223 3.523446 3.445695 3.379278 3.294843 3.177847

150 4.025338 3.675035 3.583195 3.509028 3.446674 3.367227 3.238461

200 4.074828 3.742843 3.655984 3.587079 3.528662 3.454679 3.336012

250 4.112234 3.792978 3.710128 3.644349 3.588871 3.518954 3.406929

300 4.142134 3.832686 3.752749 3.689355 3.636272 3.568952 3.462111

400 4.188031 3.893093 3.785930 3.757574 3.707431 3.644405 3.544518

500 4.222632 3.938105 3.835264 3.808087 3.760123 3.700032 3.605012

600 4.250310 3.973710 3.874183 3.847892 3.801678 3.743656 3.652326

800 4.292829 4.028089 3.933363 3.887512 3.864597 3.809685 3.723608

1000 4.324917 4.047191 3.977453 3.931529 3.911308 3.858669 3.776275

The exact critical values are based on numerical calculations done in the

same iterative way as for the original MaxSPRT and the version described in the

previous section. The only difference is that there is an added initial step where

the probabilities are calculated for different number of events at the defined start

time D. Open source R functions [25] have been published as part of the R pack-

age ‘Sequential’ (cran.r-project.org/web/packages/Sequential/).
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Table 4: Critical values and exact alpha levels for those combinations of T ,
D and M for which there does not exist a critical value for α = 0.05.
T is the upper limit on the sample size (length of surveillance),
expressed in terms of the expected number of events under the null.
D is the sample size at which the sequential analyses start, also
expressed in terms of the expected number of events under the null.
M is the minimum number of events required to signal. CVcons and
CVlib are the conservative and liberal critical values, respectively,
while αcons and αlib are their corresponding alpha levels.

T D M CVcons αcons CVlib αlib

5 1 1,4 2.545178 0.04587 2.545177 0.05323

10 2 1,4 2.591675 0.04998 2.591674 0.05478

10 4 1,4 2.298373 0.04924 2.298372 0.05379

15 10 1,4 2.020681 0.04755 2.020680 0.05124

20 3 1,4 2.846635 0.04712 2.846634 0.05001

60 4 1,4 3.162908 0.04922 3.162907 0.05094

60 6 1,4 3.051470 0.04953 3.051469 0.05101

800 3 1,4 3.887512 0.04992 3.887511 0.05091

1000 1 1,4 4.047191 0.04944 4.047190 0.05094

4.2. Statistical Power and Timeliness

For a fixed value on the upper limit on the sample size T , the statistical

power of sequential analyses always increases if there are fewer looks at the data,

with the maximum attained when there is only one non-sequential analysis after

all the data has been collected. Hence, for fixed T , a delay in the start of surveil-

lance always increases power, as can be seen in Table 5. For fixed T , the average

time to signal almost always increases with a delayed start. The rare exception

is when T is very large and the true RR is very small. For example, for T = 100

and RR = 1.5, the average time to signal is 29.9 without a delayed start, 27.2

with a delayed start of D = 3 and 27.0 with a delayed start of D = 6. With a

longer delay of D = 10, the average time to signal increases to 27.4.

For fixed T , we saw that there is a trade-off between power and the time to

signal, but in post-market safety surveillance it is usually easy and inexpensive

to increase power by increasing T . Hence, the critical evaluation is to compare

the average time to signal when holding both power and the alpha level fixed.

This is done in Figure 2. When the study is powered for a relative risk of 2, then

the average time to signal is lower when there is less of a delay in the start of the

surveillance, whether the true relative risk is small or large. When the study is

powered for a relative risk of 1.5, we see the same thing, except when the true

relative risk is small. Hence, in terms of performance, smaller D is always better.
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Table 5: Statistical power and average time to signal for the Poisson
based maximized SPRT, when the analysis does not start until
the sample size is large enough to correspond to D expected
events under the null hypothesis. T is the upper limit on the
sample size (length of surveillance), expressed in terms of the ex-
pected number of events under the null. The minimum number
of events required to signal is set to M = 1. The type 1 error
is α = 0.05.

T D
Power Average Time to Signal

RR = 1.5 2 3 4 RR = 1.5 2 3 4

5 0 0.190 0.447 0.876 0.987 1.82 2.09 1.78 1.22

5 3 0.275 0.595 0.943 0.996 3.81 3.65 3.30 3.08

10 0 0.280 0.685 0.989 1.000 4.02 4.13 2.45 1.35

10 3 0.377 0.789 0.996 1.000 5.33 4.84 3.53 3.10

10 6 0.408 0.819 0.997 1.000 6.94 6.59 6.07 6.00

20 0 0.450 0.921 1.000 1.000 8.68 6.96 2.67 1.41

20 3 0.543 0.952 1.000 1.000 9.44 7.06 3.78 3.17

20 6 0.583 0.963 1.000 1.000 10.42 8.20 6.15 6.01

20 10 0.609 0.969 1.000 1.000 12.33 10.83 10.01 10.00

50 0 0.803 1.000 1.000 1.000 20.45 8.94 2.82 1.48

50 3 0.860 1.000 1.000 1.000 19.39 8.50 3.85 3.18

50 6 0.871 1.000 1.000 1.000 19.65 9.43 6.16 6.01

50 10 0.885 1.000 1.000 1.000 20.64 11.82 10.02 10.00

100 0 0.978 1.000 1.000 1.000 29.93 9.30 2.92 1.53

100 3 0.987 1.000 1.000 1.000 27.16 8.95 3.90 3.18

100 6 0.988 1.000 1.000 1.000 26.98 9.97 6.24 6.01

100 10 0.990 1.000 1.000 1.000 27.40 12.09 10.02 10.00

200 0 1.000 1.000 1.000 1.000 33.00 9.62 3.01 1.58

200 3 1.000 1.000 1.000 1.000 30.01 9.35 3.94 3.18

200 6 1.000 1.000 1.000 1.000 29.78 10.31 6.26 6.01

200 10 1.000 1.000 1.000 1.000 30.16 12.48 10.04 10.00



Sequential Surveillance with Minimum Events to Signal 389

10

15

20

25

30

35

Signal Time
 RR= 1.5

Power, RR= 1.5

S
ig

n
a
l 
T

im
e
, 
R

R
=

 1
.5

0
.5

0
.8

5
0

.9
5

0
.9

9

0
.9

9
9 1

7

8

9

10

11

12

Signal Time
 RR= 2

Power, RR= 1.5

S
ig

n
a
l 
T

im
e
, 
R

R
=

 2

0
.5

0
.8

5
0

.9
5

0
.9

9

0
.9

9
9 1

4

6

8

10

Signal Time
 RR= 3

Power, RR= 1.5

S
ig

n
a
l 
T

im
e
, 
R

R
=

 3

0
.5

0
.8

5
0

.9
5

0
.9

9

0
.9

9
9 1

2

4

6

8

10

Signal Time
 RR= 4

Power, RR= 1.5

S
ig

n
a
l 
T

im
e
, 
R

R
=

 4

0
.5

0
.8

5
0

.9
5

0
.9

9

0
.9

9
9 1

5

10

15

20

25

30

35

Signal Time
 RR= 1.5

Power, RR= 2

S
ig

n
a
l 
T

im
e
, 
R

R
=

 1
.5

0
.5

0
.8

5
0

.9
5

0
.9

9

0
.9

9
9 1

2

4

6

8

10

12

Signal Time
 RR= 2

Power, RR= 2

S
ig

n
a
l 
T

im
e
, 
R

R
=

 2

0
.5

0
.8

5
0

.9
5

0
.9

9

0
.9

9
9 1

2

4

6

8

10

Signal Time
 RR= 3

Power, RR= 2

S
ig

n
a
l 
T

im
e
, 
R

R
=

 3

0
.5

0
.8

5
0

.9
5

0
.9

9

0
.9

9
9 1

2

4

6

8

10

Signal Time
 RR= 4

Power, RR= 2

S
ig

n
a
l 
T

im
e
, 
R

R
=

 4

0
.5

0
.8

5
0

.9
5

0
.9

9

0
.9

9
9 1

D

1 2 3 4 6 8 10

Figure 2: The average time to signal, as a function of statistical power,
for the Poisson based maximized SPRT, when the analysis does
not start until the sample size is large enough to correspond
to D expected events under the null hypothesis. The type 1
error is α = 0.05.
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5. DISCUSSION

With the establishment of new near real-time post-market drug and safety

surveillance systems [15, 26, 27, 28, 29], sequential statistical methods will become

a standard feature of the pharmacovigilance landscape. In this paper we have

shown that it is possible to reduce the expected time to signal when the null

is rejected, without loss of statistical power, by requiring a minimum number

of adverse events before generating a statistical signal. This will allow users to

optimize their post-market sequential analyses.

In this paper we calculated the critical values, power and timeliness for

Poisson based continuous sequential analysis with either a minimum events to

signal requirement or when there is delayed start for logistical reasons. The

reported numbers are based on exact numerical calculations rather than approx-

imate asymptotic calculations or computer simulations. From a mathematical

and statistical perspective, these are straight forward extensions of prior work

on exact continuous sequential analysis. The importance of the results are hence

from practical public health perspective rather than for any theoretical statistical

advancements.

A key question is which sequential study design to use. There is not always

a simple answer to that question, as the performance of the various versions

depends on the true relative risk, which is unknown. One important consideration

is that the early detection of an adverse event problem is more important when

the relative risk is high, since more patients are affected. As a rule of thumb, it

is reasonable to require a minimum of about M = 3 to 6 adverse events before

rejecting the null hypothesis, irrespectively of whether it is a rare or common

adverse event. For those who want a specific recommendation, we suggest M = 4.

Critical values, statistical power and average time to signal has been pre-

sented for a wide variety of parameter values. This is done so that most users

will not have to perform their own calculations. For those who want to use

other parameter values, critical values, power and expected time to signal can be

calculated using the ‘Sequential’ R package that we have developed.

It is possible to combine a delayed start with D > 0 together with a require-

ment that there are at least M > 1 events to signal. It does not always make

a difference though. For M = 4, the critical values are the same as for M = 1,

for all values of D ≥ 1. That is because with D = 1 or higher, one would never

signal with less than three events anyhow. Since the critical values are the same,

the statistical power and average time to signal are also the same. This means

that when there is a non-trivial delayed start, there is not much benefit from also

requiring a minimum number events to signal, but the ‘Sequential’ R package has

a function for this dual scenario as well.
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There is no reason to purposely delay the start of the surveillance until

there is some minimum sample size D. In the few scenarios for which such a

delay improve the performance, the improvement is not measurably better than

the improvements obtained by using a minimum number of observed events. Only

when it is logistically impossible to start the surveillance at the very beginning

should such sequential analyses be conducted, and then it is important to do so

in order to maximize power, to minimize the time to signal and to maintain the

correct alpha level.

For self-controlled analyses, a binomial version of the MaxSPRT [4] is used

rather than the Poisson version discussed in this paper. For concurrent matched

controls, a flexible exact sequential method is used that allows for a different

number of controls per exposed individuals [30]. By default, these types of con-

tinuous sequential methods will not reject the null hypothesis until there is a

minimum number of events observed. To see this, consider the case with a 1:1

ratio of exposed to unexposed and and assume that the first four adverse events

all are in the exposed category. Under the null hypothesis, the probability of this

is (1/2)4 = 0.0625, which does not give a low enough p-value to reject the null

hypothesis even in a non-sequential setting. Hence, the null will never be rejected

after only four adverse events, even when there is no minimum requirement. One

could set the minimum number of exposed events to something higher, and that

may be advantageous. If there is a delayed start for logistical reasons, then it

makes sense to take that into account when calculating the critical value, for

these two types of models as well.

Since the Vaccine Safety Datalink [31] launched the first near real-time post-

marketing vaccine safety surveillance system in 2004 [2], continuous sequential

analysis has been used for a number of vaccines and potential adverse events

[1, 5, 6, 7, 8, 9, 10, 12]. The critical value tables presented in this paper has

already been used by the Vaccine Safety Datalink project. As new near real-

time post-market safety surveillance systems are being developed, it is important

to fine-tune and optimize the performance of near-real time safety surveillance

systems [15, 16, 27, 32, 33, 34]. While the improved time to signal is modest

compared to the original version of the Poisson based MaxSPRT, there is no

reason not to use these better designs.
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