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Abstract:

• A new one-parameter family of discrete distributions is presented. It has some advan-
tages against the Poisson distribution as a suitable model for modelling data with a
high frequencies of zeros and showing over-dispersion (variance larger than the mean).
The distribution is obtained from a simple modification of the Borel–Tanner distri-
bution, which has not received attention from the statistical community in the past.
We also propose a generalized regression model which can be used for a count de-
pendent variable, when the above features are observed, as an alternative to the
well-known Poisson regression model, among others. Maximum likelihood estimation
is investigated and illustrated with an example of interrelation between fatalities in
trucks accidents on American roads and some covariates considered.
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1. INTRODUCTION

The Borel–Tanner distribution is a discrete distribution proposed more than

fifty years ago in queueing theory to model the probability distribution of the

number of customers served in a queuing line with Poisson input and a constant

service time, given that the length of the queue at the initial time is r. As far

as we know, this distribution has not received much attention for the statistical

community. The probability function of the Borel–Tanner distribution ([11]) is

given by

(1.1) Pr(Y = y) = A(y, r)e−αy αy−r , y = r, r +1, ... ,

where α > 0 and r is a positive integer and where

A(y, r) =
r

(y− r)!
yy−r−1 .

Equivalently, [10] rewritten expression (1.1) as

(1.2) Pr(Y = y) = B(y, r)
αy−r

(1+ α)2y−r
, y = r, r +1, ... ,

where

B(y, r) =
r

y

(
2y − r − 1

y − 1

)
.

In this paper we focus on the distribution with probability distribution given

in (1.2) using a modified version of this probability distribution with support in

0, 1, ..., suitable for modelling data with a high frequencies of zero and showing

over-dispersion phenomena: the variance is larger than the mean.

The distribution proposed here has some advantages against some other

well-known distributions as a suitable model for modelling data with a high fre-

quencies of zeros and showing over-dispersion phenomena. We also propose a

generalized regression model which can be used for a count dependent variable,

when the above features are observed. Maximum likelihood estimation is in-

vestigated and illustrated with an example involving emergency room visits to

hospital.

The applicability of the model is shown by fitting the number of deaths in

truck accidents (fatalities) on American roads, with different explanatory covari-

ates from real data used by [17]. The provided real data examples show that the

model works reasonably well, and this assessment is confirmed by the comparison

to the Poisson and negative binomial distributions.

The contents of the paper are as follows. In section 2 we present the mod-

ified version of the Borel–Tanner distribution proposed here. Some properties of
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the distribution are also shown, including the mean, variance and the cumulative

distribution function. Some methods of estimation are developed in section 3.

The regression model is developed in section 4. An application with real data is

shown in section 4 and conclusions in the last section.

2. THE MODIFIED BOREL–TANNER DISTRIBUTION (MBT)

In this section we propose a modified version of the Borel–Tanner distribu-

tion given in (1.2) which has support in the positive integer numbers including

the zero value. Firstly, consider r =1 and X =Y −1, then it is a simple exercise

to see that the resulting shifted distribution has its probability function given by

(2.1) Pr(X= x) =
Γ(2x + 1)

Γ(x + 2) Γ(x + 1)

αx

(1 + α)2x+1
, x = 0, 1, ... ,

being 0 < α < 1. It has to be pointed out that in the original paper of [10]

any parameter value α > 0 is allowed. Nevertheless, a simple algebra shows

that it is not true and the feasible set of this parameter is actually 0 < α < 1.

This distribution can be easily written as

Pr(X= x) = Cx
αx

(1 + α)2x+1
, x = 0, 1, ... ,

where

Cx =
1

x + 1

(
2x

x

)

are the Catalan numbers (see [13], p. 13 and [18]. In the sequel, when a

random variable X follows the probability mass function (2.1) we will denote

X ∼ MBT(α).

Since probability function (2.1) can be written as

Pr(X= x) = Cx exp
[
λ · x − A(λ)

]
,

where

λ = log
α

(1 + α)2
,

and

A(λ) = log

(
1 −

√
1 − 4eλ

2eλ

)
= log(1 + α) ,

the modified Borel–Tanner distribution proposed here is a member of the natural

exponential family of distributions. Furthermore, probability function (2.1) can

also be rewritten as

Pr(X= x) =
Cx

1 + α

[
α

(1 + α)2

]x

.
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Therefore, the modified Borel–Tanner distribution belongs to the class of power

series distribution (see [13], p. 75) which contains for instance Bernoulli, binomial,

geometric, negative binomial, Poisson and logarithmic series distributions.

On the other hand, [3] discussed discrete probability density functions

Pr(X= x; α) which obey the following relation for some functions B and D:

if there exist B and D such that

(2.2)
d Pr(X= x; α)

dα
= B(α)

[
x − D(α)

]
Pr(X= x; α) ,

then the mean µ coincides with D(α) and µ2 = (dµ/dα)(1/B(α)) is the variance.

Also, in that case

µi = µ2

[
dµi−1

dα

1

dµ/dα
+ (i−1)µi−2

]
, i = 2, 3, ... ,

where µi is the i-th moment about the mean, which depends on α. Note that

µ0 = µ.

Now, observe that the MBT(α) distribution verifies (2.2) considering

B(α) =
1 − α

α(1 + α)
, D(α) =

α

1 − α
.

Then, the mean and the variance of the random variable following the

probability function (2.1) are given by

(2.3) E(X) =
α

1 − α

and

(2.4) var(X) =
α(1 + α)

(1 − α)3
,

respectively. The previous expression for the mean of a MBT(α) distributed

variable allows to write its probability mass function (pmf) as

Pr(X= x) = Cx · θx(1 + θ)1+x

(1 + 2θ)1+2x ,

where θ = E(X) =
α

1 − α
.

Since
var(X)

E(X)
= 1 +

α(3 − α)

(1 − α)2
> 1

we conclude that the distribution is overdispersed. Note that the proposed distri-

bution is zero-inflated; that is, its proportion of 0’s is greater than the proportion

of 0’s of a Poisson variate with the same mean. To see this we observe that the
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zero-inflated index (see [19]) is zi = 1− 1−α
α log(1+α), which results greater than

zero.

Additionally, the probability generating function is given by

GX(z) =
1 + α

2 αz

[
1 −

√
1 + α(α − 4z + 2)

1 + α

]
, |z| < 1 .

The cumulative distribution function of a random variable following the

probability function given in (2.1) is given by

(2.5) Pr(X≤x) = 1− Γ
(
x + 3

2

)
(4α)x+1

Γ(x+3)
√

π (1+α)2x+3 2F1

(
1, x+

3

2
; x+3;

4α

(1+α)2

)
,

where 2F1 is the hypergeometric function given by

2F1(a, b; c; z) =
∞∑

k=0

Γ(a + k) Γ(b + k) Γ(c)

Γ(a) Γ(b) Γ(c + k)

zk

k!
.

See the Appendix Section for details about this assert.

Some additional details about the hypergeometric function can be found in

[18]. From (2.5) we get the survival function, Pr(X≥x), and the failure or hazard

rate can be easily obtained using (2.5) and (2.1).

Finally, observe that the probabilities can be computed from the recursion

Pr(X= x) =
2α

(1 + α)2
2x − 1

x + 1
Pr(X= x−1) , x = 1, 2, ... ,

being Pr(X= 0) =
1

1 + α
.

Since

Pr(X= x)

Pr(X= x−1)
− Pr(X= x+1)

Pr(X= x)
=

−6α

(1 + α)2
1

(x + 1) (x + 2)
< 0 ,

we have that the distribution is log-convex (infinitely divisible) and has decreasing

failure rate (DFR). See [9] and [22] for details. The fact that Pr(X=x)/Pr(X=x−1),

x = 1, 2, ..., forms a monotone increasing sequence requires that Pr(X= x) be a

decreasing sequence (see [12], p. 75). Therefore, the distribution is unimodal with

modal value on zero. An overview of Figure 1 confirms this feature and that the

shown plotting lines in the graph are similar to the ones corresponding to distri-

butions of Poisson with expected value lower than 1.

Moreover, as any infinitely divisible distribution defined on non-negative

integers is a compound Poisson distribution (see Proposition 9 in [15], we conclude

that the probability function given in (2.1) is a compound Poisson distribution.
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Figure 1: Some appearances (polygons) of the probability mass function
for different values of the parameter α.

Furthermore, the infinitely divisible distribution plays an important role

in many areas of statistics, for example, in stochastic processes and in actuarial

statistics. When a distribution G is infinitely divisible then, for any integer x ≥ 2,

there exists a distribution Gx such that G is the x-fold convolution of Gx, namely,

G = G∗x
x .

Since the new distribution is infinitely divisible, a lower bound for the

variance can be obtained (see [12], p. 75), which is given by

var(X) ≥ Pr(X=1)

Pr(X= 0)
=

α

(1 + α)2
.

3. INFERENCE FOR MBT DISTRIBUTION

In this section, different methods of estimation of the parameter of the

distribution are studied.

Using (2.3) it is also simple to see that the estimator of α is given by

(3.1) α̂1 =
X̄

1 + X̄
,

where X̄ is the sample mean.

An alternative to the method of moments is the method based on the zeros

frequency. This method tends to work well only when the mode of the distribution

is at zero and its proportion of zeros is relatively high ([2]). In this case we need

only one equation in order to estimate the parameter of the distribution. It is

straightforward obtaining an estimate for α based on the observed proportion of
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zeros, denoted by p̃0, as

α̂2 =
1 − p̃0

p̃0
.

For each of sample sizes n = 100 and n = 1000, and for α = 0.1[0.1]0.9,

4000 samples have been simulated, obtaining the estimates mean and squared

error from both methods (Table 1). In both of them, the experimental bias is

higher when α takes its lower values.

Table 1: MME (equivalently, MLE) and zero proportion estimate
based on n simulations from a MBT (α).

α
n = 100 n = 1000bα1 bα2 bα1 bα2

.1
mean .250 .385 .2514 .379
S.D .034 .087 .011 .027

.2
mean .308 .435 .310 .429
S.D .041 .096 .013 .030

.3
mean .372 .489 .376 .4826
S.D .048 .106 .015 .032

.4
mean .444 .545 .449 .539
S.D .053 .114 .017 .036

.5
mean .521 .607 .529 .602
S.D .056 .126 .018 .039

.6
mean .606 .676 .614 .668
S.D .059 .139 .018 .043

.7
mean .696 .755 .706 .741
S.D .059 .157 .018 .047

.8
mean .789 .838 .801 .821
S.D .055 .174 .016 .052

.9
mean .883 .924 .899 .907
S.D .047 .186 .013 .057

Finally, the MLE are easy to derive since the MBT model belongs to the

exponential family. Let now x = (x1, x2, ..., xn) be a random sample obtained

from model (2.1), then the log-likelihood function is proportional to

ℓ(α) ∝ n
[
x̄ log α − (2 x̄ + 1) log(1 + α)

]
.

The likelihood equation obtained from (3) is given by

∂ℓ(α)

∂α
=

x̄

α
− 2 x̄ + 1

1 + α
= 0 ,

from which we obtain the maximum likelihood estimator of α given again by

(3.1). Therefore, as in the Poisson distribution the moment estimator coincides
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with the maximum likelihood estimator. Additionally, the maximum likelihood

estimator α̂ of α is unique for all n.

Proposition 3.1. The unique maximum likelihood estimator α̂ of α is

consistent and asymptotically normal and therefore

√
n(α̂ − α)

d−→ N
(
0, I−1(α)

)
,

where I(α) is the Fisher’s information about α.

Proof: See Appendix.

By using Corollary 3.11 in [16], p. 450, we conclude that the maximum

likelihood estimator of α is asymptotically efficient.

4. THE MBT REGRESSION MODEL

The Poisson regression model has been extensively used as a benchmark for

the analysis of discrete count models, together with some other models such as the

negative binomial regression, Poisson-inverse Gaussian regression, and some other

including special functions as hypergeometric, Kummer confluent, etc. when the

endogenous variable take only nonnegative integer values. In practice, count data

often display over-dispersion and therefore the Poisson regression model faults to

provide an appropriate fit to the data. In this section we provide a regression

model based on the use of the modified Borel–Tanner distribution presented in

the previous sections of this work. We shall see that the new model is simple

and competitive with the traditional Poisson regression model and also with the

Negative Binomial model.

For that, let Y be now a response variable and z be an associated q×1 vec-

tor of covariates. The modified Borel–Tanner regression model for Y established

that given z, Y follows a modified Borel–Tanner distribution with mean η(z),

a positive-valued function. We assume that η(z) depends on a vector β of un-

known regression coefficients. This parameterization has the appealing property

that when η(z) takes the common log-linear form η(z) = exp(z′β).

Writing the likelihood in terms of θ we have

(4.1) Pr(Y = y) = Cy

(
p(θ)y

(
1 − p(θ)

)y+1
)

,

for y = 0, 1, ..., being p(θ) = θ/(1 + 2θ) and θ > 0.
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Therefore, we assumed that θ = η(z) = exp(z′β). Let now (yi, zi) be a

random sample of size n with counts yi and a vector zi of covariates for i =

1, 2..., n. Then, the log-likelihood function, assuming model (4.1) results

ℓ(β) =

n∑

i=1

log Pr(Yi= yi | zi; β)

∝
n∑

i=1

(1 + yi) log
(
1 − p(θi)

)
+

n∑

i=1

yi log p(θi) ,

where

p(θi) =
exp
(∑q

s=1 zisβs

)

1 + 2 exp
(∑q

s=1 zisβs

) , 1 = 1, 2, ..., n .

Some computations provide that

∂p(θi)

∂βj
= zij p(θi)

(
1 − 2p(θi)

)
, i = 1, 2, ..., n ; j = 1, 2, ..., q ,

from which the normal equations can be written as

∂ℓ

∂βj
=

n∑

i=1

zij

(
1 − 2p(θi)

) (
yi − (1 + 2yi) p(θi)

)

1 − p(θi)
= 0 , j = 1, 2, ..., q .

The elements of the expected Fisher information matrix I = (Ijl), j, l =

1, ..., q, about βj , j = 1, ..., q, are given by

Ijj =
n∑

i=1

z2
ij

(1 + 2θi) (1 + θi)

2θ2
i + 4θi + 3

, j = 1, ...q ,

Ijl =
n∑

i=1

zij zil
(1 + 2θi) (1 + θi)

2θ2
i + 4θi + 3

, j, l = 1, ..., q , j 6= l .

The residuals can now be used to identify discrepancies between models

and data, so the computation of the individual residuals from each observation

can be useful to evaluate the model-fitting.

The common Pearson residuals are obtained by dividing the raw residuals

by their scaled standard deviation, according to the model

ǫP
i =

yi − θ̂i√
var
(
Yi, θ̂i

) , i = 1, 2, ..., n .

Here, var(Yi; θ̂i) is the variance of Yi as a function of θ and θ̂i is the max-

imum likelihood estimate of the i-th mean as fitted to the regression model.
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With the aim of comparison between models, we consider as alternative options

that the conditional distribution of the response variable can be described by

Poisson, negative binomial or MBT distributions. This way, we obtain the cor-

responding Pearson residuals for each model:

a) Poisson: ǫP
i =

yi − θ̂i√
θ̂i

, i = 1, 2, ..., n .

b) MBT: ǫP
i =

yi − θ̂i√
θ̂i

(
1 + θ̂i

)(
1 + 2 θ̂i

) , i = 1, 2, ..., n .

c) Negative binomial: ǫP
i =

√
r

yi − θ̂i√
θ̂i

(
r + θ̂i

) , i = 1, 2, ..., n .

Another common choice of residuals is the signed square root of the con-

tribution to the deviance goodness-of-fit statistic. This is given by D =
∑n

i=1 di,

where

di = sgn(θ̂i − yi)

√
2
(
ℓ(yi) − ℓ(θ̂i)

)
, i = 1, 2, ..., n ,

where sgn is the function that returns the sign (plus or minus) of the argument.

The ℓ(yi) term is the value of the log likelihood when the mean of the conditional

distribution for the i-th individual is the individual’s actual score of the dependent

variable. The ℓ(θ̂i) is the log likelihood when the conditional mean is substituted

in the log likelihood. Usually the deviance divided by its degree of freedom is

examined taking into account that a value much greater than one indicates a

poorly fitting model. See for example [14].

It is well-known that for the Poisson distribution with parameter θi the

deviance residuals are given by (see [8])

di = sgn
(
yi − θ̂i

)[
2

(
yi log

(
yi

θ̂i

)
−
(
yi − θ̂i

))]1/2

, i = 1, 2, ..., n .

For the MBT distribution proposed here the deviance residual are obtained

as follows for each i = 1, ..., n:

di = sgn
(
yi − θ̂i

)
[

2

(
(
1 + yi

)
log

(
1 − p(yi)

1 − p(θ̂i)

)
+ yi log

(
p(yi)

p(θ̂i)

))]1/2

.

For the negative binomial distribution, an expression for the deviance resid-

uals can be found in [14]:

di = sgn
(
yi − θ̂i

)
[

2

(
yi log

(
yi

θ̂i

)
−
(
yi + r

)
log

(
yi + r

θ̂i + r

))]1/2

.

In the three above considered cases we assume yi 6= 0 for all i.
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5. NUMERICAL ILLUSTRATION

In this section, we examine an application of the MBT regression model

proposed here in order to analyse the number of deaths in truck’s accidents ([17]).

In the present study, we model the number of deaths in the accident as the

dependent variable. The explanatory variables are as follows: (1) the number of

occupants; (2) a dummy variable for seat belt usage; (3) a set of dummy variables

for rain, snow and fog, respectively; (4) a dummy variable for dark; (5) a dummy

variable for weekdays; (6) a dummy variable for the first driver being drunk;

(7) Dummy for the second driver being drunk and (8) a dummy variable for the

first driver to be under 21 and finally, (9) a dummy variable for the first driver

to be over 60. Due to the fact that the dependent variable is a count variable,

data analysis including covariates would be a more appropriate method (see e.g.

[7]; [6]; [5]; among others). Table 2 presents the estimates of the MBT, Poisson

and Negative Binomial regression models, respectively.

Only for comparative purposes, we fit the MBT, Poisson and Negative

Binomial distributions to this data set (see Table 3). We used the value of the log-

likelihood function, the Akaike Information Criterion (AIC) (see [1]), the Bayesian

Information Criterion (BIC) (see [20] and the Consistent Akaike Information

Criterion (CAIC) (see [4]) to compare the estimated models.

Table 3 shows that the MBT model performs very well in fitting the dis-

tribution, compared to other uniparametric models Poisson, and provides a fit as

good as that of the biparametric Negative Binomial model. Based on the BIC

and CAIC, the MBT distribution fits the data better than NB, and NB distribu-

tion is better than Poisson. Furthermore, the MBT model presented is somewhat

simpler than the NB and therefore it might appear to be preferable as a less

complex model, taking into account the Ockham’s razor principle (Jaynes, 1994).

The comparative study of Pearson residuals, deviance, log-likelihood and

information criteria are also collected in Table 3. Note that the MBT model

obtains a better result than the Negative Binomial when the Pearson statistic

is the comparison criterion. Furthermore, graphical models diagnostics is now

developed using the above residual expressions (see Figure 2).

In addition, one can be interested in testing the null that models are equally

close to the actual model, against the alternative that one model is closer ([21]).

The z-statistic is

Z =
1

ω
√

n

(
ℓf (θ̂1) − ℓg(θ̂2)

)
,
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Table 2: Parameter estimates for data in Li (23012) under the models considered.
The response variable is Number of deaths in the accident.
Variables statistically significant (at level < 0.05) in boldface.

Variable
MBT model

Estimate S.D. |t|-value Pr(> |t|)

Intercept − 6.50341 0.23392 27.8019 < 0.001
Number of occupants 0.47966 0.04522 10.6070 < 0.001
Seat belt usage − 1.16920 0.16188 7.2224 < 0.001
Rain − 0.78854 0.34854 2.2623 0.0236
Snow − 0.25206 0.59300 0.4250 0.6707
Fog − 7.02683 37.2207 0.1887 0.8502
Dark 0.71680 0.16366 4.3798 < 0.001
Weekday − 0.11630 0.16636 0.6991 0.4844
First driver drunk 1.37529 0.23324 5.8962 < 0.001
Second driver drunk 1.06292 0.22884 4.6446 < 0.001
First driver drug 0.70307 0.20635 3.4071 < 0.001
Second driver drug 0.65230 0.20220 3.2258 0.0012
Age driver < 21 0.09295 0.24036 0.3867 0.6989
Age driver > 60 1.03063 0.21773 4.7334 < 0.001

Poisson model

Intercept − 6.41786 0.21997 29.1749 < 0.001
Number of occupants 0.44529 0.03434 12.9656 < 0.001
Seat belt usage − 1.15769 0.15749 7.3507 < 0.001
Rain − 0.80440 0.34272 2.3470 0.0189
Snow − 0.28794 0.58335 0.4936 0.6215
Fog − 5.02453 13.6193 0.3689 0.7121
Dark 0.73782 0.15848 4.6556 < 0.001
Weekday − 0.14283 0.15969 0.8944 0.3710
First driver drunk 1.33410 0.21764 6.1297 < 0.001
Second driver drunk 1.03833 0.21365 4.8599 < 0.001
First driver drug 0.66979 0.19880 3.3691 < 0.001
Second driver drug 0.64306 0.19391 3.3162 < 0.001
Age driver < 21 0.11134 0.22843 0.4874 0.6259
Age driver > 60 1.02884 0.21108 4.8740 < 0.001

Negative Binomial model

r 0.12527 0.04463 2.8067 0.0050
Intercept − 6.54213 0.24326 26.8932 < 0.001
Number of occupants 0.49415 0.05028 9.8269 < 0.001
Seat belt usage − 1.19020 0.16753 7.1042 < 0.001
Rain − 0.74537 0.35349 2.1085 0.0349
Snow − 0.19223 0.60245 0.3190 0.7496
Fog − 2.24947 3.45645 0.6508 0.5151
Dark 0.70502 0.16911 4.1689 < 0.001
Weekday − 0.09364 0.17342 0.5399 0.5892
First driver drunk 1.39773 0.24756 5.6458 < 0.001
Second driver drunk 1.09946 0.24494 4.4885 < 0.001
First driver drug 0.72924 0.21385 3.4099 < 0.001
Second driver drug 0.63340 0.21050 3.0090 0.0026
Age driver < 21 0.08526 0.24970 0.3414 0.7327
Age driver > 60 1.03876 0.22568 4.6026 < 0.001
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Table 3: Summaries of fitting measures results for the models considered.

Criterion
Model

Poisson Neg. Bin. MBT�
ǫP

i

�2
55196.5 54638.5 55225.8

Deviance 492.792 387.865 421.177
Deviance/df 0.00825 0.00649 0.00705

ℓmax −1090.49 −1074.91 −1077.42
AIC 2208.97 2179.81 2182.85
BIC 2334.94 2314.77 2308.81

CAIC 2348.94 2329.77 2322.81

Figure 2: LogPlot and LoglogPlot of standardized residuals
for the models considered.

where

ω2 =
1

n

n∑

i=1

[
log

(
f(xi | θ̂1)

g(xi | θ̂2)

)]2

−
[

1

n

n∑

i=1

log

(
f(xi | θ̂1)

g(xi | θ̂2)

)]2

and f and g represent here the MBT and the alternative distributions, respec-

tively.

Due to the asymptotic normal behavior of the Z statistic under the null,

rejection of the test in favor of f happens, with significance level α, when Z > z1−α

being z1−α the (1 − α) quantile of the standard normal distribution.
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Table 4 shows the results obtained for each comparison by means of the

Voung test. The MBT model is preferred to the Poisson model and we cannot

reject the null that the models, Negative binomial and MBT, are statistically the

same.

Table 4: Voung test results.

Z-score p-value

MBT vs Poisson 2.29834 0.01
MBT vs Neg.bin. −0.87924 0.81

6. CONCLUSIONS

This paper has introduced a modified version of the Borel–Tanner distri-

bution which takes its values from the non-negative integers, in contrast with the

original Borel–Tanner distribution which is restricted to the positive integers.

We obtain an over-dispersed distribution (its variance is larger than its

mean) depending on just one parameter, which is also unimodal with mode at

zero. Furthermore the distribution is infinitely divisible (log-convex) and there-

fore it may be considered as a compound Poisson distribution. Some other prop-

erties based on results in [3] are also verified.

In addition, a simple reparameterization of the MBT distribution allows to

incorporate in an easy way covariates into the model.

In this paper, a numerical application is provided, where both the Poisson

and the negative binomial model-fitting are compared to the MBT. The practi-

cal use of the modified Borel–Tanner distribution here proposed does not only

bring a significant improvement relative to the Poisson distribution but also a

wider flexibility due to its main properties, as for instance its over-dispersion.

The MBT distribution is found to be a better model to describe the data used

in this paper than the Poisson and the negative binomial, according to their BIC

and CAIC values.
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APPENDIX

In this Appendix we provide a proof for the cumulative distribution function

of the distribution and Proposition 3.1.

Proof of the cdf of the distribution: We have that

F (x) = 1 −
∞∑

j=x+1

Γ(2j + 1)

Γ(j + 2) Γ(j + 1)

αj

(1 + α)2j+1
.

Now by putting k = j − x − 1 and using the identity

Γ(2m) =
1√
2π

22m−1Γ(m) Γ(m + 1/2) ,

which appears in [13], p. 7, we obtain the result after some computations.

Proof of Proposition 3.1: The discrete distribution with probability

function given in (2.1) satisfies the regularity conditions (see [16], p. 449)) un-

der which the unique maximum likelihood estimator α̂ of α is consistent and

asymptotically normal. They are simply verified in the following way. Firstly,

the parameter space (0, 1) is a subset of the real line and the range of x is indepen-

dent of α. By using expression (3) it is easy to show that E
(∂ log Pr(X=x;α)

∂α

)
= 0.

Now, since ∂2ℓ(α)
∂α2

∣∣
α=bα < 0, the Fisher’s information is positive. Finally, by taking

M(x) = 2x/α3 we have that

∣∣∣∣
∂3 log Pr(X= x; α)

∂α3

∣∣∣∣ =

∣∣∣∣
2x

α3
− 2(2x + 1)

(1 + α)3

∣∣∣∣ ≤ M(x) ,

with E(M(X)) = 2/(α(1−α)) < ∞. Hence the proposition.
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442 E. Gómez-Déniz, F.J. Vázquez-Polo and V. Garćıa
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