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Abstract:

• Asymmetrical models such as the Gumbel, logistic, Weibull and generalized extreme
value distributions have been extensively utilized for modeling various random phe-
nomena encountered for instance in the course of certain survival, financial or relia-
bility studies. We hereby introduce q-analogues of the generalized extreme value and
Gumbel distributions, the additional parameter q allowing for increased modeling flex-
ibility. These extended models can yield several types of hazard rate functions, and
their supports can be finite, infinite as well as bounded above or below. Closed form
representations of some statistical functions of the proposed distributions are provided.
It is also shown that they compare favorably to three related distributions in connec-
tion with the modeling of a certain hydrological data set. Finally, a simulation study
confirms the suitability of the maximum likelihood method for estimating the model
parameters.
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1. INTRODUCTION

Extreme value theory deals with the asymptotic behavior of extreme ob-

servations in a sample of realizations of a random variable. This theory can be

applied to the prediction of the occurrence of rare events such as high flood levels,

large jumps in the stock markets and sizeable insurance claims. It is based on

the extremal types theorem which states that exactly three types of distributions,

namely the Gumbel, Fréchet and Weibull models, referred to as types I, II and

III extreme value distributions, can model the limiting distribution of properly

normalized maxima (or minima) of sequences of independent and identically dis-

tributed random variables. As the generalized extreme value (GEV) distribution,

also called the Fisher–Tippett [10] distribution, encompasses all three types, it can

be utilized as an approximation to model the maxima of long (finite) sequences

of random variables. The GEV and Gumbel distributions are widely utilized in

finance, actuarial science, hydrology, economics, material sciences, telecommuni-

cations, engineering, time series modelling, risk management, reliability analysis

as well as several other fields of scientific investigation involving extreme events.

For informative scholarly works on extreme value distributions and related results,

the reader is referred to [5], [12], [15] and [7].

Being a limiting distribution, the GEV model may prove somewhat inad-

equate in practice, and generalizations thereof ought to provide greater flexibil-

ity for modeling purposes.The extended models being proposed in this paper,

namely, the q-generalized extreme value and q-Gumbel distributions, are in fact

q-analogues of the distributions of origin which are re-expressed in terms of an

additional parameter denoted by q.

Mathai [17] developed a pathway model involving superstatistics, which

arise in statistical mechanics in connection with the study of nonlinear and non-

equilibrium systems. As explained for example in [8, 28], such systems exhibit

spatio-temporal dynamics that are inhomogeneous and can be described by a“su-

perposition of several statistics on different scales”. The non-equilibrium steady-

state macroscopic systems being considered are assumed to be made up of a large

number of smaller cells that are temporarily in local equilibrium; moreover, each

of these cells can take on a given value x of the variable of interest with probability

density function g(x) wherefrom one can determine the generalized Boltzmann

factor, B(ǫ) =
∫∞

0 e−ǫxg(x) dx, ǫ denoting the energy of a microstate occurring

within each cell. Such distributions are related to Tsallis statistics [27] which find

applications in statistical mechanics, turbulence studies and Monte Carlo com-

putational methods. Recently, several q-type superstatistical distributions such

as the q-exponential, q-Weibull and q-logistic were developed in the context of

statistical mechanics, information theory and reliability modelling, as discussed

for instance in [30, 31, 20, 18, 14] and [21].
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The cumulative distribution function (cdf) and probability density function

(pdf) of the GEV distribution, including the Gumbel distribution as a limiting

case wherein ξ → 0, are respectively given by

(1.1) F1(x) = F1(x;µ, σ, ξ) =






exp

[
−
(

1 + ξ

(
x− µ

σ

))−1/ξ
]
, ξ 6= 0 ,

exp

[
− exp

(
−
(
x− µ

σ

))]
, ξ → 0 ,

and

f1(x) = f1(x;µ, σ, ξ) =






1

σ

(
1 + ξ

(
x− µ

σ

))(−1/ξ)−1

× exp

[
−
(

1 + ξ

(
x− µ

σ

))−1/ξ
]
, ξ 6= 0 ,

1

σ
exp

[
− exp

(
−
(
x− µ

σ

))]

× exp

(
−
(
x− µ

σ

))
, ξ → 0 ,

where µ is a location parameter, σ is a positive scale parameter and ξ is the shape

parameter. The support of the distribution is

(1.2) x ∈






(µ− σ/ξ,∞) , ξ > 0 ,

(−∞,∞) , ξ → 0 ,

(−∞, µ− σ/ξ) , ξ < 0 .

On reparameterizing the GEV distribution by setting m = µ/σ and s = σ−1

in (1.1) and (1.2), one has the following representations of the cdf and pdf:

(1.3) F2(x; s,m, ξ) =






exp
[
−
(
1 + ξ(sx−m)

)−1/ξ
]
, ξ 6= 0 ,

exp
[
− exp

(
−(sx−m)

)]
, ξ → 0 ,

and

f2(x; s,m, ξ) =






s
(
1 + ξ(sx−m)

)(−1/ξ)−1

× exp
[
−
(
1 + ξ(sx−m)

)−1/ξ
]
, ξ 6= 0 ,

s exp
[
− exp

(
−(sx−m)

)]

× exp
(
−(sx−m)

)
, ξ → 0 .
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The support then becomes

(1.4) x ∈






(
m

s
− 1

ξ s
,∞
)
, ξ > 0 ,

(−∞,∞) , ξ → 0 ,

(
−∞,

m

s
− 1

ξ s

)
, ξ < 0 .

Paralleling the pathway approach advocated by Mathai [17], we now in-

troduce the q-analogues of the GEV and Weibull distributions, namely, the q-

generalized extreme value (q-GEV) and q-Gumbel distributions. The cdf and pdf

of the q-GEV and q-Gumbel (obtained by letting ξ → 0 in the q-GEV model)

distributions are respectively given by

(1.5)

F (x) = F (x; s,m, ξ, q) =






[
1 + q

(
ξ(sx−m) + 1

)− 1
ξ

]− 1
q
, ξ 6= 0 , q 6= 0 ,

[
1 + q e−(sx−m)

]− 1
q
, ξ → 0 , q 6= 0 ,

and

f(x) = f(x; s,m, ξ, q) =






s
(
1 + ξ(sx−m)

)− 1
ξ
−1

×
[
1 + q

(
ξ(sx−m) + 1

)− 1
ξ

]− 1
q
−1

, ξ 6=0 , q 6=0 ,

sem−sx
[
1 + q em−sx

]− 1
q
−1
, ξ→0 , q 6=0 ,

where the support of the distributions is as follows:

(1.6) x ∈






(
m

s
− 1

ξ s
,∞
)
, q > 0 , ξ > 0 ,

(
−∞,

m

s
− 1

ξ s

)
, q > 0 , ξ < 0 ,

(
(−q)ξ − 1

ξ s
+
m

s
,∞
)
, q < 0 , ξ > 0 ,

(
(−q)ξ − 1

ξ s
+
m

s
,
m

s
− 1

ξ s

)
, q < 0 , ξ < 0 ,

(−∞,∞) , ξ → 0 , q > 0 ,

(
m+ ln(−q)

s
,∞
)
, ξ → 0 , q < 0 .

The intervals specifying the supports of these distributions are such that the terms

being raised to non-integer powers remain positive for the respective domains of

q and ξ.
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The effects of the parameters q and ξ on the shape of the distributions

are illustrated graphically in Figures 1 to 5. Plots of the hazard rates of X are

displayed in Figures 6 and 7 for certain parameter values. These plots illustrate

the impressive versatility of the proposed models.

Figure 1: Plots of the q-GEV density function for certain parameter values
(q > 0, ξ > 0).

Figure 2: Plots of the q-GEV density function for certain parameter values
(q > 0, ξ < 0).

Figure 3: Plots of the q-GEV density function for certain parameter values
(q < 0, ξ > 0).
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Figure 4: Plots of the q-GEV density function for certain parameter values
(q < 0, ξ < 0).

Figure 5: Plots of the q-Gumbel density function for certain parameter values.
Right panel: q > 0; Left panel: q < 0.

Figure 6: Plots of the q-GEV hazard rates for certain parameter values.
Right panel: ξ < 0, q > 0; Left panel: ξ > 0, q > 0.
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Figure 7: Plots of the q-GEV (left panel) and q-Gumbel (right panel)
hazard rates for certain parameter values.

Remark 1.1. The GEV and Gumbel distributions are respectively obtained

as limiting cases of the q-GEV and q-Gumbel distributionsby letting q approach zero.

The paper is organized as follows. Section 2 contains computable represen-

tations of certain statistical functions of the q-GEV and q-Gumbel distributions.

Section 3 explains how to determine the maximum likelihood estimators of the

model parameters. In Section 4, the proposed distributions as well as three re-

lated models are fitted to an actual data set, and several statistics are utilized

to assess goodness of fit. A Monte Carlo simulation study is carried out in Sec-

tion 5 to verify the accuracy of the maximum likelihood estimates. Finally, some

concluding remarks are included in the last section.

2. CERTAIN STATISTICAL FUNCTIONS

This section includes certain computable representations of the ordinary

moments and the L-moments of the q-Gumbel (s,m, q) and q-GEV(s,m, ξ, q) ran-

dom variables, which were obtained by making use of the symbolic computation

package Mathematica. Closed form representations of their quantile functions

as well as the moment-generating function of the q-Gumbel distribution are also

provided. Whenever such closed form representations could be determined, the

numerical results were found to agree to at least five decimals with those eval-

uated by numerical integration. Thus, numerical integration can arguably be

employed to evaluate any required statistical function with great accuracy.The

following identity can be particularly useful for evaluating the expected value of

an integrable function of a continuous random variable denoted by W (X):

E[W (X)] =

∫ ∞

−∞

W (x) f(x) dx =

∫ 1

0
W (QX(p)) dp ,

where f(x) is the pdf of X and QX(p) denotes the quantile function of X as

defined in Section 2.1.
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2.1. The quantile function

The quantile function is frequently utilized for determining confidence in-

tervals or eliciting certain properties of a distribution. In order to obtain the

quantile function of a random variable X, that is,

QX(p) = inf
{
x ∈ R : p ≤ F (x)

}
, p ∈ (0, 1) ,

one has to solve the equation F (x) = p with respect to x for some fixed p ∈ (0, 1),

where F (x) denotes the cdf of X.

The following quantile functions of the q-GEV (ξ 6= 0) and q-Gumbel (ξ→ 0)

can be readily obtained from their cdf’s as specified by Equation (1.5):

xp ≡ QX(p) = F−1(p) =






m

s
+

1

sξ

[(
p−q − 1

q

)−ξ

− 1

]
, ξ 6= 0 ,

m

s
− 1

s
ln

(
p−q − 1

q

)
, ξ → 0 .

(2.1)

2.2. Moments

Many key characteristics of a distribution can be inferred from its central

moments. We first determine conditions under which the integer moments of the

q-GEV distribution are finite. In light of the relationship given in the introduction

of this section and the representation of quantile function of the q-GEV distri-

bution specified by Equation (2.1), the kth moment of this distribution can be

evaluated as
∫ 1

0

(
1

ξ

)k((p−q − 1

q

)−ξ

− 1

)k

dp .

It is assumed without any loss of generality that m = 0 and s = 1. On applying

the binomial expansion to
((p−q−1

q

)−ξ − 1
)k

, the kth moment is expressible as a

linear combination of the integrals

∫ 1

0

(
p−q − 1

q

)j(−ξ)

dp , j = 0, 1, ..., k .

Letting τ = ξ j and integrating, Mathematica provides the following condition

for the existence of the integral when q is positive: −1
q < τ < 1 or ξ j < 1 and

ξ j > −1/q.

If q is negative, the condition for the existence of the kth moment is τ < 1, that is,

ξ j < 1, j = 1, ..., k. Thus the conditions for the existence of the positive integer
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moments of the q-GEV distribution are as follows: ξ < 1
k whenever q > 0 and

ξ > 0; ξ > −1/(kq) whenever q > 0 and ξ < 0; ξ < 1/k whenever q < 0 and ξ > 0;

no requirement being necessary when q and ξ are both negative.

Moreover, as in the case of the Gumbel distribution, the positive integer moments

of the q-Gumbel distribution are finite whether q is positive or negative.

As determined by symbolic computations, the nth ordinary moment of the q-GEV
distribution can be expressed as follows:

E(Xn) =
(−1)n

ξn
−
∑n−1

i=0 (−1)i+1
(

n
i

)
Γ
(
1 − (n− i) ξ

) (
1
q

)1−ξ(n−i)

ξn Γ
(
1 + 1

q

)

× Γ

(
(n− i) ξ +

1

q

)
, q > 0 ,

=
1

sn

[
(mξ − 1)n

ξn
− Γ

(
q − 1

q

) n−1∑

i=0

ci (mξ − 1)i (−q)ξ(n−i)

ξn−1 Γ
(
−(n− i)ξ − 1

q + 1
)

×
(
Ii6=0 − (1/ξ) Ii=0

)
Γ
(
Ii=0 − (n− i) ξ

)
]
, q < 0 ,

where I denotes the indicator function and the ci’s are such that ci = 1 if i = 0,

ci = n!/(i! (n− i− 1)!) if 1 ≤ i ≤ (n− 1)/2 and ci = n!/i! if i > (n− 1)/2.

A necessary condition for the existence of the nth moment of X is ξ < 1/n.

The representation obtained for q < 0 also requires that qξ be greater than −(1/n).

As previously pointed out, numerical integration will provide accurate results

when a closed form representation is unavailable.

It should be noted that, for instance, letting Y have a q-Gumbel distribution

with pdf f(y; 1, 0, q), is straightforward to determine the hth moment of X =

(m+ Y )/s — whose pdf is f(x; s,m, q) — in terms of the first h moments of Y

since

E(Xh) =
1

sh

h∑

j=0

(
h

j

)
mh−j E(Y j) .

When q is positive, the hth moment of the q-Gumbel distribution whose

parameters m and s are respectively 0 and 1, is given by

E(Xh) = h!

[

h+2Fh+1

(
1, ..., 1,

1

q
+ 1; 2, ..., 2; −q

)

+ (−1)h q
h− 1

q

h+1 Fh

(
1

q
, ...,

1

q
;
1

q
+ 1, ...,

1

q
+ 1; −1

q

)]
,

(2.2)

where the generalized hypergeometric function pFq(a; b; z) admits the power series
∑∞

k=0
(a1)k···(ap)k

(b1)k···(bq)k k! z
k.
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The following closed form representation of the moment-generating function

of the q-Gumbel distribution wherein m = 0, s = 1 was obtained assuming that

q < 0:

M(t) =
Γ
(

q−1
q

)
Γ(1 − t) (−q)t

Γ
(
−t− 1

q + 1
) .

The hth moment of this distribution when its parameter q is negative can then be

obtained by differentiating M(t). For instance when q < 0, the first and second

moments of the q-Gumbel distribution are

E(X) = H− 1
q

+ log(−q)
and

E(X2) =
(
H− 1

q
+ log(−q)

)2
− ψ(1)

(
q − 1

q

)
+
π2

6
,

where Hδ denotes the Harmonic function
∫ 1
0

1−xδ

1−x dx and ψ(1)(·) is the digamma

function.

2.3. L-Moments

Unlike the conventional moments, the L-moments of a random variable

whose mean is finite always exist, which explains their frequent use in extreme

value theory. Since L-moments can be evaluated as linear combinations of proba-

bility weighted moments, which are defined for instance in [4], we first determine

the latter.

The mth order probability weighted moment of the q-Gumbel distribution

is given by

βm =

∫ ∞

−∞

y F (y)r dF (y)

=
1

s

[
em

3F2

(
1, 1,

k

q
+

1

q
+ 1; 2, 2; −qem

)

− q (q + e−m)
k+1

q
(
q (em q + 1)

)− k+1
q

(k + 1)2

× 2F1

(
k + 1

q
,
k + 1

q
;
k + q + 1

q
; −e−m

q

)]
, q > 0 ,(2.3)

= ℜ




e

i(k+1)π
q (k + 1)π csc

(
(k+1)π

q

)
−
(

1
q

) k−q+1
q

2F1

(
k+1

q , k+1
q ; k+q+1

q ; −1
q

)

(k + 1)2

+ 3F2

(
1, 1,

k

q
+

1

q
+ 1; 2, 2; −q

)


 , q < 0 ,



56 S.B. Provost, A. Saboor, G.M. Cordeiro and M. Mansoor

where m is a nonnegative integer, i=
√
−1 and ℜ(s) denotes the real part of s.

The first four L-moments of the q-Gumbel distribution are then obtained as

follows: λ1 = β0, λ2 = 2β1 − β0, λ3 = 6β2 − 6β1 + β0 and λ4 = 20β3 − 30β2 +

12β1 − β0.

The L-moments of the q-GEV distribution, as well as other statistical func-

tions of either of the newly introduced distributions, such as incomplete moments

and mean deviations, can readily and accurately be evaluated by numerical inte-

gration. All the expressions included in this section were verified numerically for

several values of the parameters, the code being available upon request.

3. MAXIMUM LIKELIHOOD ESTIMATION AND GOODNESS-

OF-FIT STATISTICS

The parameters of the q-GEV and q-Gumbel distributions are estimated by

making use of the maximum likelihood method. As well, several goodness-of-fit

statistics to be utilized in Section 4 are defined in this section.

3.1. Maximum Likelihood Estimation

In order to estimate the parameters of the q-GEV and q-Gumbel distri-

butions whose density functions are as specified in Equation (1.6), one has to

maximize their respective log-likelihood functions with respect to the model pa-

rameters. Given the observations xi, i = 1, ..., n, the log-likelihood functions of

the q-GEV and q-Gumbel models are respectively given by

ℓ(s,m, ξ, q) = n log(s) +

(
−1

q
− 1

) n∑

i=1

log
(
q
(
ξ (sxi −m) + 1

)−1/ξ
+ 1
)

+

(
−1

ξ
− 1

) n∑

i=1

log
(
ξ (sxi −m) + 1

)
,

(3.1)

whenever ξ 6= 0 and

ℓ(s,m, q) = n log(s) +
n∑

i=1

log(sxi −m) +

(
−1

q
− 1

) n∑

i=1

log(1 + qem−sxi)

as ξ → 0.
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The associated log-likelihood system of equations are respectively

∂ℓ(s,m, ξ, q)

∂s
=

(
−1

q
− 1

) n∑

i=1

−qxi

(
ξ (sxi −m) + 1

)− 1
ξ
−1

q
(
ξ (sxi −m) + 1

)− 1
ξ + 1

+

(
−1

ξ
− 1

) n∑

i=1

ξxi

ξ (sxi −m) + 1
+
n

s
= 0 ,

∂ℓ(s,m, ξ, q)

∂m
=

(
−1

q
− 1

) n∑

i=1

q
(
ξ (sxi −m) + 1

)− 1
ξ
−1

q
(
ξ (sxi −m) + 1

)− 1
ξ + 1

+

(
−1

ξ
− 1

) n∑

i=1

− ξ

ξ (sxi −m) + 1
= 0 ,

∂ℓ(s,m, ξ, q)

∂ξ
=

(
−1

q
− 1

) n∑

i=1

q
(
ξ (sxi −m) + 1

)− 1
ξ

q
(
ξ (sxi −m) + 1

)− 1
ξ + 1

(3.2)

×
(

log
(
ξ (sxi −m) + 1

)

ξ2
− sxi −m

ξ
(
ξ (sxi −m) + 1

)
)

+

∑n
i=1 log

(
ξ (sxi −m) + 1

)

ξ2

+

(
−1

ξ
− 1

) n∑

i=1

sxi −m

ξ (sxi −m) + 1
= 0 ,

∂ℓ(s,m, ξ, q)

∂q
=

∑n
i=1 log

(
q
(
ξ (sxi −m) + 1

)− 1
ξ + 1

)

q2

+

(
−1

q
− 1

) n∑

i=1

(
ξ (sxi −m) + 1

)− 1
ξ

q
(
ξ (sxi −m) + 1

)− 1
ξ + 1

= 0

and

∂ℓ(s,m, q)

∂s
=

(
−1

q
− 1

) n∑

i=1

− qxi e
m−sxi

q em−sxi + 1
−

n∑

i=1

xi +
n

s
= 0 ,

∂ℓ(s,m, q)

∂m
=

(
−1

q
− 1

) n∑

i=1

q em−sxi

q em−sxi + 1
+ n ,(3.3)

∂ℓ(s,m, q)

∂q
=

∑n
i=1 log(q em−sxi + 1)

q2
+

(
−1

q
− 1

) n∑

i=1

em−sxi

q em−sxi + 1
.

Solving the nonlinear systems specified by the sets of equations (3.2) and

(3.3) respectively yields the maximum likelihood estimates (MLE ’s) of the pa-

rameters of the q-GEV and q-Gumbel distributions. Since these equations cannot
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be solved analytically, iterative methods such as the Newton–Raphson technique

are required. For both distributions, all the second order log-likelihood derivatives

exist. In order to determine approximate confidence intervals for the parameters

of the q-GEV and q-Gumbel distributions, one needs the 4×4 and 3×3 observed

information matrices which are obtained by taking the opposite of the matrices

of the second derivatives of the loglikelihood functions wherein the parameters

are replaced by the MLE ’s, these matrices being denoted by J(υ1) = {J(υ1)rt}
for r, t = s,m, ξ, q, where υ1 denotes the vector of the parameters s,m, ξ, q, and

J(υ2) = {J(υ2)rt} for r, t = s,m, q, where υ2 is a vector whose components are

s,m, q. Under standard regularity conditions, (υ1 − υ̂1) asymptotically follows

the multivariate normal distribution N4(O,−J(υ̂1)
−1) and the asymptotic dis-

tribution of (υ2 − υ̂2) is N3(O,−J(υ̂2)
−1). These distributions can be utilized

to construct approximate confidence intervals for the model parameters. Thus,

denoting for example the total observed information matrix evaluated at υ̂1, that

is, −J(υ̂1), by −Ĵ , one would have the following approximate 100(1 − α)% con-

fidence intervals for the parameters of the q-GEV distribution

ŝ ± zφ/2

√
(−Ĵ−1)ss , m̂ ± zφ/2

√
(−Ĵ−1)mm ,

ξ̂ ± zφ/2

√
(−Ĵ−1)ξξ , q̂ ± zφ/2

√
(−Ĵ−1)qq ,

where zα/2 denotes the 100(1 − α/2)th percentile of the standard normal distri-

bution. The observed information matrices for the q-GEV and q-Gumbel models

are provided in Appendices A and B.

One can determine the global maximum of the log-likelihood functions by

setting certain initial values for the parameters in the maximizing routine being

used. To that end, one could for instance make use of estimates of the parameters

obtained for a sub-model such as those of the GEV distribution when assigning

initial values to the parameters s,m, ξ of the q-GEV distribution. While Park and

Sohn [23] obtained parameter estimates for the GEV distribution by making use

of generalized weighted least squares and estimates of the three parameters are

given in Chapter 30 of [4] in terms of probability weighted moments, Prescott and

Walden [24] advocated the use of the maximum likelihood approach. It should be

noted that, for both distributions under consideration, the MLE ’s do not appear

to be particularly sensitive to the initial parameter values.

3.2. Goodness-of-fit statistics

In order to assess the relative adequacy of competing models, one has to rely

on certain goodness-of-fit statistics. These may include the log-likelihood function

evaluated at the MLE ’s denoted by ℓ̂, Akaike’s information criterion (AIC), the
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corrected Akaike information criterion (CAIC), as well as the modified Anderson–

Darling (A∗), the modified Cramér–von Mises (W ∗) and the Kolmogrov–Smirnov

(K–S) statistics. The smaller these statistics are, the better the fit. The AIC and

AICC statistics are respectively given by

AIC = −2ℓ(θ̂) + 2p and AICC = AIC +
2p (p+ 1)

n− p− 1
,

where ℓ(θ̂) denotes the log-likelihood function evaluated at the MLE ’s, p is the

number of estimated parameters and n, the sample size.

The Anderson–Darling and Cramér–von Mises statistics can be evaluated

by means of the following formulae:

A∗ =

(
2.25

n2
+

0.75

n
+ 1

)[
−n− 1

n

n∑

i=1

(2i− 1) log
(
zi (1 − zn−i+1)

)
]
,

and

W ∗ =

(
0.5

n
+ 1

)[ n∑

i=1

(
zi −

2i− 1

2n

)2
+

1

12n

]
,

where zi = cdf(yi), the yi’s denoting the ordered observations.

As for the Kolmogrov–Smirnov statistic, it is defined by

K–S = Max

[
i

n
− zi, zi −

i− 1

n

]
.

As is explained in [2], unlike the asymptotic distributions of the AIC and AICC

statistics, those of the A∗ and W ∗ statistics have complicated forms requiring

numerical techniques for determining specific percentiles.

4. APPLICATIONS

4.1. A hydrological data set

In this section, we fit five models to a rainfall precipitation data set which

is freely available on the Korea Meteorological Administration (KMA) website

http://www.kma.go.kr and represent the annual maximum daily rainfall amounts

in millimeters in Seoul, Korea during the period 1961–2002. The selected mod-

els are the three-parameter GEV, the Kumaraswamy generalized extreme value

(KumGEV) [9], the exponentiated generalized Gumbel (EGGu) [3], and the newly

introduced q-GEV and q-Gumbel distributions. Then, five statistics are employed
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in order to assess goodness of fit. Table 1 displays certain descriptive statistics

associated with the set of observations under consideration.

Table 1: Descriptive statistics for the Seoul rainfall data.

Mean Median SD Kurtosis Skewness MD – mean MD – median Entropy

144.599 131.6 66.1781 3.80435 0.940673 48.7761 33.2 4.61435

MD := Mean deviation

The KumGEV and EGGu density functions are respectively given by

f(x; a, b, ξ, σ, µ) =
1

σ
abu exp(−au)

[
1 − exp(−au)

]b−1
,

where u = {1 + ξ(x− µ)/σ}−1/ξ with x such that (1 + ξ(x− µ)/σ) > 0; a > 0,

b > 0, ξ ∈ R, σ > 0 and µ ∈ R, and

f(x;σ, µ, α, β) =
αβ

σ
e−
(

x−µ
σ

+e
µ−x

σ

) (
1 − e−e

µ−x
σ
)α−1

[
1 −

(
1 − e−e

µ−x
σ
)α]β−1

,

where x ∈ R, ξ ∈ R, σ > 0, µ ∈ R, α > 0 and β > 0.

The MLE ’s of the parameters are included in Table 2 for each of the fitted

distributions. It can be seen from the values of the goodness–of–fit statistics

appearing Table 3 that the two proposed distributions provide the most adequate

models. The plots of the cdf’s that are superimposed on the empirical cdf in the

right panel of Figure 8 also suggest that they better fit the data. Additionally,

asymptotic confidence intervals for the model parameters are included in Table 4.

Table 2: MLE ’s of the parameters (standard errors in parentheses)
for the Seoul rainfall data.

Distribution Estimates

GEV(s, m, ξ)
0.0212 2.3781 0.0028

(0.0015) (0.1666) (0.0570)

KumGEV(a, b, ξ, σ, µ)
18.289 15.412 21.175 1.1934 2.1339
(5.652) (13.558) (9.868) (0.440) (11.002)

EGGu(σ, µ, α, β)
85.686 −18.428 1.7687 18.593

(206.89) (509.13) (4.4618) (201.49)

q-GEV(s, m, ξ, q)
0.0303 4.1082 0.1973 1.1225

(0.0085) (1.6329) (0.0922) (1.266)

q-Gumbel(s, m, q)
0.02045 2.4323 0.1129
(0.0026) (0.4135) (0.1746)
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Table 3: Goodness-of-fit statistics for the Seoul rainfall data.

Distribution AIC AICC A∗ W ∗ K–S p-value (K–S)

GEV(s, m, ξ) 1169.63 1169.87 0.9583 0.1325 0.0892 0.3725
KumGEV(a, b, ξ, σ, µ) 1174.726 1175.33 0.8566 0.1505 0.0889 0.3767
EGGu(σ, µ, α, β) 1169.16 1169.56 0.6566 0.1099 0.0872 0.4007
q-GEV(s, m, ξ, q) 1168.64 1169.04 0.4638 0.0678 0.0716 0.6535
q-Gumbel(s, m, q) 1166.94 1167.18 0.6279 0.1021 0.0862 0.4157

Table 4: Confidence intervals for the parameters of the q-Gumbel
and q-GEV models (Seoul rainfall data).

CI (q-Gumbel) s m q

95% [0, 0.025546] [2.4272, 2.4373] [−0.229316, 0.4551]
99% [0.01374, 0.027158] [2.4255, 2.4390] [−0.337568, 0.5633]

CI (q-GEV) s m ξ q

95% [0, 0.04096] [0.9078, 7.3086] [0.01698, 0.3776] [−1.257536, 3.7075]
99% [0, 0.02496] [−0.1046, 8.3210] [−0.040576, 0.43517] [−2.042828, 4.4928]

Figure 8: The GEV, KumGEV, EGGu, q-Gumbel and q-GEV estimated
pdf’s superimposed on the histogram of the data (left panel);
the estimated cdf’s and empirical cdf (right panel).

4.2. Return level

A return period (sometimes referred to as recurrence interval) is an estimate

of the likelihood of an event, such as a certain rainfall precipitation level or a given

river discharge flow level. It is a statistical measure that is based on historical

data, which proves especially useful in risk analysis as it represents the average
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recurrence interval over an extended period of time. In fact, the return period

is the inverse of the probability that the level will be exceeded in any one year

— or, equivalently, the expected waiting time or mean number of years it will

take for an exceeding level to occur. For example, a rainfall precipitation return

level x5 has a 20% (or one fifth) probability of being exceeded in any one year,

which of course, does not mean that such a rainfall level will happen regularly

every 5 years or only once in a five-year period, despite what the phrase “return

period” might suggest.

Based on these considerations and assuming that the event components

are independently distributed, the probability that an exceeding event will occur

for the first time in t years is p(1 − p)t−1, t = 1, 2, ..., which is the geometric

probability mass function ([25]) whose mean is equal to T = 1/p, when the yearly

exceedance probability p = P (X≥xT ) is assumed to remain constant throughout

the future years of interest ([1] and [22]) . The probability of exceeding xT can be

estimated by the survival probability, 1− F (xT ), the return period T then being

equal to 1/P (X≥xT ). Thus, for a given return period T , the corresponding

return level can be obtained as follows:

xT = F−1(1 − 1/T ) ,

which yields

xT =
1

s

{
m− log

(
−1 − (1 − 1/t)−q

q

)}

for the q-Gumbel model and

xT = − 1

ξ s

{(
−1 − (1 − 1/t)−q

q

)−ξ
(
−mξ

(
−1 − (1 − 1/t)−q

q

)ξ
− 1

)}

for the q-GEV model, where xT > 0 and T > 1. When unknown, the parameters are

replaced by their MLE ’s. The estimates of the return levels xT obtained from the

q-GEV distribution for the return periods, T=2,5,10,20,50,100 years, which appear

in Table 5, apply to the previously analyzed Seoul rainfall precipitation data.

Table 5: Return level estimates x̂T for given values of T
(Seoul rainfall data).

T bxT (q-GEV model)

2 133.964
5 187.515

10 225.94
20 267.07
30 293.139
50 328.625

100 382.323
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5. SIMULATION STUDY

The suitability of the maximum likelihood approach for estimating the pa-

rameters of the q-Gumbel and q-GEV distributions is assessed in this section.

Samples of sizes 50, 100, 300 and 500 were generated from the quantile functions

of these distributions by Monte Carlo simulations for several values of the param-

eters. The biases and mean squared errors (MSE’s) of the resulting MLE ’s were

determined for each combination of sample sizes and assumed parameter values

on the basis of 5,000 replications.

The simulations results that were obtained for the q-Gumbel and q-GEV
are respectively reported in Tables 6 and 7. As expected, the biases and MSE’s

generally decrease as the sample sizes increase. It should be noted that the

MLE ’s remain fairly accurate even for moderately sized samples. Those results

corroborate the appropriateness of the maximum likelihood methodology — as

described in Section 3.1 — for estimating the parameters of the proposed models.

Table 6: Monte Carlo simulation results: biases and MSE’s
for the q-Gumbel model.

Actual values Bias MSE
n

q s m bq bs bm bq bs bm
50

0.5 1.0 0.0 −0.0015 0.0424 0.0109 0.2461 0.0749 0.1535
1.5 2.0 1.0 0.1779 0.1933 0.2060 1.1077 0.5524 0.9587
3.0 2.0 1.0 0.3521 0.1904 0.2552 2.3258 1.1566 1.7621

−0.5 1.0 0.0 −0.1432 −0.0315 −0.0965 0.0863 0.0434 0.0698
−1.5 2.0 1.0 0.0121 −0.0007 0.0114 0.0008 0.0013 0.0004
−3.0 2.0 1.0 0.0109 −0.0036 −0.0001 0.0006 0.0001 0.0000

100

0.5 1.0 0.0 −0.0104 0.0160 −0.0008 0.0808 0.0240 0.0507
1.5 2.0 1.0 0.0644 0.0775 0.0791 0.3300 0.1625 0.2677
3.0 2.0 1.0 0.2278 0.1351 0.1708 1.5085 0.3438 0.7338

−0.5 1.0 0.0 −0.0704 −0.0196 −0.0495 0.0282 0.0183 0.0258
−1.5 2.0 1.0 0.0075 0.0053 0.0101 0.0002 0.0004 0.0002
−3.0 2.0 1.0 0.0031 −0.001 0.0000 0.0001 0.0000 0.0000

300

0.5 1.0 0.0 −0.0020 0.0052 −0.0003 0.0243 0.0072 0.0148
1.5 2.0 1.0 0.0192 0.0246 0.0246 0.0851 0.0411 0.0684
3.0 2.0 1.0 0.0715 0.0404 0.0516 0.3001 0.0617 0.1298

−0.5 1.0 0.0 −0.0275 −0.0099 −0.0201 0.0058 0.0052 0.0065
−1.5 2.0 1.0 0.0039 0.0059 0.0070 0.0000 0.0001 0.0001
−3.0 2.0 1.0 −0.0003 0.0001 0.0000 0.0000 0.0000 0.0000

500

0.5 1.0 0.0 −0.0013 0.0032 0.0002 0.0142 0.0041 0.0089
1.5 2.0 1.0 0.0148 0.0175 0.0169 0.0483 0.0236 0.0384
3.0 2.0 1.0 0.0421 0.0243 0.0322 0.1764 0.0355 0.0742

−0.5 1.0 0.0 −0.0180 −0.0066 −0.0141 0.0030 0.0031 0.0036
−1.5 2.0 1.0 0.0035 0.0057 0.0065 0.0000 0.0001 0.0001
−3.0 2.0 1.0 −0.0002 0.0001 0.0000 0.0000 0.0000 0.0000
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Table 7: Monte Carlo simulation results: biases and MSE’s
for the q-GEV model.

Actual values Bias MSE
n

q s m ξ bq bs bm bξ bq bs bm bξ
50

0.5 1.0 0.0 0.5 0.9087 0.0420 0.3640 −0.0684 1.9675 0.0743 0.3694 0.0412
1.5 1.0 1.0 0.5 0.5282 0.0210 0.1514 0.0031 0.7358 0.0522 0.2084 0.0096
1.5 2.0 1.0 0.5 0.5474 0.0369 0.1576 0.0027 0.7963 0.2146 0.2457 0.0089
1.5 2.0 1.0 1.5 0.1072 0.0004 0.0007 −0.0005 0.0271 0.0001 0.0000 0.0000

−0.5 1.0 0.0 −0.5 −0.2784 −0.2644 −0.1517 −0.2271 0.1553 0.1932 0.0781 0.0966
−1.5 2.0 1.0 −0.5 0.0026 0.0086 0.0115 −0.0164 0.0012 0.0012 0.0005 0.0027
−1.5 2.0 1.0 −1.5 −0.0025 0.0023 0.0019 −0.0023 0.0000 0.0000 0.0000 0.0001

100

0.5 1.0 0.0 0.5 0.6083 0.0439 0.2602 −0.0343 0.9423 0.0289 0.1939 0.0115
1.5 1.0 1.0 0.5 0.3917 0.0092 0.1279 −0.0088 0.4535 0.0223 0.1105 0.0056
1.5 2.0 1.0 0.5 0.4033 0.0071 0.1314 −0.0084 0.4327 0.0902 0.1029 0.0053
1.5 2.0 1.0 1.5 0.0827 −0.0002 0.0001 0.0000 0.0223 0.0000 0.0000 0.0000

−0.5 1.0 0.0 −0.5 −0.1429 −0.1471 −0.0842 −0.1121 0.0514 0.0725 0.0291 0.0312
−1.5 2.0 1.0 −0.5 −0.0003 0.0118 0.0096 −0.0076 0.0005 0.0004 0.0003 0.0008
−1.5 2.0 1.0 −1.5 −0.0009 0.0009 0.0007 −0.0008 0.0000 0.0000 0.0000 0.0000

300

0.5 1.0 0.0 0.5 0.2501 0.0220 0.1144 −0.0132 0.2391 0.0087 0.0578 0.0026
1.5 1.0 1.0 0.5 0.1988 0.0088 0.0822 −0.0118 0.1599 0.0066 0.0403 0.0024
1.5 2.0 1.0 0.5 0.1974 0.0180 0.0801 −0.0117 0.1590 0.0252 0.0396 0.0023
1.5 2.0 1.0 1.5 0.0352 0.0000 0.0000 0.0000 0.0133 0.0000 0.0000 0.0000

−0.5 1.0 0.0 −0.5 −0.0491 −0.0539 −0.0320 −0.0363 0.0090 0.0163 0.0073 0.0050
−1.5 2.0 1.0 −0.5 0.0005 0.0092 0.0069 −0.0019 0.0001 0.0002 0.0001 0.0001
−1.5 2.0 1.0 −1.5 −0.0002 0.0002 0.0001 −0.0002 0.0000 0.0000 0.0000 0.0000

500

0.5 1.0 0.0 0.5 0.1581 0.0136 0.0734 0.0010 0.1418 0.0015 0.0347 0.0011
1.5 1.0 1.0 0.5 0.1289 0.0051 0.0558 0.0005 0.0853 0.0015 0.0227 0.0005
1.5 2.0 1.0 0.5 0.1330 0.0127 0.0566 0.0002 0.0873 0.0015 0.0227 0.0000
1.5 2.0 1.0 1.5 0.0199 0.0000 0.0000 0.0000 0.0100 0.0000 0.0000 0.0000

−0.5 1.0 0.0 −0.5 −0.0334 −0.0378 −0.0229 0.0025 0.0047 0.0025 0.0041 0.0025
−1.5 2.0 1.0 −0.5 0.0011 0.0072 0.0057 0.0001 0.0000 0.0001 0.0001 0.0001
−1.5 2.0 1.0 −1.5 −0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

6. CONCLUDING REMARKS

The q-generalized extreme value and the q-Gumbel distributions introduced

herein are truly versatile: they can be positively or negatively skewed; they can

give rise to increasing, decreasing and upside-down bathtub shaped hazard rate

functions, and their supports can be finite, bounded above or below, or infinite.

The flexibility of these models was further confirmed by applying them to fit a cer-

tain data set consisting of annual maximum daily precipitations, and comparing

them to three other models by means of several goodness-of-fit statistics. As well,

the model parameters were successfully estimated by the method of maximum

likelihood, the suitability of this approach having been supported by a simulation

study. Moreover, we observed that numerical integration produces highly accu-

rate results when evaluating various statistical functions of the q-analogues of the

GEV and Gumbel random variables. In practice, the q-generalized extreme value
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model ought to be more realistic and useful than its original counterpart, which

is actually a limiting distribution, and the proposed extended models should lead

to further advances in risk theory, biostatistics, hydrology, meteorology, survival

analysis and engineering, among several other fields of research that have already

benefited from the utilization of existing related models.

APPENDIX A

The 4×4 total observed information matrix associated with the q-GEV dis-

tribution is given by −J(υ1) wherein the parameters are replaced by their MLE ’s

where

J(υ1) =





J(υ1)ss J(υ1)sm J(υ1)sξ J(υ1)sq

J(υ1)ms J(υ1)mm J(υ1)mξ J(υ1)mq

J(υ1)ξs J(υ1)ξm J(υ1)ξξ J(υ1)ξq

J(υ1)qs J(υ1)qm J(υ1)qξ J(υ1)qq




,

with

J(υ1)ss =

(
−1

q
− 1

) n∑

i=1



− q2x2
i

(
ξ (sxi −m) + 1

)− 2
ξ
−2

(
q
(
ξ (sxi −m) + 1

)− 1
ξ + 1

)2

−

(
−1

ξ − 1
)
ξ qx2

i

(
ξ (sxi −m) + 1

)− 1
ξ
−2

q
(
ξ (sxi −m) + 1

)− 1
ξ + 1





+

(
−1

ξ
− 1

) n∑

i=1

− ξ2x2
i(

ξ (sxi −m) + 1
)2 − n

s2
,

J(υ1)sm =

(
−1

q
− 1

) n∑

i=1



−
q2xi

(
ξ (sxi −m) + 1

)− 2
ξ
−2

(
q
(
ξ (sxi −m) + 1

)− 1
ξ + 1

)2

+

(
−1

ξ − 1
)
ξ qxi

(
ξ (sxi −m) + 1

)− 1
ξ
−2

q
(
ξ (sxi −m) + 1

)− 1
ξ + 1





+

(
−1

ξ
− 1

) n∑

i=1

ξ2xi(
ξ (sxi −m) + 1

)2 ,

J(υ1)sξ =
n∑

i=1

ξxi(
ξ (sxi −m) + 1

)
ξ2

+

(
−1

ξ
− 1

) n∑

i=1

(
xi

ξ (sxi −m) + 1
− ξxi (sxi −m)
(
ξ (sxi −m) + 1

)2

)
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+

(
−1

q
− 1

) n∑

i=1




q2xi

(
ξ (sxi −m) + 1

)− 2
ξ
−1
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q
(
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)− 1
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)2
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i (−1 + q) + 2q

)

− e2sxi+2mxξ
i (−1 + q)2m log(xi)x

2ξ
i(

−esxi+mxξ
i (−1 + q) + 2q

)2

− esxi+mxξ
i (−1 + q)m log(xi)x

2ξ
i(

−esxi+mxξ
i (−1 + q) + 2q

)

)

+
n∑

i=1

(
xξ

i

sxi + ξmxξ
i

+
ξ log(xi)x

ξ
i

sxi + ξmxξ
i

− ξxξ
i

(
mxξ

i + ξm log(xi)x
ξ
i

)
(
sxi + ξmxξ

i

)2

)
,
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J(υ1)mq =
n∑

i=1

(
esxi+mxξ

i

(
2−esxi+mxξ

i

)
(−1+q)xξ

i(
−esxi+mxξ

i (−1 + q) + 2q
)2 − esxi+mxξ

i xξ
i

−esxi+mxξ
i (−1+q)+2q

)
,

J(υ1)ξξ =

n∑

i=1

(
−(q − 1)m2x2ξ

i log2(xi) emxξ
i +sxi

2q − (q − 1)emxξ
i +sxi

− (q−1)2m2x2ξ
i log2(xi) e2mxξ

i +2sxi

(
2q − (q − 1)emxξ

i +sxi
)2 − (q−1)mxξ

i log2(xi) emxξ
i +sxi

2q − (q − 1)emxξ
i +sxi

)

+
n∑

i=1

(
ξmxξ

i log2(xi) + 2mxξ
i log(xi)

ξmxξ
i + sxi

−
(
mxξ

i + ξmxξ
i log(xi)

)2
(
ξmxξ

i + sxi

)2

)

+
n∑

i=1

−2mxξ
i log2(xi) ,

J(υ1)ξq =
n∑

i=1

(
(q − 1)mxξ

i log(xi) emxξ
i +sxi

(
2 − emxξ

i +sxi
)

(
2q − (q − 1)emxξ

i +sxi
)2

− mxξ
i log(xi) emxξ

i +sxi

2q − (q − 1)emxξ
i +sxi

)

and

J(υ1)qq(s,m, ξ, q) =
n∑

i=1

−
(
2 − esxi+mxξ

i

)2
(
−esxi+mxξ

i (−1 + q) + 2q
)2 .

APPENDIX B

The 3×3 total observed information matrix associated with the q-Gumbel

distribution is given by −J(υ2) wherein the parameters are replaced by their

MLE ’s where

J(υ2) =




J(υ2)ss J(υ2)sm J(υ2)sq

J(υ2)ms J(υ2)mm J(υ2)mq

J(υ2)qs J(υ2)qm J(υ2)qq



 ,

with

J(υ2)ss =

(
−1

q
− 1

) n∑

i=1

(
qx2

i em−sxi

qem−sxi + 1
− q2x2

i e2m−2sxi

(qem−sxi + 1)2

)
− n

s2
,

J(υ2)sm =

(
−1

q
− 1

) n∑

i=1

(
q2xi e

2m−2sxi

(qem−sxi + 1)2
− qxi e

m−sxi

qem−sxi + 1

)
,
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J(υ2)sq =

∑n
i=1 − qxi em−sxi

q em−sxi+1

q2

+

(
−1

q
− 1

) n∑

i=1

(
qxi e

2m−2sxi

(qem−sxi + 1)2
− xi e

m−sxi

qem−sxi + 1

)
,

J(υ2)mm =

(
−1

q
− 1

) n∑

i=1

(
qem−sxi

qem−sxi + 1
− q2 e2m−2sxi

(qem−sxi + 1)2

)
,

J(υ2)mq =

∑n
i=1

q em−sxi

q em−sxi+1

q2

+

(
−1

q
− 1

) n∑

i=1

(
em−sxi

qem−sxi + 1
− qe2m−2sxi

(qem−sxi + 1)2

)

and

J(υ2)qq = −2
∑n

i=1 log(qem−sxi + 1)

q3
+

2
∑n

i=1
em−sxi

q em−sxi+1

q2

+

(
−1

q
− 1

) n∑

i=1

− e2m−2sxi

(qem−sxi + 1)2
.
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