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1. INTRODUCTION

The Lindley distribution was first proposed by Lindley [20] in the context of

fiducial and Bayesian inference. In recent years, this distribution has been studied

and generalized by several authors, see Ghitany et al. [15], Zalerzadeh and Dolati

[29], Ghitany et al. [14], Bakouch et al. [4], Barreto-Souza and Bakouch [5] and

Ghitany et al. [13].

In this paper, we introduce a new generalization of the Lindley distribution

referred to as the Weibull Lindley (WL) distribution by compounding Lindley

and Weibull distributions. The compounding approach gives new distributions

that extend well-known families of distributions and at the same time offer more

flexibility for modeling lifetime data. The flexibility of such compound distribu-

tions comes in terms of one or more hazard rate shapes, that may be decreasing

or increasing or bathtub shaped or upside down bathtub shaped or unimodal.

Many recent distributions have been introduced by using a compounding

approach. For example, Adamidis and Loukas [1] proposed a distribution by tak-

ing the minimum of N independent and identical exponential random variables,

where N is a geometric random variable. But this distribution allows for only

decreasing hazard rates. Kus [18] proposed a distribution by taking the minimum

of N independent and identical exponential random variables, where N is a Pois-

son random variable. But this distribution also allows for only decreasing hazard

rates. Barreto-Souza et al. [6] proposed a distribution by taking the minimum of

N independent and identical Weibull random variables, where N is a geometric

random variable. But this distribution does not allow for bathtub shaped hazard

rates, the most realistic hazard rates. Morais and Barreto-Souza [22] proposed

a distribution by taking the minimum of N independent and identical Weibull

random variables, where N is a power series random variable. But this distribu-

tion also does not allow for bathtub shaped hazard rates. Asgharzadeh et al. [3]

proposed a distribution by taking the minimum of N independent and identical

Pareto type II random variables, where N is a Poisson random variable. But this

distribution allows for only decreasing hazard rates. Silva et al. [27] proposed

a distribution by taking the minimum of N independent and identical extended

Weibull random variables, where N is a power series random variable. This distri-

bution does allow for bathtub shaped hazard rates, but that is expected since the

extended Weibull distribution contains as particular cases many generalizations

of the Weibull distribution. Bourguignon et al. [7] proposed a distribution by

taking the minimum of N independent and identical Birnbaum–Saunders random

variables, where N is a power series random variable. But this distribution does

not allow for bathtub shaped hazard rates.

The WL distribution introduced here is obtained by compounding just two

random variables (Lindley and Weibull random variables). Besides the WL dis-
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tribution has just three parameters, less than several of the distributions cited

above.

Let Y denote a Lindley random variable with parameter λ > 0 and survival

function G(y) = 1+λ+λy
1+λ e−λy, y > 0. Let Z denote a Weibull random variable

with parameters α > 0 and β > 0, and survival function Q(z) = e−(βz)α
, z > 0.

Assume Y and Z are independent random variables. We define X = min(Y, Z)

as a WL random variable and write X ∼ WL(α, β, λ). The survival function of

X is

F (x) = G(x)Q(x).

The cumulative distribution function (cdf) of X can be written as

F (x) = 1 − 1 + λ + λx

1 + λ
e−λx−(βx)α

(1.1)

for x > 0, α > 0, β ≥ 0 and λ ≥ 0. The probability density function (pdf) of X

is

f(x) =
1

1 + λ

[
αλ(βx)α + αβ(1 + λ)(βx)α−1 + λ2(1 + x)

]
e−λx−(βx)α

(1.2)

for x > 0, α > 0, β ≥ 0 and λ ≥ 0.

Some special cases of the WL distribution are: the Weibull distribution

with parameters α and β for λ = 0; the Rayleigh distribution with parameter α

for λ = 0 and β = 2; the exponential distribution with parameter β for λ = 0 and

α = 1; the Lindley distribution with parameter λ for β = 0.

The WL distribution can be used very effectively for analyzing lifetime

data. Some possible motivations for the WL distribution are:

• The WL distribution accommodates different hazard rate shapes, that

may be decreasing or increasing or bathtub shaped, see Figure 2. Bath-

tub shaped hazard rates are very important in practice. None of the

known generalizations of the Lindley distribution accommodate a bath-

tub shaped hazard rate function.

• The WL distribution has closed form expressions for survival and hazard

rate functions, which is not the case for some generalizations of the Lind-

ley distribution. Hence, the likelihood function for the WL distribution

takes explicit forms for ordinary type-II censored data and progressively

type-II censored data. Hence, the WL distribution could be a suitable

model to analyse ordinary type-II censored data and progressively type-

II censored data.

• The Lindley and Weibull distributions are special cases of the WL dis-

tribution.
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• Suppose a system is composed of two independent components in series;

let Y and Z denote their lifetimes; suppose Y is a Lindley random

variable and Z is a Weibull random variable; then the lifetime of the

system is a WL random variable.

• Suppose a system is composed of n independent components in series;

let Y, Z1, Z2, ..., Zn−1 denote their lifetimes; suppose Y is a Lindley ran-

dom variable and Z1, Z2, ..., Zn−1 are identical Weibull random variables;

then the lifetime of the system is also a WL random variable.

• The pdf of the WL distribution can be bimodal, see Figure 1. This

is not the case for the Weibull distribution or any generalization of the

Lindley distribution. So, any bimodal data set (see Figure 8 for example)

cannot be adequately modeled by any of the known generalizations of

the Lindley distribution.

• Additive hazard rates arise in many practical situations, for example,

event-history analysis (Yamaguchi [28]), modeling of excess mortalities

(Gail and Benichou [12], page 391), modeling of breast cancer data

(Cadarso-Suarez et al. [8]), modelling of hazard rate influenced by

periodic fluctuations of temperature (Nair et al. [24], page 268), and

“biologic” and “statistical” interactions in epidemiology (Andersen and

Skrondal [2]). Hence, it is import to have distributions based on addi-

tive hazard rates. The WEL distribution is the first generalization of

the Lindley distribution based on additive hazard rates.

The rest of this paper is organized as follows: various mathematical prop-

erties of the WL distribution are derived in Sections 2 to 4; estimation and

simulation procedures for the WL distribution are derived in Section 5; three real

data applications are illustrated in Section 6.

Some of the mathematical properties derived in Sections 2 to 4 involve in-

finite series: namely, (3.1), (3.2) and (4.1). Extensive computations not reported

here showed that the relative errors between (3.1), (3.2) and (4.1) and their ver-

sions with the infinite series in each truncated at twenty did not exceed 10−20.

This shows that (3.1), (3.2) and (4.1) can be computed for most practical uses

with their infinite sums truncated at twenty. The computations were performed

using Maple. Maple took only a fraction of a second to compute the truncated

versions of (3.1), (3.2) and (4.1). The computational times for the truncated

versions were significantly smaller than those for the untruncated versions and

those based on numerical integration.

Throughout this paper, we report conclusions on various properties of the

WL distribution: the last four paragraphs of Section 2.1 reporting conclusions

on the shape of the pdf of the WL distribution; the last paragraph of Section 2.2

reporting conclusions on the shape of the hazard rate function of the WL dis-
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tribution; Section 2.3 reporting conclusions on the shape of the quartiles of the

WL distribution; the last paragraph of Section 3 reporting conclusions on the

mean, variance, skewness and kurtosis of the WL distribution; the last paragraph

of Section 4 reporting conclusions on the Lorenz curve of the WL distribution.

These conclusions are the result of extensive graphical analyses based on a wide

range of parameter values (although the graphics presented here are based on a

few choices of parameter values). However, we have no analytical proofs for these

conclusions.

2. SHAPES

Here, we study the shapes of the pdf, (1.2), the corresponding hazard rate

function and the corresponding quartiles. Shape properties are important because

they allow the practitioner to see if the distribution can be fitted to a given data

set (this can be seen, for example, by comparing the shape of the histogram of

the data with possible shapes of the pdf). Shape properties of the hazard rate

function are useful to see if the distribution can model increasing failure rates,

decreasing failure rates or bathtub shaped failure rates. Shape properties of the

hazard rate function has implications, for example, to the design of safe systems

in a wide variety of applications. Quartiles are fundamental for estimation (for

example, quartile estimators) and simulation.

2.1. Shape of probability density function

We can see from (1.2) that

lim
x→0

f(x) =






∞, α < 1,
β(1 + λ) + λ2

1 + λ
, α = 1,

λ2

1 + λ
, α > 1

and

f(x) ∼






λ2

1 + λ
xe−λx−(βx)α

, α < 1,

(β + λ)λ

1 + λ
xe−λx−βx, α = 1,

αβαλ

1 + λ
e−λx−(βx)α

, α > 1

as x → ∞.
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Note also that f(x) can be written as

f(x) = g(x)Q(x) + q(x)G(x),

where

g(x) =
λ2(1 + x)

1 + λ
e−λx

and

q(x) = αβαxα−1e−(βx)α

.

So, the first derivative of f(x) is

f ′(x) = g′(x)Q(x) + q′(x)G(x) − 2g(x)q(x).

Therefore, f(x) is decreasing if g′(x) < 0 and q′(x) < 0. This is possible if λ ≥ 1

and α ≤ 1.

The first derivative of f(x) is

f ′(x) =
e−λx−(βx)α

1 + λ

[
(1 + λ + λx)

[
αβ2(α − 1)(βx)α−2 − (αβ)2(βx)2α−2

]

−2αβλ2(βx)α−1 + λ2(1 − λ − λx)

]
.

So, the modes of f(x) at say x = x0 are the roots of

(1 + λ + λx)
[
αβ2(α − 1)(βx)α−2 − (αβ)2(βx)2α−2

]
=(2.1)

= 2αβλ2(βx)α−1 − λ2(1 − λ − λx).

The roots of (2.1) are difficult to find in general. However, if β = 0 then x0 = 1−λ
λ ,

the mode of the Lindley distribution, for 0 < λ < 1.

We now study (2.1) graphically. Figure 1 shows possible shapes of the pdf

of the WL distribution for selected (α, β, λ).

The left plot in Figure 1 shows bimodal shapes of the pdf with a maximum

followed by a minimum. The x coordinates of the (local minimum, local maxi-

mum) are (0.395, 0.933) for λ = 1.2, (0.451, 0.921) for λ = 1.4, (0.500, 0.906) for

λ = 1.6 and (0.547, 0.889) for λ = 1.8. The location of the minimum moves more

to the right with increasing values of λ. The location of the maximum moves

more to the left with increasing values of λ.

The right plot in Figure 1 shows unimodal shapes of the pdf. The x co-

ordinates of the mode are 0.370 for λ = 1.2, 0.298 for λ = 1.4, 0.227 for λ = 1.6

and 0.157 for λ = 1.8. The location of the mode moves more to the left with

increasing values of λ.
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Figure 1: Pdfs of the WL distribution for β = 1.

Monotonically decreasing shapes and monotonically decreasing shapes con-

taining an inflexion point are also possible for the pdf.

In each plot, the upper tails of the pdf become lighter with increasing values

of λ. The lower tails of the pdf become heavier with increasing values of λ.

2.2. Shape of hazard rate function

Using (1.1) and (1.2), the hazard rate function of the WL distribution can

be obtained as

h(x) =
λ2(1 + x)

1 + λ + λx
+ αβ(βx)α−1.(2.2)

It is obvious that the hazard rate functions of Lindley and Weibull distributions

are contained as particular cases for β = 0 and λ = 0, respectively. Also, (2.2)

can be expressed as

hX(x) = hY (x) + hZ(x),

i.e., the hazard rate function of the WL distribution is the sum of the hazard rate

functions of Lindley and Weibull distributions. As a result, the hazard rate func-

tion of the WL distribution can exhibit monotonically increasing, monotonically

decreasing and bathtub shapes, see Figure 2.
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We can see from (2.2) that

lim
x→0

h(x) =






∞, α < 1,
β(1 + λ) + λ2

1 + λ
, α = 1,

λ2

1 + λ
, α > 1

and

lim
x→∞

h(x) =






λ, α < 1,
λ + β, α = 1,
∞, α > 1.

Bathtub shapes of the the hazard rate function appear possible when α is

close enough to 0 or α is close enough to 1, see Figure 2. Monotonically decreasing

shapes are possible for all values of α in between (i.e., in between α being close

enough to 0 and α being close enough to 1). Monotonically increasing shapes are

possible for all other values of α.
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Figure 2: Hazard rate function of the WL distribution for β = 1.

2.3. Shape of quartiles

The p-th quartile say xp of a WL random variable defined by F (xp) = p is

the root of

xp =
1 + λ

λ

[
(1 − p)eλxp+(βxp)α − 1

]

for 0 < p < 1. Numerical investigations showed that xp are monotonic decreasing

functions of λ and monotonic increasing functions of α except for high quartiles.
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3. MOMENT GENERATING FUNCTION AND MOMENTS

The moment generating function is fundamental for computing moments,

factorial moments and cumulants of a random variable. It can also be used for

estimation (for example, estimation methods based on empirical moment gener-

ating functions).

Moments are fundamental for any distribution. For instance, the first four

moments can be used to describe any data fairly well. Moments are also useful

for estimation (for example, the method of moments).

Several interesting characteristics of a distribution can be studied by mo-

ments and moment generating function. Let X ∼ WL(α, β, λ). Then the moment

generating function of X can be expressed as

MX(t) = E
(
etX

)

=

∞∑

i=0

(−1)iβiα

i!(λ − t)iα

{
λ2Γ(iα + 1)

(1 + λ)(λ − t)
+

λ2Γ(iα + 2)

(1 + λ)(λ − t)2

+
αβαΓ (α(i + 1))

(λ − t)α
+

αλβαΓ (α(i + 1) + 1)

(1 + λ)(λ − t)α+1

}
,(3.1)

where Γ(a) =
∫
∞

0 ta−1e−tdt denotes the gamma function. The r-th raw moment

of X can be expressed as

µ′

r = E (Xr) =
λ2

1 + λ

∞∑

i=0

(−1)iβiα

i!λiα+r+1

[
Γ(iα + r + 1) +

Γ(iα + r + 2)

λ

]

+αβα
∞∑

i=0

(−1)iβiα

i!λiα+α+r

[
Γ(iα + α + r) +

Γ(iα + α + r + 1)

1 + λ

]
.(3.2)

The central moments, coefficient of variation, skewness and kurtosis of X

can be readily obtained using the raw moments of X. Numerical investigations of

the behavior of the mean, variance, skewness and kurtosis versus α and λ showed

the following: i) mean is a monotonic decreasing function of λ; ii) mean is either

a monotonic increasing function of α or initially decreases before increasing with

respect to α; iii) variance is either a monotonic decreasing function of λ or initially

increases before decreasing with respect to λ; iv) variance is either a monotonic

decreasing function of α or a monotonic increasing function of α; v) skewness is

either a monotonic decreasing function of λ or initially decreases before increasing

with respect to λ; vi) skewness is either a monotonic decreasing function of α

or initially increases before decreasing with respect to α; vii) kurtosis is either a

monotonic decreasing function of λ, a monotonic increasing function of λ, initially

decreases before increasing with respect to λ, or initially increases, then decreases
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before increasing with respect to λ; viii) kurtosis is either a monotonic decreasing

function of α, initially increases before decreasing with respect to α, initially

decreases before increasing with respect to α, or initially increases, then decreases

before increasing with respect to α.

4. LORENZ CURVE

The Lorenz curve for a positive random variable X is defined as the graph

of the ratio

L (F (x)) =
E(X | X ≤ x)F (x)

E(x)
=

∫ x
0 xf(x)dx

∫ +∞

0 xf(x)dx

against F (x) with the property L(p) ≤ p, L(0) = 0 and L(1) = 1. If X represents

annual income, L(p) is the proportion of total income that accrues to individuals

having the 100p percent lowest incomes. If all individuals earn the same income

then L(p) = p for all p. The area between the line L(p) = p and the Lorenz curve

may be regarded as a measure of inequality of income, or more generally, of the

variability of X.

The Lorenz curve has also received applications in areas other than income

modeling: hierarchy theory for digraphs (Egghe [9]); depression and cognition

(Maldonado et al. [21]); disease risk to optimize health benefits under cost con-

straints (Gail [11]); seasonal variation of environmental radon gas (Groves-Kirkby

et al. [16]); statistical nonuniformity of sediment transport rate (Radice [26]).

For the WL distribution, we have

∫ x

0
xf(x)dx =

1

1 + λ

∞∑

i=0

(−1)iβiα

i!λiα
γ(iα + 2, λx)

+
1

1 + λ

∞∑

i=0

(−1)iβiα

i!λiα+1
γ(iα + 3, λx)

+αβ

∞∑

i=0

(−1)iβiα+α−1

i!λiα+α+1
γ(iα + α + 1, λx)

+
α

1 + λ

∞∑

i=0

(−1)iβiα+α

i!λiα+α+1
γ(iα + α + 2, λx),

where γ(a, x) =
∫ x
0 ta−1e−tdt denotes the incomplete gamma function. So, the
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Lorenz curve for the WL distribution is

L(p) =
1

µ

[
∞∑

i=0

(−1)iβiα

i!λiα
γ(iα + 2, λx) +

1

1 + λ

∞∑

i=0

(−1)iβiα

i!λiα+1
γ(iα + 3, λx)

+αβ
∞∑

i=0

(−1)iβiα+α−1

i!λiα+α+1
γ(iα + α + 1, λx)

+
α

1 + λ

∞∑

i=0

(−1)iβiα+α

i!λiα+α+1
γ(iα + α + 2, λx)

]
.(4.1)

Possible shapes of (4.1) versus α and λ are shown in Figure 3. When α = 0.5, the

curves bend further towards the diagonal line as λ increases. When α = 1, the

curves bend further away from the diagonal line as λ increases. For each fixed λ,

the curves bend further towards the diagonal line as α increases.
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Figure 3: Lorenz curve of the WL distribution for β = 1.

5. ESTIMATION AND SIMULATION

Maximum likelihood estimation of the three parameters of the WL distri-

bution is considered in Section 5.1. An assessment of the performance of the

maximum likelihood estimators is performed in Section 5.2. Maximum likelihood

estimation of the three parameters in the presence of censored data is considered

in Section 5.3. A scheme for simulating from the WL distribution is given in

Section 5.4.
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5.1. Maximum likelihood estimation

Suppose x1, ..., xn is a random sample from the WL distribution. The log-

likelihood function is

ℓ(α, β, λ) =
n∑

i=0

log
[
λ2 (1 + xi) + αλ (βxi)

α + αβ(1 + λ) (βxi)
α−1

]
− λ

n∑

i=0

xi

−
n∑

i=0

(βxi)
α − n log(1 + λ).(5.1)

The maximum likelihood estimators of (α, β, λ) can be obtained by solving the

likelihood equations

∂ℓ(α, β, λ)

∂α
=

n∑

i=0

1

W (xj)

{
[β(1 + λ) + αβ(1 + λ) log (βxi)] (βx)α−1

+ [λ + αλ log (βxi)] (βxi)
α

}
− λ

n∑

i=0

(βx)α log (βxi) = 0,(5.2)

∂ℓ(α, β, λ)

∂β
=

n∑

i=0

1

βW (xi)

[
αβ (1 + xi) (βxi)

α−1 + α2λ (βxi)
α
]

− α

β

n∑

i=0

(βxi)
α = 0(5.3)

and

∂ℓ(α, β, λ)

∂λ
=

n∑

i=0

1

W (xi)

[
α (βxi)

α + αβ (βxi)
α−1 + 2λ (1 + xi)

]

−
n∑

i=0

xi −
n

1 + λ
= 0,(5.4)

where W (x) = λ2(1+x)+αλ(βx)α +αβ(1+λ)(βx)α−1. Alternatively, the MLEs

can be obtained by maximizing (5.1) numerically. We shall use the latter approach

in Sections 5.2 and 6. The maximization was performed by using the nlm function

in R (R Development Core Team [25]). In Sections 5.2 and 6, the function nlm

was executed with the initial values taken to be:

(i) The true parameter values (applicable for Section 5.2 only);

(ii) α = 0.01, 0.02, ..., 10, β = 0.01, 0.02, ..., 10 and λ = 0.01, 0.02, ..., 10;

(iii) The moments estimates, i.e., the solutions E(X) = (1/n)
n∑

i=1

xi,

E
(
X2

)
= (1/n)

n∑

i=1

x2
i and E

(
X3

)
= (1/n)

n∑

i=1

x3
i , where E(X),
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E
(
X2

)
and E

(
X3

)
are given by (3.2). These equations do not

give explicit solutions. They were solved numerically using a quasi-

Newton algorithm. Numerical investigations showed that this in-

volved roughly the same amount of time as solving of ∂ℓ(α,β,λ)
∂α = 0,

∂ℓ(α,β,λ)
∂β = 0 and ∂ℓ(α,β,λ)

∂λ = 0 using a quasi-Newton algorithm.

In the cases of i) and iii), the function nlm converged all the time and the MLEs

were unique. In the case of ii), the MLEs were unique whenever the function nlm

converged. In the case of ii), the function nlm did not converge about five percent

of the time.

For interval estimation of (α, β, λ), we consider the observed Fisher infor-

mation matrix given by

IF (α, β, λ) = −




Iαα Iαβ Iαλ

Iβα Iββ Iβλ

Iλα Iλβ Iλλ



 ,

where Iφ1φ2 = ∂2ℓ/∂φ1∂φ2.

Under certain regularity conditions (see, for example, Ferguson [10]) and

Lehmann and Casella [19], pages 461-463) and for large n, the distribution of
√

n
(
α̂ − α, β̂ − β, λ̂ − λ

)
can be approximated by a trivariate normal distribu-

tion with zero means and variance-covariance matrix given by the inverse of

the observed information matrix evaluated at the maximum likelihood estimates.

This approximation can be used to construct approximate confidence intervals,

confidence regions, and testing hypotheses for the parameters. For example,

an asymptotic confidence interval for α with level 1 − γ is
(
α̂ ∓ z1−γ/2

√
I bα,bα)

,

where I bα,bα is the (1, 1)-th element of the inverse of IF

(
α̂, β̂, λ̂

)
and z1−γ/2 is the

(1 − γ/2)-th quartile of the standard normal distribution.

5.2. Simulation study

Here, we assess the performance of the maximum likelihood estimators

given by (5.2)–(5.4) with respect to sample size n. The assessment was based on

a simulation study:

1. Generate ten thousand samples of size n from (1.2). The inversion

method was used to generate samples, i.e., variates of the WL distri-

bution were generated using

U =
1 + λ

λ

[
(1 − p)eλX+(βX)α − 1

]
,

where U ∼ U(0, 1) is a uniform variate on the unit interval.
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2. Compute the maximum likelihood estimates for the ten thousand sam-

ples, say
(
α̂i, β̂i, λ̂i

)
for i = 1, 2, ..., 10000.

3. Compute the biases and mean squared errors given by

biash(n) =
1

10000

10000∑

i=1

(
ĥi − h

)
, MSEh(n) =

1

10000

10000∑

i=1

(
ĥi − h

)2

for h = α, β, λ.

We repeated these steps for n = 10, 11, ..., 100 with α = 1, β = 1 and λ = 1, so

computing biash(n) and MSEh(n) for h = α, β, λ and n = 10, 11, ..., 100.
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Figure 4: Biases of
(
α̂, β̂, λ̂

)
versus n.

Figures 4 and 5 show how the three biases and the three mean squared errors

vary with respect to n. The following observations can be made: the biases for

each parameter are negative; the biases appear largest for the parameter, α; the

biases appear smallest for the parameters, β and λ; the biases for each parameter

increase to zero as n → ∞; the mean squared errors for each parameter decrease to

zero as n → ∞; the mean squared errors appear largest for the parameter, α; the

mean squared errors appear smallest for the parameter, λ. These observations

are for only one choice for (α, β, λ), namely that (α, β, λ) = (1, 1, 1). But the

results were similar for a wide range of other values of (α, β, λ). In particular,
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the biases for each parameter always increased to zero as n → ∞ and the mean

squared errors for each parameter always decreased to zero as n → ∞.
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Figure 5: Mean squared errors of
(
α̂, β̂, λ̂

)
versus n.

Section 6 presents three real data applications. The sample size for the

first data set is eight hundred and seventy seven. The sample size for the second

data set is twenty six. The sample size for the third data set is two hundred and

ninety five. We shall see later in Section 6 that the WL distribution provides

good fits to the three data sets. Based on this fact, the biases for α̂, β̂ and λ̂ can

be expected to be less than 0.025, 0.007 and 0.0075, respectively, for all of the

data sets. The mean squared errors for α̂, β̂ and λ̂ can be expected to be less

than 0.04, 0.02 and 0.0088, respectively, for all of the data sets. Hence, the point

estimates given in Section 6 for all data sets can be considered accurate enough.

5.3. Censored maximum likelihood estimation

Often with lifetime data, we encounter censored data. There are different

forms of censoring: type I censoring, type II censoring, etc. Here, we consider

the general case of multi-censored data: there are n subjects of which
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• n0 are known to have failed at the times x1, ..., xn0 ;

• n1 are known to have failed in the interval [sj−1, sj ], j = 1, ..., n1;

• n2 survived to a time rj , j = 1, ..., n2 but not observed any longer.

Note that n = n0 + n1 + n2 and that type I censoring and type II censoring are

contained as particular cases of multi-censoring. The log-likelihood function of

the model parameters for this multi-censoring data is:

ℓ(α, β, λ) =

n0∑

i=0

log
[
λ2 (1 + xi) + αλ (βxi)

α + αβ(1 + λ) (βxi)
α−1

]
− λ

n0∑

i=0

xi

−
n0∑

i=0

(βxi)
α − n0 log(1 + λ)

+

n1∑

i=1

log {F (si) − F (si−1)}

+

n2∑

i=1

log {1 − F (ri)} ,(5.5)

where F (·) is given by (1.1). The MLEs can be obtained by maximizing (5.5)

numerically. The maximization can be performed by using the nlm function in

R.

5.4. Generating data

Section 5.2 gave an inversion method for simulating from the WL distribu-

tion. Here, we present an alternative method for simulation.

We know that a WL random variable is the minimum of independent

Weibull and Lindley random variables. So, to generate a random sample from

the WL distribution, the following algorithm can also be used:

1. First generate a random sample v1, ..., vn from Weibull(α, β);

2. Independently, generate a random sample w1, ..., wn from Lindley(λ);

3. Set xi = min (vi, wi) for i = 1, ..., n.

Then x1, x2, ..., xn will be a random sample from WL(α, β, λ).
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6. APPLICATIONS

In this section, we fit the WL distribution to three real data sets. We

compare the fits of the WL distribution to the fits of some related distributions:

the extended Lindley (EL) distribution due to Bakouch et al. [4] with the pdf

f(x) =
λ(1 + λ + λx)α−1

(1 + λ)α

[
β(1 + λ + λx)(λx)β−1 − α

]
e−(λx)β

for x > 0, α ∈ (−∞, 0) ∪ {0, 1}, β > 0 and λ > 0; the weighted Lindley (WEL)

distribution due to Ghitany et al. [14] with the pdf

f(x) =
θc+1

(θ + c)Γ(c)
xc−1(1 + x)e−θx

for x > 0, c > 0 and θ > 0; the exponential Poisson Lindley (EPL) distribution

due to Barreto-Souza and Bakouch [5] with the pdf

f(x) =
βθ2(1 + θ)2e−βx

(
3 + θ − e−βx

)

(1 + 3θ + θ2) (1 + θ − e−βx)
3

for x > 0, θ > 0 and β > 0; the Lindley distribution with the pdf

f(x) =
λ2

λ + 1
(1 + x)e−λx

for x > 0 and λ > 0; the generalized Lindley (GL1) distribution due to Zalerzadeh

and Dolati [29] with the pdf

f(x) =
θ2(θx)α−1(α + γx)e−θx

(γ + θ)Γ(α + 1)

for x > 0, α > 0, θ > 0 and γ > 0; the power Lindley (PL) distribution due to

Ghitany et al. [13] with the pdf

f(x) =
αβ2

β + 1
(1 + xα)xα−1e−βxα

for x > 0, α > 0 and β > 0; and, the generalized Lindley (GL2) distribution due

to Nadarajah et al. [23] with the pdf

f(x) =
αλ2

1 + λ
(1 + x)

[
1 − 1 + λ + λx

1 + λ
e−λx

]α−1

e−λx

for x > 0, α > 0 and λ > 0.
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6.1. Data set 1

The first data are times to reinfection of STD for eight hundred and seventy

seven patients. The data were taken from Section 1.12 of Klein and Moeschberger

[17]. We fitted the eight distributions to the data. Table 1 gives the parameter

estimates, standard errors obtained by inverting the observed information ma-

trix, log-likelihood values, values of Akaike information criterion (AIC), values of

Bayesian information criterion (BIC), p values based on the Kolmogorov–Smirnov

(KS) statistic, p values based on the Anderson–Darling (AD) statistic, and p val-

ues based on the Cramér–von Mises (CVM) statistic. The fitted pdfs of the three

best fitting distributions as well as the empirical histogram are shown in Figure 6.

The corresponding probability plots are shown in Figure 7.

Table 1: Parameter estimates, standard errors, log-likelihoods, AICs,
BICs and goodness-of-fit measures for data set 1.

Distribution Parameter estimates (s.e) − log L AIC BIC KS AD CVMbλ = 8.806×10−1
�
1.302×10−2

�
,

EL bα = −9.804×10−1
�
3.034×10−2

�
, 9203.4 18412.9 18427.2 4.080×10−4 2.700×10−5 1.979×10−4bβ = 9.935×10−7

�
8.098×10−3

�
WEL

bθ = 2.878×10−3
�
1.076×10−4

�
,

6082.4 12168.7 12178.3 9.474×10−3 2.879×10−4 6.021×10−2bc = 9.359×10−2
�
1.324×10−2

�
EPL

bθ = 2.326
�
7.568×10−1

�
,

6055.1 12114.1 12123.7 8.151×10−2 1.395×10−2 1.174×10−1bβ = 2.190×10−3
�
1.854×10−4

�
Lindley bλ = 5.397×10−3

�
1.313×10−4

�
6413.0 12828.1 12832.9 1.996×10−3 1.762×10−4 5.579×10−4bθ = 7.872×10−2

�
4.339×10−3

�
,

GL1 bα = 1.453×10−6
�
4.164×10−2

�
, 27827.1 55660.1 55674.4 1.864×10−5 2.149×10−5 1.697×10−4bγ = 7.595×10−1

�
6.225×10−2

�
PL

bα = 5.696×10−1
�
1.364×10−2

�
,

6056.3 12116.7 12126.2 6.872×10−2 1.232×10−3 7.611×10−2bβ = 7.671×10−2
�
6.420×10−3

�
GL2

bλ = 2.980×10−3
�
1.391×10−4

�
,

6031.8 12067.5 12077.1 1.695×10−1 7.568×10−2 1.480×10−1bα = 3.660×10−1
�
1.509×10−2

�bλ = 2.331×10−3
�
2.714×10−4

�
,

WL bα = 6.435×10−1
�
3.870×10−2

�
, 6022.9 12051.7 12066.0 3.131×10−1 8.243×10−2 2.735×10−1bβ = 1.740×10−3

�
2.792×10−4

�
We can see that the WL distribution gives the smallest AIC value, the

smallest BIC value, the largest p value based on the KS statistic, the largest

p value based on the AD statistic, and the largest p value based on the CVM

statistic. The second smallest AIC, BIC values and the second largest p values

are given by the GL2 distribution. The third smallest AIC, BIC values and the

third largest p values are given by the EPL distribution. The fourth smallest AIC,

BIC values and the fourth largest p values are given by the PL distribution. The

fifth smallest AIC, BIC values and the fifth largest p values are given by the WEL

distribution. The sixth smallest AIC, BIC values and the sixth largest p values

are given by the Lindley distribution. The seventh smallest AIC, BIC values and

the seventh largest p values are given by the EL distribution. The largest AIC,

BIC values and the smallest p values are given by the GL1 distribution.
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Hence, the WL distribution provides the best fit based on the AIC values,

BIC values, p values based on the KS statistic, p values based on the AD statistic,

and p values based on the CVM statistic. The density and probability plots also

show that the WL distribution provides the best fit.
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Figure 6: Fitted pdfs of the three best fitting distributions for data set 1.
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Figure 7: PP plots of the three best fitting distributions for data set 1
(yellow for the EPL distribution, red for the GL2 distribution
and black for the WL distribution).
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6.2. Data set 2

The second data are times to death of twenty six psychiatric patients. The

data were taken from Section 1.15 of Klein and Moeschberger [17]. The eight

distributions were fitted to this data. The parameter estimates, standard errors

and the various measures are given in Table 2. The corresponding density and

probability plots are shown in Figures 8 and 9, respectively.

Table 2: Parameter estimates, standard errors, log-likelihoods, AICs,
BICs and goodness-of-fit measures for data set 2.

Distribution Parameter estimates (s.e) − log L AIC BIC KS AD CVMbλ = 7.510×10−1
�
9.604×10−2

�
,

EL bα = −8.534×10−1
�
2.414×10−1

�
, 164.9 335.8 339.5 1.163×10−3 3.780×10−5 9.083×10−5bβ = 2.050×10−6

�
1.197×10−1

�
WEL

bθ = 7.727×10−2
�
2.090×10−2

�
,

107.7 219.3 221.8 4.691×10−1 1.392×10−3 3.064×10−2bc = 1.107
�
4.659×10−1

�
EPL

bθ = 1.267×104
�
4.662×105

�
,

111.1 226.3 228.8 1.840×10−2 4.964×10−5 1.024×10−4bβ = 3.784×10−2
�
7.442×10−3

�
Lindley bλ = 7.311×10−2

�
1.016×10−2

�
107.7 217.4 218.6 7.924×10−1 1.126×10−2 4.895×10−2bθ = 8.282×10−2

�
2.152×10−2

�
,

GL1 bα = 1.420
�
5.569×10−1

�
, 107.1 220.3 224.0 2.920×10−2 1.163×10−4 7.787×10−4bγ = 2.742×10−1

�
3.199×10−1

�
PL

bα = 1.225
�
2.069×10−1

�
,

106.9 217.8 220.3 6.957×10−1 8.737×10−3 3.715×10−2bβ = 3.452×10−2
�
2.470×10−2

�
GL2

bλ = 7.547×10−2
�
1.398×10−2

�
,

107.7 219.3 221.8 1.081×10−1 1.582×10−4 4.384×10−3bα = 1.069
�
2.874×10−1

�bλ = 4.340×10−2
�
1.051×10−2

�
,

WL bα = 9.901
�
2.822

�
, 93.4 192.8 196.5 8.998×10−1 8.372×10−1 2.849×10−1bβ = 2.832×10−2
�
1.014×10−3

�
We can see again that the WL distribution gives the smallest AIC value,

the smallest BIC value, the largest p value based on the KS statistic, the largest

p value based on the AD statistic, and the largest p value based on the CVM

statistic. The second smallest AIC, BIC values and the second largest p values

are given by the Lindley distribution. The third smallest AIC, BIC values and the

third largest p values are given by the PL distribution. The fourth smallest AIC,

BIC values and the fourth largest p values are given by the WEL distribution.

The fifth smallest AIC, BIC values and the fifth largest p values are given by

the GL2 distribution. The sixth smallest AIC, BIC values and the sixth largest

p values are given by the GL1 distribution. The seventh smallest AIC, BIC values

and the seventh largest p values are given by the EPL distribution. The largest

AIC, BIC values and the smallest p values are given by the EL distribution.

Hence, the WL distribution again provides the best fit based on the AIC

values, BIC values, p values based on the KS statistic, p values based on the AD
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statistic, and p values based on the CVM statistic. The density and probability

plots again show that the WL distribution provides the best fit.
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Figure 8: Fitted pdfs of the three best fitting distributions for data set 2.
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Figure 9: PP plots of the three best fitting distributions for data set 2
(brown for the Lindley distribution, blue for the PL distribu-
tion and black for the WL distribution).
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6.3. Data set 3

The third data are times to infection for AIDS for two hundred and ninety

five patients. The data were taken from Section 1.19 of Klein and Moeschberger

[17]. The eight distributions were fitted to this data. The parameter estimates,

standard errors and the various measures are given in Table 3. The corresponding

density and probability plots are shown in Figures 10 and 11, respectively.

Table 3: Parameter estimates, standard errors, log-likelihoods, AICs,
BICs and goodness-of-fit measures for data set 3.

Distribution Parameter estimates (s.e) − log L AIC BIC KS AD CVMbλ = 2.066×10−1
�
5.340×10−3

�
,

EL bα = −1.425×10−1
�
8.097×10−2

�
, 537.5 1080.9 1092.0 7.775×10−1 9.719×10−1 1.866×10−1bβ = 3.503

�
2.776×10−1

�
WEL

bθ = 1.396
�
1.130×10−1

�
,

563.3 1130.6 1138.0 2.072×10−1 1.269×10−1 9.133×10−3bc = 5.025
�
4.472×10−1

�
EPL

bθ = 1.145×104
�
1.091×105

�
,

713.2 1430.4 1437.8 6.394×10−2 2.022×10−2 7.102×10−4bβ = 2.403×10−1
�
1.402×10−2

�
Lindley bλ = 4.106×10−1

�
1.731×10−2

�
659.7 1321.4 1325.1 1.113×10−1 8.193×10−2 1.443×10−3bθ = 1.402

�
1.157×10−1

�
,

GL1 bα = 5.099
�
5.533×10−1

�
, 563.3 1132.5 1143.6 1.744×10−1 9.239×10−2 3.008×10−3bγ = 3.872

�
4.373

�
PL

bα = 2.099
�
8.683×10−2

�
,

544.7 1093.5 1100.9 5.437×10−1 1.664×10−1 3.248×10−2bβ = 8.357×10−2
�
1.176×10−2

�
GL2

bλ = 7.544×10−1
�
3.321×10−2

�
,

571.4 1146.9 1154.2 1.136×10−1 9.136×10−2 1.616×10−3bα = 4.536
�
4.812×10−1

�bλ = 1.595×10−1
�
3.235×10−2

�
,

WL bα = 4.036
�
4.329×10−1

�
, 535.7 1077.4 1088.4 8.059×10−1 9.908×10−1 8.666×10−1bβ = 1.949×10−1

�
6.412×10−3

�
We can see yet again that the WL distribution gives the smallest AIC value,

the smallest BIC value, the largest p value based on the KS statistic, the largest

p value based on the AD statistic, and the largest p value based on the CVM

statistic. The second smallest AIC, BIC values and the second largest p values

are given by the EL distribution. The third smallest AIC, BIC values and the

third largest p values are given by the PL distribution. The fourth smallest AIC,

BIC values and the fourth largest p values are given by the WEL distribution.

The fifth smallest AIC, BIC values and the fifth largest p values are given by

the GL1 distribution. The sixth smallest AIC, BIC values and the sixth largest

p values are given by the GL2 distribution. The seventh smallest AIC, BIC values

and the seventh largest p values are given by the Lindley distribution. The largest

AIC, BIC values and the smallest p values are given by the EPL distribution.

Hence, the WL distribution yet again provides the best fit based on the AIC

values, BIC values, p values based on the KS statistic, p values based on the AD
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statistic, and p values based on the CVM statistic. The density and probability

plots yet again show that the WL distribution provides the best fit.
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Figure 10: Fitted pdfs of the three best fitting distributions for data set 3.
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Figure 11: PP plots of the three best fitting distributions for data set 3
(pink for the EL distribution, blue for the PL distribution and
black for the WL distribution).
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7. CONCLUSIONS

We have introduced a three-parameter generalization of the Lindley distri-

bution referred to as the Weibull Lindley distribution. We have provided at least

seven possible motivations for this new distribution. We have studied shapes

of probability density and hazard rate functions, moments, moment generating

function, Lorenz curve, maximum likelihood estimators in the presence of com-

plete data and maximum likelihood estimators in the presence of censored data.

We have assessed the finite sample performance of the maximum likelihood esti-

mators by simulation. We have provided three real data applications.

We have seen that the probability density function can be bimodal, uni-

modal, monotonically decreasing or monotonically decreasing with an inflexion

point. The hazard rate function can be monotonically increasing, monotonically

decreasing or bathtub shaped. The maximum likelihood estimators appear to be

regular for sample sizes larger than twenty. The data applications show that the

Weibull Lindley distribution provides better fits than all known generalizations

of the Lindley distribution for at least three data sets.
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[24] Nair, U.N.; Sankaran, P.G. and Balakrishnan, N. (2010). Quantile-Based

Reliability Analysis, Birkhauser, Boston.

[25] R Development Core Team (2014). A Language and Environment for Sta-

tistical Computing, R Foundation for Statistical Computing, Vienna, Austria.

[26] Radice, A. (2009). Use of the Lorenz curve to quantify statistical nonuniformity
of sediment transport rate, Journal of Hydraulic Engineering, 135, 320–326.

[27] Silva, R.B.; Bourguignon, M.; Dias, C.R.B. and Cordeiro, G.M. (2013).
The compound class of extended Weibull power series distributions, Computa-

tional Statistics and Data Analysis, 58, 352–367.

[28] Yamaguchi, K. (1993). Modeling time-varying effects of covariates in event-
history analysis using statistics from the saturated hazard rate model, Sociological

Methodology, 23, 279–317.

[29] Zakerzadeh, H. and Dolati, A. (2009). Generalized Lindley distribution,
Journal of Mathematical Extension, 3, 13–25.


