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in variance estimation. We also use data from an opinion survey to show the behavior
of the proposed estimators in real applications.
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1. INTRODUCTION

Questions with categorical outcomes are quite common in surveys, espe-

cially in health, marketing, public opinion and official surveys. In the simplest

case, questions have only two possible responses, which are often used to repre-

sent the “success” or the “failure” of an experiment (such as the occurrence or

nonoccurrence of an event or the presence or absence of a characteristic). These

items can be modelled statistically using binary logit regression ([1]; [25]).

In more complex situations, items have three or more possible options and

respondents must select one of them. When analyzing a polytomous variable it

is necessary to determine whether its categories can be ordered according to an

intrinsic characteristic of the categories themselves. If so, the number of outcomes

attributable to each category is modelled by an ordinal distribution, which gives

rise to an ordinal logit model. Otherwise, we should use a multinomial logit

model, which is based on the multinomial probability distribution.

Most studies related to binary, multinomial or ordinal logit regression are

based on the assumption of a simple random sample drawn from a large popu-

lation. However, this scenario is not always present in practice: many surveys

assume a finite population with samples extracted from complex sampling de-

signs. For example, the Educational Longitudinal Study developed by the Na-

tional Center for Education Statistics, the Post Enumeration Survey conducted

by the Portuguese Statistical Office ([6]) and the Programme for International

Student Assessment (PISA) study conducted by the Organisation for Economic

Co-operation and Development, all applied complex sampling survey designs.

These designs have in common the use of strata, clusters and unequal proba-

bilities of selection in data collection. In this respect, it has been shown that

ignoring weights, clusters and strata can lead to biased parameter estimates and

erroneous standard errors in ordinal logistic regression analysis [24].

[23] used binary and multinomial logistic regressions in the context of sur-

vey sampling. In this context, [38] used a logistic regression model to obtain a

calibration estimator for the finite population distribution function under a gen-

eral sampling design, while [22] developed point and variance estimators for the

total of finite population characteristics from a clustered sample assisted by a

logistic regression model.

Ordinal regression models have been used extensively in sociological, med-

ical and educational research but have a very sparse presence in parameter es-

timation in finite population sampling, which motivated this work. Therefore,

the objective of this paper is to introduce new ordinal model-assisted estimators

and ordinal model-calibrated estimators for the proportions of the categories of

a response variable with ordinal outcomes.
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This article proceeds as follows: Section 2 reviews the estimation methods

that have been suggested to determine the proportion of categories of an ordinal

response variable in finite population sampling. In section 3, the use of ordinal

regression models in survey sampling is introduced. In section 4 we propose

several estimators for the proportions of categories: the first of these is based on

the procedure used by [23] for the case of a nominal variable, and the second is

defined using calibration techniques ([8]; [31]). A brief discussion is then offered

of numerical methods for parameter estimation. The main theoretical properties

of the proposed estimators are studied in section 5. Variance estimation is

addressed in section 6. Section 7 describes how the performance of the proposed

estimators is measured through simulation experiments. Section 8 presents the

results obtained from the different estimation strategies with respect to an opinion

survey dataset. Finally, section 9 summarizes the conclusions drawn.

2. ESTIMATORS FOR CLASS RELATIVE FREQUENCIES OF

A DISCRETE RESPONSE VARIABLE UNDER A GENERAL

SAMPLING DESIGN

Let U denote a finite population with N units, U = {1, ..., k, ..., N}. Assume

that data are collected from respondents who provide a single choice from a list of

alternatives coded 1, 2, ..., i, ..., m. Consider a discrete m-valued survey variable

Y and denote the value observed for the kth individual of the population as yk.

Our aim is to estimate the frequency distribution of Y in the population U . To do

so, we define a class of indicators zi (i = 1, ..., m) such that for each unit k ∈ U

zki = 1 if yk = i and zki = 0 otherwise. The problem thus, is to estimate the

proportions Pi = 1/N
∑

k∈U zki, i = 1, 2, ..., m.

Let s be a probability sample of size n drawn from population U using a

sampling design pd. The sampling design considered induces first-order inclusion

probabilities πk, second-order inclusion probabilities πkl and design weights dk =

1/πk, for k, l = 1, ..., N .

The customary design unbiased estimator of Pi is given by

(2.1) P̂HTi =
1

N

∑

k∈s

zki

πk
=

1

N

∑

k∈s

zkidk,

where the subindex HT refers to the Horvitz–Thompson estimator [20]. The

design weights dk are commonly thought of as the number of population units

represented by unit k in the sample. [10] discussed the estimation of proportions

using Bernoulli sampling and stratified designs.

In sample surveys, the use of auxiliary variables has been widely discussed

by survey practitioners since this approach can increase the efficiency of the es-
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timates in different contexts (see e.g. [9]). Thus, it is common practice to use

auxiliary information on a character x related to the main variable y. A vari-

ety of approaches are available to construct more efficient estimators including

design-based and model-based methods (see e.g. [35]; [32]).

Let us now consider a general situation where the auxiliary variable can be

either numeric or binary. Let xk be the value of the study variable x for the kth

population element, available for all of U . For the sample s, the values of the two

variables (yk, xk), k ∈ s, are observed. Under this scenario, we can consider the

use of superpopulation models for sampling surveys. A superpopulation model is

a way of formalising the relationship between a target variable and the auxiliary

data. In previous research, superpopulation models have been used in sociological

and electoral studies. For example, [5] used the superpopulation approach to

estimate average customer satisfaction and [29] used superpopulation models to

analyze electoral polls. Traditionally, linear regression models have been used to

incorporate auxiliary information but (as is well known in sociological literature,

see e.g. [36]) for qualitative variables a linear model might be unrealistic.

A first procedure is to consider the superpopulation multinomial logistic

model given in [23]: we assume that the population under study y = (y1, ..., yN )⊤

constitutes a body of superpopulation random variables Y = (Y1, ..., YN )⊤, con-

taining a superpopulation model, ξ, such that

µi(xk) = P (Yk = i|xk) = Eξ(Zki|xk) =
exp(αi + βixk)∑m

j=1 exp(αj + βjxk)
,

i = 1, ..., m, k = 1, ..., N (Eξ denotes the expected value with respect to the

model) and assume that Yk are conditionally independent given xk.

Usually, population parameters αi and βi involved in the model ξ are un-

known and should be estimated from the sample. Considering α̂i and β̂i as the

maximum likelihood estimations of αi and βi, we can define an estimator for

probabilities for each category as follows:

pM
ki = µ̂i(xk) =

exp(α̂i + β̂ixk)∑m
j=1 exp(α̂j + β̂jxk)

, i = 1, ..., m, k = 1, ..., N.

[23] used the values pM
ki as auxiliary information to define an estimator of

class frequencies for nominal response variables. This estimator is in the form

(2.2) F̂LVi =
∑

k∈U

pM
ki +

∑

k∈s

dk(zki − pM
ki ), i = 1, ..., m,

where the subindex LV refers to the Lehtonen and Veijanen estimator. An

estimator of class proportions can be obtained simply by dividing in (2.2) by

population size, N , which is assumed to be known, as follows:
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(2.3) P̂LVi =
1

N
F̂LVi =

1

N

(
∑

k∈U

pM
ki +

∑

k∈s

dk(zki − pM
ki )

)
, i = 1, ..., m.

The sum
∑

k∈U pM
ki implies that auxiliary information is known for every

element in the population. However, when categorical variables (such as gender

or the professional status of the individual) or quantitative categorized variables

(such as the age of the individual, grouped in classes) are used as auxiliary infor-

mation in a survey, we may not have a complete list of individuals. Nevertheless,

the proposed estimators can still be computed since the population information

needed can be found in the databases of national statistical agencies.

3. THE USE OF ORDINAL REGRESSION MODELS IN SURVEY

SAMPLING

Let us now assume that the m possible values of Y can be sorted, such

that 1 < ··· < m. A disadvantage of using multinomial models for ordinal data is

that information about the ordering is discarded. Ordinal regression provides a

better fit and hence more accurate results. Within ordinal regression models, the

most popular is the cumulative logit model, which assumes a linear model for the

logit of cumulative probabilities for categories of Y . Given a particular point, the

cumulative probability can be defined as the probability that Y falls at or below

that point. For the ith category, its cumulative probability can be expressed as

P (Y ≤ i) = µ1 + ··· + µi, i = 1, ..., m,

with µi = P (Y = i). Logit transformations of the cumulative probabilities are,
for i = 1, ..., m − 1,

logit(P (Y ≤ i)) = log

(
P (Y ≤ i)

1 − P (Y ≤ i)

)
= log

(
P (Y ≤ i)

P (Y > i)

)
= log

(
µ1 + ··· + µi

µi+1 + ··· + µm

)
.

Note that no logit transformation can be defined for the mth category since, in
this case, P (Y ≤ m) = 1, and so 1 − P (Y ≤ m) = 1 − 1 = 0 and therefore the
denominator would be cancelled out. An important property that is usually
assumed to be satisfied is that of proportional odds, according to which the
effects of the predictors are the same across categories. This implies that β
parameters associated with the independent variables are fixed and independent
of the category in question. Let us consider

P (Y ≤ i|X = xk) =
exp(αi + βxk)

1 + exp(αi + βxk)
, i = 1, ..., m − 1, k = 1, ..., N.

The cumulative probability for the last category, P (Y ≤ m|X = xk), is al-
ways equal to 1. The probability for each category can, then, be calculated as
the difference of the cumulative probabilities.
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Thus, we propose a superpopulation model ξ with random variables Y =
(Y1, ..., YN )⊤ such that

µ1(xk) = Eξ(Zk1|xk) =
exp(α1 + βxk)

1 + exp(α1 + βxk)
,

µi(xk) = Eξ(Zki|xk) =
exp(αi + βxk)

1+exp(αi +βxk)
− exp(αi−1 + βxk)

1+exp(αi−1 +βxk)
, i = 2, ..., m−1,

µm(xk) = Eξ(Zkm|xk) = 1 − exp(αm−1 + βxk)

1 + exp(αm−1 + βxk)
.

To define a new estimator for a proportion, using this regression model, we
estimate the superpopulation parameter θ = (α1, ..., αm−1, β) from the units of
sample s. After calculating the optimal estimators of the m parameters involved
in the model, we can define estimators for individual probabilities

pk1 = µ̂1(xk) =
exp(α̂1 + β̂xk)

1 + exp(α̂1 + β̂xk)
,

pki = µ̂i(xk) =
exp(α̂i + β̂xk)

1 + exp(α̂i + β̂xk)
− exp(α̂i−1 + β̂xk)

1 + exp(α̂i−1 + β̂xk)
, i = 2, ..., m − 1,

pkm = µ̂m(xk) = 1 − exp(α̂m−1 + β̂xk)

1 + exp(α̂m−1 + β̂xk)
.

(3.1)

Now, we consider the question of estimating the model parameters. Two
general approaches can be adopted to find the optimal estimations of these param-
eters: (1) by minimizing the sum of the squared distances between the observed
and the predicted values (i.e., least squares estimation); or (2) by maximizing the
likelihood function (i.e., maximum likelihood estimation or ML estimation).

Weighted least squares method. One way to estimate the parameters of the
ordinal logistic regression model is that of least squares. However, in our case,
instead of using ordinary least squares, weighted least squares (WLS) must be
used. The main difference between the two is that in WLS each observation is
weighted using its corresponding survey weight ( see e.g. [37]). In this context,
WLS involves minimizing, with respect to the residual standard squared error, the
weighted distance between the observed outcome (or a function of the observed
outcome) and non-linear estimates. In the present case, the function to minimize
is

S =
∑

i=1,...,m

∑

k∈s

dkr
2
ki,

with rki = log (P (Y ≤ i)/(1 − P (Y ≤ i))) − αi − βxk. This typically requires a
numerical procedure, such as the Gauss-Newton method with the Levenberg-
Marquardt adjustment (see [19]), which uses derivatives or estimates of deriva-
tives to select the optimal fit. In an iterative fitting process for WLS, assuming
ordinal data, at some settings of explanatory variables, the estimated mean may
fall below the lowest score or above the highest one and then the fit fails (see [1]).
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Maximum likelihood method. Ordered regression models are usually im-
plemented using ML. For ML estimation, the ordinal likelihood function must be
numerically maximized to find the parameter values below which the observed
data were most likely produced. In theory, these estimates might have the proper-
ties of asymptotic efficiency and invariance under parameterization, which makes
ML estimation [28] an attractive option in general.

The Nelder Mead simplex [27] is a popular and powerful direct search pro-
cedure for likelihood-based optimization. The attraction of this method is that it
does not use any derivatives and does not assume that the objective function be-
ing optimized has continuous derivatives. In cases such as the present, we expect
continuity in the first derivatives and so the latter advantage is not so important.
However, this method may be much less efficient or even highly unstable, com-
pared to derivative-based ML estimation methods when sample sizes are as large
as the datasets commonly found in complex survey designs.

Let us now examine the logistic likelihood function for modelling ordinal
outcomes. As the available data are limited to the sample s, the likelihood func-
tion is defined as:

L(θ) =
∏

i=1,...,m

∏

k∈s

µi(xk)
zkidk .

The pseudolikelihood ([17]; [32]), which is more convenient for use in opti-
mization procedures is given by

log (L(θ)) =
∑

i=1,...,m

∑

k∈s

dkzki log (µi(xk)) .

ML estimates are obtained by solving a system of m nonlinear equations.
Traditionally, two alternatives can be used to address the solution of these equa-
tions numerically: Fisher scoring or Newton-Raphson algorithms. Since the re-
sults obtained by either method are nearly the same, the decision as to which one
to use is trivial (see e.g. [18]).

Various statistical packages can be used to compute the ML estimates of
an ordinal logistic model, such as SAS (PROC SURVEYLOGISTIC) or library
ordinal for R, but all of them use the Newton-Raphson algorithm to solve the
weighted ML equations. The SAS SURVEYLOGISTIC procedure also imple-
ments the Fisher scoring algorithm.
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4. PROPOSED ESTIMATORS FOR ITEMS WITH ORDINAL

OUTCOMES

The estimated individual probabilities (3.1) may be used to define new esti-
mators. We consider a model-assisted approach and a model-calibrated approach
to define the following ordinal estimators:

The model-assisted ordinal estimator. Using the idea of the generalized
difference predictor given in [5], we define an estimator for proportions of the
ordered categories of the response variable as follows

(4.1) P̂MAi =
1

N

(
∑

k∈U

pki +
∑

k∈s

dk(zki − pki)

)
, i = 1, ..., m,

where the subindex MA stands for Model-Assisted.

This estimator is similar to the P̂LVi estimator proposed by [23] but changes
the pM

ki values to pki values.

The model-calibrated ordinal estimator. A new calibration estimator, let
us say PMC (the subindex MC stands for Model-Calibrated), can be defined using
the probabilities calculated in (3.1). This estimator is in the form

(4.2) P̂MCi =
1

N

∑

k∈s

wkzki, i = 1, ..., m,

where, in this case, the weights wk minimize G(wk, dk), and where G(·, ·) is a
particular distance measure, subject to

(4.3)
∑

k∈s

wkpki =
∑

k∈U

pki.

This is an extension of the model calibration approach proposed by [39].
The distance measure that is usually considered is the chi square

(4.4) χ =
∑

k∈s

(ωk − dk)
2

dkqk
,

where the qk’s are known positive weights unrelated to dk. Following [31], section
4.2, and using pki as an auxiliary variable with a known total

∑
k∈U pki, by

minimizing (4.4) subject to (4.3) we obtain new weights wk. By substituting
these weights in (4.2) we obtain the following analytic expression for the chi-
square calibration estimator:

P̂MCi =
1

N

∑

k∈s

dkzki +
1

N

(
∑

k∈U

pki −
∑

k∈s

dkpki

)
B̂i,

where B̂i = (
∑

k∈s dkp
2
ki)

−1(
∑

k∈s dkpkizki).
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From calibration theory (see [8]), it is well known that all other calibration
estimators that use different distance functions are asymptotically equivalent to
the chi-square calibration estimator, under additional regularity conditions con-
cerning the shape of the distance function.

So far, we have considered only one auxiliary variable when defining the
estimators. These estimators can be easily extended to the general case of p
auxiliary variables x = (x1, ..., xp)

⊤ observed for each individual in the population
U .

5. PROPERTIES OF THE PROPOSED ESTIMATORS

The most significant properties of the proposed estimators P̂MAi and P̂MCi

are summarized in this section. To illustrate the asymptotic properties of the
proposed classes of estimators, we consider the asymptotic framework of [21], in
which the finite population U and the sampling design pd(·) are embedded into
a sequence of populations and designs indexed by N , {UN , pdN

}, with N → ∞.
We assume therefore, that n tends to infinity as N → ∞. We further assume
that N > 0. The subscript N may be discarded for ease of notation, although
all limiting processes are understood as N → ∞. We denote by Ep the expected
value with respect to the sampling design.

The following assumptions are imposed for the sampling design pd and for
the variables:

i) Let θU be the census level parameter estimate obtained by maximizing
the likelihood L(θ). Assume that θ = limN→∞θU exists and that the
pseudomaximum likelihood estimator is θ̂ = θU + Op(n

−1/2). 1

ii) For any study variable h the sampling designs are such that the
Horvitz–Thompson estimator for hN = N−1

∑
k∈U

hk is asymptotically
normal distributed.

iii) Let BiU =
∑

k∈U

(µi(xk)
2)−1

∑
k∈U

µi(xk)zki. Assume that Bi = lim
N→∞

BUi

exists, and the sampling design is such that Bi are consistently esti-
mated by B̂i for i = 1, ..., m.

Theorem 5.1. Under conditions i) and ii) the estimator P̂MAi is approxi-
mately design unbiased for Pi, asymptotically normal distributed and the asymp-
totic design variance is given by

AVp(P̂MAi) =
1

N2

∑

k∈U

∑

l∈U

∆kl(dkcki)(dlcli),

where ∆kl = πkl − πkπl; cki = zki − µi(xk, θU).

1This is true under certain regularity conditions given by [3].
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Proof: The proof for unbiasedness is very similar to the one presented in
[32], page 223, for the difference estimator.

Let us consider the parametric vector t = (t1, t2, ..., tm) and the function
µi(xk, t1, t2, ..., tm) = exp(ti + tmxk)/(1+exp(ti + tmxk))− exp(ti−1 + tmxk)/(1+
exp(ti−1+ tmxk)). This function has partial derivatives, for each xk,∂µi(xk, t)/∂tj ,
which are continuous in t and

∂µi(xk, t)

∂ti
|t=(xk,α1,...,β) ≤ 1,

∂µi(xk, t)

∂ti−1
|t=(xk,α1,...,β) ≤ 1,

∂µi(xk, t)

∂tm
|t=(xk,α1,...,β) ≤ xk, and

∂µi(xk, t)

∂tj
|t=(xk,α1,...,β) = 0 for j 6= i, i − 1, m.

Thus, by applying the Taylor series expansion at t = θU

pki = µi(xk, θ̂) = µi(xk, θU) +
∑

j=1,...,m

∂µi(xk, t)/∂tj |t=(xk,α1,...,β)(θ̂j − θUj).

Under condition i)

pki = µi(xk, θU) + Op(n
−1/2),

and then
1

N

∑

k∈U

pki −
1

N

∑

k∈U

µi(xk, θU) = Op(n
−1/2), and

1

N

∑

k∈s

dkpki −
1

N

∑

k∈s

dkµi(xk, θU) = Op(n
−1/2).

Thus

P̂MAi =
1

N

(
∑

k∈s

dkzki −
∑

k∈s

dkµi(xk, θU)

)
+

1

N

∑

k∈U

µi(xk, θU) + Op(n
−1/2),

and the asymptotic design variance of P̂MAi is the same as that the Horvitz–
Thompson estimator ĈHTi = 1/N

∑
k∈s dk(zki − µi(xk, θU)).

Condition ii) ensures that estimator ĈHTi is asymptotically normal dis-
tributed and, therefore, estimator P̂MAi is also asymptotically normal distributed.
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Theorem 5.2. Under conditions i), ii) and iii) the calibration estimator
P̂MCi is approximately design unbiased for Pi, asymptotically normal distributed
and the asymptotic design variance is given by

AVp(P̂MCi) =
1

N2

∑

k∈U

∑

l∈U

∆kl(dkeki)(dleli),

where ∆kl = πkl − πkπl and eki = zki − µi(xk, θU)BiU .

Proof:

P̂MCi =
1

N

∑

k∈s

dkzki +
1

N

(
∑

k∈U

pki −
∑

k∈s

dkpki

)
BiU

+
1

N

(
∑

k∈U

pki −
∑

k∈s

dkpki

)(
B̂i − BiU

)
.

Under condition iii) B̂i − BiU = o(1); under conditions i) and ii)

1

N

∑

k∈U

pki −
1

N

∑

k∈s

dkpki =
1

N

∑

k∈U

µi(xk, θU) − 1

N

∑

k∈s

dkµi(xk, θU) + Op(n
−1/2).

Thus

P̂MCi =
1

N

∑

k∈s

dkzki +
1

N

(
∑

k∈U

µi(xk, θU) −
∑

k∈s

dkµi(xk, θU)

)
BiU + op(n

−1/2),

and consequently

Ep(P̂MCi) → Ep

(
1

N

∑

k∈s

dkzki

)
= Pi,

and

Vp(P̂MCi) → Vp

(
1

N

∑

k∈s

dk (zki − µi(xk, θU)) BiU

)
.

Under condition ii), estimator (1/N)
∑

k∈s dk(zki−µi(xk, θU))BiU is asymp-

totically normal distributed, and therefore we conclude that estimator P̂MCi is
also asymptotically normal distributed.
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6. ESTIMATION FOR THE VARIANCE OF ORDINAL ESTIMA-

TORS

The next theorem gives analytic expressions for the estimators of the design
variances Vp(P̂MAi) and Vp(P̂MCi), obtained using the linearization method.

Theorem 6.1. Under conditions i), ii) and iii) and assuming that all sec-
ond order probabilities are non null,

(6.1) V̂(P̂MAi) =
1

N2

∑

k∈s

∑

l∈s

∆kl

πkl
(dk c̃ki)(dlc̃li) (Lin)

is approximately design unbiased for Vp(P̂MAi) and

(6.2) V̂(P̂MCi) =
1

N2

∑

k∈s

∑

l∈s

∆kl

πkl
(dkẽki)(dlẽli) (Lin)

is approximately design unbiased for Vp(P̂MCi) where c̃ki = zki − pki and ẽki =

zki − pkiB̂i.

Proof: We denote by Ik the sample membership indicator of element k.
Thus, for each i = 1, ..., m:

Ep(V̂(P̂MAi)) =
1

N2
Ep

∑

k∈U

∑

l∈U

∆kl

πkl
(dk c̃ki)(dlc̃li)Ik(s)Il(s) =

=
1

N2

∑

k∈U

∑

l∈U

∆kl

πkl
(dk c̃ki)(dlc̃li)πkl → Vp(P̂MAi),

using the theorem 5.1. From the theorem 5.2, the estimator of the design variance
Vp(P̂MCi) can be derived.

These variance estimators require knowledge of second-order inclusion prob-
abilities, which are often impossible to compute or unavailable to data analysts for
complex sampling designs. A simple alternative is to use with-replacement vari-
ance estimators (see [32], page 99). For the P̂MAi estimator, the with-replacement
variance estimator is

v̂W-R(P̂MAi) =
1

N2

1

n(n − 1)

∑

k∈s


 c̃ki

prk
− 1

n

∑

j∈s

c̃ji

prj




2

(W-R),

where prk = πk/n when we have a simple random sampling without replacement
design. For other sampling designs, the relationship between prk and πk is πk =
1 − (1 − prk)

n according to expression (2.9.5), page 51 in [32].
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The with-replacement variance estimator for P̂MCi is obtained in a similar
way:

v̂W-R(P̂MCi) =
1

N2

1

n(n − 1)

∑

k∈s


 ẽki

prk
− 1

n

∑

j∈s

ẽji

prj




2

(W-R).

These with-replacement variance estimators are not without bias. An ex-
pression for the bias can be obtained using the theory of sampling with probability
proportional to size (see [11] or [32]).

Alternative variance estimators can be obtained using implicit differentia-
tion [3] or replicated sampling methods (see [37] for a detailed description of these
techniques in finite population sampling). The replicated methods estimate the
variance of a parameter by generating replicated subsamples and examining the
variability of the subsample estimates. The replicated methods, also referred to as
resampling methods, include balanced repeated replication (BRR), jackknife re-
peated replication (JRR) [34] and the bootstrap method [12]. This article focuses
on jackknife techniques due to their simplicity and because they are implemented
in general purpose software packages, such as R (see for example the packages
sampling [33], samplingVarEst [14] and samplingEstimates [13]).

For a non stratified design, the jackknife estimator of the variance for any
of the model-assisted estimators, P̂MAi is given by

(6.3) v̂J(P̂MAi) =
n − 1

n

∑

j∈s

(P̂MAi(j) − PMAi)
2 (Tukey),

where P̂MAi(j) is the value of the estimator P̂MAi after dropping unit j from s
and where PMAi is the mean of values P̂MAi(j).

The jackknife estimator may present an important bias when designs with-
out replacement are used in finite populations. In such a case, an approx-
imated finite-population correction could be incorporated into the estimation
in order to achieve unbiasedness. A modified jackknife estimator of variance,
v̂∗J(P̂i), can be calculated by replacing P̂MAi(j) in (6.3) with P̂ ∗

MAi(j) = P̂MAi +√
1 − π(P̂MAi(j) − PMAi), where π =

∑
k∈s πk/n.

Using the idea of the unequal probability jackknife variance estimator given
by [4], we can obtain a new estimator v̂JC(PMAi) by replacing c̃ki in (6.1) with
˜cmki = 1 − d̃k(C̃HTi − C̃HTi(k)) where C̃HTi = 1/N

∑
k∈s dk c̃ki, C̃HTi(k) is the

Horvitz–Thompson estimator dropping the unit k of the sample and d̃k = dk/
∑
l∈s

dl.

The design consistency of this type of variance estimator was highlighted in [2].

More recently, [15] formulated a new design-consistent variance estimator
for the population mean. Based on this idea, we can obtain a new variance
estimator v̂JEB(PMAi) by replacing c̃ki in (6.1) with c̃eki = dαk

k (C̃HTi − C̃HTi(k)).
The authors propose d the use of αk = 1 ∀k ∈ s.

Similarly, we define jackknife variance estimators for the ordinal calibration
estimator.



MA and MC Estimation for Class Frequencies with Ordinal Outcomes 337

7. MONTE CARLO SIMULATION EXPERIMENTS

To determine the behaviour of the estimators when they are applied to real
data obtained through complex sampling designs, we consider data from the 2012
PISA survey. This is a macro-surveying procedure that is conducted every three
years to collect information about 15-year-old students in each of the 65 countries
participating. The main aim of the survey is to determine how well students are
prepared to meet the challenges of the future. To do so, their performance and
attitudes are measured in three key areas: mathematics, reading and science.

The 2012 PISA survey was focused on mathematics in particular, and so the
students were asked to indicate their degree of agreement with various statements
related to mathematics. The population considered for our study was composed
of N = 15, 499 15-year-old Spanish students who responded to the survey, and
who attended C = 838 different schools. We chose the question “How strongly
do you agree with the statement: I enjoy reading about mathematics?” as the
main variable, where the possible options were 1 = strongly agree, 2 = agree, 3 =
disagree and 4 = strongly disagree. The population percentages obtained for these
categories were 0.03, 0.149, 0.413 and 0.408, respectively. We then considered the
degree of agreement (expressed as Strongly agree, agree, disagree and strongly
disagree) with to the following sentences: “Making an effort in mathematics is
worth it because it will help me in the work that I want to do later on”, “Learning
mathematics is worthwhile for me because it will improve my career” and “I
will learn many things in mathematics that will help me get a job” as auxiliary
variables.

With these data as population, we used a stratified design, selecting a
sample of schools with probabilities proportional to their size within each stratum.
Then, the values of all the students at the selected schools were observed. The
population was divided into five different strata depending on the type of location
of each school: villages (fewer than 3,000 people), small towns (3,000 to 15,000
people), towns (15,000 to 100,000 people), cities (100,000 to 1,000,000 people)
and large cities (over 1,000,000 people). The number of schools (Ch) and students
(Nh) by stratum is detailed in Table 1.

Table 1: Strata population data.

Villages Small towns Towns Cities Large cities Total

Ch 48 239 254 269 28 838
Nh 831 4,312 4,795 5,046 515 15,499

Two sample sizes for schools (c = 25 and c = 50) are included in the study.
A sample of schools using a Midzuno sampling scheme was drawn from each
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stratum considering probabilities proportional to the school size (taken as the
number of students enrolled in the school).

The free statistical software R ([30]) was used to perform this simulation
study. The library ordinal of R ([7]) was used, where necessary, to estimate the
parameters of the ordinal model. We have developed new R-code implementing
the proposed estimators. The R libraries samplingVarEst ([14]) and samplingEs-
timates ([13]) were used to estimate the variance of the estimators according to
the different methods discussed. For each estimator, we computed the percent rel-
ative bias RB% = EMC(P̂ − P )/P ∗ 100% and the percent relative mean squared
error RMSE% = EMC[(P̂ − P )2]/P 2 ∗ 100% for each category of the main vari-
able Y based on 1,000 simulation runs. We used RMSE% to calculate the percent
relative efficiency gain with respect to the HT estimator for the three remaining
estimators. The minimum, maximum and mean percent over the categories are
also calculated (in absolute values for the relative bias).

The results for relative bias and relative efficiency based on 1,000 simulated
samples are shown in Table 2. Additionally, the mean number of students finally
observed in each scenario, n̄, is included for informative purposes.

Table 2: Relative bias (in % and Italics) and Relative efficiency (with respect
to the HT estimator) of the estimators. Auxiliary variables: “Making
an effort in...”, “Learning mathematics is...”, “I will learn many...”.

Estimator 1 2 3 4 min max mean

c = 25 (n̄ = 482.88)

HT
0.35 −0.02 −0.34 −0.25 0.02 0.35 0.24

100.00 100.00 100.00 100.00 100.00 100.00 100.00

LV
0.74 0.30 −0.10 −0.06 0.06 0.74 0.30

111.37 141.94 329.21 318.49 111.37 329.21 225.25

MA
0.73 0.43 −0.08 −0.13 0.08 0.73 0.34

111.71 143.76 372.79 367.04 111.71 372.79 248.82

MC
0.78 0.48 −0.11 −0.12 0.11 0.78 0.37

110.65 144.05 381.46 374.35 110.65 381.46 252.62

c = 50 (n̄ = 966.43)

HT
−0.40 −0.37 −0.58 −0.45 0.37 0.58 0.45
100.00 100.00 100.00 100.00 100.00 100.00 100.00

LV
−0.02 0.09 −0.11 0.07 0.02 0.11 0.07
111.92 131.05 333.83 313.76 111.92 333.83 222.64

MA
0.03 0.17 −0.09 0.03 0.03 0.17 0.08

112.31 131.56 389.68 381.50 112.31 389.68 253.76

MC
−0.02 0.19 −0.09 0.03 0.02 0.19 0.08
112.83 132.42 397.13 389.41 112.83 397.13 257.94

1 = strongly agree, 2 = agree, 3 = disagree, 4 = strongly disagree
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Relative bias is below 1% in all cases and can be considered negligible. Both
model-assisted and model-calibrated estimators show good performance in terms
of efficiency, with the first of these showing slightly better results. Whatever the
estimator, the most accurate estimations are achieved in categories 3 and 4, those
with the largest population sizes.

The efficiency of these estimators is greater than that of the HT estimator
in all cases, and is especially high for categories 3 and 4. As the sample size
increases, so does the relative efficiency of the ordinal estimators, with values
close to 400% in categories 3 and 4 for c = 50.

An alternative model was then fitted for the same variable response, tak-
ing the student’s gender and the educational level of the father and mother as
auxiliary variables. With these covariates it was not possible to obtain a good
model fit, since they achieved a very low association with the main variable in
the population. Indeed, the Akaike Information Criterion (AIC) in this case was
noticeably higher than the value obtained for the previous model fit.

Table 3 shows the results of relative bias and relative efficiency of the esti-
mators for these variables.

Table 3: Relative bias (in % and Italics) and relative efficiency (with respect
to the HT estimator) of the estimators. Auxiliary variables: Sex of
the student, educational level of of the father and that of the mother.

Estimator 1 2 3 4 min max mean

c = 25 (n̄ = 460.03)

HT
0.56 −0.08 −0.41 −0.13 0.08 0.56 0.29

100.00 100.00 100.00 100.00 100.00 100.00 100.00

LV
1.01 0.37 −0.24 0.04 0.04 1.01 0.41

108.00 126.32 329.57 293.39 108.00 329.57 214.32

MA
0.79 0.27 −0.22 0.06 0.06 0.79 0.33

110.00 128.24 333.88 288.83 110.00 333.88 215.23

MC
0.68 0.31 −0.24 0.08 0.08 0.68 0.33

110.11 127.97 335.45 291.91 110.11 335.45 216.36

c = 50 (n̄ = 920.96)

HT
−0.36 −0.38 −0.61 −0.40 0.36 0.61 0.44
100.00 100.00 100.00 100.00 100.00 100.00 100.00

LV
0.53 0.36 −0.20 0.03 0.03 0.53 0.28

107.71 113.25 340.53 284.22 107.71 340.53 211.42

MA
0.13 0.19 −0.15 0.07 0.07 0.19 0.14

109.11 114.43 344.48 278.70 109.11 344.48 211.68

MC
0.06 0.24 −0.17 0.08 0.06 0.24 0.14

109.68 113.39 345.99 280.24 109.68 345.99 212.32

1 = strongly agree, 2 = agree, 3 = disagree, 4 = strongly disagree
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The results for this population presented a similar pattern: both model-
assisted and model-calibrated ordinal estimators achieved very good performance,
but in this case, the differences between the estimators are not significant. Effi-
ciency gains with respect to the HT estimator are smaller in this scenario than in
the previous one. However, once again, the largest efficiency gains are obtained
in categories 3 and 4.

Alternative scenarios were also considered, and these yielded similar results.
Specifically, even in the case in which tests of the proportional odds assumption
provided evidence of the non-proportional odds context, the efficiency results
were comparable.

In a similar way, we computed confidence intervals using different methods
to estimate the variance of the estimators. Tables 4 and 5 show the relative length
(length / parameter) in % and the empirical coverage of the confidence intervals,
in the first case for a good model fit and in the second for a bad one.

Table 4: Relative length in % (len) and empirical coverage (cov) of confidence
intervals for the estimators using different estimators for variance.
Auxiliary variables: ”Making an effort in...”, ”Learning mathematics
is...”, ”I will learn many...”. Nominal level 95%.

Estimator

LV MA MC LV MA MC

len cov len cov len cov len cov len cov len cov

c = 25 c = 50

Lin

1 115.00 89.8 115.83 90.3 115.75 90.7 84.69 92.0 84.97 91.8 84.95 92.0
2 49.82 92.8 49.22 93.9 49.23 93.2 35.42 92.6 35.03 92.5 35.02 92.7
3 25.45 91.4 23.96 91.5 23.94 91.8 18.09 92.2 17.13 92.5 17.12 93.1
4 26.68 91.7 24.22 93.0 24.22 93.2 18.99 93.0 17.35 91.8 17.36 92.0

mean 54.24 91.4 53.31 92.0 53.29 92.2 39.30 92.4 38.62 92.2 38.61 92.5

W-R

1 111.24 89.8 111.97 90.4 111.74 90.4 81.96 92.3 82.20 92.2 82.12 92.1
2 46.77 91.9 46.36 92.0 46.32 91.9 33.21 90.8 32.92 91.1 32.91 90.8
3 24.57 92.7 24.05 93.6 24.05 94.1 17.38 92.7 16.98 94.0 16.98 94.2
4 23.98 91.1 22.98 92.6 22.98 93.1 16.94 90.6 16.23 91.2 16.23 91.7

mean 51.64 91.4 51.34 91.2 51.27 92.4 37.37 91.6 37.08 92.1 37.06 92.2

EB

1 114.31 89.4 115.35 90.6 115.17 90.6 84.74 91.7 85.11 91.6 85.10 91.6
2 49.98 93.3 48.94 93.2 48.91 93.3 35.71 92.7 34.99 92.7 34.98 92.8
3 24.90 91.1 23.81 91.4 23.81 91.9 17.92 91.8 17.13 93.1 17.13 93.6
4 26.13 92.0 24.10 92.9 24.10 93.1 18.80 91.7 17.36 92.1 17.37 92.1

mean 53.83 91.5 53.05 92.0 53.00 92.2 39.29 92.0 38.65 92.4 38.65 92.5

CBS

1 114.30 89.4 115.34 90.6 115.16 90.6 84.73 91.7 85.11 91.6 85.10 91.6
2 49.98 93.3 48.94 93.2 48.90 93.3 35.71 92.7 34.99 92.7 34.98 92.8
3 24.90 91.1 23.81 91.4 23.81 91.9 17.92 91.8 17.13 93.1 17.13 93.6
4 26.13 92.0 24.10 92.9 24.10 93.1 18.80 91.7 17.36 92.1 17.37 92.1

mean 53.83 91.5 53.05 92.0 52.99 92.2 39.29 92.0 38.65 92.4 38.64 92.5

Tukey

1 110.94 90.0 111.68 90.3 111.44 90.3 82.08 92.3 82.32 92.4 82.25 92.2
2 46.74 92.1 46.30 92.4 46.26 92.6 33.31 91.7 32.99 91.3 32.98 90.9
3 24.47 92.8 23.97 93.6 23.98 94.4 17.40 92.5 17.01 93.9 17.01 94.4
4 23.88 90.7 22.91 92.4 22.90 92.7 16.95 90.6 16.25 91.7 16.25 92.3

mean 51.51 91.4 51.22 92.2 51.14 92.5 37.43 91.8 37.14 92.3 37.12 92.5

1 = strongly agree, 2 = agree, 3 = disagree, 4 = strongly disagree
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Table 5: Relative length in % (len) and empirical coverage (cov) of confi-
dence intervals for compared estimators using different estimators for
variance. Auxiliary variables: Sex of the student, educational level
of father and educational level of mother. Nominal level 95%.

Estimator

LV MA MC LV MA MC

len cov len cov len cov len cov len cov len cov

c = 25 c = 50

Lin

1 123.09 90.1 122.30 89.1 122.31 88.6 90.16 91.7 89.86 91.4 89.87 91.9
2 53.27 93.3 53.04 92.9 53.03 93.2 37.78 93.1 37.60 92.8 37.62 93.0
3 25.45 90.6 25.43 90.7 25.43 91.4 18.13 91.8 18.13 92.3 18.13 92.1
4 27.84 91.6 27.84 92.6 27.84 92.3 20.00 92.5 20.05 92.6 20.05 92.3

mean 57.41 91.4 57.15 91.3 57.15 91.3 41.52 92.3 41.41 92.3 41.42 92.3

W-R

1 119.22 89.2 118.28 89.6 118.36 89.9 87.81 91.6 87.14 92.1 87.18 91.9
2 49.39 91.8 48.94 92.2 48.91 91.5 34.96 91.6 34.60 91.8 34.59 91.8
3 25.18 92.9 25.26 93.0 25.26 92.5 17.80 92.6 17.83 93.2 17.83 93.1
4 25.52 91.4 25.34 91.4 25.34 91.0 18.07 90.7 17.95 90.6 17.95 90.4

mean 54.82 91.3 54.45 91.5 54.47 91.2 39.66 91.6 39.38 91.9 39.38 91.8

EB

1 122.34 89.5 121.73 89.0 121.82 88.9 90.16 91.9 89.97 91.9 90.02 92.1
2 52.43 92.9 52.81 93.7 52.78 93.2 37.40 92.6 37.64 92.9 37.62 93.1
3 25.19 90.9 25.25 91.0 25.25 91.1 18.09 91.6 18.13 92.3 18.13 92.5
4 27.62 91.6 27.70 92.2 27.69 92.6 19.95 92.4 20.06 92.4 20.06 92.8

mean 56.89 91.2 56.87 91.4 56.89 91.4 41.40 92.1 41.45 92.4 41.45 92.6

CBS

1 122.33 89.5 121.73 89.0 121.81 88.9 90.15 91.9 89.97 91.9 90.01 92.1
2 52.43 92.9 52.81 93.7 52.78 93.2 37.40 92.6 37.63 92.9 37.62 93.1
3 25.19 90.9 25.25 91.0 25.25 91.1 18.09 91.6 18.13 92.3 18.13 92.5
4 27.61 91.6 27.69 92.2 27.69 92.6 19.95 92.4 20.06 92.4 20.06 92.8

mean 56.89 91.2 56.87 91.4 56.88 91.4 41.40 92.1 41.45 92.4 41.45 92.6

Tukey

1 118.85 89.5 117.96 88.5 118.04 88.5 87.93 91.9 87.27 92.3 87.31 92.1
2 49.28 92.6 48.87 92.7 48.84 91.8 35.01 91.7 34.69 91.6 34.67 92.1
3 25.08 92.8 25.17 93.1 25.17 92.9 17.82 92.2 17.86 93.0 17.85 93.0
4 25.43 91.6 25.26 91.8 25.25 91.4 18.09 91.2 17.98 90.9 17.98 91.0

mean 54.66 91.6 54.31 91.5 54.33 91.1 39.72 91.7 39.45 91.9 39.45 92.0

1 = strongly agree, 2 = agree, 3 = disagree, 4 = strongly disagree

It is no easy matter to compare all the estimators and all the variance
estimation techniques over all the categories. However, the tables obtained show
that the lengths of the EB (Escobar-Berger, [15]) and CBS (Campbell, [4];
Berger and Skinner, [2]) intervals are practically the same, and also that the
intervals with the LV estimator have longer lengths, while those with the MC
estimators have shorter ones, for both sample sizes. Obviously, the length of the
confidence intervals decreases as the sample size increases.

The coverage is below the nominal value in every case. The MC estimator
obtains the closest coverage to the nominal level, but with small differences with
respect to the other estimators.
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8. APPLICATION TO AN OPINION SURVEY

In this section, the ordinal regression approach is illustrated using a real
survey, deriving the proposed estimates and comparing these to alternative ones.

This population-based survey was conducted by the Institute of Social Stud-
ies of Andalusia, a public scientific research institute specialising in the social sci-
ences. Its aim is to reflect the opinions of the population of Andalusia, a region
in Southern Spain, with regard to various aspects of policies. Taking into account
the time and budget available, 1,890 interviews were performed by qualified inter-
viewers, specially trained in survey techniques. The interviews were carried out
by the Statistics and Surveys sections of the institute using Computer Assisted
Telephone Interviewing data input techniques. A stratified random sampling de-
sign with eight strata, each one corresponding to a municipality in the region,
was considered. In each stratum, a simple random sampling without replacement
design was considered. The design weights were modified to adjust for coverage
and non-response bias. The two main variables included in this study, related to
“education” and “housing”, are the answers to the following questions:

• Do you think that education issues have improved, remain the same or
have worsened in recent years?

• Do you think that housing issues have improved, remain the same or
have worsened in recent years?

each one with three possible response categories. As in the simulation study,
R software and the library ordinal were used to analyze the data. Together with
the ordinal model-assisted MA (4.1) and the ordinal model-calibrated MC (4.2)
estimators, the HT estimator (2.1) and the LV estimator (2.3) were computed
for comparison purposes. As auxiliary information we took into account the sex of
the respondents, a categorical variable with two possible outcomes, and their age,
categorized into four age ranges. The population information for the auxiliary
variables needed to compute the LV estimator and the two proposed estimators
is shown in Table 6.

Table 6: Population information for the auxiliary variables (Sex and Age).

Sex
Age

18–29 30–44 45–59 ≥60

Male 411,501 699,378 636,061 578,775
Female 460,834 649,434 615,057 731,410
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Table 7 shows the point and 95% confidence interval estimation of propor-
tions of each category of the main variables.

Table 7: Point (prop) and 95% confidence level estimation (lower
bound, lb, upper bound, ub, and length, len) of percentages.
Auxiliary variables: Sex and Age.

Estimator
In recent years, education issues... In recent years, housing issues...

prop lb ub len prop lb ub len

... have improved ... have improved

HT 3.88 2.61 5.16 2.55 7.15 5.74 8.55 2.81
LV 4.49 3.11 5.87 2.76 7.65 6.10 9.20 3.10
MA 3.92 2.67 5.18 2.51 7.08 5.69 8.47 2.78
MC 3.94 2.68 5.19 2.51 7.07 5.68 8.47 2.79

... remain the same ... remain the same

HT 17.69 15.44 19.94 4.50 9.42 7.80 11.04 3.24
LV 18.12 15.87 20.37 4.50 9.87 8.12 11.63 3.51
MA 17.84 15.64 20.03 4.39 9.35 7.74 10.96 3.22
MC 17.82 15.63 20.02 4.39 9.36 7.76 10.97 3.21

... have worsened ... have worsened

HT 78.41 74.59 82.24 7.65 83.42 79.52 87.32 7.80
LV 77.38 74.76 79.99 5.23 82.47 80.00 84.93 4.93
MA 78.22 75.82 80.63 4.81 83.56 81.52 85.59 4.07
MC 78.23 75.83 80.63 4.80 83.55 81.52 85.59 4.07

Whatever the category of either of the two main variables, the lengths of
the confidence intervals of the proposed estimators are shorter than that of the
corresponding confidence interval associated with the LV estimator, which uses
the same amount of auxiliary information. In part, these differences are due to the
better fit of the ordinal logistic model than the multinomial logistic model in both
cases. Indeed, for the two response variables, the AIC is larger for the multinomial
model than for the ordinal model. To highlight these discrepancies, we computed
the relative length reduction of the confidence intervals of the proposed estimators
with respect to the corresponding confidence intervals of the LV estimator. The
results are shown in Table 8.

The length reductions are significant in all categories of the response vari-
ables (6.5% on average for the first variable and 12% for the second).

Tables 9 and 10 show the point estimation for the proposed estimators,
classified by sex and age. In the first of these respects, it is noticeable that more
men than women believe that education and housing issues have improved or
remain the same, while the women are slightly more pessimistic.
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The general perception that these issues have worsened is common to all
age groups, with the highest such proportion being found among respondents
aged 45-59 years.

Table 8: Relative length reduction in % of the 95% confidence intervals
of the proposed estimators with respect to the LV estimator.

In recent years, education issues...

Estimator
reduction

... have improved ... remain the same ... have worsened mean

MA 9.326725 2.359543 8.013819 6.566695
MC 9.349046 2.371333 8.014386 6.578255

In recent years, housing issues...

Estimator
reduction

... have improved ... remain the same ... have worsened mean

MA 10.12919 8.518985 17.41836 12.022178
MC 10.10099 8.540746 17.42298 12.021572

Table 9: Point estimation of percentages by sex.

Estimator
In recent years, education issues... In recent years, housing issues...

all men women all men women

... have improved ... have improved

HT 3.88 4.65 3.15 7.15 10.00 4.39
LV 4.49 4.96 4.05 7.65 10.33 5.11
MA 3.92 4.69 3.21 7.08 9.97 4.34
MC 3.94 4.69 3.16 7.07 9.99 4.38

... remain the same ... remain the same

HT 17.69 20.71 14.80 9.42 11.59 7.33
LV 18.12 21.27 15.15 9.87 11.97 7.89
MA 17.84 20.83 15.01 9.35 11.49 7.32
MC 17.82 20.72 14.84 9.36 11.58 7.32

... have worsened ... have worsened

HT 78.41 74.63 82.05 83.42 78.40 88.27
LV 77.38 73.76 80.80 82.47 77.69 86.99
MA 78.22 74.47 81.78 83.56 78.52 88.32
MC 78.23 74.58 81.99 83.55 78.42 88.28
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Table 10: Point estimation of percentages by age groups.

Estimator
In last years, education issues... In last years, housing issues...

all 18–29 30–44 45–59 ≥60 all 18–29 30–44 45–59 ≥60

... have improved ... have improved

HT 3.88 3.99 4.24 1.92 5.61 7.15 8.66 8.34 4.94 6.85
LV 4.49 4.20 4.15 1.87 7.54 7.65 8.90 8.24 4.86 8.87
MA 3.92 4.01 4.26 1.84 5.51 7.08 8.52 8.50 4.99 6.66
MC 3.94 4.09 4.22 1.89 5.66 7.07 8.59 8.29 4.92 6.76

... remain the same ... remain the same

HT 17.69 16.75 17.02 17.06 20.07 9.42 10.16 11.47 8.90 7.07
LV 18.12 16.87 16.97 16.99 21.23 9.87 10.44 11.33 8.74 9.07
MA 17.84 16.31 17.17 17.35 20.02 9.35 9.68 11.61 9.13 7.01
MC 17.82 16.84 17.08 17.22 20.16 9.36 10.11 11.43 8.86 7.02

... have worsened ... have worsened

HT 78.41 79.25 78.73 81.01 74.31 83.42 81.17 80.17 86.14 86.07
LV 77.38 78.92 78.87 81.13 71.21 82.47 80.65 80.42 86.38 82.04
MA 78.22 79.67 78.56 80.79 74.46 83.56 81.78 79.88 85.87 86.32
MC 79.06 78.69 80.87 80.78 74.16 83.55 81.29 80.27 86.21 86.20

9. CONCLUSIONS

Data collected from surveys are often organized into discrete categories.
Analyzing variables with ordinal outcomes, obtained from a complex survey, of-
ten requires specialised techniques. To improve the accuracy of estimation pro-
cedures, a survey statistician often makes use of the auxiliary data available from
administrative registers and other sources.

In this paper, we present estimation techniques applied to the results of
complex surveys when the variable of interest has ordinal outcomes, and describe
the joint distribution of the class indicators by an ordinal model. Ordinal model-
assisted estimators and ordinal model-calibrated estimators are introduced for
class frequencies, using two different approaches to estimation.

We show that the proposed estimators are asymptotically normal distributed
and we derive expressions for their asymptotic variances. Resampling techniques
are obtained when joint inclusion probabilities are unavailable to data analysts.

We used the weighted ML estimation procedure to obtain the estimators for
the model parameters because in the iterative fitting process for WLS, assuming
ordinal data, at some settings of explanatory variables the estimated mean may
fall below the lowest score or above the highest one and then the fit will fail [1].
When numerical maximization for the pseudolikelihood is feasible, good estimates
may be obtained in certain cases by WLS. This approach is usable when working
with discrete predictors [23].
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We also include a limited simulation study with a real population, find-
ing that the ordinal logistic formulation yields better results than the classical
estimators that implicitly assume individual linear models for the variables.

The effective use of auxiliary information from survey data depends on the
population quantities to be estimated and on the actual relation between the
response variable and the covariates. The simulation results obtained show that
these estimators are robust against misspecified models.

Ordinal model-assisted and model-calibrated estimators also have some
drawbacks: they require a sampling frame, complete with all the explanatory
variables used in the assisting model, for all units in the population. This situ-
ation frequently arises, for example, when categorical variables (such as gender
or the professional status of the individual) or quantitative categorized variables
(such as the age of the individual, grouped into classes) are used as auxiliary
information in a survey. In this context, although we do not have a complete list
of individuals, the proposed estimators can still be computed because the neces-
sary population information can be found in the databases published by national
statistical agencies and in business registers and trade association lists. This is
the case in our application of the estimators to data from the survey on opinions
and attitudes, as discussed in Section 8.
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