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Abstract:

• In the real world, we often observe that the underlying distribution of some Gaussian
processes tends to become skewed, when some undesirable assignable cause takes
place in the process. Such phenomena are common in the field of manufacturing
and in chemical industries, among others, where a process deviates from a normal
model and becomes a skew-normal. The Azzalini’s skew-normal (hereafter ASN)
distribution is a well-known model for such processes. In other words, we assume
that the in-control (hereafter IC) distribution of the process under consideration is
normal, that is a special case of the ASN model with asymmetry parameter zero,
whereas the out-of-control (hereafter OOC) process distribution is ASN with any non-
zero asymmetry parameter. In the ASN model, a change in asymmetry parameter
also induces shifts in both the mean and variance, even if, both the location and
scale parameters remain invariant. Traditionally, researchers consider a shift either
in the mean or in variance or in both the parameters of the normal distribution.
Some inference and monitoring issues related to deviation from symmetry are essential
problems that are largely overlooked in literature. To this end, we propose various test
statistics and design for sequential monitoring schemes for the asymmetry parameter
of the ASN model. We examine and compare the performance of various procedures
based on an extensive Monte-Carlo experiment. We provide an illustration based on
an interesting manufacturing case study. We also offer some concluding remarks and
future research problems.
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1. INTRODUCTION

In many of the practical applications, a univariate process characteristic,

such as the warp length of semiconductor wafers, or the diameter of piston rings

among others, is assumed to follow a normal distribution. A normal distribution

can be completely specified by its mean (µ) and variance (σ2), the two parameters

of the distribution. In standard quality control literature, a number of control

charts are developed and studied for detecting a shift in mean (also called location

parameter), among them by Tsiamyrtzis and Hawkins [37], Ryu et al. [31], Khoo

et al. [18], Peng et al. [26], and many others. Similarly, there are host of research

articles for detection of a shift in variance or the scale parameter (σ), such as,

Castagliola [6], Shu et al. [33], Zhang [40], Guo and Wang [14], among others. In

the recent years, several researchers have also addressed the problem of jointly

monitoring both the location and scale parameters of a normally distributed

process. We recommend reading Hawkins and Deng [15], Wu et al. [39], Sheu et

al. [32], McCracken et al. [24], Reynolds et al. [29], Knoth [19] and Li et al. [20],

among others, for more details.

Despite a great progress of parametric testing of hypothesis and process

monitoring, we, traditionally, assume that the parent population distribution of

the process characteristic remains normal and only change takes place in the

parameters of the distribution. Generally, we assume that the shift may occur

either in its mean or variance or in both. Nevertheless, this assumption is more

often very stringent. There are other ways in which a normally distributed process

may change. Ross and Adams [30] stated that, in many real-life applications, it

could be desirable to monitor for a change in the shape of the process distribution.

Similar arguments can also be found in Zou and Tsung [41] and Li et al. [22].

Normal distribution is well known as a symmetric bell-shaped distribution and in

consequence when a shift occurs in normal distribution, it may tend to become

skewed or asymmetric.

This phenomenon, in fact, is quite common in practice, especially in phys-

ical, chemical or geological research field. Vincent and Walsh [38] indicated

that the experimental intensity distributions in convergent beam electron diffrac-

tion patterns always exhibit deviations from ideal symmetry, attributable to the

causes, such as, strain, inclined surfaces, incomplete unit cells and imperfections

in the electron optics. Rahman and Hossain [27] showed another very relevant ex-

ample, about the groundwater arsenic contamination in Bangladesh. They noted

that the transmission of contaminants can affect the symmetric nature of the

distribution of arsenic concentration, being positively skewed. Interested readers

may also see Mukherjee et al. [25] for more details. In the context of statistical

process monitoring, Figueiredo and Gomes [9] studied a real industrial example

related to the diameters of cork stoppers produced by a manufacturing unit and
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noted that the data nicely follows an ASN distribution. After a close exami-

nation, we find that the distribution of the diameters of the cork was actually

normal in the initial phase and slowly it tends to become skew-normal. Figure 1

shows the histogram and density estimate of the first 200 diameter observations

from the production data set of Figueiredo and Gomes [9], which has altogether

1000 observations. The p-value of the Shapiro-Wilk normality test for the first

200 observations is 0.9296 which strongly supports the normality assumption in

the initial stage of production. Naturally, we can imagine that the process is

shifted from a normal distribution to an ASN distribution in the later stage of

production. We provide a detailed illustration with the cork stoppers’ data later

in Section 5.
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Figure 1: Histogram and density estimate of
the first 200 diameter observations.

In the nice work, Ferreira and Steel [8] proposed a constructive representa-

tion of skewed distributions and provided three common methods of generating

univariate skewed distributions, namely, hidden truncation, inverse scale factors,

and order statistics. Among them, the skew-normal distribution of Azzalini [2] is

probably the most common and most intensively studied one from diverse areas

of application and is developed with the idea—hidden truncation. The statistical

properties of ASN distribution and its variations have been discussed by several

authors and many similarities with the ordinary normal distribution are observed,

see for example, Azzalini [2, 3], Henze [16], Genton et al. [12], Arellano-Valle et al.

[1], Chen et al. [7], Azzalini [4], Gómez et al. [13], Mameli and Musio [23], Su and

Gupta [35]. Various researches established that the ASN family of distributions

have rather important roles to play in the production practice, such as, modeling

real datasets or simulating skewed data with different degrees of asymmetry and

tail-weight. Interested readers may see, among others, Chen et al. [7], Bartoletti
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and Loperfido [5], Fruhwirth-Schnatter and Pyne [11], Razzaghi [28], Figueiredo

and Gomes [10]. Nevertheless, there are merely few research articles that have

addressed the process monitoring issues with ASN distributions. The problems

related to process monitoring are considered in Tsai [36], Figueiredo and Gomes

[9], Su et al. [34], Li et al. [21]. The major theme of these researches is, how-

ever, the construction of control charts for skewed data, that includes detection

of shifts in location and/or scale. Needless to say that the problem of monitoring

and detecting departures from normality, i.e., from the normal to skew-normal,

has not been considered yet. Such a distributional change might not be readily

spotted by some traditional control charting schemes, such as the X chart and S

chart, because they are not designed for that purpose. Our current work aims at

addressing this long-standing problem in the context of process monitoring and

attempts to bridge the existing research gap.

The rest of this paper is organized as follows: Section 2 provides some in-

formation about ASN distribution and also introduces several competitive test

statistics for the purpose of detecting the disruption of symmetry of a normally

distributed process characteristic. The respective sequential monitoring proce-

dures, as well as the determination of their design parameters are presented in

Section 3. An extensive performance comparison and analysis is included in Sec-

tion 4. Section 5 illustrates the real example based on the corks’ diameter data

from Figueiredo and Gomes [9]. Finally, we offer some concluding remarks and

problems for future research in Section 6.

2. SOME STATISTICAL TESTS FOR ASYMMETRY

PARAMETER

Let X be the continuous random variable (r.v.) denoting the process char-

acteristic subject to testing or monitoring. The r.v. X is said to follow ASN

distribution if its probability density function (pdf) is of the form:

f (x; ξ, ω, λ) =
2

ω
φ

(

x − ξ

ω

)

Φ

(

λ
x − ξ

ω

)

, −∞ < x < ∞ ,

−∞ < ξ < ∞ , −∞ < λ < ∞ , ω > 0 ,

where ξ is the location parameter, ω is the scale parameter, and λ is the asym-

metry parameter, also called shape parameter; φ (·) and Φ (·) are the pdf and

cumulative distribution function (cdf) of the standard normal distribution, re-

spectively. In a standard notation, we express it as X∼ASN (ξ, ω, λ).

The ASN distribution is positively skewed if λ > 0, and is negatively skewed

if λ < 0. The critical parameter λ controls the skewness of the distribution (see

Figure 2). Note that, when λ = 0, the ASN distribution boils down to a normal



6 Chenglong Li, Amitava Mukherjee, Qin Su and Min Xie

distribution with mean µ = ξ and variance σ2 = ω2, which implies that normal

distribution is a special case of the ASN family of distributions. Accordingly, the

ordinary normal distribution can also be denoted as X∼ASN (ξ, ω, 0), instead of

X∼N
(

µ, σ2
)

.
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Figure 2: The pdf of Azzalini’s SN distribution.

The variation of asymmetry parameter λ in ASN distribution automatically

changes its mean and variance. If the distribution shifts from ASN (ξ0, ω0, 0) to

ASN (ξ0, ω0, λ), it is easy to see that the changed mean µ1 = µ0 + λσ0

√

2
π(1+λ2)

and variance σ2
1 =

(

1 − 2λ2

π(1+λ2)

)

σ2
0 where we have µ0 = ξ0 and σ0 = ω0. In this

context, if we apply a simultaneous testing or monitoring scheme, designed for

the mean and variance of a normal model, we often get illusive results as the

shifted model no longer follows normal distribution. A more practical problem

is to test or monitor the asymmetry parameter of ASN distribution or all the

parameters of the ASN distribution. In this paper, we only consider the inference

and monitoring problems related to the asymmetry parameter λ of the ASN

distribution and assume both the location and scale parameters remain invariant

and known. In other words, we consider the problem of sequential monitoring of

the ideal condition of λ = 0. Further research on simultaneous monitoring of all

the parameters may be taken separately as a highly warranted research problem.

In the present context, we assume that ξ0 and ω0, the process location and scale

or the mean and variance of the normally distributed IC process are known.

This assumption is realistic as practitioners commonly have a fair idea about

the process parameters either based on certain target set-up of the companies or

based on the prior knowledge about the distribution of process characteristics.

We first consider the tests based on the likelihood ratio criterion, and the

moment estimator for the asymmetry parameter λ. Noting that ad-hoc inference
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is gaining more and more popularity, we also introduce several ad-hoc statis-

tics for tracking skewness which is related to the value of λ. In the subsequent

subsections, we introduce these statistics and the tests based on them.

2.1. Likelihood ratio test

Let xn = (x1, x2, ..., xn) be the sample of size n drawn from the r.v. X with

X∼ASN (ξ, ω, λ). Given xn, the log-likelihood function for λ is given by

l (λ|xn, µ0, σ0) = n ln2 − n lnσ0 +
n
∑

i=1

lnφ

(

xi − µ0

σ0

)

+
n
∑

i=1

lnΦ

(

λ
xi − µ0

σ0

)

.

Writing zi = xi−µ0

σ0
, we can obtain the maximum likelihood (ML) estimator

of λ, say λ̂MLE , as the solution of

dl

dλ
=

n
∑

i=1

ziφ (λzi)

Φ (λzi)
= 0 .

In the language of theory of testing of statistical hypothesis, if we con-

sider the problem of testing H0: X∼ASN (ξ0, ω0, λ0 = 0), that is, X∼N
(

µ0, σ
2
0

)

against H1: X∼ASN (ξ0, ω0, λ1), a likelihood ratio criterion can be given by:

Λ (xn|µ0, σ0) =
1

2n
∏n

i=1 Φ
(

λ̂MLEzi

) .

We reject H0 at a given level of significance if Λ (xn|µ0, σ0) < cLR, where

cLR is a pre-determined constant that satisfies the level criterion. Note that,

Λ (xn|µ0, σ0) < cLR, indeed, is equivalent to T = −2lnΛ (xn|µ0, σ0) = 2nln2+

2
∑n

i=1 lnΦ
(

λ̂MLEzi

)

> −2lncLR. Thus, writing c∗LR = −2lncLR, the critical re-

gion of the test may be given by T > c∗LR.

Using the nice analogy between theory of testing of hypothesis and sta-

tistical process control, we can easily develop a sequential monitoring procedure

based on T . It is known that, under the null hypothesis, T follows a chi-squared

distribution with 1 degree of freedom if n is large. However, we found that this

approximation is useful if the test sample size n is at least 100. For small n,

the approximation is not at all satisfactory. In the context of statistical process

monitoring, test sample sizes are usually very small, say n = 5 or 10 or 25. A

sample size of n > 100 is very rare in practice and in quality control literature.

Therefore, we omit the asymptotic theory related to T in subsequent analysis

and discussion. Instead, we choose to work with the simulated distribution of T

traced via Monte-Carlo.
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2.2. Test based on the moment estimators

2.2.1. Inadmissibility of test based on method of moments estimator

Unlike the ML estimation, the method of moments (MM) to estimate λ

may be obtained more explicitly using the sample skewness, say γ̂, by inverting

the skewness equation given as:

|δ| =

√

√

√

√

π

2

|γ̂|
2
3

|γ̂|
2
3 +

(

4−π
2

)
2
3

, δ =
λ√

1 + λ2
,

where the sign of δ is the same as the sign of γ̂ and thus, we can derive the

MM estimator of λ, say λ̂MME = δ√
1−δ2

. Note that here theoretically the max-

imum skewness is obtained by setting δ = 1, which gives γ̂ approximately equal

to 0.99527. Nevertheless, in practice, it may happen that the observed sample

skewness is larger. In such situations, λ̂MME cannot be obtained from the above

equation. Admittedly, we may consider a trade-off by letting |γ̂| = 0.99527 when

the obtained |γ̂| is coincidentally greater than 0.99527.

Interestingly, we have found that the MM estimation, in the present context,

is rather inefficient especially for small-to-moderate sample size. We observe with

n = 5, when the process is IC, the probability that the sample skewness exceeds

0.99527 is about 12.2%. That is, we cannot construct a nontrivial exact test at

5% level in this context. If n = 15, 25 and 50 the probability of the same event

becomes 5.9%, 2.7%, and 0.5% respectively. In the process monitoring context,

with n = 50, we may construct a sequential inspection scheme that will allow us

to achieve a maximum IC average run length: IC-ARL = 1
0.005 = 200. This is

certainly undesirable and thus, we drop this statistic from further discussion.

2.2.2. Estimator based on L-moments

L-moments are a sequence of statistics used to summarize the shape of

a probability distribution. They are linear combinations of the order statistics

analogous to conventional moments. Let x1, x2, ..., xn be the sample and x(1) ≤
x(2) ≤ ··· ≤ x(n) be the ordered sample, and direct estimators for the first three

L-moments in a finite sample of n observations are defined to be (see Hosking

[17])

l1 = n−1
∑

i

xi ,
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l2 =
1

2

(

n

2

)−1
∑

i

∑

j

(

x(i) − x(j)

)

, for i > j ,

l3 =
1

3

(

n

3

)−1
∑

i

∑

j

∑

k

(

x(i) − 2x(j) + x(k)

)

, for i > j > k .

The L-skewness is estimated by L = l3/l2. The L-skewness is a coefficient

that measures the degree of asymmetry and may take on positive or negative

values. It is known that 0 ≤ |L| < 1, where L = 0 indicates a possible symmetry.

Therefore, we can consider a test based on |L| and reject H0 at a given level of

significance if |L| > cLS , where cLS is a pre-determined constant satisfies the level

criterion.

2.3. Ad-hoc approaches

2.3.1. Test based on the sample skewness statistic

Instead of the MM estimation, the sample skewness, γ̂, may be directly

adopted to track the skewness of the process distribution and judge whether

there is a shift from λ = 0. The form of sample skewness is given by

γ̂ =
1
n

∑n
i=1 (xi − x)3

[

1
n

∑n
i=1 (xi − x)2

]3/2
,

where x denotes the mean of the sample of size n. In general, we expect that

under symmetry, γ̂ should be closer to 0. Under positive or negative skewness,

we generally expect that γ̂ is greater than or less than 0 respectively. If we

are interested in detecting a general two-sided shift (both left or right skewness)

from symmetry, we prefer a test based on |γ̂| and reject H0 at a given level of

significance if |γ̂| > cSS , where cSS is a pre-determined constant satisfies the level

criterion.

2.3.2. Test based on the distance skewness statistic

There is a simple consistent statistical test of diagonal symmetry based on

the sample distance skewness:

D = 1 −
∑

i,j |zi − zj |
∑

i,j |zi + zj |
,
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where the z’s are the standardized observations in a sample. The sample distance

skewness can be used as a way to decide whether there is a shift from λ = 0.

Its value is always between 0 and 1, and in general, it is expected that under

symmetry, D = 0 and under positive or negative skewness, D is expected to be

greater than 0. Thus, the statistic D can be considered for two-sided test of

H0: λ = 0 versus H1: λ 6= 0. We reject H0 at a given level of significance if

D > cDS , where cDS is a pre-determined constant satisfies the level criterion.

2.3.3. Test based on the median skewness statistic

The Pearson’s median skewness, or second skewness coefficient, is defined

by

M = 3
(x − x̃)

s
,

where x̃ is the sample median and s is the sample standard deviation of size n. It is

a simple multiple of the nonparametric skew. In general, it is expected that under

symmetry, x = x̃ and consequently M = 0. Under positive or negative skewness,

in general, we expect M greater than or less than 0 respectively. Therefore,

we may reject H0 at a given level of significance if |M | > cMS , where cMS is a

pre-determined constant satisfies the level criterion.

2.3.4. Quantile-based approach

Writing Qi, i = 1, 2, 3 as the ith quartile of the distribution, the Bowley’s

measure of skewness is given by

B =
Q3 − 2Q2 + Q1

Q3 − Q1
.

It is expected that for a normal distribution B = 0 and for an ASN distri-

bution B > 0 or B < 0 according as λ > 0 or λ < 0. Therefore, for simplicity one

can use B to verify whether the symmetry condition of the normal distribution

remains valid or an asymmetric pattern creeps in. For two-sided monitoring, we

may use |B| as the monitoring statistic. We reject H0 at a given level of sig-

nificance if |B| > cBS , where cBS is a pre-determined constant satisfies the level

criterion.
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3. DESIGN AND IMPLEMENTATION OF SEQUENTIAL MON-

ITORING OF ASYMMETRY PARAMETER

From production and manufacturing to various other sectors, often sequen-

tial monitoring and control of process parameter is of primary interest. In this

section, we present six monitoring procedures based on the test statistics, respec-

tively, introduced in Section 2. These statistics are

(a) the likelihood ratio statistic T ,

(b) the L-skewness statistic |L|,
(c) the sample skewness statistic |γ̂|,
(d) the sample distance skewness statistic D,

(e) the median skewness statistic |M |, and

(f) the Bowley’s statistic |B|.

Thus, we consider the following six schemes (A-F) for sequential monitoring

of asymmetry parameter.

A: The NSN-LR chart based on likelihood ratio statistic as in Section 2.1;

B: The NSN-LS chart based on L-skewness as in Section 2.2.2;

C: The NSN-SS chart based on sample skewness as in Section 2.3.1;

D: The NSN-DS chart based on sample distance skewness as in Section 2.3.2;

E: The NSN-MS chart based on median skewness as in Section 2.3.3;

F: The NSN-BS chart based on Bowley’s measure of skewness as in Section

2.3.4.

The abbreviation NSN is used to highlight the purpose of detecting a shift

from Normal(N) to Skew-Normal (SN). We first consider the sequential moni-

toring procedure based on the NSN-LR chart. The method of constructing a

NSN-LR chart involves the following steps:

Step-1: Collect xjn = (xj1, xj2, ..., xjn), the jth test sample from the pro-

cess for j = 1, 2, .... Clearly, n is the fixed sample size for the jth

test sample or the so called rational subgroup.

Step-2: Compute the plotting statistic: Tj = 2nln2+2
∑n

i=1 lnΦ
(

λ̂MLEzji

)

.

Step-3: Plot Tj against an upper control limit (UCL) HLR. The lower

control limit (LCL) is by default 0, noting that Tj ≥ 0 by definition

as Λ (xjn|µ0, σ0) takes a value between 0 and 1.

Step-4: If Tj exceeds HLR, the process is declared OOC at the jth test

sample. If not, the process is considered to be IC, and testing

continues to the next sample.



12 Chenglong Li, Amitava Mukherjee, Qin Su and Min Xie

The sequential monitoring procedures based on other statistics are very

similar except for the steps related to computing the plotting statistics and using

corresponding control limits. Therefore, we omit the details for brevity.

It is easy to note that we are basically considering standard Phase-II

Shewhart-type charts with standards known (Case-K). Consequently, the run-

length distribution will be exactly geometric. Consider any statistic U and cor-

responding UCL as HU . The expected IC run length can be expressed in terms

of probabilities: pU (HU ) = P [Uj > HU |IC]. Let FU (·) be the cdf of the plotting

statistic under IC set-up. Then, we can also write pU (HU ) = 1 − FU (HU ). In

the present context, we identify U with T, |L|, |γ̂|, D, |M | and |B|, respec-

tively, for the schemes A to F discussed above. Further, we identify HU with

HLR, HLS , HSS , HDS , HMS and HBS , respectively, for these six schemes.

Table 1: The UCL values for the NSN charts.

The NSN-LR chart: HLR The NSN-LS chart: HLS

n IC-ARL IC-ARL IC-ARL IC-ARL IC-ARL IC-ARL
=250 =370 = 500 = 250 = 370 = 500

5 6.9315* 6.9315* 6.9315* 0.7980 0.8208 0.8383

10 10.1944 11.2063 12.2779 0.4754 0.4942 0.5086

15 9.0789 9.9548 10.6227 0.3615 0.3754 0.3854

20 8.8727 9.6034 10.2425 0.3090 0.3215 0.3292

25 8.6560 9.4490 9.9779 0.2689 0.2795 0.2896

30 8.5876 9.3119 9.8591 0.2442 0.2534 0.2610

50 8.4382 9.2416 9.7183 0.1831 0.1906 0.1957

The NSN-SS chart: HSS The NSN-DS chart: HDS

n IC-ARL IC-ARL IC-ARL IC-ARL IC-ARL IC-ARL
=250 =370 = 500 = 250 = 370 = 500

5 1.4429 1.4557 1.4631 0.8185 0.8364 0.8496

10 1.7707 1.8493 1.9050 0.5760 0.6018 0.6197

15 1.6327 1.7181 1.7797 0.4355 0.4609 0.4793

20 1.5028 1.5848 1.6484 0.3501 0.3707 0.3854

25 1.3948 1.4670 1.5286 0.2925 0.3122 0.3259

30 1.2815 1.3587 1.4126 0.2530 0.2691 0.2815

50 1.0233 1.0797 1.1331 0.1638 0.1762 0.1857

The NSN-MS chart: HMS The NSN-BS chart: HBS

n IC-ARL IC-ARL IC-ARL IC-ARL IC-ARL IC-ARL
=250 =370 = 500 = 250 = 370 = 500

5 1.9909 2.0165 2.0360 0.9459 0.9555 0.9623

10 1.5366 1.5842 1.6173 0.8638 0.8797 0.8929

15 1.5111 1.5614 1.6003 0.7998 0.8221 0.8350

20 1.2690 1.3147 1.3444 0.7011 0.7206 0.7367

25 1.2227 1.2652 1.3003 0.6722 0.6916 0.7061

30 1.0807 1.1178 1.1545 0.6242 0.6452 0.6607

50 0.8815 0.9154 0.9506 0.5149 0.5339 0.5464

Note: * indicates invalid UCL values.
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In general, the charts are designed such that the appropriate UCL is found

for a desired nominal IC-ARL or called ARL0. Now equating expected run

length with the target IC-ARL, we have IC-ARL = 1
pU (HU ) from which we can

find expression for HU in terms of the target IC-ARL. To this end, we use a

Monte-Carlo simulation with adequate replicates (100,000 times) and acquire the

appropriate quantile based on the empirical distribution function for realizing the

target IC-ARL. Throughout the paper, we adopt this simulation technique, and

in Table 1, we offer some UCL values for these aforementioned NSN charts for

various test sample size n and for various nominal IC-ARL values.

From the UCL values of Table 1, we observe that HLR and HSS increase

initially when n is small and then decrease gradually when n is relatively larger,

while for the other charts UCL values decrease monotonically within the purview

of range of n considered here, that is, n ≤ 50. It is worth mentioning that it is

difficult to obtain UCL values for the NSN-LR chart for some common IC-ARL

context, when test sample size is small, say, n < 10. This is not surprising as

Figueiredo and Gomes [9] noted that small n may often produces boundary esti-

mates. The log-likelihood function will be an increasing (decreasing) function of

λ if all observations are positive (negative). Nevertheless, overall performance of

the NSN-LR chart is very encouraging in most cases, as long as the test sample

size is not too small.

4. PERFORMANCE ANALYSIS FOR QUICKEST DETECTION

4.1. The performance comparisons between NSN charts

In the present paper, clearly the IC value of λ is λ0 = 0. To compare

these NSN charts thoroughly and for performance analysis, we choose the shifted

(OOC) value of λ as λ1 = 0.3, 0.5, 1, 2, 3, 5, 10, for drawing Phase-II samples.

Without loss of generality, for both the IC or OOC situations, we consider µ1 =

µ0 = 0 and σ1 = σ0 = 1. For specified n and IC-ARL (= 370), we compute the

ARL and the standard deviation of the run length (SDRL). Our findings for

n = 5, 10, 15, 25 are summarized in Table 2. For some other values of IC-ARL

(say, 250 and 500), the results are comparable and consistent, and therefore, we

omit the details for brevity.

First we notice that, for specified test sample size n, the ARL and the SDRL

of all the NSN charts decrease steeply with the increasing shift in λ. Further,

when n increases, in general, we see that for any NSN scheme, baring some sam-

pling fluctuations, both the ARL and SDRL tend to decrease. Precisely, the larger

the value of n is, the quicker the detection of a specified magnitude of shift will be.
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For theNSN-BS chart, however, the rate of change ofOOC-ARLwithn is very slow.

Table 2: The OOC performance comparisons between NSN charts
for various λ1 and n when IC-ARL = 370.

n = 5
λ1

NSN-LR chart NSN-LS chart NSN-SS chart NSN-DS chart NSN-MS chart NSN-BS chart

0.3 365.94 (367.66) 361.33 (362.72) 230.85 (229.96) 360.92 (359.35) 354.16 (354.21)
0.5 365.94 (363.62) 360.13 (361.32) 145.69 (145.00) 360.37 (359.34) 352.48 (351.78)
1 358.65 (357.29) 353.72 (353.22) 60.77 (60.21) 361.97 (362.68) 351.79 (352.46)
2 Not Useful 314.71 (314.08) 310.02 (310.61) 30.19 (29.60) 352.62 (352.00) 337.77 (338.82)
3 268.01 (267.64) 263.68 (263.41) 24.70 (24.12) 329.34 (328.60) 311.48 (310.98)
5 214.00 (213.31) 210.57 (209.94) 22.45 (21.87) 288.18 (287.75) 271.05 (270.74)
10 171.76 (170.93) 170.43 (169.73) 21.97 (21.41) 244.67 (243.94) 228.48 (227.81)

n = 10
λ1

NSN-LR chart NSN-LS chart NSN-SS chart NSN-DS chart NSN-MS chart NSN-BS chart

0.3 129.81 (128.97) 360.69 (360.97) 362.55 (362.36) 123.92 (122.95) 350.36 (351.69) 375.60 (375.65)
0.5 55.69 (54.73) 357.54 (357.25) 360.44 (359.63) 51.78 (51.16) 350.22 (349.81) 374.47 (371.86)
1 13.06 (12.53) 325.34 (325.80) 322.95 (320.52) 12.04 (11.53) 350.59 (350.57) 373.06 (372.07)
2 3.78 (3.23) 187.36 (186.80) 178.54 (177.59) 3.84 (3.31) 302.18 (302.43) 353.01 (354.16)
3 2.31 (1.74) 111.74 (111.11) 111.15 (109.89) 2.61 (2.05) 229.49 (228.47) 319.94 (320.17)
5 1.55 (0.93) 64.90 (64.73) 73.35 (72.47) 2.01 (1.43) 149.87 (149.05) 279.57 (280.26)
10 1.18 (0.46) 44.29 (43.99) 57.45 (56.79) 1.75 (1.15) 103.43 (103.09) 253.59 (254.70)

n = 15
λ1

NSN-LR chart NSN-LS chart NSN-SS chart NSN-DS chart NSN-MS chart NSN-BS chart

0.3 73.57 (73.20) 329.54 (328.94) 338.05 (336.81) 74.68 (74.47) 354.19 (353.90) 380.89 (379.71)
0.5 24.61 (24.10) 326.13 (326.26) 334.20 (335.13) 24.98 (24.46) 353.86 (353.78) 378.44 (376.32)
1 4.56 (4.02) 279.58 (279.16) 269.27 (267.96) 4.80 (4.25) 353.81 (352.84) 375.84 (377.41)
2 1.46 (0.82) 115.69 (115.01) 112.15 (112.21) 1.62 (1.00) 282.86 (282.64) 345.41 (343.83)
3 1.11 (0.35) 56.16 (55.43) 62.81 (62.63) 1.23 (0.53) 190.95 (190.35) 294.50 (293.73)
5 1.01 (0.11) 28.17 (27.46) 39.39 (39.11) 1.07 (0.28) 108.10 (107.82) 235.77 (236.28)
10 1.00 (0.01) 17.96 (17.40) 30.27 (29.69) 1.02 (0.16) 69.06 (68.37) 204.56 (203.73)

n = 25
λ1

NSN-LR chart NSN-LS chart NSN-SS chart NSN-DS chart NSN-MS chart NSN-BS chart

0.3 35.52 (34.95) 367.13 (366.06) 370.12 (371.24) 36.60 (36.09) 345.62 (346.94) 357.06 (358.49)
0.5 9.49 (9.00) 361.87 (361.88) 361.69 (362.16) 9.99 (9.50) 346.00 (346.17) 355.45 (355.78)
1 1.80 (1.21) 276.97 (276.77) 250.80 (250.88) 1.93 (1.34) 333.34 (332.28) 350.34 (351.09)
2 1.02 (0.16) 70.21 (69.51) 69.69 (69.30) 1.05 (0.22) 198.51 (197.95) 294.49 (293.77)
3 1.00 (0.03) 26.42 (25.85) 33.83 (33.27) 1.00 (0.06) 99.94 (99.03) 218.99 (217.80)
5 1.00 (0.00) 11.43 (10.87) 19.29 (18.75) 1.00 (0.01) 45.51 (45.03) 153.77 (153.12)
10 1.00 (0.00) 6.90 (6.40) 14.31 (13.86) 1.00 (0.00) 28.00 (27.58) 130.94 (130.07)

For a given n and λ1, we compare the schemes in terms of OOC-ARL, and

consider a scheme the best, if it offers the lowest OOC-ARL. The cells correspond

to the best performing chart are shown in bold typeface in the tables. We further

see from Table 2 that the NSN-LR chart and the NSN-DS chart are uniformly

superior to the other four NSN charts. The NSN-DS chart is particularly well

suited for the cases where n is small (e.g., n = 5), where the NSN-LR chart is

inadmissible, as mentioned earlier. The two charts, namely, NSN-LR chart and
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NSN-DS chart, perform rather similarly with a moderate-to-large test sample

size (say n ≥ 10), though the NSN-LR chart displays a slight advantage over the

NSN-DS chart. Besides, both these charts have a rather low OOC-ARL value

when n is large, even if, the shift in λ is relatively small. The rest four NSN

charts perform poorly in almost all cases. The NSN-SS chart, the NSN-MS chart

and the NSN-LS chart are very inefficient when n is small and shift size is also

small, however, under large n, and for large shift size, the performance of these

charts improves significantly. Nevertheless, even with n = 50 and λ1 = 10, these

schemes are inferior compared with the NSN-LR chart or the NSN-DS chart.

Unfortunately, the NSN-BS chart is the worst and is practically useless.

Based on the results displayed in Table 2, we highly recommend the NSN-

LR chart and the NSN-DS chart for detecting the shift from normal to skew-

normal, especially the latter. The NSN-DS chart has a broader scope of applica-

tion in practice than the NSN-LR chart as it is effective even if the test sample

size is small where the NSN-LR chart is inadmissible. Further, we almost always

see that the NSN-DS chart performs very close to the NSN-LR chart when the

NSN-LR chart is the best in terms of OOC-ARL values. Therefore, the NSN-DS

chart is very competitive, and moreover, it may be more preferable to the users

taking into account the simplicity of implementation and its inherent ability to

detect a deviation from symmetry. Nevertheless, from the performance perspec-

tive, we recommend both charts and the users can have a choice to adopt the

NSN-LR chart or the NSN-DS chart according to their practical requirement.

The rest four NSN charts based on common measures of skewness are much more

inefficient and we suggest not to use them.

4.2. The comparisons to traditional charts for mean and/or variance

We have noted earlier that when the underlying process distribution de-

viates from normality and becomes skew-normal, as a result of a shift in the

asymmetry parameter λ from 0, the process mean and variance also change.

The mean and variance of the shifted process are given respectively by µ1 =

µ0 + λ1σ0

√

2
π(1+λ2

1)
and σ2

1 =

(

1 − 2λ2
1

π(1+λ2
1)

)

σ2
0. Therefore, one may argue that

it might be still meaningful to employ traditional process control schemes to mon-

itor process mean, or process variance or both at the same time, without giving

much importance to shift in the shape. To this end, it is worthy to compare some

traditional monitoring procedures, such as, the X chart for solely monitoring

the process mean, the S chart for monitoring the process variance, as well as the

charts based on ordinary max or distance statistic for jointly monitoring both the

mean and variance, with the NSN-LR and NSN-DS charts. Such a comparative

performance study will reflect whether the proposed schemes are really suitable

in detecting an overall process shift quickly compared to traditional schemes.
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Following are the plotting statistics of the existing schemes for monitoring

the process mean, process variance or both, used for the comparative study:

X chart:
QX (Xj) =

∣
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n

∣
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∣
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;

distance chart:

QD (Xj) =

√

√

√

√

(

Xj − µ

σ/
√

n

)2

+

(

Φ−1

{

Fχ2
(n−1)

(

(n − 1) S2
j

σ2

)})2

.

We compare the above four schemes with the proposed NSN-LR chart and

NSN-DS chart under the similar OOC set-up used in Section 4.1. For a fair com-

parison, we only consider the standard Shewhart-type version of all the charts

involved. In Table 3, we present the mean, the standard deviation and the skew-

ness coefficient of the ASN (λ) distribution for various values of λ1, considered

in Section 4.1.

Table 3: Means, standard deviations and skewness coefficients of the
ASN distribution under IC value and various OOC values of λ.

IC Situation

λ0 µ0 σ0 γ0

0 0 1 0

OOC Situation

λ1 µ1 σ1 γ1

0.3 0.2293 0.9734 0.0056

0.5 0.3568 0.9342 0.0239

1 0.5642 0.8256 0.1369

2 0.7136 0.7005 0.4538

3 0.7569 0.6535 0.6670

5 0.7824 0.6228 0.8510

10 0.7939 0.6080 0.9556

+∞ 0.7979 0.6028 0.9953
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From Table 3, it is easy to see that when λ increases from 0 to +∞,

µ and γ increase, but σ decreases. One may check that when λ1 decreases from

0 to −∞, all three measures, the mean, the variance and the skewness coefficient

decrease. To be precise, in our simulation set-up, if there is a shift from λ = 0 to

λ1(−λ1), the mean µ = 0 will change to µ1(−µ1), the standard deviation σ = 0

will change to σ1(σ1), and γ = 0 will change to γ1(−γ1). For brevity, we omit the

case of decreasing shift in λ.

In Table 4, we summarize the result of performance comparisons among

the NSN-LR chart, the NSN-DS chart and the four traditional alternatives (i.e.,

Table 4: The OOC performance comparisons among the NSN-LR chart, the NSN-DS
chart and other alternatives for various λ1 and n when IC-ARL = 370.

n = 5
λ1

NSN-LR chart NSN-DS chart X chart S chart max chart distance chart

0.3 230.85 (229.96) 181.20 (180.84) 421.72 (422.96) 244.14 (243.51) 240.61 (239.75)
0.5 145.69 (145.00) 106.09 (105.12) 454.31 (453.81) 160.33 (158.94) 159.68 (159.26)
1 60.77 (60.21) 52.23 (51.62) 337.54 (337.87) 83.64 (82.75) 81.57 (80.57)
2 Not Useful 30.19 (29.60) 36.06 (35.38) 164.33 (163.60) 55.55 (54.98) 52.02 (51.27)
3 24.70 (24.12) 33.17 (32.55) 113.58 (113.55) 48.38 (47.73) 46.10 (45.50)
5 22.45 (21.87) 31.74 (31.18) 83.34 (83.27) 43.36 (42.79) 42.89 (42.42)
10 21.97 (21.41) 31.12 (30.60) 69.16 (69.13) 40.41 (39.78) 41.24 (40.82)

n = 10
λ1

NSN-LR chart NSN-DS chart X chart S chart max chart distance chart

0.3 129.81 (128.97) 123.92 (122.95) 102.21 (101.85) 410.33 (409.76) 150.01 (150.07) 149.23 (147.96)
0.5 55.69 (54.73) 51.78 (51.16) 43.94 (43.37) 380.25 (378.66) 68.56 (68.16) 68.96 (67.96)
1 13.06 (12.53) 12.04 (11.53) 13.99 (13.45) 159.10 (159.37) 21.24 (20.76) 19.31 (18.78)
2 3.78 (3.23) 3.84 (3.31) 6.91 (6.38) 41.70 (41.34) 9.63 (9.10) 6.82 (6.28)
3 2.31 (1.74) 2.61 (2.05) 5.71 (5.18) 23.12 (22.59) 7.42 (6.91) 4.69 (4.15)
5 1.55 (0.93) 2.01 (1.43) 5.11 (4.58) 15.43 (14.98) 6.18 (5.64) 3.63 (3.09)
10 1.18 (0.46) 1.75 (1.15) 4.86 (4.33) 12.65 (12.18) 5.62 (5.08) 3.18 (2.62)

n = 15
λ1

NSN-LR chart NSN-DS chart X chart S chart max chart distance chart

0.3 73.57 (73.20) 74.68 (74.47) 66.56 (66.18) 397.62 (396.70) 101.11 (100.47) 101.42 (100.85)
0.5 24.61 (24.10) 24.98 (24.46) 23.82 (23.17) 320.89 (321.72) 36.77 (36.22) 37.22 (36.61)
1 4.56 (4.02) 4.80 (4.25) 6.19 (5.67) 90.72 (89.86) 8.74 (8.27) 7.58 (7.06)
2 1.46 (0.82) 1.62 (1.00) 2.77 (2.21) 17.09 (16.60) 3.43 (2.88) 2.28 (1.69)
3 1.11 (0.35) 1.23 (0.53) 2.24 (1.66) 9.09 (8.55) 2.55 (1.98) 1.57 (0.95)
5 1.01 (0.11) 1.07 (0.28) 1.99 (1.40) 6.12 (5.58) 2.11 (1.52) 1.28 (0.59)
10 1.00 (0.01) 1.02 (0.16) 1.88 (1.29) 5.10 (4.56) 1.92 (1.32) 1.17 (0.45)

n = 25
λ1

NSN-LR chart NSN-DS chart X chart S chart max chart distance chart

0.3 35.52 (34.95) 36.60 (36.09) 34.95 (34.50) 373.78 (375.17) 53.70 (53.19) 54.59 (53.98)
0.5 9.49 (9.00) 9.99 (9.50) 10.34 (9.88) 237.89 (238.12) 15.01 (14.54) 15.22 (14.70)
1 1.80 (1.21) 1.93 (1.34) 2.41 (1.85) 40.32 (39.85) 3.01 (2.47) 2.58 (2.02)
2 1.02 (0.16) 1.05 (0.22) 1.26 (0.58) 5.76 (5.20) 1.33 (0.66) 1.10 (0.33)
3 1.00 (0.03) 1.00 (0.06) 1.13 (0.38) 3.21 (2.64) 1.12 (0.36) 1.01 (0.11)
5 1.00 (0.00) 1.00 (0.01) 1.07 (0.28) 2.35 (1.77) 1.04 (0.20) 1.00 (0.03)
10 1.00 (0.00) 1.00 (0.00) 1.05 (0.23) 2.06 (1.46) 1.02 (0.13) 1.00 (0.01)
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the X chart, the S chart, the max chart, and the distance chart) in the cases of

λ1 = 0.3, 0.5, 1, 2, 3, 5, 10, and n = 5, 10, 15, 25. From Table 4, we see that our

proposed NSN-LR chart and NSN-DS chart outperform the four traditional charts

in most of the cases, except for very small shift in asymmetry parameter. To be

precise, when λ1 is very small, the X chart is slightly more effective when sample

size n is also small. Further, we observe that, as the test sample size n increases,

our proposed NSN-LR and NSN-DS schemes become very competitive to the

traditional X chart even for small shift in asymmetry parameter. In general,

among these traditional alternatives, the X chart performs the best when λ1 is

small and then the distance chart supersedes the X chart when λ1 gets larger.

The max chart performs similarly as the distance chart. The S chart performs the

worst compared to the other schemes, probably due to the decreasing variance.

The performance of these traditional charts are, however, better than the other

four charts introduced in this paper based on various measures of skewness. We

further notice that, when the test sample size is large enough and the shift in the

asymmetry parameter is also very large, that is, both the values of n and λ1 are

relatively large, all four traditional schemes considered here display commanding

performance similar to the NSN-LR chart or the NSN-DS chart.

In summary, we can conclude that our proposed NSN-LR chart and NSN-

DS chart have some distinct advantages in detecting a shift when the process

distribution deviates from normal to skew-normal, specially when λ1 is moderate-

to-large. Otherwise, one may simply apply the traditional alternative, like X

chart for detecting shifts in the process mean. Nevertheless, using X chart may

be misleading in practice as it is designed for capturing a shift in the mean of a

normally distributed process. It may not reflect the actual phenomenon, that is,

the shift has taken place in the distribution itself. It may not be realized that

the assignable cause has actually led to a disruption of symmetry of the process

distribution. The effect of shift in asymmetry parameter would be confounded

if we use any of the traditional charts. This clarifies the motivation behind

developing the NSN-type control charts.

5. APPLICATION TO A MANUFACTURING PROCESS

In this section, we revisit the real example of a cork stopper’s process

production presented by Figueiredo and Gomes [9]. Figueiredo and Gomes [9]

considered a consecutive sample of size n = 1000, related to corks’ diameters as

well as some other measurements from the production process. They applied the

Shapiro test for normality and the Kolmogorov-Smirnov (K-S) test for goodness of

fit of the ASN distribution on the 1000 data points. They noted that the Shapiro

test rejects the normality of the diameter data at 5% level of significance, but the

K-S test accepts the ASN distribution as a decent model for the diameter data.
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They concluded accordingly that the ASN distribution may be considered to

model the diameter data instead of the normal distribution.

Nevertheless, we revisit the diameter data set, and observe that during the

initial stage of production, the underlying data distribution appears to be normal.

We note that for the first 200 observations on corks’ diameter, the p-value of

the Shapiro test is very high and is 0.9296. This finding strongly supports the

normality assumption (also see Figure 1) for the initial stage of production. We

also notice that the process distribution deviates from normality and gradually

becomes skew-normal (the p-value of the Shapiro test for normality gradually

becomes lower and soon becomes less than 1%) as the production continues,

probably due to unobservable occurrence of one or more assignable cause(s) at

some point of time. Hence, we may argue that the process distribution has

deviated from the normality and tends to follow an ASN distribution with some

non-zero asymmetry parameter.

In this context, we illustrate the implementation of the proposed Shewhart-

type NSN-LR and NSN-DS charts for monitoring the diameter data observed from

the cork stopper’s process production. We take the first 200 observations related

to corks’ diameter as the IC sample which is also referred to as the Phase I

observations in literature. We obtain the estimates for the mean value and the

standard deviation as 24.0695 and 0.1459 respectively. We use these estimates

to approximate the true process parameters. The following 800 observations

may be regarded as the Phase II data that consists of m = 40 subgroups each

of size n = 20. For n = 20 and a target IC-ARL of 370, we see from Table 1,

the control limits for the two charts are, respectively, HLR = 9.6034 and HDS =

0.3707. Hereafter, we compute the LR and DS statistics for these 40 subgroups

and plot them in Figure 3 and 4, along with the respective UCL.

We see that the movement of the plotting statistics in these two charts are

very similar in nature. We receive the first signal at the 17th test sample for

both charts. Moreover, several points fall above the UCL in both these charts.

We may consider this as a strong evidence of deviation of process distribution

and therefore, may conclude that the initial assumption of normally distributed

process is no longer valid and the process distribution becomes asymmetric. To

be precise, the ASN distribution (with some non-zero asymmetry parameter)

emerges as the new process distribution. Since in the whole data set, normally

distributed IC data have been contaminated (mixed) with the shifted data which

are generated from the OOC process, this easily leads to an illusion that the data

inherently follows an ASN distribution.
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Figure 3: The NSN-LR chart for the corks’ diameter data.
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Figure 4: The NSN-DS chart for the corks’ diameter data.
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6. CONCLUDING REMARKS

In this paper, we study on the statistical process monitoring problem in

regard to detecting a shift from normal to skew-normal. A class of possible test

statistics are thoroughly examined and we find that the proposed monitoring pro-

cedures based on the likelihood ratio statistic and the sample distance skewness

statistic operate most competitively, especially the latter. Therefore, these two

approaches are expected to be very useful in practice to monitor the asymmetry

parameter of an ASN distribution and to detect a process shift from normality

to skew-normal with λ 6= 0.

In the present context, we study the performance of the standard Shewhart-

type version for all charts. It is well-known that the Shewhart-type charts are

usually good for detecting large and abrupt shifts in a process, however, the

change in skewness actually is relatively small even if λ1 gets very large for the

ASN distribution. Thus, a straightforward extension of the proposed monitoring

schemes under the EWMA or CUSUM set-up may be considered as a future

research problem. Further, more researches on the economic and the economic-

statistical design of the NSN-LR and NSN-DS charts are highly warranted in

future.

In addition, as stated before, further research on simultaneous monitoring

of all the parameters (location, scale and shape) of the ASN distribution needs

to be studied in detail. It will also be an interesting future research problem

to develop process monitoring schemes when the parameters are unknown and

estimated from the reference sample. Clearly, the present work may lead to some

interesting future research problems.
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