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Abstract:

• The purpose of this paper is to introduce a new class of compound criteria and opti-
mum designs that provide a specified balance between minimizing the average variance
and high probability of a desired outcome. The proposed criterion called AP- optimal-
ity that combines A-optimality and P-optimality and address this issue for generalized
linear models. An equivalence theorem for this criterion is provided and two numerical
examples are presented for different GLMs to illustrate the achieved dual properties.
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1. INTRODUCTION

The type of any design is always an option regardless of the type of model

we wish to fit (for example, first order, first order plus some interactions, full

quadratic, cubic, etc.) or the objective specified for the experiment. The design

of experiments for generalized linear models (GLMs) has received considerable

attention in recent years, for example the research by Woods et al. [9]. To some

extent, this has been in response to design issues raised by researchers in exper-

imental sciences, such as new technologies (for example genomics and areas of

modern biology), where the inherent characteristics of data in these fields lead

to the consideration of GLMs for analysis and consequently design. GLMs are

non-linear models and, as such, pose substantial challenges in terms of design,

in particular in the need to have information on the model parameters prior to

designing an experiment to estimate these parameters. Much of the research into

design for GLMs has concentrated on quite small models: one or two variables

and ‘simple’ optimality criteria, such as D-optimality, which is concerned solely

with parameter estimation. However, the paper by Woods et al. [9] investigated

complex models for binary data with several variables over a number of models in

the form of a compound criterion called product design optimality. Historically,

most optimal design criteria have been concerned with parameter estimation,

and more recently some have combined the notions of parameter estimation and

model discrimination (for example, DT-optimality, Atkinson [1]). Examples of

other compound criteria can be found in Waterhouse [8] where criteria are de-

scribed that also yield designs that offer efficient parameter estimation and model

discrimination.

A-optimality criterion corresponds to minimize the variance of the asymp-

totic distribution of the maximum likelihood estimate of that parameter, em-

ployed that criterion of optimality is the one that involves the use of Fisher’s

information matrix. For linear models with one discrete factor and additive gen-

eral regression term the problem of characterizing A-optimal design measures for

inference on treatment effects, the regression parameters and all parameters will

be considered. While, P-optimal design maximizes the average probability of

success of a given design.

The aim of this paper is to derive method for designing experiments from

which minimizing average variance of the parameter estimates can be obtained,

while at the same time maximizing the probability of a particular event that is

of importance to experimenter. This paper is organized as follows: Section 2

is devoted to represent the optimum design background. In Section 3, a simple

review for A — and P — optimum designs is introduced. In Section 4, the AP-

optimum design is proposed to achieve the dual goals of minimizing the average

variance and maximizing the average of the probability of observing an outcome.
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Moreover, the equivalence theorem is derived. Two numerical examples are given

in Section 5 to illustrate the method and the value of the proposed criterion in

meeting the dual aims.

2. OPTIMUM DESIGN PRELIMINARIES

Consider the generalized linear models GLMs

E (Y ) = µ = g−1(Xβ)

η = g(Xβ)
(2.1)

which is defined by the distribution of the response Y, a matrix of independent

variables (predictors)X , a vector of unknown parameters β and a linear predictor

η and two functions:

1. A link function g (.) that describes how the mean, E (Yi) = µi depends

on the linear predictor g (µi) = Yi.

2. A variance function that describes how the variance, V ar(Yi) depends

on the mean

(2.2) V ar (Yi) = φ(V (µ))

where the dispersion parameter φ is a constant.

In GLMs, the errors or noise ǫi have relaxed assumptions where it may or

may not have normal distribution. GLMs are commonly used to model binary or

count data. Some common link functions are used such that the identity, logit,

log and probit link to induce the traditional linear regression, logistic regression,

Poisson regression models.

An approximate (continuous) design is represented by the probability mea-

sure ξ over the design space δ. If the design has trials at n distinct points in δ,

it can be written as

(2.3) ξ =

{

x1 x2...... xn

w1 w2...... wn

}

A design ξ defines, for i = 1, ..., n, the vector of support-point xi ∈ χ re-

lated to yi, where χ is a compact experimental domain and the experimental

weights wi corresponding to each xi, where
∑n

i=1
wi = 1. The design space can

be then expressed as δ = {ξi ∈ Xn × [0, 1]n :
∑n

i=1
wi = 1}. Such designs are

called approximate or continuous designs.
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3. A- AND P-OPTIMUM DESIGNS

3.1. A-optimum design

A-optimality criterion introduced by Chernoff [2]; who showed that the

employed criterion of optimality is the one that involves the use of Fisher’s

information matrix. For the case where it is desired to estimate one of the

p parameters in the information matrix, this criterion corresponds to minimize

the variance of the asymptotic distribution of the maximum likelihood estimate

of that parameter.

A-optimality minimizes the average variance of the parameter estimates.

Alternatively, it can be expressed as the following form;

(3.1) ΦA (ξ) = min
xi,i=1,...n

tr(XTX)

For a discussion on an A-optimal designs for binary models, see Sitter

and Wu [6], Zhu and Wong [11]. Yang [10] introduced A-optimal designs for

generalized linear models with two parameters which are logistic, probit and

double exponential models.

The equivalence theorem states that, the derivative function

(3.2) fT (x)M−2(θ, ξ)f(x) ≤ tr[M−1(θ, ξ)], x ∈ χ

where M is the information matrix and the equality holds only if ξ = ξ∗A , x ∈ ξ∗A .

A-efficiency of a design ξ is defined as:

(3.3) EffA (ξ) =
tr
[

M−1 (θ, ξ∗A)
]

tr [M−1 (θ, ξ)]

where ξ∗A is A-optimal.

3.2. P-optimum designs

McGree and Eccleston [5] have offered a P-optimality criterion, which is

defined as a criterion that maximizes a function of the probability of observing

a particular outcome. One of the forms of P-optimality which defined is con-

cerned with the maximization of a weighted sum of the probabilities of success.
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The form of this criterion is

(3.4) ΦP (ξ) =
n
∑

i=1

πi (θ, ξi)wi

where, πi (θ, ξi) is the i-th probability of success given by ξi and wi is the exper-

imental effort relating to the i-th support point. In this criterion, design weights

have been included and will play a role in maximizing the probabilities.

Let ξ∗P be the design maximizing (3.4). Under some regularity conditions,

McGree an Eccleston [5] proved an equivalence theorem for P-optimum designs,

in which the derivative function ψP (x, ξ∗P ) ≤ 0, x∈χ, where

(3.5) ψPA
(x, ξ∗P ) =

ΦP (x) − ΦP (ξ∗P )

ΦP

(

ξ∗P
)

is the directional derivative of Φp (ξ). The P -efficiency of a design ξ relative to

the optimum design ξ∗P is

(3.6) EffPA
(ξ) =

∑n
i=1

πi (θ, ξi)wi
∑n

i=1
πi

(

θ, ξ∗PA

)

wi

.

4. AP-OPTIMUM DESIGN

There is a situation when an experimenter may be interested to achieve mul-

tiple objectives. For this aim, we will construct a design that combine

A-optimality with P-optimality. The new criterion will be called AP-optimality.

This criterion offers a method of achieving minimizing the average variance and

a high probability of a desired outcome.

The AP-optimality criterion is given by the following weighted geometric

mean of efficiencies:

(4.1) {EffA(ξ)}α{EffP (ξ)}1−α =

(

tr[M−1(θ, ξ∗A)]

tr[M−1(θ, ξ)]

)α
(

∑n
i=1

πi (θ, ξi)wi
∑n

i=1
πi

(

θ, ξ∗P
)

wi

)1−α

where the coefficients 0 ≤ α ≤ 1. When α = 0, we obtain P -optimality and when

α = 1, we obtain A-optimality. To clarify the structure of the design criterion,

take log in (4.1) yields

α log(tr
[

M−1 (θ, ξ∗A)
]

) − α log(tr
[

M−1 (θ, ξ)
]

) +

+ (1 − α) log
n
∑

i=1

πi (θ, ξi)wi − (1 − α) log
n
∑

i=1

πi (θ, ξ
∗

P )wi.
(4.2)
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The terms involving ξ∗A and ξ∗P are constants when a maximum is found over ξ.

Many bibliographical references presented the concept of this maximization

method such as Dette [4]; Atkinson [1]; Tommasi [7]; and McGree and Eccle-

ston [5]. So that the criterion to be maximized is

(4.3) ΦAP (ξ) = −α log(tr
[

M−1 (θ, ξ)
]

) + (1 − α) log

n
∑

i=1

πi (θ, ξi)wi.

The negative sign for the first term on the right hand side of (4.3) arises

because the average variance is minimized. Designs maximizing (4.3) are called

AP-optimum and denoted ξ∗AP .

The equivalence theorem is stated as follows:

Theorem 4.1. For AP -optimal design, ξ∗AP , the following three state-

ments are equivalent.

1. A necessary and sufficient condition for a design ξ∗AP to be AP -optimum

is fulfillment of the inequality ψAP (x, ξ∗AP ) ≤ 1, x ∈ χ , where the

derivative function of (4.3) is given by

(4.4) ψAP (x, ξ∗AP ) = α

(

fT (x)M−2(θ, ξ∗AP )f(x)

ΦA(ξ∗AP )

)

+ (1−α)

(

ΦP (x) − ΦP (ξ∗AP )

ΦP (ξ∗AP )

)

.

2. The upper bound of ψAP (x, ξ∗AP ) is achieved at the points of the opti-

mum design.

3. For any non optimum design ξ, that is a design for which ΦAP (ξ) <

ΦAP (ξ∗AP ), supx∈χ ψAP (x, ξ∗AP ) > 1 .

Proof: Since 0 ≤ α ≤ 1, ψAP is a convex combination of logarithm of two

design criteria. Therefore, the AP-criterion satisfies the conditions of convex

optimum design theory and an equivalence theorem applies. Because of the way

the terms in (4.4) have been scaled, the upper bound of ψAP over x ∈ χ is one,

achieved at the points of the optimum design. Furthermore, ψAP is the linear

combination of the directional derivatives given by A-optimality and P-optimality.

Thus, the theorem has been proved.
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5. APPLICATIONS TO GENERALIZED LINEAR MODELS

In this Section, the AP-optimality criterion is applied to two types of gen-

eralized linear models, Logit and probit models, for binary data. The data were

based on the work given by in Corana et al. [3]. The A-, P-, and the proposed

compound AP-efficiencies are calculated and the optimal designs are obtained to

illustrate the main objective of the compound criterion that allow both minimiz-

ing the average variance of the parameter estimates plus increasing the probability

of the desired outcome.

Example 5.1. Logit Model

The considering logit model has two main factor effects besides the in-

teraction with initial parameter estimates θ = [1,−2, 1,−1]T with xj ∈ [−1, 1] as

follows:

(5.1) Log

(

π

1 − π

)

= 1 − 2x1 + x2 − x1x2.

AP-optimal designs and their A- and P-efficiencies for α= 0, 0.25, 0.5, 0.75, 1

are obtained and presented in Table 1.

Table 1: AP-optimum design and their A- and P-efficiencies
for the Logit model at different values of α.

α x1 x2 wi πi Aeff Peff

0 −1.000 1.000 1.000 0.9933 — 1

0.25

1.0000 −1.000 0.0835 0.2689

0.822183 0.80600.8020 1.000 0.0999 0.3999
−1.000 −1.000 0.1983 0.7311
−0.3980 1.000 0.6182 0.9596

0.5

1.000 −1.000 0.1570 0.2689

1 0.66441.000 1.000 0.1600 0.2889
−1.000 −1.000 0.2802 0.7311
−0.1059 1.000 0.4028 0.9103

0.75

1.000 1.000 0.2121 0.2689

0.741011 0.58261.000 −1.000 0.2121 0.2689
−1.000 −1.000 0.2740 0.7311

0.0148 1.000 0.3017 0.8761

1

1.000 −1.000 0.2500 0.2689

0.864115 0.53521.000 1.000 0.2500 0.2689
−1.000 −1.000 0.2500 0.7311

0.0680 1.000 0.2500 0.8577
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Table 1 shows the designs that maximize the AP-criterion. It can be noticed

that there is little changes in the design points with high variation in design

weights. That is, the Peff ’s are increased through the given designs as well as the

probability of success is increased. Figure 1 illustrates the A- and P-efficiencies for

α = 0, 0.25, 0.5, 0.75 and 1. The dot-dashed line represents the A-efficiency of

the designs, and the solid line shows their P-efficiencies. The following A-optimal

design has a P-efficiency of 0.6644.

ξ∗A =















1.0000
1.0000
−1.000
−0.1059

−1.000
1.000

−1.000
1.000

0.1570
0.1600
0.2802
0.4028















.

Figure 1: A- and P-efficiencies of AP-optimal designs
for different values of α.

By using the AP-criterion and choosing α = 0.25, we are able to increase the

P-efficiency to 0.806, while achieving a A-efficiency of 0.822183. The AP-optimal

design is

ξ∗AP =















1.000
0.802
−1.000
−0.398

−1.000
1.000

−1.000
1.000

0.0835
0.0999
0.1983
0.6182















.

Example 5.2. Probit Model

In the following Example, the AP-optimality criterion is applied to the

probit model. The response variable is modelled via three main factor effects

with initial parameters β = [1,−0.5, 1,−1], with xj ∈ [−1, 1]:

(5.2) Φ−1(π) = 1 − 0.5 x1 + x2 − x3.

Table 2 include the main results of the designs and their A- and P-efficiencies

for α = 0, 0.2, 0.35, 0.5, 0.75, 1. Figure 2 illustrates the A- and P-efficiencies
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for α = 0, 0.2, 0.35, 0.5, 0.75, 1. Using the compound criteria AP-criterion, at

α = 0.5, we can see that the A-efficiency and P-efficiencies have very close high

efficiencies, 0.982127 , 0.983084, respectively.

Table 2: AP-optimum design and their A- and P-efficiencies
for the Probit model at different values of α.

α x1 x2 x3 wi πi Aeff Peff

0

−1.0000 −1.0000 1.0000 0.0708 0.3085

1 0.98427

−0.6296 1.0000 −1.0000 0.1105 0.9988
−0.5423 1.0000 1.0000 0.1600 0.8980
−0.5423 −1.0000 −1.0000 0.1600 0.8980
−0.0186 −1.0000 1.0000 0.0658 0.1611

0.0186 1.0000 1.0000 0.0658 0.8389
0.0186 −1.0000 −1.0000 0.0658 0.8389
0.5423 −1.0000 1.0000 0.1600 0.1020
1.0000 −1.0000 −1.0000 0.0708 0.6915
1.0000 1.0000 1.0000 0.0708 0.6915

0.2

−1.0000 −1.0000 1.0000 0.0608 0.3085

0.964075 1

−0.5368 −1.0000 −1.0000 0.2315 0.8980
−0.5368 1.0000 1.0000 0.2315 0.8980
−0.5244 1.0000 −1.0000 0.1232 0.9987

0.5368 −1.0000 1.0000 0.2315 0.1020
1.0000 −1.0000 −1.0000 0.0608 0.6915
1.0000 1.0000 1.0000 0.0608 0.6915

0.35

−1.0000 −1.0000 1.0000 0.0630 0.3085

0.979698 0.996276

0.5027 1.0000 −1.0000 0.1213 0.9987
−0.4894 −1.0000 −1.0000 0.2299 0.8925
−0.4894 1.0000 1.0000 0.2299 0.8925

0.4894 −1.0000 1.0000 0.2299 0.1075
1.0000 −1.0000 −1.0000 0.0630 0.6915
1.0000 1.0000 1.0000 0.0630 0.6915

0.5

−1.0000 −1.0000 1.0000 0.0618 0.3085

0.982127 0.983084

−0.5140 1.0000 −1.0000 0.1085 0.9987
−0.4709 1.0000 1.0000 0.2144 0.8925
−0.4395 −1.0000 −1.0000 0.2241 0.8888
−0.0373 −1.0000 1.0000 0.0245 0.1635

0.0372 1.0000 1.0000 0.0245 0.8365
0.4709 −1.0000 1.0000 0.2144 0.1075
1.0000 −1.0000 −1.0000 0.0662 0.6915
1.0000 1.0000 1.0000 0.0618 0.6915

0.75

−1.0000 −1.0000 1.0000 0.0504 0.3085

0.778262 0.988816

−1.0000 −1.0000 −1.0000 0.0143 0.9332
−1.0000 1.0000 1.0000 0.0143 0.9332
−1.0000 1.0000 −1.0000 0.1306 0.0089
−0.0101 −1.0000 −1.0000 0.2251 0.8413
−0.0101 1.0000 1.0000 0.2251 0.8413

0.0101 −1.0000 1.0000 0.2251 0.1587
1.0000 −1.0000 1.0000 0.0143 0.0668
1.0000 −1.0000 −1.0000 0.0504 0.6915
1.0000 1.0000 1.0000 0.0504 0.6915

(continues)
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(continued)

α x1 x2 x3 wi πi Aeff Peff

0.9

−1.0000 −1.0000 1.0000 0.0533 0.3085

0.820936 0.983858

−0.9942 1.0000 −1.0000 0.1197 0.9987
−0.8203 −1.0000 −1.0000 0.0212 0.9207
−0.8203 1.0000 1.0000 0.0212 0.9207
−0.0348 −1.0000 −1.0000 0.2189 0.8461
−0.0348 1.0000 1.0000 0.2189 0.8461

0.0348 −1.0000 1.0000 0.2189 0.1539
0.8203 −1.0000 1.0000 0.0212 0.0793
1.0000 1.0000 1.0000 0.0533 0.6915
1.0000 −1.0000 −1.0000 0.0533 0.6915

1

−1.0000 −1.0000 1.0000 0.0550 0.3085

0.899469 0.970774

−0.9344 1.0000 −1.0000 0.0924 0.9989
−0.6464 −1.0000 −1.0000 0.0515 0.9066
−0.6464 1.0000 1.0000 0.0515 0.9066
−0.0612 −1.0000 −1.0000 0.1960 0.8485
−0.0612 1.0000 1.0000 0.1960 0.8485

0.0612 −1.0000 1.0000 0.1960 0.1515
0.6464 −1.0000 1.0000 0.0515 0.0934
1.0000 −1.0000 −1.0000 0.0550 0.6915
1.0000 1.0000 1.0000 0.0550 0.6915

Figure 2: A- and P-efficiencies of AP-optimal designs for different values of α.

Hence, the AP-optimal design which satisfy the dual problem is obtained as:

ξ∗AP =























































−1.0000
−05140
−0.4709
−0.4395
−0.0373
0.0372
0.4709
1.0000
1.0000

−1.0000
1.0000

1.0000
−1.0000
−1.0000
1.0000
−1.0000
−1.0000
1.0000

1.0000
−1.0000

1.0000
−1.0000

1.0000
1.0000
1.0000
1.0000
1.0000























































.
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6. CONCLUSION

The criterion AP-optimum design introduced here provides a new com-

pound criterion that yield minimum of the average variance of the parameter

estimates plus a high probability of observing a particular outcome. The equiv-

alence theorem is stated and proved for AP-optimum design. Two illustrated

examples are presented for logit and probit models. The results indicate the

potentiality of using the proposed AP-optimality criterion.
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