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Abstract:

• In this article, we describe simultaneous inferential methods in detecting differentially expressed
gene isoforms based on the Poisson generalized linear models. We derive the joint asymptotic
distribution of pivotal quantities. The sample size of RNA sequencing data is often small in practice.
Using multiple comparison procedures based on large-sample approximation becomes problematic.
The parametric bootstrap method based on pivotal quantities is outlined as a robust alternative.
Moreover, we observe the validity of robustness of the bootstrap method when mild overdispersion
presents in RNA-sequencing data. We demonstrate the validity of the proposed method in detecting
differentially expressed isoforms through Monte Carlo simulation. It shows the proposed method
controls the family-wise error rate for large-scale inference. Even though the proposed method can
be extended to many experimental designs, we focus on factorial designs in this article.
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1. INTRODUCTION

Studies of Gene isoform expression have not only been concentrated on detecting dif-
ferentially expressed genes with known gene bank ID but also their isoforms due to the de-
velopment of RNA sequencing technology. RNA sequencing technology, also known as Next
Generation Sequencing (NGS), counts how many copies of nucleotide sequence for hundreds
to thousands of gene isoforms.

To detect which genes are differentially expressed among hundreds even thousands
of genes, researchers often conduct large-scale multiple hypotheses tests simultaneously, see
Dudoit et al. [3]. One of the major concerns of gene expression analysis is to control the family-
wise error rate (FWER). When the multiplicity is overlooked, researchers may claim dozens
even hundreds of genes which are differentially expressed but in fact, they are false positives.
Concerted efforts have been devoted to controlling FWER for microarray gene expression
analysis. Dudoit et al. [4] applied Westfall and Young step-down method (Westfall and
Young, [13]) based on two-sample Welch’s t-tests to detect differentially expressed genes in
microarray experiments. Alternatively, simultaneous confidence intervals based on the linear
models of Kerr et al. [7] are constructed, see Hsu et al. [6]. Li and Mansouri [8] proposed
simultaneous rank tests to search differentially expressed genes when microarray data violate
normality assumption and contain a large number of outliers.

Auer and Doerge [1] proposed factorial designs for RNA sequencing experiments. To
account for a variety of sources of variations, the resulting observations are fit to the Poisson
generalized linear models, see Auer and Doerge [1]. Under this framework, we propose the
simultaneous testing procedure to detect differentially expressed gene isoforms such that it
controls FWER. Simultaneous test based on large-sample approximation is outlined. The
sample size for RNA sequencing study is often small. As it will be shown in Section 4 that
the large-sample approximation method does not provide a satisfactory solution in terms of
controlling FWER. Monte Carlo simulation of Mansouri and Li [9] shows that percentile-t
bootstrap method based on pivotal quantities provides a viable method in microarray gene
expression analysis. Extension of bootstrap method to RNA sequencing gene expression anal-
ysis is hence appealing. In this article, we propose the simultaneous inferential method based
on pivotal quantities to detect differentially expressed isoforms using parametric bootstrap.
We investigate the performance of the proposed method in controlling the overall error rates
through a simulation study.

2. PROBLEM FORMULATION AND PIVOTAL QUANTITIES

2.1. Experimental design and generalized linear model

To account for different sources of variations in observations from treatment, batch, flow
cell, and lane, we consider factorial designs for the Next Generation Sequencing. In brief,
bar-coded mRNA samples are pooled and assigned to different lanes of a sequencing device
in such a way that there are n biological replicates randomly assigned at each combination
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of treatment, lane, and flow cell. For details, see Auer and Doerge [1]. Since we can assign
an ID to each isoform sequence in RNA sequencing data file, we may use the term “gene”
instead of “isoform” in the following.

For gene l, l = 1, ..., g we let Ylijkm be the the count of readings from the i-th treatment,
the j-th flow-cell, the k-th lane, and the m-th biological replicate, i = 1, ..., a, j = 1, ..., b,
k = 1, ..., c, and m = 1, ..., n. We assume Ylijkm’s are independent random observations and
the expected value E(Ylijkm) = µlijk, for m = 1, ..., n follow a per gene Poisson model with
log-link (Auer and Doerge, [1]) that

(2.1) log(µlijk)− log(cjk) = αl + τli + νlj + ωlk

where αl is the overall gene l effect; τli is the i-th treatment effect on gene l with
∑

i τli = 0;
νlj is the j-th flow cell effect on gene l with

∑
j νlj = 0; ωlk is the k-th lane effect on gene l

with
∑

k ωlk = 0; cjk is a known constant, namely library size, j = 1, ..., b, k = 1, ..., c

to normalize the readings from j-th flow-cell and k-th lane, see Section 6 and Chen et al. [2].
We assume that αl, τli, νlj , ωlk, for l = 1, ..., g, i = 1, ..., a, j = 1, ..., b, and k = 1, ..., c in (2.1)
are fixed effects. Let N = abcn be the total number of readings from each gene.

We let vector

Yl =
[
Yl1111, ..., Yl111n, ..., Ylijk1, ..., Ylijkn, ..., Ylabc1, ..., Ylabcn

]′
be a collection of all readings from gene l and let µl = E(Yl), l = 1, ..., g. It is useful to write
the model in (2.1) in the form of matrix representation that

(2.2) log(µl/cjk) = Xβl

where βl =
[
αl, τl1, ..., τl(a−1), νl1, ..., νl(b−1), ωl1, ..., ωl(c−1)

]′ and X is the corresponding
N × (a + b + c− 2) design matrix.

Since we use per gene generalized linear model, the model for all genes can be written
as

(2.3) 1g ⊗ log(µl/cjk) = 1g ⊗Xβl .

2.2. Pivotal quantities

For gene l, l = 1, ..., g we assume

(2.4) Ylijkm ∼ Poisson(µlijk) , for m = 1, ..., n ,

where

(2.5) µlijk = exp
[
(αl + τli + νlj + ωlk) + log(cjk)

]
with i = 1, ..., a, j = 1, ..., b, k = 1, ..., c, and m = 1, ..., n.

Let β̂l,N be the maximum likelihood estimation of βl, l = 1, ..., g. We apply Newton–
Raphson method using Fisher Scoring to compute the estimation. We may suppress the
notation of the dependence on N and denote the estimation by β̂l.
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Now, we define a q × (a + b + c− 2) comparison matrix C to detect differential gene
expression among treatments. In gene expression studies, researchers often interest in i) all-
pairwise comparisons of gene expression over treatments, or ii) comparing gene expression
for several treatments versus a control, Hsu et al. [6]. We focus on all-pairwise comparisons
in this article and analogous results should hold for multiple comparisons to a control. As an
example of comparison matrix C for all-pairwise comparisons, see (4.1) in Section 4.

Let Wl be N×N diagonal weight matrix whose diagonal elements are given by µl1111, ...,

µl111n, ..., µlijk1, ..., µlijkn, ..., µlabc1, ..., µlabcn in order. The vector containing pivotal quan-
tities is given by

(2.6) T (βl) = Σ−1/2
l

[
C(β̂l − βl)

]
where Σl is a diagonal matrix whose diagonal elements equal to the diagonal elements in
C(X ′WlX)−1C ′, l = 1, ..., g.

In relation to the Poisson generalized linear model in (2.3), (2.4), and (2.5), consider
gene expression by letting

T (β) =
[
T (β1)′, ..., T (βl)′, ..., T (βg)′

]′
.

The joint limiting distribution of T (β) is given by the following Theorem.

Theorem 2.1. Suppose Y1, ...,Yg are independent vectors, for 1
N (X ′WlX) N→∞−→ Wl,

which is positive definite, for l = 1, ..., g, then

(2.7)
√

N T (β) D−→ MVN(1g⊗ 0q, Λ) , as N→∞ ,

where Λ is a gq × gq block diagonal matrix such that the l-th (q×q) diagonal block matrix

Λl = limN→∞NΣ−1/2
l C(X ′WlX)−1C ′Σ−1/2

l , l = 1, ..., g.

Proof of Theorem 2.1 immediately follows equation (5.25) and (S.17) of McCulloch
et al. [10]. Note: since Λl is unknown in practice, we use a consistent estimator Λ̂l =
N Σ̂−1/2

l C(X ′ŴlX)−1C ′Σ̂−1/2
l where Σ̂l is a diagonal matrix whose elements equal to the diag-

onal elements in C(X ′ŴlX)−1C ′, and Ŵl has diagonal elements given by exp{(α̂l + τ̂l1 + ν̂l1 +
ω̂l1)+log(c11)}, ..., exp{(α̂l + τ̂li + ν̂lj + ω̂lk)+log(cjk)}, ..., exp{(α̂l + τ̂la + ν̂lb + ω̂lc)+log(cbc)}
in order, l = 1, ..., g. In the expression, α̂l, τ̂li, ν̂lj , and ω̂lk are maximum likelihood estima-
tion of the parameters, i = 1, ..., a; j = 1, ..., b; k = 1, ..., c. Application of the large-sample
approximation method is not trivial since the multivariate normal distribution in Theorem 2.1
has mean and variance with dimension (gq)× 1 and (gq)× (gq) respectively and the total
number of genes g, in RNA-sequencing experiments, is typically very large. We propose an
Algorithm in Section 4 to reduce the computational burden in RNA-sequencing gene expres-
sion analysis.

A challenge besetting RNA-sequencing gene expression analysis may be the overdisper-
sion among counting data, Auer and Doerge [1] and Wang et al. [11]. To proceed, we let φl

be the dispersion parameter and overdispersion occurs when φl > 1, l = 1, ..., g.

It is suggested in Auer and Doerge [1] that statistics for detecting differential gene
expression should be scaled by the dispersion parameter. Hence, a sequence of pivotal quan-
tities, considering overdispersion, are given by

(2.8) T (βl, φl) = (φlΣl)−1/2
[
C(β̂l − βl)

]
.
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The pivotal quantities in (2.6) can be considered as a special case of (2.8) when φl = 1.
We focus on gene expression analysis for RNA-sequencing data, which presents mild overdis-
persion such that φl is in a neighborhood of 1, and examine the validity of robustness of the
large-sample approximation method through a simulation study in Section 4 in this article.

3. SIMULTANEOUS INFERENCE USING BOOTSTRAP

3.1. Simultaneous inference

In relation to the generalized linear model in (2.3), let the relative gene expression be
τli − τli′ , i 6= i′ = 1, ..., a, l = 1, ..., g. Detecting all-pairwise differential gene expression can
be formulated as testing a sequence of hypotheses that:

(3.1) H0l,ii′ : τli − τli′ = 0 vs. H1l,ii′ : τli − τli′ 6= 0

for i 6= i′ = 1, ..., a, l = 1, ..., g. Hence we conduct q×g tests simultaneously, where q is the
number of rows in comparison matrix C such that Cβl = [τl1− τl2, ..., τl(a−1)− τla]′, see (4.1)
for example.

The resulting test statistics are given by

(3.2) T (β̂l, φ̂l) = (φ̂lΣ̂l)−1/2Cβ̂l

for l = 1, ..., g where the plug-in estimation of φl in Auer and Doerge [1] is given by

(3.3) φ̂l =

 ∑
i,j,k,m

(
Ylijkm− exp

{
(α̂l + τ̂li + ν̂lj + ω̂lk) + log(cjk)

})2

exp
{
(α̂l + τ̂li + ν̂lj + ω̂lk) + log(cjk)

}
/(

N − (a + b + c− 2)
)
.

For gene l, write

T (β̂l, φ̂l) =
[
T12(β̂l, φ̂l), ..., Tii′(β̂l, φ̂l), ..., T(a−1)a(β̂l, φ̂l)

]′
in association to the hypotheses in (3.1) and the test statistics in (3.2). For all-pairwise
comparisons, the total number of comparisons (the total number of elements in T (β̂l, φ̂l))
q =

(
a
2

)
.

Simultaneous level-α tests reject hypothesis H0l,ii′ , i 6= i′ = 1, ..., a, l = 1, ..., g if:

(3.4)
∣∣Tii′(β̂l, φ̂l)

∣∣ > qα

where qα is the upper α-th quantile of the distribution of maximum modulus statistics
max

i6=i′=1,...,a
l=1,...,g

{
|Tii′(β̂l, φ̂l)|

}
.

When the magnitude of differential gene expression is of interest, a (1−α) 100% simul-
taneous confidence interval of τli − τli′ , i 6= i′ = 1, ..., a, l = 1, ..., g is given by

(3.5) c′ii′β̂l ± qα

{
φ̂l c

′
ii′(X

′ŴlX)−1cii′
}1/2

where cii′ is the row vector of C in association to τli − τli′ , i 6= i′ = 1, ..., a for all l = 1, ..., g.
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3.2. Bootstrap based on pivotal quantities

It can be shown that the upper α-th quantile of the multivariate normal distribution
defined in (2.7) is a consistent estimator of qα. RNA sequencing data analysis is often com-
plicated by a large number of unknown parameters but a limited number of observations.
Using the large-sample approximation method indicated by Theorem 2.1 can be problematic
in the estimation of qα as it will be shown in Section 4. We propose the parametric bootstrap
method based on pivotal quantities to approximate quantiles qα in detecting differentially
expressed genes for RNA sequencing data.

For r = 1, ..., B, we define the q×1 vector of pivotal quantities based on the r-th boot-
strap sample by

(3.6) T (r)(β̂l, φ̂l) =
(
φ̂

(r)
l Σ̂(r)

l

)−1/2
C

[
β̂

(r)
l − β̂l

]
, l = 1, ..., g ,

where φ̂
(r)
l , Σ̂(r)

l , and β̂
(r)
l are estimated based on the r-th bootstrap data set. Analogously,

we write
T (r)(β̂l, φ̂l) =

[
T

(r)
12 (β̂l, φ̂l), ..., T

(r)
ii′ (β̂l, φ̂l), ..., T

(r)
(a−1)a(β̂l, φ̂l)

]′
.

We use the following Algorithm to approximate quantiles qα. For each r, r = 1, ..., B,

(i) for each l, l = 1, ..., g generate random variables {Ylijkm} from Poisson
(
exp

{
(α̂l +

τ̂li + ν̂lj + ω̂lk) + log(cjk)
})

, i = 1, ..., a, j = 1, ..., b, k = 1, ..., c, and m = 1, ..., n;

(ii) obtain maximum modulus statistics

T
(r)
M (β̂l, φ̂l) = max

i6=i′=1,...,a

{∣∣T (r)
ii′ (β̂l, φ̂l)

∣∣} , l = 1, ..., g ,

and

T
(r)
M (β̂, φ̂) = max

l=1,...,g

{
T

(r)
M (β̂l, φ̂l)

}
.

Repeat (i) and (ii) B times, and the upper α-th quantile of the sampling distribution
of T

(r)
M (β̂, φ̂) is an approximation of qα.

As it will be shown in Section 4, the bootstrap method provides a viable alternative of
the large-sample approximation method when the overdispersion parameter is in a neighbor-
hood of φl = 1, l = 1, ..., g.

4. SIMULATION STUDY

In this section, we investigate the performance of the proposed method in terms of
controlling the family-wise error rate (FWER) using Monte Carlo simulation.

We assign the following values to the parameters of the model in (2.1). Let

τli = 0, for l = 1, ..., 20, i = 1, 2, 3, 4 (Complete Null) ,

τli = 0, for l = 1, ..., 15, i = 1, 2, 3, 4 (Partial Null) .
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To study the power rates under partial null hypotheses, we let τl1 = −0.02, τl2 = 0.01,
τl3 = 0.01, and τl4 = 0, for l = 16, ..., 20.

For nuisance parameters, we let αl = −3 and

νlj =


0.5 , if j = 1,

−1 , if j = 2,
0.5 , if j = 3 ,

for l = 1, ..., 20. Let

ωlk =



0.25 , if k = 1 ,
−0.5 , if k = 2 ,

0.75 , if k = 3 ,
−1.25 , if k = 4 ,

1.5 , if k = 5 ,
−0.75 , if k = 6 ,

for l = 1, ..., 20.

Assume the library size for each lane and flow cell cjk = 1, 000, 000 for all j = 1, 2, 3
and k = 1, ..., 6.

We may rewrite the model in (2.1) as log(λlijk) = αl + τli +νlj +ωlk, where the sampling
rate λlijk = E(Ylijk/cjk) and cjk is a given constant. The observations Y ′lijkm are generated
from Poisson(µlijk) where µlijk = cjkλlijk, for m = 1, 2. To exam the performance of the
proposed method under mild overdispersion, we add Gaussian noise εlijkm∼N(0, (φl−1)µlijk)
(φl > 1) to the observations that Ylijkm = Y ′lijkm + [εlijkm], i = 1, ..., 4, j = 1, 2, 3, k = 1, ..., 6,
m = 1, 2 for gene l, l = 1, ..., 20 as it is treated in Auer and Doerge [1]. Note that E(Y ′lijkm +
εlijkm) = µlijk and Var(Y ′lijkm + εlijkm) = φlµlijk. We choose φl = 1.1, 1.05, 1.01, and 1.001
respectively and let Ylijkm = Y ′lijkm for φl = 1. In addition, we let the observations equal to
zero if it generates “negative” counts, though the chance of generating “negative” counts is
rare when the value of (φl − 1) is small.

Hence, the vector of parameters βl = [αl, τl1, τl2, τl3, νl1, νl2, ωl1, ..., ωl5]′, l = 1, ..., g.
Let X be the corresponding design matrix for all genes. Consider all-pairwise comparisons
among treatments. Let C be the 6× 11 comparison matrix given by

(4.1) C =



0 1 −1 0 0 ··· 0
0 1 0 −1 0 ··· 0
0 2 1 1 0 ··· 0
0 0 1 −1 0 ··· 0
0 1 2 1 0 ··· 0
0 1 1 2 0 ··· 0

 .

We run simultaneous tests in (3.4) 1, 000 times and compute the empirical overall error
rates. Widely used measures of the overall error rates in gene expression analysis are the
family-wise error rate (FWER) and the false discovery rate (FDR). Let FWER0 be the
probability that at least one true null hypotheses rejected under complete null hypotheses.
Let FWER1 be the probability that at least one true null hypotheses rejected under partial
null hypotheses. The false discovery rate (FDR) is computed as the average proportion of
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wrongly rejected null hypotheses among all rejected hypotheses. FDR is defined as 0 if no
rejection were made. To investigate the power of the simultaneous tests, we compute the
proportional power rate by obtaining the average proportion of genes found differentially
expressed among all misexpressed genes, Dudoit et al. [3].

To evaluate the performance of the large-sample approximation method, we use the fol-
lowing Algorithm to generate quantiles based on the multivariate normal distribution defined
in Theorem 2.1. In specific, for each r, r = 1, ..., B,

(i*) generate random variables T
(r)
l from MVN(0, Λ̂l), for all l = 1, ..., g;

(ii*) obtain maximum modulus statistics T
(r)
Ml

= max{|T (r)
l |}, l = 1, ..., g and T

(r)
M =

max{T (r)
Ml
}.

Repeat (i*) and (ii*) B times, and the upper α-th quantile of the empirical distribution
of T

(r)
M is an approximation of qα based on Theorem 2.1.

The performance of the large-sample approximation method and the bootstrap method
in the simulation study are summarized in Table 1.

Table 1: Error rates of detecting differentially expressed genes/isoforms
— nominal type-1 error rate α = 0.05.

Method φl FWER0 FWER1 FDR Prop. Power

No Adjustment 1.000 0.993 0.970 0.146 —

MVN

1.000† 0.072 0.059 0.003 0.889

1.050 (1.1)‡ 0.084 0.061 0.003 0.861
1.010 0.073 0.045 0.002 0.887
1.001 0.065 0.065 0.003 0.886

Bootstrap Method

1.000 0.052 0.037 0.002 0.878
1.050 (1.1) 0.051 0.035 0.002 0.849
1.010 0.049 0.034 0.002 0.874
1.001 0.050 0.045 0.002 0.872

Notes:

i) Simulation size = 1,000. Bootstrap size B = 200.

ii) FWER0 denotes the family-wise error rate under complete null hypotheses.

iii) FWER1 denotes the family-wise error rate under partial null hypotheses.

iv) MVN denotes the method of large-sample approximation in Section 3.1.

v) “Bootstrap Method” means the parametric bootstrap method in Section 3.2.

vi) † The same value of φl is assigned to all genes.

vii) ‡ The first 15 genes have φl = 1.05 and the last 5 genes have φl = 1.1.

viii) The total computation user time was about 16 hours on a desktop with processor
with the following specifications: Intel(R) Core(TM) i5-7600 CPU @ 3.50GHz,
3504 Mhz and Installed physical memory (RAM): 16.0 GB.

It shows that the bootstrap method based on pivotal quantities controls FWER un-
der both complete and partial null hypotheses. This implies the proposed method controls
FWER strongly, see Dudoit et al. [3]. Without adjustment of multiplicity, it is well known
that the overall error rates often exceed the nominal level, particularly in large-scale tests.
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Simultaneous tests based on large-sample approximation fail to control FWER in the strong
sense in RNA sequencing data analysis. While the overall error rates are controlled at nom-
inal level α = 0.05, in average more than 85% of “real” misexpressed genes are detected as
differentially expressed genes using the bootstrap method in Section 3.2. Note that it is not
useful to address the power rates when the method does not control FWER.

To investigate the performance of the bootstrap method in estimation of quantiles, we
generate 1, 000 samples as described above and obtain the (1−α)-th quantile of the sampling
distribution of pivotal quantities in (2.8). Since the quantiles are generated from a given
underlying distribution of maximum modulus distribution empirically, it can be used as a
benchmark to evaluate the performance of the proposed method. The results are summarized
in Table 2.

Table 2: Quantiles qα of detecting differentially expressed genes/isoforms
— nominal type-1 error rate α = 0.05.

φl Simulation MVN Bootstrap

1.000 3.604 3.519 (0.090) 3.606 (0.094)
1.050 (1.1) 3.617 3.522 (0.086) 3.611 (0.094)
1.010 3.605 3.524 (0.090) 3.609 (0.095)
1.001 3.604 3.516 (0.084) 3.604 (0.097)

Notes:

i) Simulation size = 1,000. Bootstrap size B = 200.

ii) MVN denotes the method of large-sample approximation in Section 3.1 and
the Algorithm in Section 4. The quantile is generated from B = 200 samples.
We repeat the process for 1, 000 times. The mean value of these repeats is in-
cluded outside of the parentheses and standard deviation is tabulated in the
parentheses.

iii) “Bootstrap” means the parametric bootstrap method in Section 3.2. The quantile
is generated from B =200 bootstrap samples. We repeat the process for 1,000 times.
The mean value of these repeats is included outside of the parentheses and stan-
dard deviation is tabulated in the parentheses.

iv) “Simulation” means: we generate observations from the model in (2.1) with the
parameter value assigned in Section 4 and given underlying distributions for
1, 000 times; the upper α-th quantile of maximum modulus statistics based on
pivotal quantiles in (2.8) is tabulated in the table.

v) The total computation user time was about 8 hours on a desktop with processor
with the following specifications: Intel(R) Core(TM) i5-7600 CPU @ 3.50GHz,
3504 Mhz and Installed physical memory (RAM): 16.0 GB.

It shows from Table 2 that the bootstrap quantiles in Section 3.2 are closer to the
simulated quantiles as compared to that generated from MVN. A closer examination sees
the quantiles based on normal theory are generally below the simulated quantiles. Therefore,
the large-sample approximation method provides a liberal estimation of FWER, as evidenced
in Table 1.
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5. CONCLUSION AND FUTURE WORK

In this article, we have proposed the parametric bootstrap method based on pivotal
quantities in detecting differentially expressed genes for RNA-sequencing data. We have for-
mulated the problem using the Poisson generalized linear models. We have derived the joint
limiting distribution of the vector containing pivotal quantities. We have conducted an empir-
ical study to show that the proposed method controls FWER and FDR strongly in detecting
differentially expressed genes. The bootstrap method requires a large computation time,
parallel computation is recommended particularly for large-scale inference. When data “ap-
parently”violate Poisson distributional assumption, we will investigate the methods involving
a large value of overdispersion. To capture the within genes’ variation and between genes’
variation, we will study the resampling methods, such as moving block bootstrap method in
the future work.

6. SOFTWARE

We use the function glm() in R to obtain maximum likelihood estimation of the pa-
rameters in model (2.1). Note that computation of the estimation using glm() in R may
encounter non-convergence. Alternatively, iterative weighted least squares method of Wed-
derburn [12] may be used in the estimation. Our experience in the simulation study (results
not shown) shows that using 20-step iterative weighted least squares method provides satis-
factory approximation of the overall Type-I error rates. We use the function rmvnorm() of
Genz et al. [5] in R to generate multivariate normal random variables. We use the function
calcNormFactors() of Chen et al. [2] to obtain the library size. Software in the form of
R code is available on request from the author (bli@citadel.edu).
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