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Abstract:

• The Generalized Pareto Distribution (GPD) is used for modeling exceedances over thresholds. The
general form of the GPD depends on three parameters: the location parameter µ; the scale param-
eter (β > 0); and the shape parameter (−∞ < ξ < ∞). This work restricts attention to the case
where µ = 0 and shows that, as ξ decreases while β is kept fixed, the family of GPD(ξ, β) distri-
butions increases in the usual stochastic order. This property is used for testing the significance
of trends in the size of the exceedances over high thresholds in a time series consisting of ozone
measurements.
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1. INTRODUCTION

Let X be a random variable with continuous distribution function F and corresponding
survival function F̄ = 1− F . Let x∗ be the right endpoint of the support of F defined by
x∗ = sup{x ∈ R : F (x) < 1}. Given a real number u < x∗, referred to as the threshold, an
exceedance over the threshold u occurs when X > u. The residual life function of F at time u,
the probability that X > u + x given that X > u, is

F̄u(x) = P
(
X−u > x | X > u

)
=

F̄ (x + u)
F̄ (u)

, 0 < x < x∗− u .(1.1)

The random variable X− u is called the excess over the threshold u and F̄u is the
excess survival function of X over u. When F belongs to the domain of attraction of one
of the extreme value distributions, it follows that, for sufficiently large u, the distribution
function of X− u can be approximated by the Generalized Pareto Distribution (GPD). The
distribution function of a GPD(ξ, β) is

F (x; ξ, β) =


1− (1− ξx/β)1/ξ , ξ 6= 0 , β > 0 ,

1− exp(−x/β) , ξ = 0 , β > 0 ,
(1.2)

where ξ and β are the shape and scale parameters, respectively. When ξ < 0 the support of
F (x; ξ, β) consists of the positive reals. When ξ > 0, the support is the interval (0, β/ξ). The
case ξ = 0 corresponds to the exponential distribution with mean β. When ξ = 1, the GPD
distribution corresponds to the uniform distribution on [0, β].

More precisely, let X1, ..., Xn be a sequence of independent and identically distributed
random variables with continuos distribution H. Let Mn = max{X1, ..., Xn}. Suppose that
there are sequences an > 0 and bn of real numbers such that

P
{
an(Mn− bn)≤ z

}
→ G(z) , as n →∞ .(1.3)

Then G(z) is a member of the generalized extreme value distribution family defined by

G(z) = exp

{
−

{
1− ξ

(
z − µ

σ

)}1/ξ
}

.

The precise technical justification for modeling excesses using the GPD — expression
(1.2) — was provided by Smith [32] and is based on the fact that

lim
u→x∗

sup
0<x<x∗−u

∣∣Fu(x)− F
(
x; ξ, β(u)

)∣∣ = 0 ,

for fixed ξ and some positive function β(u), if and only if F is in the domain of attraction of
some extreme value distribution. This result is from the parallel work done by Balkema and
de Haan [1] and Pickands [23]. Since most of the common continuous distributions belong
to the domain of attraction of one of the three extreme value distributions, this result makes
the GPD the natural model for the excess distribution of the random variable X when the
threshold is high.
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Starting with the early works by Smith [31] and Davison [6], the GPD has been used by
many authors to model excesses over high thresholds in several fields such as river floods, air
pollution, wind velocity, sea waves, insurance claims, etc. For the details of these applications
see Hosking and Wallis [12], Smith [33], Dargahi-Noubary [5], Grimshaw [10], Rootzen and
Tajvidi [29], Castillo andHady [4], and Parisi andLund [22]. Embrechts et al. [8], Falk et al. [9],
and Reiss and Thomas [24] present detailed and elegant accounts of the theoretical under-
pinnings and the practical aspects of the modeling of extremes including discussions on the
modeling of exceedances and excesses.

One of the main objectives of modeling excesses over high thresholds with the GPD is
the estimation of tails of probability distributions — Smith [32]. But the GPD has also been
used to detect and test for trends in the excesses. The papers by Smith [33], Davison and
Smith [7], Smith and Huang [35] and Rootzen and Tajvidi [29] are some examples of such
applications. Our interest in this article is also in testing for the existence of a long term trend
in the excesses of a time series. The main difference with other works is our use of the concept
of stochastic orderings of distribution functions. In Section 2 it is shown that given k GPD
distributions F (·; ξj , β), (j = 1, ..., k), if ξ1 < ξ2 < ··· < ξk, then F (x; ξ1, β) > F (x; ξ2, β) >

··· > F (x; ξk, β) for all x. That is, we give a sufficient condition for the GPD family to be
stochastically ordered. This condition is used in Section 3 to develop a simple procedure based
on a likelihood ratio statistic for testing H0 : ξ1 = ξ2 = ··· = ξk vs. the isotonic alternative
Ha : ξ1 ≤ ξ2 ≤ ··· ≤ ξk. Our procedure is desirable when it is believed a priori that the GPDs
satisfy the stochastic order restriction and, hence, it is desirable to have a test that is more
powerful than an omnibus test.

The test being proposed here belongs to the field of restricted inference. There is a vast
literature in this area. The literature consists of roughly two large subareas: shaped-restricted
inference, and order-restricted inference. Barlow et al. [2] is a classic pioneering work based
on isotonic regression ideas and the Pool-Adjacent-Violators-Algorithm. Robertson et al. [25]
and the many references therein, summarize and extend the work of Barlow et al. and adopt
the Nonparametric Maximum Likelihood paradigm proposed by Kiefer and Wolfowitz [14].
Kiefer and Wolfowitz [15] seem to have pioneered the area of shape-restricted inference.
Wang [36, 37, 38], extended ideas of Kiefer and Wolfowitz to the estimation of distribution
functions under the restriction of being star-shaped or being Increasing Failure Rate on
Average. Lo [19], Rojo [26, 27], and Rojo and Ma [28], provide nonparametric estimators for
distribution functions that are stochastically ordered. One recent monograph that examines
shape-restricted inference is Groeneboom and Jongbloed [11]. Marshall and Olkin [20] and
Shaked and Shanthikumar [30] provide excellent treatises on the topic of partial orders of
distribution functions.

Finally, in Section 4, we apply our procedure to test for the existence of a monotonic
trend in the size of the excesses of a time series of ozone measurements.

2. STOCHASTIC ORDERING OF THE GPD

The concept of stochastic order permeates the theory and applications of statistics.
The concept was introduced in the seminal paper by Lehmann [17] and was used to study
the power properties of certain tests.
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Definition 2.1. Let X and Y be random variables such that

P (X > x) ≤ P (Y > x) , −∞ < x < ∞ .

Then X is said to be stochastically smaller than Y . This is denoted by X <st Y .

We can also state that Y is stochastically larger than X and write Y >st X.
If F and G represent the cumulative distribution functions (cdfs) of X and Y respectively,
then X <st Y if and only of F (x) ≥ G(x) for all x ∈ R, and then we write F <st G.
As discussed by Lehmann [17], a convenient situation arises when the stochastic order is
induced by the parameter as it varies monotonically in the parameter space. That is, a
parametric family of cdfs {F (x; θ) : θ ∈ Θ ⊂ R} is stochastically increasing in θ if θ1 < θ2

implies that F (·; θ1) <st F (·; θ2). Similarly, {F (x; θ) : θ ∈ Θ ⊂ R} is stochastically decreasing
in θ if θ1 < θ2 implies that F (·; θ2) <st F (·; θ1). Lehmann and Rojo [18] provided simple
characterizations of this and other related orders.

Sufficient conditions are provided here for the family of GPD distribution functions
F = {F (x; ξ, β) : −∞ < ξ < ∞, β > 0}, to be stochastically ordered. Since β is a scale
parameter it is clear that the family F is stochastically ordered in β for fixed ξ. The following
Proposition states that the family F is stochastically decreasing in ξ for fixed β.

Proposition 2.1. Let F1, F2 ∈ F with shape parameters ξ1 and ξ2, respectively and

equal scale β. If ξ1 < ξ2 then F2 <st F1.

Proof: The proof of Proposition 2.1 uses the following result.

Proposition 2.2 (Mitrinovic [21], pp. 266, inequality 3.6.1). If a > 0 and x > 0, then

(2.1) e−x ≤
( a

ex

)a
.

Setting x = 1/u and a = 1 in (2.1) we obtain

(2.2) u ≥ e1−1/u , u > 0 .

Now we prove Proposition 2.1. Let F (·; ξ, β) ∈ F for β fixed. From the definition of the usual
stochastic order, it is enough to show that F (·; ξ, β) is an increasing function of the parameter
ξ ∈ R. This is true if and only if

h(ξ) = log
[
1− F (x; ξ, β)

]
= (1/ξ) log(1− ξx/β)

is a decreasing function. First we analyze the case ξ 6= 0, for which the problem reduces to
showing that

(2.3) h′(ξ) = −(1/ξ2) log(1− ξx/β)− x

ξβ(1− ξx/β)
< 0 .

Making the change of variable u = 1− ξx/β we get h′(ξ) = h′
(
β(1− u)/x

)
= g(u), where

g(u) = −
[
x/β(1− u)

]2 (
log u + (1/u)− 1

)
,
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for 0 < u < 1 when ξ > 0, and 1 < u < ∞ when ξ < 0. Then, g(u) < 0 if and only if log u +
(1/u)− 1 > 0, if and only if u > e1−1/u, u > 0. But this is the strict inequality in (2.2). Hence
(2.3) holds and therefore F (x; ξ, β) is increasing in ξ for ξ ∈ R\{0}. Now

lim
ξ→0

{
1− (1− ξx/β)1/ξ

}
= 11− e−x/β .

This means that F (x; ξ, β) ↑ F (x; ξ= 0, β) as ξ ↑ 0, and F (x; ξ, β) ↓ F (x; ξ= 0, β) as ξ ↓ 0.
Then, from the proved monotonicity of F (x; ξ, β) in ξ ∈ R\{0}, the proposition follows.

Thus, the following result is obtained.

Corollary 2.1. Let F (x; ξ;β) denote the GPD distribution with scale parameter β

and shape parameter ξ as defined by (1.2). Then,

If ξ∗ = ξ and β < β∗, F (·; ξ∗, β∗) ≥st F (·; ξ, β).

If ξ > ξ∗ and β = β∗, F (·; ξ∗, β∗) ≥st F (·; ξ, β).

When ξ > −1, the expected value µ of a GPD(ξ, β) is µ = β(1+ ξ)−1. Then ξ = ξ(µ) =
(β/µ)− 1. Thus the shape parameter ξ is a decreasing function of the mean µ. So, if X1 ∼
GPD(ξ1, β) and X2 ∼ GPD(ξ2, β), with ξ1, ξ2 > −1, and we assume that the means µj = EXj

(j = 1, 2) are such that µ2 ≤ µ1, then ξ1 < ξ2. Thus if µ2 ≤ µ1 then X2 <st X1. The converse
is also true. To see this, let Fj be the cdf of Xj and assume X2 <st X1, then we have
1− F2(x) ≤ 1− F1(x) for all x, and since the GPD only takes positive values, it follows that

µ2 =
∫ ∞

0

[
1− F2(x)

]
dx ≤

∫ ∞

0

[
1− F1(x)

]
dx = µ1 .

We can put together all these results in the following corollary.

Corollary 2.2. Let Xj ∼ GPD(ξj , β), (or if Xj ∼GPD(ξ, βj)), (j = 1, ..., k). Suppose

that E(Xj) = µj exists for all j. Then the following propositions are equivalent.

a) X1
st> X2

st> ··· st> Xk.

b) ξ1 < ξ2 < ··· < ξk, (β1 > β2 > ··· > βk).

c) µ1 ≥ µ2 ≥ ··· ≥ µk.

3. TESTING FOR A LINEAR TREND IN THE EXCESSES

Let Xj ∼ GPD(ξj , β), (j = 1, ..., k), and denote equality in distribution by D=. Suppose
we want to test the null hypothesis

H0 : X1
D= X2

D= ··· D= Xk

vs. the alternative

Ha : X1 >st X2 >st ··· >st Xk .
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From Corollary 2.2, we see that this would be equivalent to testing the null hypothesis

H0 : ξ1 = ξ2 = ··· = ξk

vs. the alternative hypothesis

Ha : ξ1 < ξ2 < ··· < ξk .

Similarly, the hypothesis Ha : X1 <st X2 <st ···<st Xk can be tested by using Ha : ξ1 > ξ2 >

··· > ξk. From Corollary 2.2, a test for the stochastic order could also be based on the means
of the GPD’s. However the means do not always exist. Therefore we test the hypothesis
of stochastic order on the basis of the shape parameter. Assume that for each Xj we have
a random sample of size nj , xj = (x1j , ..., xnjj)′ and let x = (x1, x2, ..., xk) be the full data
vector. Furthermore, assume that we observe the Xj ’s sequentially along time, and let tj
be the epoch at which the random sample xj was observed. To detect a linear time trend,
we introduce a third parameter θ by writing ξj = ξ + θtj , (j = 1, ..., k). When the tj ’s are
equally spaced, tj can be set as tj = j. Thus, we can test the hypothesis of order restriction
by testing

H0 : θ = 0

vs. the alternative hypothesis

Ha : θ 6= 0 .(3.1)

Although other forms of monotonic trends could occur, e.g. ξj = ξ exp(θtj), a test
without assuming a particular form of the monotone trend would require a semiparametric
model that would provide protection against misspecification of the functional form of the
trend but would not perform as well as the current test for the specific alternative of a
monotonic linear trend.

Modeling the parameters of the GPD in order to assess a trend is similar to the approach
described in other works such as those by Smith [34], Smith and Huang [35] and Rootzen
and Tajvidi [29]. For instance, Rootzen and Tajvidi model the scale parameter as β =
exp(α0 + α1t) where t is time in years, and keep the shape parameter ξ constant. In this
work we reverse this procedure.

Let
˜
X represent the data vector X1, X2, ..., Xn. For testing the hypothesis (3.1), we

use the Likelihood Ratio Test (LRT) based on λ(
˜
X) = L(ξ̂, β̂)/L(ξ̂, θ̂, β̂), where L denotes

the likelihood function and the estimators are maximum likelihood estimators (MLE). Then
−2 log λ(

˜
X) follows asymptotically a chi-square distribution with one degree of freedom. The

detailed expression for −2 log λ(
˜
X) is given in the Appendix.

4. AN APPLICATION TO OZONE DATA

The data we analyze was collected in Yosemite National Park Wanona Valley and
consists of hourly measurements of ozone (ppm) taken from April 1, 1987 to October 31,
1996. The time series contains 84,011 observations with 9412 missing values. The main
concern is the detection of a long term trend in the extremal behavior of the time series.
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More precisely, the problem is to detect either a decreasing or increasing trend in the size of
the excesses over a certain high threshold, if in fact a trend exists. Table 1 displays the monthly
number of exceedances over 0.08 ppm. The observations have a strong seasonal component
with two periods: the exceedances period which extends from the month of April trough the
month of October and the no-exceedances period in the remaining months. The frequency of
exceedances increases in the summer months and then decreases in the fall months. Moreover,
exploring the data we found that the ozone levels also tend to increase in the summer months
and decrease in the fall months. Since the interest lies on the extremal behavior of the data,
the analysis was based on the months from April to October.

Table 1: Monthly exceedances over 8 ppm.

Year Apr May Jun Jul Aug Sep Oct Total (Nu) n

1987 4 14 70 55 75 50 23 291 4742
1988 9 2 11 83 71 92 21 289 4856
1989 0 6 9 32 29 7 0 83 4913
1990 1 8 34 91 65 63 3 265 4630
1991 0 0 2 19 1 38 17 77 4463
1992 0 2 14 27 49 21 11 124 4736
1993 0 0 3 20 11 21 0 55 3860
1994 6 6 3 14 3 0 0 32 4720
1995 0 0 0 6 50 27 0 83 4804
1996 0 0 4 39 29 22 2 96 4636

Total 20 38 150 386 383 341 77 1395 46360

Figure 1: Excesses over 0.08 ppm.

blocks of length b. Then consider all the exceedances within a block as a clus-
ter of exceedances. These are called block-clusters. See Leadbetter (1995)
for the formal justification of this approach as well as for some applications.

The second approach is to select a positive integer r (called the run length)
and then decide that any run of at least r consecutive observations below the
threshold separates two clusters of exceedances and then assume that such
clusters are independent. These are called run-clusters. See Smith (1989)
for an application of this approach. In this work we use the run-cluster
approach with 72 hours (three days) separation. This window of 72 hours is
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Figure 1: Excesses over 0.08 ppm.
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Figure 1 shows the empirical marked point processes of exceedances over 0.08 ppm.
A clear decreasing trend in the size of the excesses appears. We assess the significance of this
trend using the LRT from Section 3.

The LRT requires the excesses to be independent of one another. There is, however, a
strong dependence between the exceedances because they tend to occur in clusters. That is,
an exceedance tends to attract other exceedances. Several procedures to deal with dependent
data have been proposed. One such procedure is to identify clusters of exceedances for which
it can be assumed that the excesses within any cluster are independent of the excesses within
any other cluster, and then select the maximum excesses within each cluster.

The practical problem with this approach is the identification of independent clusters.
Two methods have been used. One is to select a time length b (called block length) and
then partition all the observations into consecutive blocks of length b. Then consider all the
exceedances within a block as a cluster of exceedances. These are called block-clusters. See
Leadbetter [16] for the formal justification of this approach as well as for some applications.

The second approach is to select a positive integer r (called the run length) and then
decide that any run of at least r consecutive observations below the threshold separates two
clusters of exceedances and then assume that such clusters are independent. These are called
run-clusters. See Smith [33] for an application of this approach. In this work we use the
run-cluster approach with 72 hours (three days) separation. This window of 72 hours is the
common practice when analyzing ozone data. Once we have identified the run clusters, we
take the maximum excess within each cluster. To distinguish from the Exceedances over a
Threshold we call these values the Peaks over a Threshold, (POT’s). Table 2 shows the POT’s
that we analyze in this work.

Table 2: POT, run-clusters, 72 hours.

Year Peaks

1987
0.002 0.004 0.032 0.022 0.065 0.025 0.053 0.032 0.027 0.036
0.010 0.011

1988
0.002 0.010 0.002 0.013 0.017 0.007 0.017 0.026 0.023 0.025
0.031 0.039 0.008 0.018

1989
0.013 0.005 0.015 0.014 0.004 0.013 0.009 0.019 0.031 0.010
0.007 0.002

1990
0.003 0.020 0.003 0.013 0.040 0.036 0.007 0.018 0.026 0.016
0.005

1991 0.005 0.005 0.002 0.013 0.004 0.011 0.007 0.025 0.010 0.008

1992
0.003 0.021 0.010 0.031 0.006 0.015 0.007 0.028 0.012 0.013
0.019 0.003 0.002

1993 0.004 0.009 0.011 0.009 0.015 0.018

1994 0.009 0.008 0.004 0.009 0.006 0.012 0.015

1995 0.017 0.017 0.030 0.023 0.018 0.009 0.023 0.011 0.019

1996
0.004 0.013 0.023 0.021 0.012 0.009 0.017 0.018 0.006 0.006
0.004 0.005

Figure 2 shows the POT’s for all the years of the observation period. The decreasing
trend in the POT’s is evident. Under H0 the estimates of the parameters are ξ̂ = 0.2121 and
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β̂ = 0.0179. Under Ha we have ξ̂ = 0.164, θ̂ = 0.0575, and β̂ = 0.0209. The positive value
of the estimate of ξ is consistent with the observed decrease in the excesses of the ozone
levels. The observed value of the LRT is −2 log λ(x) = 17.24 which has a p-value of 0.000033.
Thus we conclude that the observed decrease in the size of the excesses from 1987 to 1996 is
statistically significant.

Figure 2: Maximum excesses within run-clusters grouped by years.

Smith (1990) or Embrechts et al. (1997). From (1) one gets

1− F (u+ x) = γu[1− Fu(x)],

where γu = Pr(X > u) = 1−F (u). Thus, if Nu is the number of exceedances
over u and n is the number of observations, then an estimator of γu is γ̂u =
Nu/n, and an estimator of the upper tail of FX is given by

1− F̂ (u+ x) = γ̂u[1− F̂u(x)] =
Nu

n

(
1− ξ̂ x

β̂

)1/ξ̂

, x > 0. (8)

12

Figure 2: Maximum excesses within run-clusters grouped by years.

Once we have found statistical evidence for the decreasing trend in the excesses, we
estimate the upper tail of the ozone levels as in Davison and Smith [7] or Embrechts et al. [8].
From (1.1) one gets

1− F (u + x) = γu

[
1− Fu(x)

]
,

where γu = Pr(X > u) = 1− F (u). Thus, if Nu is the number of exceedances over u and n is
the number of observations, then an estimator of γu is γ̂u = Nu/n, and an estimator of the
upper tail of FX is given by

1− F̂ (u + x) = γ̂u

[
1− F̂u(x)

]
=

Nu

n

(
1− ξ̂

x

β̂

)1/ξ̂

, x > 0 .(4.1)

Estimators of the quantiles of F are obtained by solving F̂ (xp) = p for xp in (4.1), 0 ≤ p ≤ 1.
This yields

x̂p = u +
β̂

ξ̂

[
1−

(
n(1− p)

Nu

)̂ξ
]

.(4.2)

When ξ̂ > 0 by setting p = 1 we obtain the estimator of the right end point x̂∗ = u + β̂/ξ̂.
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The ozone levels are not independent. So, to simplify, we assume that within the
exceedances period in the year (from April to October) the ozone levels come from a strongly
stationary process. Then, from the Ergodic Theorem — see Breiman [3], pp. 118 —, we have
that (1/n)

∑n
i=1 1{Xi>u} = Nu/n converges almost surely to 1− F (u), where now F is the

marginal distribution of the ozone levels. Thus Nu/n may be used as an estimator of 1−F (u),
and then we can use (4.2) to estimate the upper tail and high quantiles of the distribution
of the ozone levels. Table 3 shows the estimates of the shape parameters and from Table 1
we get the number of observations (ozone measurements) and the number of exceedances per
year. With this information we can estimate the extreme quantiles of the ozone levels. For
instance, for 1987, we have

x̂p = 0.08 + (0.0209)
(
1−

[
4742 (1− p)/291

]0.22
)/

0.22 , 0 ≤ p ≤ 1 .

Figure 3 shows the estimated 0.99, 0.999 quantiles as well as the right endpoints of the
marginal distribution of the ozone levels. The decreasing trend is evident.

Table 3: Estimated shape parameters.

tj 1 2 3 4 5 6 7 8 9 10

ξ̂j .22 .278 .336 .394 .452 .51 .568 .626 .684 .742

Figure 3: Estimated 0.99 and 0.999 quantiles, and estimated right endpoints
of the distribution of ozone levels for a threshold of 0.08 ppm.

5 Conclusions

An exploratory data analysis of the extreme values of a time series of ozone
levels made clear the existence of a decreasing linear trend in the size of
the excesses over the threshold 8 ppm. We fitted the GPD to the POT’s of
the time series. By modeling the shape parameter of the GPD as a linear
function of time in years, we were able to test the significance of a trend in
the size of the excesses. More specifically, consider the years s and t with
s, t = 1987, . . . , 1996. Then we can say that the ozone excesses over 8 ppm

14

Figure 3: Estimated 0.99 and 0.999 quantiles, and estimated right endpoints
of the distribution of ozone levels for a threshold of 0.08 ppm.
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5. CONCLUSIONS

An exploratory data analysis of the extreme values of a time series of ozone levels made
clear the existence of a decreasing linear trend in the size of the excesses over the threshold
8 ppm. We fitted the GPD to the POT’s of the time series. By modeling the shape parameter
of the GPD as a linear function of time in years, we were able to test the significance of a
trend in the size of the excesses. More specifically, consider the years s and t with s, t =
1987, ..., 1996. Then we can say that the ozone excesses over 8 ppm for year s were more
likely to take larger values then the ozone excesses over 8 ppm for year t, when s < t.

A. APPENDIX – Maximum Likelihood Calculations

The density function of a GPD(ξ, β) is

f(x; ξ, β) =


(1/β) (1− ξx/β)(1/ξ)−1 , ξ 6= 0 , β > 0 ,

(1/β) exp(−x/β) , ξ = 0 , β > 0 .

Let Xj ∼ GPD(ξj , β), and let xj = (x1j , ..., xnjj)′ be a random sample from Xj ,
(j = 1, ..., k). Write ξj = ξ + θtj . Then the log-likelihood function under H0 : θ = 0 is

(A.1) l(ξ, β) =
k∑

j=1

nj∑
i=1

log f(xij ; ξ, β) = −n log β + (ξ−1−1)
k∑

j=1

nj∑
i=1

log(1− ξxij/β) ,

where n =
∑k

j=1 nj , (ξ, β) ∈ Θ0 =
{
(ξ, β) : ξ < 0, β > 0

}
∪

{
(ξ, β) : ξ > 0, β > 0, and β/ξ >

maxij(xij)
}
. Making the reparametrization (ξ, β) 7→ (ξ, τ), where τ = ξ/β, the log-likelihood

function becomes

l(ξ, τ) = −n log ξ + n log τ + (ξ−1−1)
k∑

j=1

nj∑
i=1

log(1− τ xij) ,

where
{
ξ < 0, τ > 0

}
∪

{
0 < ξ ≤ 1, τ < 1/maxij(xij)

}
. The log-likelihood equations are

∂l

∂ξ
= (n/ξ)− (1/ξ2)

k∑
j=1

nj∑
i=1

log(1− τ xij) = 0 ,(A.2)

∂l

∂τ
= (n/τ)− (ξ−1−1)

k∑
j=1

nj∑
i=1

xij

1− τ xij
= 0 .(A.3)

Solving equation (A.2) for ξ we obtain

(A.4) ξ(τ) = −(1/n)
k∑

j=1

nj∑
i=1

log(1− τ xij) .



200 S. Juárez and J. Rojo

Since equation (A.4) gives ξ as an explicit function of τ , we can substitute ξ(τ) of (A.4) in
equation (A.3), and obtain

(n/τ)−
(
ξ(τ)−1−1

) k∑
j=1

nj∑
i=1

xij

1− τ xij
= 0 ,

which can be solved numerically for τ . If τ̂ is the solution, then the MLE’s of ξ and β are
given by ξ̂ = ξ(τ̂) and β̂ = ξ̂/τ̂ , respectively. This is the standard procedure to find the MLE’s
of the parameters of the GPD. For a detailed analysis of this procedure see Grimshaw [10].
Under Ha : θ > 0 the log-likelihood function is

l(ξ, θ, β) =
k∑

j=1

nj∑
i=1

log f(xij ; ξ, θ, β)

= −n log β +
k∑

j=1

[
(ξ + θtj)−1−1

] nj∑
i=1

log
[
1− (ξ + θtj) xij/β

]
,

where (ξ, θ, β) ∈ Θa =
{
(ξ, θ, β) : ξ+θtj < 0, j =1, ..., k, β > 0, θ > 0

}
∪

{
(ξ, θ, β) : ξ+θtj > 0,

j =1, ..., k, β > 0, θ > 0 and β/(ξ+θtj) > maxi(xij), j =1, ..., k
}
. Let x(nj)j = maxi(xij), and

note that the restriction β/(ξ + θtj) > x(nj)j is equivalent to β − ξx(nj)j − θx(nj)j tj > 0.
So, the parameter space Θa ⊂ R3 is given by all the (β, ξ, θ)′ that satisfy the linear pointwise
restrictions 

1 −x(n1)1 −x(n1)1t1
1 −x(n2)2 −x(n2)2t2
...

...
...

1 −x(nk)k −x(nk)k tk
0 0 1


 β

ξ
θ

 >


0
0
...
0
0

 .

Finding the MLE’s of ξ, θ, and β becomes a problem of maximization with linear
constraints. There are several numerical algorithms to deal with this type of problem. In this
work we used the Price’s controlled random search procedure. See Khuri [13], pp. 334–336,
for the details of this algorithm. The calculations were performed with R. The test statistic
is given by −2 log λ(x) = 2

[
l(ξ̂, θ̂, β̂)− l(ξ̂, β̂)

]
.
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