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1. INTRODUCTION AND MOTIVATION

First of all, let us recall that a set of random variables (rv’s) (X1, X2, ..., XN ) is said
to be associated if for every pair of functions g1(·) and g2(·) from RN to R, which are non
decreasing component-wise, cov(g1(X), g2(X)) ≥ 0, whenever the covariance is defined, where
X = (X1, X2, ..., XN ). An infinite sequence {XN , N ≥ 1} of rv’s is said to be associated if
every finite subset is associated. This definition was introduced by Esary et al. ([9]), mainly
for the sake of applications. For instance, association occurs often in certain reliability theory
problems, as well as in some important models employed in statistical mechanics. It is of
interest to note that association and mixing define two distinct but not disjoint classes of
processes (see, e.g. Doukhan and Louhichi ([7]), for examples of sequences that are associated
but not mixing, associated and mixing, and mixing but not associated ones).

Let us now recall that a strong mixing condition refers more to σ-algebra than to rv’s.
On the one hand, a main inconvenience of mixing conditions is the difficulty of checking
them. On the other hand, an important property of associated random rv’s is that zero
correlation implies independence. Also, large classes of examples of associated processes
are deduced from the fact that any independent sequence is associated and that monotonic
functions of independent sequences remain associated. So, the main advantage of the concept
of association compared to mixing is that the conditions of limit theorems are easier to verify
since, a covariance is much easier to compute than a mixing coefficient.

As examples of associated rv’s, we recall that most often in reliability studies, the rv’s
which are generally lifetimes of components, are not independent but are associated. In fact,
as an example, there are structures in which the components share the load so that failure of
one component results in increased load on each of the remaining components. Thus, failure
of one component will adversely effect the performance of all the minimal path structures
containing it. In such a model, the random variables of interest are not independent but are
associated. In addition, let {Xi, i≥1} be independent and identically distributed (iid) rv’s and
Y be independent of {Xi, i≥1}. Then {Zi = Xi +Y, i≥1} are associated. Thus, if independ-
ent components of a system are subject to the same stress, then their lifetimes are associated.
Avarietyof relevant examples andamplebibliographical references canbe found in (Bulinski and
Shashkin ([3])). In that book, the reader can find a number of new results and examples related
to associated random sequences and random fields. For completeness on the subject in the com-
plete data case we refer the reader to the monographs by Oliveira ([17]) and Prakasa Rao ([20]).

Survival analysis is the part of statistics, in which the variable of interest (lifetime) may
often be interpreted as the time elapsed between two events and then, one may not be able to
observe completely the variable under study. Such variables typically appear in a medical or
an engineering life test studies. Among the different forms in which incomplete data appear,
censoring and truncation are two common ones.

Left truncation in studies of developmental processes is not just of theoretical interest:
It can cause substantial bias if ignored. An important example of such a model arises in
the analysis of survival data of patients infected by the AIDS virus from contaminated blood
transfusions (Chen et al. ([6])). Other examples in which a large fraction of potential obser-
vations are left truncated are rate of spontaneous abortion (Meister and Schaefer ([16])) and
age at menopause transition stages (Harlow et al. ([12])).
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Let {XN , N ≥ 1} be a sequence of strictly stationary associated rv’s of interest defined
on a probability space (Ω,F , P) with an unknown probability density function (pdf) f = dF .
Let {TN , N ≥ 1} be a sequence of stationary associated rv’s of truncation with an unknown
Lipschitz distribution function (df) G. In this paper we follow the same sampling scheme
as that of (Woodroofe ([25])) whose observable sample of size n is a subset of N pairs
{(X1, T1), ..., (XN , YN )}, where N is deterministic but unknown while n is random. As it
was pointed out by the reviewer, one may consider another approach in which the sample
size n is a non-random known value, and the observations are drawn from an infinite sequence
of random vectors. In fact, such an approach was used by (He and Yang ([14])). However,
our main motivation in following the first approach is computational since, in our simulation
studies we use the ratio n

N to estimate different values of the parameter α.

Under random left truncation scheme, only those pairs (Xi, Ti) satisfying Xi ≥ Ti are
observed. In the sequel we assume that {XN , N ≥ 1} is independent from {TN , N ≥ 1} and
(X1, T1), ...,(Xn,Tn) denotes the sequence which one actually observes within a sample (Xi,Ti);
1≤ i≤N . Obviously the observed sequence remains associated since any subset of associated
rv’s are associated (see Esary et al. ([9]), Property P1)). As a consequence of truncation,
the sample size n =

∑N
i=1 1{Xi≥Ti} is random, and from the strong law of large numbers,

n/N → α := P(Xi ≥ Ti), almost surely (a.s.), as N →∞. Without further mention, we shall
assume that α > 0 because, otherwise, no data will be available.

Throughout this study, all probability statements are to be interpreted as conditional
probability statements, that is P(·) = P( · |X ≥ T ). Likewise E and E will denote the expec-
tation operators related to P and P, respectively. Then conditionally on n, estimation results
are stated considering n→∞ which hold true with respect to the probability P since n≤N .

In what follows, the star notation (?) relates to any characteristic of the actually ob-
served data (conditionally on n). So, following Stute ([21]), the df’s of X and T become

F ?(x) := α−1

∫ x

−∞
G(z) dF (z) and G?(x) := α−1

∫ ∞

−∞
G(x∧z) dF (z) ,

where t∧ z := min(x, z). Then, for any df W , let us define aW = inf{u : W (u) > 0} and bW =
sup{u : W (u) < 1}, as the endpoints of the W support. As pointed out in Woodroofe ([25]),
the df’s F and G can be completely estimated only if aG≤ aF , bG ≤ bF and

∫∞
aF

(G)−1dF <∞.

Let C(·) be a function defined by

C(x) := P
(
T ≤ x≤X

)
= G?(x)− F ?(x)

= α−1G(x)
[
1− F (x)

]
, aG < x < bF .

(1.1)

It is easily seen that F ?, G? and C are readily estimable through

F ?
n(x) = n−1

n∑
i=1

1{Xi≤x} , G?
n(t) = n−1

n∑
i=1

1{Ti≤t} and Cn(x) = G?
n(x)−F ?

n(x) .

The well-known estimates of F and G proposed by Lynden-Bell ([15]) are

Fn(x) = 1 −
∏

Xi≤x

[
n Cn(Xi)− 1

n Cn(Xi)

]
and Gn(t) =

∏
Ti>t

[
n Cn(Ti)− 1

n Cn(Ti)

]
,(1.2)
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respectively, assuming no ties among the rv’s. Note that Stute and Wang ([22]) showed how
to break ties without destroying the product limit structure. Therefore, throughout we shall
assume without loss of generality that there are no ties.

For technical reasons, we need to introduce a pseudo-kernel estimate of f , which will
be of a great importance later, defined by

(1.3) f̃n(x) :=
α

nhn

n∑
i=1

1
G(Xi)

K

(
x−Xi

hn

)
,

where K is a smooth probability kernel and hn =:h is a sequence of bandwidths tending to 0
at appropriate rates. For an interesting overview of nonparametric curve estimation, we refer
the reader to Cao et al. ([5]) and the references therein.

Note that in a real data situation or in simulation studies we shall, however, not dwell
on (1.3) since G is unknown. And, as the original sample size N is unknown (although
deterministic), the classical estimator α̂n = n/N for the rate of no truncation α cannot be
used, and then, another estimator derived from (1.1) is required, namely

αn :=
Gn(x)

[
1− Fn(x)

]
Cn(x)

,

for any x such that Cn(x) > 0. This estimator was proposed and studied in the iid case in
(He and Yang ([13]) Theorem 2.2, p. 1014). These authors proved that αn does not depend
upon the argument x and its value can then be obtained for any x such that Cn(x) 6= 0.
Furthermore, they showed (Corollary 2.5) that αn→ α, a.s., as n→∞. Then, by plug-in
method we can construct a feasible kernel estimate of f . Thus

(1.4) f̂n(x) :=
αn

nh

n∑
i=1

1
Gn(Xi)

K

(
x−Xi

h

)
.

From now on, the sum in the latter formula is taken over the i’s such that Gn(Xi) 6= 0. Recall
that asymptotic results for (1.4), in both iid and strong mixing condition cases have been
stated in (Ould Säıd and Tatachak ([18], [19]), Benrabah et al. ([2])).

It is well known that the cumulative hazard function Λ(y) =− log(1−F (x)), for any x

such that F (x) <1, and its corresponding hazard rate function λ(x) := Λ′(x) =f(x)/(1−F (x)),
are important in several fields of applied statistics (medicine, reliability, ...) for the assessment of
risks in survival studies. Recall that the nonparametric hazard rate estimation was introduced
in statistical literature by Watson and Leadbetter ([24]). Now, using (1.2) and (1.4), an
estimate for λ(x) for an n-sample, at risk of being truncated from the left, is defined by

(1.5) λ̂n(x) =
f̂n(x)

1− Fn(x)
.

As far as we know, in truncation and dependence setting, the only existing result dealing
with hazard rate estimation is that of Sun and Zhou ([23]) stated under strong mixing condi-
tion, while in the complete associated data case (no truncation), Bagai and Prakasa Rao ([1])
stated strong uniform consistencies (with no rates) for kernel-type density and failure rate
estimates. Hence, in this paper, we intend to extend the existing results to truncated and
associated data.
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The paper is organized as follows: In Section 2, an asymptotic analysis is presented
together with the list of the assumptions under which the main results are stated. To support
the main results, a simulation study illustrates the behaviour of the estimators as shown in
Section 3. Proofs and some auxiliary results with their proofs are relegated to Section 4.

2. ASYMPTOTIC ANALYSIS

In the sequel, D := [a,b] such that aG ≤ aF < a < b < bF will denote a compact set and
the letter c is used indiscriminately as a generic positive constant. To state our asymptotic
analysis, the following conditions are assumed:

A1.
∫

dF (z)
G2(z)

< +∞ ;

A2. The covariance term satisfies: ρ(s) := supj:|`−j|≥s cov(Xj , X`) for all ` ≥ 1 and
s > 0, where ρ(s) ≤ γ0 e−γs for some positive constants γ0 and γ ;

A3. K is a Lipschitz continuous pdf, compactly supported and
∫

u K(u) du = 0 ;

A4. f is twice continuously differentiable on D such that sup
x∈D

∣∣f (2)(x)
∣∣< +∞ ;

A5. The joint pdf f?
1,j( · , ·) of (X1, X1+j) satisfies: sup

j>1
sup

u,v∈D

∣∣f?
1,j(u, v)

∣∣≤ c ;

A6. h satisfies: h→ 0 and nh1+δ→+∞ along with n, for any 0 < δ < 1.

Remark 2.1. AssumptionsA1–A2 satisfy conditionsH1–H3 in (Guessoum et al. ([11])).
Furthermore, Assumption A1 was used in (Stute ([21])) and Assumption A2 quantifies a pro-
gressive tendency to asymptotic independence of “past” and “future”. This latter condition
was used in (Doukhan and Neumann ([8])) in order to state an exponential inequality which
is needed to prove Proposition 2.1 hereinafter. Assumptions A3–A4 are frequently used
in studying uniform consistency of estimates. Assumption A5 is often assumed in kernel
estimation studies under dependence structure and allows to bound the covariance term.
Finally, Assumption A6 is standard in nonparametric density estimation.

Proposition 2.1. Under assumptions A1–A6, for large enough n we have

sup
x∈D

∣∣∣f̃n(x)−E
(
f̃n(x)

)∣∣∣ = O

(√
log n

nh

)
a.s.

Theorem 2.1. If assumptions A1–A6 hold true, then for large enough n we have

sup
x∈D

∣∣∣f̂n(x)− f(x)
∣∣∣ = O

{√
log n

nh
+
(

log log n

n

)θ
+ h2

}
a.s. ,

where 0 < θ < γ/(2γ +β +9) for any real β > 0 and γ is that in A2.

Theorem 2.2. Under assumptions A1–A6, for large enough n we have

sup
x∈D

∣∣∣λ̂n(x)− λ(x)
∣∣∣ = O

{√
log n

nh
+
(

log log n

n

)θ
+ h2

}
a.s.
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Remark 2.2. The rates in Theorem 2.1 and Theorem 2.2 are still slower than those
stated for complete data in the iid and mixing cases (see Estévez and Quintela ([10])), or under
left truncation model (see Ould Säıd and Tatachak ([18], [19]), Sun and Zhou ([23])). Our
rates depend upon the parameter θ which controls the covariance’s decaying under association
dependence as stated in (Cai and Roussas ([4])), whereas the iterated logarithm form is
related to the truncation effect. Note that by setting γ = 3(r−2)/2, r > 2, we recognize the
θ appearing in (Guessoum et al. ([11]), Theorem 3.1). Finally, we point out that for γ large
enough, our rates approach the classical optimal ones as θ grows to its upper bound (θ = 1/2).

3. SOME SIMULATION RESULTS

To examine the behaviour over finite samples of the estimators given in statements
(1.4) and (1.5), respectively, we have conducted a numerical study via simulation. The log-
normal distribution has been selected because of the shape of its hazard function which is
flatter around of its maximum. In the computation of the estimators, we used the bi-weight
kernel

(
K(x) =

(
1− |x|2

)21|x|≤1

)
which verifies our conditions in stating our main results.

We also used optimal global and local bandwidths, that minimized the global mean square
error (GMSE) and the simple mean square error (MSE) criteria, respectively. These band-
widths were selected in the grid of values H =

{
hk = 10−1 +5(k−1)10−2, k = 1,2, ...,19

}
.

3.1. Models and procedure

• Step 1. The sequence
{
(Xk, Tk), k = 1, ..., n

}
is generated as follows:

For i=1,2, ...,N, we first generate Zi=(Wi−1+Wi−2/2), where {Wr, r=−1,0, ...,N−1}
are iid rv’s drawn from N (0,1) and put Xi = exp(Zi), i=1, ...,N. Hence, the sequence
{Xk, k = 1, 2, ..., N} is associated and follows a log

(
N
(
0,
√

1/2
))

distribution.
At each iteration the Xi’s are compared to the Ti’s generated from exp(µ) in order
to keep only the pairs (Xi, Ti) satisfying Xi ≥ Ti. The parameter µ is adjusted to get
P(X ≥ T ) ≈ α. Hence, a truncation sequence

{
(Xi, Ti), i =1, ..., n

}
is generated and

the estimator λn(·) is computed using the bi-weight kernel and bandwidths h ∈ H .

• Step 2. We repeat B simulation runs as described in Step 1 for every fixed combi-
nation of size n and truncating rate (TR) 1−α.
For a given functional g and its estimate ĝn,h, the GMSE computed along B = 200
Monte Carlo trials and a grid of bandwidths h ∈ H is defined as

GMSE(h) =
1

Bm

B∑
k=1

m∑
`=1

(
ĝn,h,k(x`)− g(x`)

)2 ,

where m is a number of equidistant points x` belonging to the range ]0, 4] and
ĝn,h,k(x`) is the value of ĝn,h(x`) computed at iteration k. In computing the GMSE’s,
optimal global bandwidths (ogb) were used for both density and hazard rate function
estimation. The values GMSE := minh∈H GMSE(h) and the corresponding global
bandwidths hopt := arg minh∈H GMSE(h) are reported in Table 1 and Table 2.
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The MSE’s reported in Table 3 were evaluated by using optimal local bandwidths
(olb) for hazard rate estimation. Furthermore, to display the quality of fit of the es-
timators, we first plotted the target density f together with its average and median
estimates as illustrated in Figure 1 and Figure 2. Then, we plotted the target hazard
rate λ with its average and median estimates for both global optimal bandwidths
and local optimal ones as shown in Figure 3, Figure 4 and Figure 5.

Table 1: Density function with optimal global bandwidths.

1−α (TR)

n

50 100 200

hopt GMSE hopt GMSE hopt GMSE

0.05 0.575 0.0073 0.475 0.0048 0.375 0.0029
0.15 0.600 0.0090 0.475 0.0079 0.400 0.0073
0.25 0.575 0.0155 0.475 0.0122 0.400 0.0096

Table 2: Hazard rate function with optimal global bandwidths.

TR

n

50 100 200

hopt GMSE hopt GMSE hopt GMSE

0.05 0.825 0.2052 0.675 0.1404 0.600 0.0743
0.15 0.800 0.2574 0.725 0.1732 0.640 0.0908
0.25 0.750 0.2676 0.750 0.1800 0.650 0.1145

Table 3: Hazard rate function with optimal local bandwidths.

TR

n

30 50 100

MSE MSE MSE

0.05 0.2247 0.1949 0.1286
0.15 0.2632 0.2104 0.1500
0.25 0.3384 0.2848 0.1848

3.2. Comments on the simulation results

As it can be seen from the tables and figures, the higher the sample size and smaller the
TR, the better the quality of fit. This means that the errors tend to be negligible in each case
when n increases. Likewise, the quality of fit deteriorates slightly for sufficiently high TR value
but, it increases along with n and becomes better in any cases. Note also that, in particular,
the estimation of the hazard rate function suffers from the well-known boundary effects that
occur in nonparametric functional estimation. If the target functional has a support on [0,∞),
the use of classical estimation methods with symmetric kernels yield a large bias on the zero
boundary and leads to a bad quality of the estimates. This is the case here and is due to
the fact that symmetric kernel estimators assign non-zero weight at the interval (−∞, 0].



344 Zohra Guessoum and Abdelkader Tatachak

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

true curve

estimated curve (med.)

estimated curve (mean)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

true curve

estimated curve (med.)

estimated curve (mean)

Figure 1: Density estimation (ogb): n = 100 and TR ≈ 0.05, 0.25.



On Kernel Hazard Rate Function Estimate for Associated and Left Truncated Data 345

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

true curve

estimated curve (med.)

estimated curve (mean)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

true curve

estimated curve (med.)

estimated curve (mean)

Figure 2: Density estimation (ogb): n = 100, 500 and TR ≈ 0.15.
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Figure 3: Hazard rate (ogb): n = 100 and TR ≈ 0.05, 0.15, 0.25.
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Figure 4: Hazard rate (ogb): TR ≈ 0.15 and n = 50, 200.

The graphs reveal this phenomenon when using optimal global bandwidths but, the bias effect
is subsequently reduced and tends to disappear when optimal local bandwidths are used as
shown in Figure 5. We point out that one may also select another approach to deal with
the boundary bias effect which consists in using an asymmetric kernel as the Gamma kernel
since it is non-negative and changes its shape depending on the position on the semi-axis.
The inverse Gaussian kernel is also an interesting alternative.
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Figure 5: Hazard rate (olb): TR ≈ 0.15 and n = 30, 50, 100.
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4. AUXILIARY RESULTS AND PROOFS

Before proving the main results, we briefly discuss the tools used here.

Remark 4.1. As it was mentioned above, there are processes which are associated
but not mixing. In such cases, it would be interesting to have at disposal similar results as
stated here.

It is noteworthy that for the proof of our results we use similar tools used in the
α-mixing frameworks. The main difference here is that functional of associated rv’s are not
associated in general, which is the case when dealing with nonparametric kernel estimation.
This is due to the fact that the random functions K

(
x−Xi

h

)
are, in general not associated

but remain α-mixing if the Xi’s are, since K is a measurable function in general. To keep
the association, we should apply only monotone transformations to the original variables,
which is not the case with a general kernel. To overcome this problem, one may assume that
the kernel K is of bounded variation. This condition permits to write K = K1−K2, with
K1 and K2 monotone functions. In this paper, we do not follow this procedure but we use
results stated for weakly dependent models in the sense of Doukhan and Louhichi ([7]), since
associated models are κ-weakly dependent. Note also that to treat the fluctuation part in
Proposition 2.1, we use bounds for covariances in applying an exponential inequality stated
by Doukhan and Neumann ([8]) for weakly dependent rv’s. To this end, we use Theorem 5.3
in (Bulinski and Shashkin ([3])), and Proposition 8 in (Doukhan and Neumann ([8])).

Indeed, for any x ∈ D , set Ui(x, h) := α
G(Xi)

K
(

x−Xi
h

)
−E

(
α

G(Xi)
K
(

x−Xi
h

))
. So, it fol-

lows that

(4.1) f̃n(x)−E
(
f̃n(x)

)
=

1
nh

n∑
i=1

Ui(x, h) .

The proof of Proposition 2.1 is based on Lemma 4.1 and Lemma 4.2 hereafter.

Lemma 4.1. Under the assumptions of Proposition 2.1, for all u-tuples (s1, ..., su)
and all v-tuples (w1, ..., wv) with 1≤ s1 ≤ ··· ≤ su ≤w1 ≤ ··· ≤wv ≤ n, we have

(i) cov

(
su∏

i=s1

Ui(x, h) ,

wv∏
j=w1

Uj(x, h)

)
=: cov1 ≤ cu+vh−2 u vρ(w1− su) ,

(ii) cov

(
su∏

i=s1

Ui(x, h) ,

wv∏
j=w1

Uj(x, h)

)
=: cov2 ≤ cu+vh2 .

Proof of Lemma 4.1: Let Lip(Φ) denote the Lipschitz modulus of continuity of Φ,
that is

Lip(Φ) = sup
x6=y

∣∣Φ(x)− Φ(y)
∣∣

|x− y|1
, where

∣∣(z1, ..., zd)
∣∣
1
= |z1|+ ···+ |zd| .
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To prove item (i), we use a result in (Bulinski and Shashkin ([3]), Theorem 5.3, p. 89) and
then we have

cov1 ≤ Lip

(
su∏

i=s1

Ui(x, h)

)
Lip

 wv∏
j=w1

Uj(x, h)

 su∑
i=s1

wv∑
j=w1

cov(Xi, Xj) .

Now since

Lip

(
k∏

i=1

Ui(x, h)

)
≤ c

h

(
2

G(a)

)k

‖K‖k−1
∞ ,

where ‖K‖∞ := supu K(u). Then by stationarity and Assumption A2, we get

cov1 ≤
c2 2u+v

h2Gu+v(a)
‖K‖u+v−2

∞ u vρ(w1− su) .

Thus result (i) holds. The result (ii) follows by simple algebra using assumptions A3–A5.
The proof is finished.

Lemma 4.2. There exist constants M,L1, L2 < +∞, µ, λ ≥ 0 and a non-increasing

sequence of real numbers
(
φ(n)

)
n≥1

such that

(a) cov

(
su∏

i=s1

Ui(x, h) ,

wv∏
j=w1

Uj(x, h)

)
=: cov ≤ cu+vh u vφ(w1− su) ,

(b)
∑
t≥0

(t + 1)k0φ(t) ≤ L1L
k0
2

(
k0!
)µ

, ∀ k0 ≥ 0 ,

(c) E
(∣∣Ui(x, h)

∣∣k0
)
≤
(
k0!
)λ

Mk0 .

The items in Lemma 4.2 are nearly the conditions of Theorem 1 in (Doukhan and
Neumann ([8])). This latter will allow us to use their exponential inequality in proving
Proposition 2.1.

Proof of Lemma 4.2: To prove item (a) we apply Lemma 4.1 by taking φ(·) = ρ1/4(·)
and writing cov = cov1/4

1 cov3/4
2 . The proofs for (b) and (c) are similar to those in (Doukhan

and Neumann ([8]), Proposition 8) by choosing λ = 0, µ = 1 and L1 = L2 = 1
1−e−γ/4 , and then

we omit them.

Proof of Proposition 2.1: The main tool used here to bound the fluctuation term
in (4.1), is an exponential inequality due to Doukhan and Neumann ([8]), that is

(4.2) P

(
n∑

i=1

Ui(x, h) ≥ ε

)
≤ exp

(
− ε2/2

An + B
1/(µ+λ+2)
n ε(2µ+2λ+3)/(µ+λ+2)

)
,

where An can be chosen such that An ≤ σ2
n with

σ2
n := Var

(
n∑

i=1

Ui(x, h)

)
,
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and

Bn = 2 cL2

(
24+µ+λ c nh L1

An
∨ 1
)

.

For this purpose, let us calculate σ2
n = (nh)2 Var

(
f̃n(x)

)
. We have

(nh)2 Var
(
f̃n(x)

)
= n

E

[
α2

G2(X1)
K2

(
x−X1

h

)]
− E2

[
α

G(X1)
K

(
x−X1

h

)]
+

n∑
i=1

n∑
j 6=i,j=1

cov

(
α

G(Xi)
K

(
x−Xi

h

)
,

α

G(Xj)
K

(
x−Xj

h

))

=: V1 + V2 .

On the one hand, by assumptions A3–A4, a change of variable and the Dominated Conver-
gence Theorem, we obtain V1 = O(nh).
On the other hand, from Lemma 4.1, we can write

(4.3) cov

(
α

G(Xi)
K

(
x−Xi

h

)
,

α

G(Xj)
K

(
x−Xj

h

))
= O

(
h2
)
.

And, let

B1 =
{

(i, j)/ 1 ≤ |i− j| ≤ ηn

}
and B2 =

{
(i, j)/ ηn +1 ≤ |i− j| ≤ n−1

}
,

where ηn = o(n). Then

V2 =
n∑

i=1

∑
j∈B1

cov

(
α

G(Xi)
K

(
x−Xi

h

)
,

α

G(Xj)
K

(
x−Xj

h

))

+
n∑

i=1

∑
j∈B2

cov

(
α

G(Xi)
K

(
x−Xi

h

)
,

α

G(Xj)
K

(
x−Xj

h

))

=: V21 + V22 .

From (4.3) we have

(4.4) V21 = O
(
ηn nh2

)
,

then by Assumption A2 and Lemma 4.2 (a) we obtain

(4.5)
V22

nh
≤ c

nh

n∑
i=1

∑
j∈B2

h e−
γ|i−j|

4 ≤ c

∫
n

ηn

e−
γu
4 du = O

(
e−

γηn
4

)
.

Choosing ηn = O
(
hδ−1

)
with 0 < δ < 1 (δ may be the same as that in A6), the statements

(4.4) and (4.5) give V21 = o(nh) and V22
nh = o(1). Consequently

σ2
n = O

(
nh
)
.

Thus we choose An = O(nh) and Bn = O(1).
At this step we are able to apply (4.2). To end the proof of Proposition 2.1, we use a
covering of the compact D by a finite number `n of intervals D1, ...,D`n of equal length
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an = O
(
n−1/2h3/2

)
and centered at points x1, ..., x`n , respectively. Note that as D is bounded,

there exists a constant M0 > 0 such that `n ≤ M0 a−1
n . Then observe that

sup
x∈D

∣∣∣f̃n(x)−E
(
f̃n(x)

)∣∣∣ = sup
x∈D

1
nh

∣∣∣∣∣
n∑

i=1

Ui(x, h)

∣∣∣∣∣
≤ max

k=1,...,`n

sup
x∈Dk

1
nh

n∑
i=1

∣∣Ui(x, h)− Ui(xk, h)
∣∣

+ max
k=1,...,`n

1
nh

∣∣∣∣∣
n∑

i=1

Ui(xk, h)

∣∣∣∣∣ .
First, since K is Lipschitz we have

1
nh

n∑
i=1

∣∣Ui(x, h)− Ui(xk, h)
∣∣ ≤ 1

nh

n∑
i=1

α

G(Xi)

∣∣∣∣∣K
(

x−Xi

h

)
−K

(
xk −Xi

h

)∣∣∣∣∣
+

1
h

E

 α

G(Xi)

∣∣∣∣∣K
(

x−Xi

h

)
−K

(
xk −Xi

h

)∣∣∣∣∣


≤ 1
h

2
G(a)

∣∣∣∣x− xk

h

∣∣∣∣
≤ c

G(a)
√

nh
= O

(
1√
nh

)
.(4.6)

Next, by Assumption A6, if we replace ε by ε0
√

nh log n =: εn in (4.2), we then get

P

 max
k=1,...,`n

1
nh

∣∣∣∣∣
n∑

i=1

Ui(xk, h)

∣∣∣∣∣ > ε0

√
log n

nh

 ≤
`n∑

k=1

P

∣∣∣∣∣
n∑

i=1

Ui(xk, h)

∣∣∣∣∣ > εn


≤ c a−1

n exp

 −
(
ε2
0 log n

)/
2

c + ε
5/3
0

(
log5n
nh

)1/6


≤ c(
nh1+δ

) 3
2(1+δ)

n
−cε2

0+ 4+δ
2(1+δ) .(4.7)

For a suitable choice of ε0, the right hand side term in (4.7) becomes the general term of
a convergent series. Then Borel–Cantelli’s lemma gives

max
k=1,...,`n

1
nh

∣∣∣∣∣
n∑

i=1

Ui(xk, h)

∣∣∣∣∣ = O

(√
log n

nh

)
.

This latter jointly with (4.6) allow us to conclude the desired result, that is

sup
x∈D

1
nh

∣∣∣∣∣
n∑

i=1

Ui(x, h)

∣∣∣∣∣ = O

(√
log n

nh

)
= sup

x∈D

∣∣∣f̃n(x)−E
(
f̃n(x)

)∣∣∣ ,
which ends the proof of Proposition 2.1.

Now the proof of Theorem 2.1 is immediately established once the following lemmas
(Lemma 4.3 and Lemma 4.4) are stated.



On Kernel Hazard Rate Function Estimate for Associated and Left Truncated Data 353

Lemma 4.3. Under assumptions A1–A2, for n sufficiently large we have

sup
x∈D

∣∣Gn(x)−G(x)
∣∣ = O

[(
log log n

n

)θ]
a.s. ,(4.8)

∣∣αn− α
∣∣ = O

[(
log log n

n

)θ]
a.s.(4.9)

Proof of Lemma 4.3: To prove (4.8), it suffices to follow step by step the proof in
(Guessoum et al. ([11]), Theorem 3.2). The result (4.9) ensues using the following decompo-
sition ∣∣αn− α

∣∣ =
1

Cn(x) C(x)

∣∣∣∣C(x)
(
Gn(x)−G(x)

) (
1−Fn(x)

)
+ C(x) G(x)

(
F (x)−Fn(x)

)
+ G(x)

(
Cn(x)−C(x)

)(
F (x)−1

)∣∣∣∣ .
Thus the result holds using (4.8) jointly with Theorem 3.2 and Lemma 4.2 in (Guessoum
et al. ([11])).

Lemma 4.4. Under the hypotheses of Theorem 2.1, for large n enough we have

sup
x∈D

∣∣∣∣(f̂n(x)− f̃n(x)
)∣∣∣∣ = O

[(
log log n

n

)θ]
a.s. ,(4.10)

sup
x∈D

∣∣∣∣(E(f̃n(x)
)
− f(x)

)∣∣∣∣ = O
(
h2
)

a.s.(4.11)

Proof of Lemma 4.4: To get (4.10), remark that

∣∣∣f̂n(x)− f̃n(x)
∣∣∣ =

1
nh

n∑
i=1

∣∣∣∣∣∣∣
αn

(
G(Xi)−Gn(Xi)

)
+ (αn−α) Gn(Xi)

Gn(Xi) G(Xi)

∣∣∣∣∣∣∣K
(

x−Xi

h

)
.

Then, Lemma 4.3 gives the result. For the bias term in statement (4.11), the result is obtained
by using classical tools under assumptions A3 and A4.

Proof of Theorem 2.1: The result holds by writing

f̂n(x)− f(x) =
(
f̂n(x)− f̃n(x)

)
+
(
f̃n(x)−E

(
f̃n(x)

))
+
(
E
(
f̃n(x)

)
− f(x)

)
and using Proposition 2.1 together with Lemma 4.4.

Proof of Theorem 2.2: Let us consider the following decomposition

λ̂n(x)− λ(x) =

(
1−F (x)

)−1(
1−Fn(x)

) ((1−F (x)
) (

f̂n(x)− f(x)
)
− f(x)

(
F (x)− Fn(x)

))
.

Then the proof follows from Theorem 3.2 in (Guessoum et al. ([11])) and Theorem 2.1.
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