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Abstract:

• This paper aims to investigate the construction of the prediction intervals for ARMA (p, q) models
with unknown orders. We present the bootstrap algorithms for the prediction intervals based on the
bootstrap distribution of orders (p, q). The asymptotic properties of the intervals are also discussed.
The Monte Carlo simulation studies show that the proposed algorithm significantly improves the
coverage accuracy of the prediction interval compared to the methods using pre-estimated values
of orders, especially when the sample size is small and the true model order is low.
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1. INTRODUCTION

As indicated in [13], the construction of prediction intervals for time series models
is both important and intriguing, see also, e.g., [1, 2, 4, 6, 7], [10], [12] and [15, 17, 18].
The prediction intervals can show explicitly the uncertainty underlying the estimation pro-
cedure and measure the accuracy with the point predictors.

An early review article by [12] covered several methods of construction of prediction
intervals for linear regression models under normal assumption. [15] proposed an asymp-
totically valid prediction interval for linear models based on normal approximations. It is
known that Gaussian-based prediction intervals produce poor coverages when the distribu-
tional assumptions are violated. As a remedy, some form of resampling, for example the
residual-based bootstrap, is necessary.

The literature on predictive intervals for time series is not large. In order to construct
prediction intervals without the assumption of Gaussianity, [11] developed a coherent boot-
strap algorithm of constructing prediction intervals for time series that can be modeled as
linear, nonlinear or nonparametric autoregression AR(p) with known order p. Their boot-
strap intervals are able to capture the predictor variability due to the innovation errors as
well as the estimation errors.

For other time series models, [3] presented a bootstrap approach called The Boot.EXPOS
to forecast time series through combining the use of exponential smoothing methods with
the bootstrap methodology. [14] developed a bootstrap prediction interval procedure by
using a pre-estimated order of the AR approximation for FARIMA processes. [9] provided a
bootstrap method for estimating the parameters of ARMA (p, q) models. [13] derived model-
free prediction intervals based on a new model-free prediction principle and bootstrapping,
which can be applied to nonparametric time series models with known orders.

To the best of our knowledge, the construction of bootstrap prediction intervals based
on the bootstrap distribution of the orders for ARMA (p, q) models with unknown orders
remain essentially unexplored. This is the issue we intend to address in the current paper.

Section 2 presents the algorithms for the construction of bootstrap prediction intervals
for ARMA (p, q) models with known orders and unknown orders, respectively. The asymptotic
validity and asymptotic pertinence of the intervals are addressed in Section 3. The paper is
concluded with simulation studies comparing the finite sample performance of the proposed
method with other methods in terms of coverage level and length of interval in Section 4.
The proofs of the theorems are given in the Appendix.

2. BOOTSTRAP PREDICTION INTERVALS FOR ARMA MODELS

Consider the strictly stationary, causal ARMA (p, q) model defined by the recursion

(2.1) Xt =
p∑

j=1

aj Xt−j +
q∑

j=0

bj εt−j , t ∈ Z , b0 = 1 ,
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with {εt} being i.i.d. with mean zero, variance σ2, where 1−
∑p

j=1 aj z
j 6= 0 and

∑q
j=0 bj z

j 6= 0
for |z| ≤ 1, and 1−

∑p
j=1 aj z

j and
∑q

j=0 bj z
j have no zeros in common.

Suppose that we have the observations
{
Xt, t=1,2, ...,n

}
and denote by X̂n+1 the point

predictor of Xn+1 based on the data X1, ..., Xn. Let θ =
(
a1, ..., ap, b1, ..., bq

)T. [8] defined an
M -estimator θ̂M of θ for model (2.1), where θ̂M =

(
âM

1,n, ..., â
M
p,n, b̂

M
1,n, ..., b̂

M
q,n

)T is the solution
of the equation

Ψn(θ) =
1√
n

n∑
j=1

ψ
(
εj(θ)

)
Z(j −1; θ) = 0

for some suitably chosen score function ψ, where

εj(θ) =
j−1∑
k=0

βk(θ)

(
Xj−k −

p∑
i=1

aiXj−k−i

)
, j = 1, ..., n ,

and

Z(j −1; θ) =
j−1∑
k=0

βk(θ)
(
X
(
j −1− k

)T
, E
(
j −1− k; θ

)T )T, j = 1, ..., n ,

where βk(θ) satisfies

∞∑
k=0

βk(θ)zk =

(
1 +

q∑
j=1

bj z
j

)−1

, |z| ≤ 1 ,

and X(j −1) =
(
Xj−1, ..., Xj−p

)T, E(j −1; θ) =
(
εj−1(θ), ..., εj−q(θ)

)T, Xj = 0 and εj(θ) = 0
for j ≤ 0.

Theorem 3.1 of [8] showed that, under some mild conditions,
√
n
(
θ̂M− θ

)
is asymptot-

ically normally distributed. Therefore, we define X̂n+1 as

(2.2) X̂n+1 =
p∑

k=1

âM
k,nXn+1−k +

q∑
k=1

b̂Mk,n ε̂n+1−k,n

(
θ̂M
)
,

where

(2.3) ε̂j,n
(
θ̂M
)

=
j−1∑
k=0

βk

(
θ̂M
)(
Xj−k −

p∑
i=1

âM
i,nXj−k−i

)
, j = 1, ..., n .

2.1. Bootstrap prediction intervals for ARMA models with known orders

In this subsection we assume that the orders p and q of the ARMA (p, q) model are
known. Inspired by the algorithms discussed in [11], we provide the following bootstrap
algorithm of the prediction interval forXn+1 based on (2.2). Let the one-step ahead predictive
root be defined asXn+1− X̂n+1. The algorithm actually uses the distribution of the bootstrap
predictive root to estimate the distribution of the true predictive root.
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B-ARMARoots Algorithm:

1. Use observations X1, ..., Xn to obtain M -estimator θ̂M for model (2.1).

2. Compute the fitted residuals ε̂j,n
(
θ̂M
)

from (2.3), denote by ε̂·,n the mean of the
fitted residuals, center the fitted residuals, and compute the empirical distribution
F̂n of ε̂j,n− ε̂·,n

F̂n(x) =
1
n

n∑
j=1

1[ε̂j,n−ε̂·,n,∞)(x) , x ∈ R ,

where 1A is the indicator function of set A.

3. Compute the predicted future value X̂n+1 using (2.2).

4. Draw bootstrap pseudo residuals
{
ε∗j
}

from F̂n, calculate the pseudo-data
{
X∗

j

}
by

X∗
j =

p∑
k=1

âM
k,nX

∗
j−k +

q∑
k=1

b̂Mk,n ε
∗
j−k + ε∗j .

5. Use the pseudo-data X∗
1 , ..., X

∗
n to obtain M -estimator θ̂M,∗. Then compute the

residuals

ε̂∗j,n
(
θ̂M,∗) =

j−1∑
k=0

βk

(
θ̂M,∗)(Xj−k −

p∑
i=1

âM,∗
i,n Xj−k−i

)
, j = 1, ..., n .

6. Compute the bootstrap predicted future value

X̂∗
n+1 =

p∑
k=1

âM,∗
k,n Xn+1−k +

q∑
k=1

b̂M,∗
k,n ε̂∗n+1−k,n

(
θ̂M,∗) .

7. Compute the future bootstrap observation X∗
n+1

X∗
n+1 =

p∑
k=1

âM
k,nXn+1−k +

q∑
k=1

b̂Mk,n ε̂n+1−k,n

(
θ̂M
)

+ ε∗n+1 .

Then compute the one-step ahead predictive root X∗
n+1− X̂∗

n+1.

8. Repeat Steps 4–7 above B times, compute the empirical distribution of X∗
n+1 −

X̂∗
n+1 whose α/2-quantile is denoted by q(α/2). Construct the (1−α)100% equal-

tailed prediction interval for Xn+1 as

(2.4)
[
X̂n+1 + q(α/2) , X̂n+1 + q(1−α/2)

]
.

In Step 4, to ensure the stationarity of the bootstrap series, one usually generates n+m

pseudo residuals from F̂n for some large positive m to compute the pseudo-data
{
X∗

j

}
, and

then discard the first m data.

2.2. Bootstrap prediction intervals for ARMA models with unknown orders

In practice, the orders of ARMA models are usually unknown. In this subsection we
introduce the bootstrap prediction interval under this case.
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Given observations X1, ..., Xn from ARMA (p, q) model (2.1), to construct the predic-
tion interval for Xn+1, an intuitive method one may consider is the following

OB-ARMARoots Algorithm:

1. Determine the orders p0, q0 using, e.g., AIC criteria.

2. Apply B-ARMARoots Algorithm to construct the prediction interval for ARMA
(p0, q0) model.

Since AIC is biased when the sample size is small, [5] presented a bootstrap version
of AIC, denoted AIC*, which generally outperforms the original AIC. AIC* is obtained by
bootstrapping both the likelihood and the bias term of AIC. That is,

AIC∗ = −2 log
(
L(θ̂∗ |x∗)

)
+ (2K)∗ , K = p+ q ,

with K the number of parameters and L(·) the log likelihood function. In the case of ARMA
models, L(·) can be computed by using the estimated variance of the residuals.

Applying the procedure in [5], we can obtain the bootstrap distribution of the orders (p,q).
Next we propose the bootstrap algorithm of the prediction interval based on the bootstrap
distribution of the orders.

CB-ARMARoots Algorithm:

1. Determine a pair of maximum orders for ARMA model, say (P,Q).

2. Approximate an AR
(
p(n)

)
model to X1, ..., Xn. The order p(n) can be selected

by using the AIC criteria. Then construct the estimators of the autoregressive
coefficients ϕ̂1,n, ..., ϕ̂p(n),n using Yule–Walker method, compute the residuals

ε̂t,n = Xt −
p(n)∑
j=1

ϕ̂j,nXt−j .

3. Center the residuals, ε̃t,n = ε̂t,n−
(
n−p(n)

)−1∑n
j=p(n)+1 ε̂j,n, and compute the em-

pirical distribution of {ε̃t,n}

F̂ε,n(x) =
(
n− p(n)

)−1
n∑

t=p(n)+1

1[ε̃t,n≤x] .

4. Draw bootstrap pseudo residuals {ε∗t } from F̂ε,n, generate bootstrap sample {X∗
t }

by the recursion

X∗
t =

p(n)∑
j=1

ϕ̂j,nX
∗
t−j + ε∗t .

5. For bootstrap sample {X∗
t }, fit an exhaustive set of size (P+1)∗ (Q+1) of tentative

ARMA (p, q), compute AIC* for all the candidate pairs (p, q). Then (p̂∗, q̂∗) is
identified according to

(p̂∗, q̂∗) = arg min
p≤P, q≤Q

AIC∗(p, q) .
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6. Repeat Steps 4–5 B1 times, denote the number of the pairs (p, q) out of the group
of the B1 pairs as bp,q.

7. For any pair (p, q) in Step 6, Steps 1–7 in B-ARMARoots Algorithm are repeated
B2×bp,q times to obtain B2×bp,q values of X∗

n+1− X̂∗
n+1.

8. Repeat Step 7 to obtain B1×B2 values of X∗
n+1−X̂∗

n+1. Then compute the empiri-
cal distribution ofX∗

n+1−X̂∗
n+1 whose α/2-quantile is denoted by q(α/2). Construct

the (1−α)100% equal-tailed prediction interval for Xn+1 as

(2.5)
[
X̂n+1 + q(α/2) , X̂n+1 + q(1−α/2)

]
.

In Step 1, the choice of the maximum order (P,Q) is a priori and arbitrary. For
computational reasons and from a practical point of view, (P,Q) should not be too large.
For example, economic time series can usually be modeled as ARMA processes with orders
not greater than 3. Therefore, in the simulation studies in Section 4, we set P = Q = 5.

In Step 2, we use the AIC criteria to determine the order p(n), because, as discussed
in [16], the order selected from the AIC criteria is asymptotically efficient for the infinite
order autoregressive models. In the simulation studies we select p(n) that minimizes the AIC
evaluated over a range of [1, 10 log10(n)]. Moreover, we can also select the order p(n) by
iterative estimate of the spectral density on the residuals coming from the fitting procedure
of tentative autoregressive models until closeness to a constant is reached. That is, starting
from p̃ = 1, we fit an AR(p̃) model to X1, ..., Xn using e.g. Yule–Walker method and then
estimate the spectral density of the residuals. If the estimated spectral density is close to a
constant, stop and set p(n) = p̃. Otherwise, let p̃ = p̃+1, repeat the previous procedure until
the estimator of the spectral density is almost a constant.

In Step 6, bp,q stands for the number of (p, q) appeared among all the B1 pairs obtained
by Step 5. For example, let B1 = 1000, after Steps 4–5 are repeated 1000 times, we obtain
1000 pairs of orders (p̂∗, q̂∗) from Step 5. If, among all these pairs, (1, 1) appears 10 times,
then b1,1 = 10.

Again in Step 4, to ensure the stationarity of the bootstrap series, we use the techniques
mentioned at the end of Section 2.1.

3. ASYMPTOTIC PROPERTIES OF BOOTSTRAP PREDICTION INTER-
VALS

In this section we investigate the asymptotic properties of bootstrap prediction intervals
proposed in the previous section. Using the notations in [11], we define the asymptotic validity
and the asymptotic pertinence of bootstrap prediction intervals for ARMA (p, q) models.

Definition 3.1 (Asymptotic validity of bootstrap prediction interval). Let Ln, Un be
the functions of X1, ..., Xn. The interval [Ln, Un] is called a (1−α)100% asymptotically valid
prediction interval for Xn+1 if

P
(
Ln ≤Xn+1 ≤ Un

)
→ 1−α as n→∞ .
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Let

An =
p∑

j=1

aj Xn+1−j −
p∑

j=1

âM
j,nXn+1−j ,

Bn =
q∑

j=1

bj εn+1−j −
q∑

j=1

b̂Mj,n ε̂n+1−j,n

(
θ̂M
)
,

A∗
n =

p∑
j=1

âM
j,nXn+1−j −

p∑
j=1

âM,∗
j,n Xn+1−j

and

B∗
n =

q∑
j=1

b̂Mj,n ε̂n+1−j,n

(
θ̂M
)
−

q∑
j=1

b̂M,∗
j,n ε̂∗n+1−j,n

(
θ̂M,∗) .

Then, the predictive root and the bootstrap predictive root can be written as

Xn+1 − X̂n+1 = εn+1 +An +Bn

and
X∗

n+1 − X̂∗
n+1 = ε∗n+1 +A∗

n +B∗
n .

Definition 3.2 (Asymptotic pertinence of bootstrap prediction interval). A bootstrap
prediction interval is called asymptotically pertinent provided the bootstrap satisfies the fol-
lowing four conditions

(i) supx

∣∣P (εn+1 ≤ x
)
− P

(
ε∗n+1 ≤ x

)∣∣→p 0 as n→∞, where →p stands for con-
vergence in probability.

(ii) An +Bn →p 0 and A∗
n +B∗

n →p 0 as n→∞.

(iii)
∣∣P (anAn ≤ x

)
− P

(
anA

∗
n ≤ x

)∣∣→p 0 for some sequence an→∞, for all points x
where P

(
anAn ≤ x

)
is continuous.

(iv) ε∗n+1 and A∗
n are independent.

The following two theorems address the asymptotic validity and the stronger property
of asymptotic pertinence of the prediction interval (2.4) using B-ARMA Roots Algorithm.

Theorem 3.1. For ARMA model (2.1) with known orders p and q, the prediction

interval (2.4) is asymptotically valid.

Theorem 3.2. For ARMA model (2.1) with known orders p and q, the prediction

interval (2.4) is asymptotically pertinent.

The next theorem gives the asymptotic validity and the asymptotic pertinence of the
prediction interval (2.5) using CB-ARMARoots Algorithm.

Theorem 3.3. For ARMA model (2.1) with unknown orders p an q, the prediction

interval (2.5) is asymptotically valid and asymptotically pertinent.
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4. MONTE CARLO SIMULATIONS

In this section, we evaluate and compare the performance of the proposed CB-ARMA
algorithm based on the bootstrap distribution of the orders and the OB-ARMA algorithm
with pre-estimated fixed orders, as well as two types of bootstrap prediction intervals via
predictive roots and percentile methods, respectively.

In contrast to the predictive root methods adopted in this paper, the percentile method
uses the bootstrap distribution of X∗

n+1 to estimate the distribution of the future value Xn+1

instead of using the distribution of the bootstrap predictive root to estimate the distribution
of the true predictive root, where

X∗
n+1 =

p∑
k=1

âM,∗
k,n Xn+1−k +

q∑
k=1

b̂M,∗
k,n ε̂∗n+1−k,n

(
θ̂M,∗)+ ε∗n+1 .

Data are generated from the following eight models with sample sizes n = 25, 50, 75,
100, 200 and 400 for each model.

(1) ARMA(1,1) model:
Xt+1 = 0.5Xt + 0.5 εt + εt+1 ,

where errors {εt} are from N(0,1);

(2) ARMA(1,1) model:
Xt+1 = 0.5Xt + 0.5 εt + εt+1 ,

where errors {εt} are from Laplace distribution with mean 0 and variance 1;

(3) ARMA(1,2) model:

Xt+1 = 0.5Xt + 0.4 εt + 0.2 εt−1 + εt+1 ,

where errors {εt} are from N(0,1);

(4) ARMA(1,2) model:

Xt+1 = 0.5Xt + 0.4 εt + 0.2 εt−1 + εt+1 ,

where errors {εt} are from Laplace distribution with mean 0 and variance 1;

(5) ARMA(2,2) model:

Xt+1 = −0.5Xt + 0.4Xt−1 + 0.4 εt + 0.2 εt−1 + εt+1 ,

where errors {εt} are from N(0,1);

(6) ARMA(2,2) model:

Xt+1 = −0.5Xt + 0.4Xt−1 + 0.4 εt + 0.2 εt−1 + εt+1 ,

where errors {εt} are from Laplace distribution with mean 0 and variance 1.
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(7) ARMA(3,1) model:

Xt+1 = −0.5Xt + 0.2Xt−1 + 0.2Xt−2 + 0.4 εt + εt+1 ,

where errors {εt} are from N(0,1);

(8) ARMA(3,1) model:

Xt+1 = −0.5Xt + 0.2Xt−1 + 0.2Xt−2 + 0.4 εt + εt+1 ,

where errors {εt} are from Laplace distribution with mean 0 and variance 1.

We use four bootstrap methods to create B = 1000 bootstrap pseudo-series, respec-
tively, and construct the prediction intervals [L,U ] with nominal coverage levels of 95%
and 90%. For CB-ARMA algorithm, we choose B1 = B2 = 1000. To assess the corre-
sponding empirical coverage level (CVR) and average length (LEN) of the constructed in-
terval, we also generate 1000 one-step ahead future values Xn+1,j =

∑p
k=1 â

M
k,nXn+1−k +∑q

k=1 b̂
M
k,n ε̂n+1−k,n

(
θ̂M
)

+ ε∗j . Then, CVR and LEN are given by

CVR =
1

1000

1000∑
j=1

1[L,U ]

(
Xn+1,j

)
, LEN = U −L .

Tables 1–8 report the simulation results for eight models using four bootstrap methods.
Generally speaking, the CB-ARMA algorithm based on the bootstrap distribution of the
orders is generally superior to OB-ARMA algorithm. The bootstrap prediction intervals using
CB-ARMARoots method proposed in this paper uniformly improve CVRs as compared to
the other three methods, while in most cases the interval length is increased as a price to pay
for using CB-ARMA algorithm. But there are some exceptions that the LEN of CB-ARMA
intervals is smaller than the LEN of OB-ARMA intervals when n = 200 or n = 400 in Tables
2, 3, 5 and 8.

Comparing Tables 1–4 with Tables 5–8, we see that, when the true order of the ARMA
model is lower, the OB-ARMA algorithm performs worse with respect to the coverage level.
Because the AIC criterion tends to select higher order which results in overfitting.

From Tables 1–2 it is clear that, when the sample size is small (n ≤ 200) and the
order selected from AIC criterion is larger than the true model order, CB-ARMA algorithm
compares favorably with OB-ARMA algorithm. When the sample size is large (n = 400),
CB-ARMA algorithm still outperforms OB-ARMA algorithm in terms of coverage in most
cases, but the improvement is not as big as that for the case of small sample sizes. Table 8
implies that, for large sample size and high model order, CB-ARMA and OB-ARMA have
similar coverage level but OB-ARMA is slightly superior to CB-ARMA in some cases.

Moreover, ARMARoots algorithm generally offers improvements in the coverage accu-
racy comparing to ARMAPercentile algorithm, but using CB-ARMARoots method generally
increases the length of the intervals. However, when the errors have Laplace distribution,
there are several cases where CB-ARMARoots intervals have smaller length compared to
CB-ARMAPercentile method.
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Table 1: CVR and LEN for ARMA(1,1) with Normal innovations.

Normal
Nominal coverage 95% Nominal coverage 90%

CVR LEN CVR LEN

n=25

CB-ARMARoots 98.7% 6.51 95.9% 4.99
CB-ARMAPercentile 97.4% 5.65 94.2% 4.77
OB-ARMARoots 91.9% 4.55 84.7% 3.91
OB-ARMAPercentile 92.7% 4.59 88.8% 3.97

n=50

CB-ARMARoots 96.6% 4.47 91.4% 3.62
CB-ARMAPercentile 95.0% 4.37 89.8% 3.54
OB-ARMARoots 90.4% 3.96 88.6% 3.21
OB-ARMAPercentile 90.5% 3.84 88.2% 3.15

n=75

CB-ARMARoots 97.3% 5.61 95.0% 4.75
CB-ARMAPercentile 95.8% 5.23 92.5% 4.27
OB-ARMARoots 92.1% 4.23 90.3% 3.93
OB-ARMAPercentile 92.1% 4.22 90.5% 3.95

n=100

CB-ARMARoots 97.4% 4.45 92.9% 3.62
CB-ARMAPercentile 96.2% 4.31 92.0% 3.61
OB-ARMARoots 93.0% 3.65 90.6% 3.38
OB-ARMAPercentile 93.5% 3.68 90.6% 3.38

n=200

CB-ARMARoots 97.2% 5.59 93.2% 4.55
CB-ARMAPercentile 92.7% 5.39 85.8% 4.42
OB-ARMARoots 93.0% 4.99 85.9% 4.15
OB-ARMAPercentile 86.4% 5.01 76.6% 4.18

n=400

CB-ARMARoots 97.8% 4.62 94.6% 3.86
CB-ARMAPercentile 97.7% 4.60 94.5% 3.86
OB-ARMARoots 97.0% 4.36 93.5% 3.71
OB-ARMAPercentile 96.7% 4.20 93.3% 3.67
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Table 2: CVR and LEN for ARMA(1,1) with Laplace innovations.

Laplace
Nominal coverage 95% Nominal coverage 90%

CVR LEN CVR LEN

n=25

CB-ARMARoots 93.4% 3.26 80.8% 2.27
CB-ARMAPercentile 89.0% 3.04 79.0% 2.26
OB-ARMARoots 87.0% 2.89 68.3% 1.73
OB-ARMAPercentile 86.9% 2.89 68.7% 1.72

n=50

CB-ARMARoots 97.5% 5.20 94.7% 4.14
CB-ARMAPercentile 97.1% 5.23 92.0% 3.89
OB-ARMARoots 93.7% 5.14 91.8% 4.12
OB-ARMAPercentile 93.8% 5.13 91.4% 4.09

n=75

CB-ARMARoots 97.9% 5.55 94.9% 4.32
CB-ARMAPercentile 96.3% 5.25 91.6% 4.17
OB-ARMARoots 93.8% 4.51 87.9% 3.01
OB-ARMAPercentile 94.2% 4.84 87.2% 2.96

n=100

CB-ARMARoots 96.6% 4.70 93.8% 3.90
CB-ARMAPercentile 96.3% 4.67 93.7% 3.93
OB-ARMARoots 93.3% 4.21 89.0% 3.05
OB-ARMAPercentile 93.4% 4.24 89.7% 3.09

n=200

CB-ARMARoots 95.6% 4.66 91.3% 3.67
CB-ARMAPercentile 96.8% 4.88 92.0% 3.68
OB-ARMARoots 95.5% 4.83 90.8% 3.80
OB-ARMAPercentile 96.1% 4.80 91.8% 3.72

n=400

CB-ARMARoots 95.1% 4.71 90.5% 3.69
CB-ARMAPercentile 93.7% 4.69 88.5% 3.72
OB-ARMARoots 94.5% 4.67 89.3% 3.66
OB-ARMAPercentile 93.6% 4.65 88.3% 3.69
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Table 3: CVR and LEN for ARMA(1,2) with Normal innovations.

Normal
Nominal coverage 95% Nominal coverage 90%

CVR LEN CVR LEN

n=25

CB-ARMARoots 97.2% 5.59 93.2% 4.55
CB-ARMAPercentile 92.7% 5.39 85.8% 4.42
OB-ARMARoots 93.0% 4.99 85.9% 4.15
OB-ARMAPercentile 86.4% 5.01 76.6% 4.18

n=50

CB-ARMARoots 97.1% 5.31 95.1% 4.48
CB-ARMAPercentile 93.0% 5.51 88.4% 4.62
OB-ARMARoots 96.0% 4.94 93.5% 4.20
OB-ARMAPercentile 92.5% 4.95 87.5% 4.24

n=75

CB-ARMARoots 97.6% 4.89 94.8% 4.04
CB-ARMAPercentile 93.8% 4.87 90.0% 4.12
OB-ARMARoots 94.4% 4.65 90.8% 3.91
OB-ARMAPercentile 92.0% 4.65 89.1% 3.91

n=100

CB-ARMARoots 96.6% 4.51 92.1% 3.67
CB-ARMAPercentile 95.0% 4.42 90.1% 3.67
OB-ARMARoots 95.2% 4.00 90.0% 3.33
OB-ARMAPercentile 93.6% 4.00 88.2% 3.37

n=200

CB-ARMARoots 94.7% 3.82 91.3% 3.41
CB-ARMAPercentile 94.5% 3.79 90.6% 3.31
OB-ARMARoots 92.0% 3.54 88.7% 3.20
OB-ARMAPercentile 92.2% 3.57 88.5% 3.19

n=400

CB-ARMARoots 97.5% 4.46 93.8% 3.70
CB-ARMAPercentile 97.4% 4.46 93.7% 3.69
OB-ARMARoots 96.1% 4.51 94.1% 3.76
OB-ARMAPercentile 96.8% 4.49 93.8% 3.73
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Table 4: CVR and LEN for ARMA(1,2) with Laplace innovations.

Laplace
Nominal coverage 95% Nominal coverage 90%

CVR LEN CVR LEN

n=25

CB-ARMARoots 97.1% 5.17 93.0% 3.97
CB-ARMAPercentile 94.6% 5.97 89.9% 4.27
OB-ARMARoots 93.0% 4.06 88.2% 3.39
OB-ARMAPercentile 91.7% 4.06 84.5% 3.36

n=50

CB-ARMARoots 96.1% 4.68 93.6% 4.01
CB-ARMAPercentile 96.0% 4.66 93.9% 4.03
OB-ARMARoots 94.9% 4.16 92.4% 3.58
OB-ARMAPercentile 94.6% 4.08 91.6% 3.47

n=75

CB-ARMARoots 96.3% 4.90 92.6% 3.96
CB-ARMAPercentile 96.8% 4.84 93.5% 3.89
OB-ARMARoots 94.2% 4.80 90.2% 3.85
OB-ARMAPercentile 95.5% 4.77 92.3% 3.85

n=100

CB-ARMARoots 97.8% 5.46 92.9% 3.87
CB-ARMAPercentile 96.6% 5.19 92.2% 3.87
OB-ARMARoots 96.6% 4.87 87.7% 3.28
OB-ARMAPercentile 93.7% 4.72 88.4% 3.32

n=200

CB-ARMARoots 98.0% 5.62 94.4% 4.29
CB-ARMAPercentile 94.7% 5.80 89.5% 4.49
OB-ARMARoots 96.5% 4.67 91.5% 3.48
OB-ARMAPercentile 92.2% 4.62 84.6% 3.47

n=400

CB-ARMARoots 97.6% 5.88 94.8% 4.67
CB-ARMAPercentile 98.0% 6.06 95.6% 4.85
OB-ARMARoots 96.6% 5.44 93.4% 4.34
OB-ARMAPercentile 96.1% 5.32 91.6% 4.26
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Table 5: CVR and LEN for ARMA(2,2) with Normal innovations.

Normal
Nominal coverage 95% Nominal coverage 90%

CVR LEN CVR LEN

n=25

CB-ARMARoots 96.0% 4.51 93.0% 3.76
CB-ARMAPercentile 94.9% 4.46 90.8% 3.65
OB-ARMARoots 93.8% 4.49 91.0% 3.70
OB-ARMAPercentile 93.3% 4.49 90.3% 3.73

n=50

CB-ARMARoots 97.0% 4.34 90.5% 3.51
CB-ARMAPercentile 92.7% 3.94 88.4% 3.49
OB-ARMARoots 92.8% 3.77 89.2% 3.43
OB-ARMAPercentile 91.4% 3.76 87.1% 3.38

n=75

CB-ARMARoots 98.0% 5.26 94.6% 4.29
CB-ARMAPercentile 95.9% 5.29 91.9% 4.39
OB-ARMARoots 96.5% 4.27 92.4% 3.58
OB-ARMAPercentile 95.5% 4.29 91.5% 3.60

n=100

CB-ARMARoots 96.5% 5.51 93.5% 4.44
CB-ARMAPercentile 96.0% 5.96 92.4% 4.64
OB-ARMARoots 93.8% 4.31 89.5% 3.73
OB-ARMAPercentile 93.7% 4.25 89.1% 3.69

n=200

CB-ARMARoots 96.5% 4.36 92.6% 3.67
CB-ARMAPercentile 97.1% 4.37 93.2% 3.66
OB-ARMARoots 96.7% 4.31 92.9% 3.63
OB-ARMAPercentile 96.5% 4.19 92.6% 3.55

n=400

CB-ARMARoots 96.0% 4.07 91.3% 3.38
CB-ARMAPercentile 96.0% 4.08 91.2% 3.39
OB-ARMARoots 95.4% 4.05 91.0% 3.44
OB-ARMAPercentile 95.2% 4.03 89.9% 3.35
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Table 6: CVR and LEN for ARMA(2,2) with Laplace innovations.

Laplace
Nominal coverage 95% Nominal coverage 90%

CVR LEN CVR LEN

n=25

CB-ARMARoots 94.5% 4.05 87.6% 3.00
CB-ARMAPercentile 94.0% 3.99 86.6% 2.88
OB-ARMARoots 93.7% 3.96 80.0% 2.27
OB-ARMAPercentile 93.8% 3.98 78.5% 2.28

n=50

CB-ARMARoots 98.8% 6.56 96.9% 4.97
CB-ARMAPercentile 98.9% 6.59 97.5% 5.33
OB-ARMARoots 98.0% 5.79 96.4% 4.68
OB-ARMAPercentile 98.0% 5.79 96.5% 4.69

n=75

CB-ARMARoots 91.9% 3.73 88.7% 3.15
CB-ARMAPercentile 92.3% 3.75 89.2% 3.18
OB-ARMARoots 91.6% 3.69 88.4% 3.13
OB-ARMAPercentile 91.8% 3.69 88.8% 3.14

n=100

CB-ARMARoots 95.6% 4.43 90.8% 3.42
CB-ARMAPercentile 95.5% 4.43 90.7% 3.39
OB-ARMARoots 94.9% 4.36 90.1% 3.35
OB-ARMAPercentile 94.7% 4.32 90.1% 3.36

n=200

CB-ARMARoots 95.5% 4.44 91.2% 3.44
CB-ARMAPercentile 95.3% 4.38 91.2% 3.45
OB-ARMARoots 94.9% 4.44 90.0% 3.31
OB-ARMAPercentile 95.3% 4.43 90.5% 3.32

n=400

CB-ARMARoots 94.8% 4.32 90.1% 3.42
CB-ARMAPercentile 94.1% 4.25 88.6% 3.31
OB-ARMARoots 91.6% 4.12 84.8% 3.25
OB-ARMAPercentile 93.6% 4.10 88.6% 3.24
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Table 7: CVR and LEN for ARMA(3,1) with Normal innovations.

Normal
Nominal coverage 95% Nominal coverage 90%

CVR LEN CVR LEN

n=25

CB-ARMARoots 97.2% 4.44 93.6% 3.76
CB-ARMAPercentile 95.4% 5.44 88.5% 4.19
OB-ARMARoots 96.2% 4.12 92.1% 3.54
OB-ARMAPercentile 94.7% 4.35 87.3% 3.56

n=50

CB-ARMARoots 97.5% 4.38 92.7% 3.54
CB-ARMAPercentile 97.0% 4.29 91.2% 3.40
OB-ARMARoots 96.6% 4.23 89.6% 3.30
OB-ARMAPercentile 96.0% 4.16 89.6% 3.29

n=75

CB-ARMARoots 95% 4.01 90.8% 3.39
CB-ARMAPercentile 96.2% 4.16 89.2% 3.27
OB-ARMARoots 94.2% 3.79 89.3% 3.22
OB-ARMAPercentile 94.0% 3.76 88.2% 3.15

n=100

CB-ARMARoots 92.4% 3.57 86.0% 2.98
CB-ARMAPercentile 92.3% 3.56 86.2% 3.00
OB-ARMARoots 92.0% 3.45 86.0% 2.92
OB-ARMAPercentile 91.0% 3.38 86.4% 2.93

n=200

CB-ARMARoots 90.9% 3.77 84.4% 3.07
CB-ARMAPercentile 90.8% 3.76 84.2% 3.06
OB-ARMARoots 89.8% 3.69 83.4% 3.00
OB-ARMAPercentile 89.8% 3.68 83.3% 2.99

n=400

CB-ARMARoots 97.2% 4.39 90.1% 3.43
CB-ARMAPercentile 96.6% 4.37 88.0% 3.42
OB-ARMARoots 95.9% 4.11 88.4% 3.19
OB-ARMAPercentile 95.9% 4.15 87.2% 3.16
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Table 8: CVR and LEN for ARMA(3,1) with Laplace innovations.

Laplace
Nominal coverage 95% Nominal coverage 90%

CVR LEN CVR LEN

n=25

CB-ARMARoots 90.9% 3.30 84.2% 2.76
CB-ARMAPercentile 84.7% 2.94 83.3% 2.72
OB-ARMARoots 84.2% 2.94 82.8% 2.72
OB-ARMAPercentile 84.2% 2.94 82.6% 2.72

n=50

CB-ARMARoots 94.0% 4.55 88.2% 3.65
CB-ARMAPercentile 92.4% 4.43 86.2% 3.61
OB-ARMARoots 92.7% 4.36 86.6% 3.48
OB-ARMAPercentile 91.7% 4.31 84.0% 3.40

n=75

CB-ARMARoots 97.0% 5.14 91.6% 3.44
CB-ARMAPercentile 96.9% 5.04 91.5% 3.43
OB-ARMARoots 96.9% 5.13 91.2% 3.41
OB-ARMAPercentile 97.0% 5.18 91.5% 3.44

n=100

CB-ARMARoots 97.7% 5.40 94.2% 4.11
CB-ARMAPercentile 97.7% 5.38 93.8% 3.99
OB-ARMARoots 97.5% 5.44 91.8% 3.95
OB-ARMAPercentile 97.1% 5.28 93.4% 3.93

n=200

CB-ARMARoots 95.0% 4.40 90.3% 3.36
CB-ARMAPercentile 93.8% 4.27 89.5% 3.38
OB-ARMARoots 94.5% 4.09 90.6% 3.43
OB-ARMAPercentile 94.2% 4.11 89.9% 3.36

n=400

CB-ARMARoots 96.2% 4.59 91.9% 3.47
CB-ARMAPercentile 96.1% 4.56 92.0% 3.49
OB-ARMARoots 96.4% 4.65 92.4% 3.50
OB-ARMAPercentile 96.4% 4.61 92.5% 3.48
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5. CONCLUSIONS

In this paper we introduce the bootstrap algorithms for constructing the prediction
intervals of ARMA (p, q) models with unknown orders based on the bootstrap distribution
of orders. The asymptotic validity and asymptotic pertinence of the bootstrap prediction
intervals are shown to hold true. We conduct simulations for several ARMA models using
four bootstrap methods, i.e., CB-ARMARoots, CB-ARMAPercentile, OB-ARMARoots and
OB-ARMAPercentile. From the simulation results we see that the proposed CB-ARMARoots
algorithm outperforms the OB-ARMA methods using pre-estimated orders in terms of the
coverage accuracy of the prediction intervals, especially when the true order of the ARMA
model is low or when the sample size is small.

A. APPENDIX

Proof of Theorem 3.1: Note that if one can show that, as n→∞,

sup
x

∣∣∣P (Xn+1− X̂n+1 ≤ x
)
− P

(
X∗

n+1− X̂∗
n+1 ≤ x

)∣∣∣ →p 0 ,

then standard results imply that the quantiles of the distribution of X∗
n+1−X̂∗

n+1 can be used
to consistently estimate the quantiles of the distribution of Xn+1− X̂n+1. This leads to the
asymptotic validity of the prediction interval (2.4).

Let Yn = (Xn, ..., Xn−p+1), En =
(
εn, ..., εn−q+1

)
. From Steps 6 and 7 of B-ARMARoots

Algorithm, we obtain
Xn+1 =

(
Yn, En

)
θ + εn+1 ,

X̂n+1 =
(
Yn, Ên

(
θ̂M
))
θ̂M ,

X∗
n+1 =

(
Yn, Ên

(
θ̂M
))
θ̂M + ε∗n+1 ,

X̂∗
n+1 =

(
Yn, Ê

∗
n

(
θ̂M,∗)) θ̂M,∗ .

Thus

Xn+1 − X̂n+1 =
(
Yn, En

)
θ −

(
Yn, Ên

(
θ̂M
))
θ̂M + εn+1

=
(
Yn, En

)
θ −

(
Yn, En

)
θ̂M +

(
Yn, En

)
θ̂M −

(
Yn, Ên

(
θ̂M
))
θ̂M + εn+1

:= I1 + I2 + εn+1 .

Since θ − θ̂M = Op

(
1/
√
n
)
, I1 →p 0 as n→∞.

By Lemma 2.1 of [9],

εj(θ)− ε̂j,n
(
θ̂M
)

= −Z ′(j−1; θ, θ̂M
)T(

θ − θ̂M
)

for any 1 ≤ j ≤ n, where Z ′(j−1; θ, θ̂M
)

is uniformly bounded. Thus the
√
n-consistency of

the M -estimator implies that

(A.1) εj(θ)− ε̂j,n
(
θ̂M
)

= Op

(
1/
√
n
)
.
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From (2.9) of [9],
εj(θ) = εj + (1 + C)−j Op(1) ,

where C is a positive constant. For n− q+ 1 ≤ j ≤ n, (1 +C)−j Op(1) = Op

(
(1 +C)−n

)
=

op

(
1/
√
n
)
. Then

(A.2) εj(θ) = εj + op

(
1/
√
n
)
.

(A.1) and (A.2) yield
εj − ε̂j,n

(
θ̂M
)

= Op

(
1/
√
n
)

for n− q+ 1 ≤ j ≤ n. This implies that En− Ên

(
θ̂M
)

= Op

(
1/
√
n
)

and hence I2 →p 0 as
n→∞. That is

Xn+1 − X̂n+1 = εn+1 + op(1) .

Moreover, it follows from Theorems 3.1 and 4.1 of [9] that, as n→∞,

(A.3) sup
x

∣∣P (εn+1 ≤ x
)
− P

(
ε∗n+1 ≤ x

)∣∣ →p 0 ,

and
θ̂M,∗− θ̂M →p 0 .

Thus we obtain
X∗

n+1− X̂∗
n+1 = ε∗n+1 + op(1) .

Now Slutsky’s Lemma together with (A.3) concludes the proof Theorem 3.1.

Proof of Theorem 3.2: By (A.3), Condition (i) in Definition 3.2 holds true. In view
of the proof of Theorem 3.1, Condition (ii) also holds true. Moreover, Theorem 4.1 of [9] shows
that

√
nAn and

√
nA∗

n have the same asymptotic distribution. This implies Condition (iii).
Finally, Condition (iv) follows from the causality of Model (2.1). This completes the proof of
Theorem 3.2.

Proof of Theorem 3.3: Let Fn+1 be the distribution of Xn+1 given X1, ..., Xn, and
F ∗

n+1 be the bootstrap distribution derived from CB-ARMARoots Algorithm. To prove the
asymptotic validity, it suffices to show that

sup
x

∣∣F ∗
n+1(x)− Fn+1(x)

∣∣ →p 0 .

Note that
Fn+1(x) =

∑
p0,q0

Fn+1

(
x | p0, q0

)
P
(
p= p0, q = q0

)
,

F ∗
n+1(x) =

∑
p0,q0

F ∗
n+1

(
x | p0, q0

)
P ∗(p= p0, q = q0

)
.

For any ε > 0, there exists (P,Q) such that∑
p0>P

∑
q0

P
(
p= p0, q = q0

)
< ε ,

∑
p0

∑
q0>Q

P
(
p= p0, q = q0

)
< ε .
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Obviously,

∑
p0>P, q0≤Q

P
(
p= p0, q = q0

)
< ε ,

∑
p0≤P, q0>Q

P
(
p= p0, q = q0

)
< ε

and ∑
p0>P, q0>Q

P
(
p= p0, q = q0

)
< ε .

Similarly, there exists such (P ∗, Q∗) for P ∗(p = p0, q = q0
)
. Let (P0, Q0) =

(
max(P, P ∗),

max(Q,Q∗)
)
. Thus

sup
x

∣∣Fn+1(x)− F ∗
n+1(x)

∣∣ =

= sup
x

∣∣∣∣∣∑
p0,q0

{
Fn+1

(
x |p0, q0

)
P
(
p= p0, q = q0

)
− F ∗

n+1

(
x |p0, q0

)
P ∗(p= p0, q = q0

)}∣∣∣∣∣ ≤
≤ sup

x

∣∣∣∣∣∣
∑

p0≤P0, q0≤Q0

{
Fn+1

(
x |p0, q0

)
P
(
p= p0, q = q0

)
− F ∗

n+1

(
x |p0, q0

)
P ∗(p= p0, q = q0

)}∣∣∣∣∣∣
+ sup

x

∣∣∣∣∣∣
∑

p0≤P0, q0>Q0

{
Fn+1

(
x |p0, q0

)
P
(
p= p0, q= q0

)
− F ∗

n+1

(
x |p0, q0

)
P ∗(p= p0, q= q0

)}∣∣∣∣∣∣
+ sup

x

∣∣∣∣∣∣
∑

p0>P0, q0≤Q0

{
Fn+1

(
x |p0, q0

)
P
(
p= p0, q= q0

)
− F ∗

n+1

(
x |p0, q0

)
P ∗(p= p0, q= q0

)}∣∣∣∣∣∣
+ sup

x

∣∣∣∣∣∣
∑

p0>P0, q0>Q0

{
Fn+1

(
x |p0, q0

)
P
(
p= p0, q= q0

)
− F ∗

n+1

(
x |p0, q0

)
P ∗(p= p0, q= q0

)}∣∣∣∣∣∣ .

Observe that

sup
x

∣∣∣∣∣∣
∑

p0≤P0, q0≤Q0

{
Fn+1

(
x |p0, q0

)
P
(
p= p0, q = q0

)
− F ∗

n+1

(
x |p0, q0

)
P ∗(p= p0, q = q0

)}∣∣∣∣∣∣ ≤
≤ sup

x

∣∣∣∣∣∣
∑

p0≤P0, q0≤Q0

Fn+1

(
x |p0, q0

) (
P
(
p= p0, q= q0

)
− P ∗(p= p0, q= q0

))∣∣∣∣∣∣
+ sup

x

∣∣∣∣∣∣
∑

p0≤P0, q0≤Q0

(
Fn+1

(
x |p0, q0

)
− F ∗

n+1

(
x |p0, q0

))
P ∗(p= p0, q= q0

)∣∣∣∣∣∣
≤

∑
p0≤P0, q0≤Q0

∣∣∣P (p= p0, q= q0
)
− P ∗(p= p0, q= q0

)∣∣∣
+

∑
p0≤P0, q0≤Q0

sup
x

∣∣∣Fn+1

(
x |p0, q0

)
− F ∗

n+1

(
x |p0, q0

)∣∣∣ .
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Hence we obtain

(A.4)

sup
x

∣∣Fn+1(x)− F ∗
n+1(x)

∣∣ ≤ ∑
p0≤P0, q0≤Q0

∣∣∣P (p= p0, q= q0
)
− P ∗(p= p0, q= q0

)∣∣∣
+

∑
p0≤P0, q0≤Q0

sup
x

∣∣∣Fn+1

(
x |p0, q0

)
− F ∗

n+1

(
x |p0, q0

)∣∣∣
+

∑
p0≤P0, q0>Q0

P
(
p= p0, q= q0

)
+

∑
p0>P0, q0≤Q0

P
(
p= p0, q= q0

)
+

∑
p0≤P0, q0>Q0

P ∗(p= p0, q= q0
)

+
∑

p0>P0, q0≤Q0

P ∗(p= p0, q= q0
)

+
∑

p0>P0, q0>Q0

P
(
p= p0, q= q0

)
+

∑
p0>P0, q0>Q0

P ∗(p= p0, q= q0
)

≤
∑

p0≤P0, q0≤Q0

∣∣∣P (p= p0, q= q0
)
− P ∗(p= p0, q= q0

)∣∣∣
+

∑
p0≤P0, q0≤Q0

sup
x

∣∣∣Fn+1

(
x |p0, q0

)
− F ∗

n+1

(
x |p0, q0

)∣∣∣ + 6 ε .

[5] showed that ∣∣∣P (p= p0, q= q0
)
− P ∗(p= p0, q= q0

)∣∣∣ →p 0 ,

and Theorem 3.1 implies that

sup
x

∣∣∣Fn+1

(
x |p0, q0

)
− F ∗

n+1

(
x |p0, q0

)∣∣∣ →p 0 .

These, together with (A.4) and the arbitrariness of ε, yield that

sup
x

∣∣Fn+1(x)− F ∗
n+1(x)

∣∣ →p 0 .

Along similar lines of the proof of Theorem 3.2, the asymptotic pertinence of the prediction
interval (2.5) also holds true.
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