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1. INTRODUCTION

Sequential CUSUM methods for detecting parameter changes in distributions on the
real line is a well developed field with an extensive literature. The same cannot be said
about CUSUM methods to detect changes of location in non-Euclidean spaces such as the
circle. Distributions on the circle generate data which cannot generally be treated in the
same manner as linear data - see Fisher [3, Chapter 1 and Section 3.1], Mardia and Jupp
[15, Chapter 1] and Jammalamadaka and SenGupta [9, Section 1.2.2]. One impediment to
the application of linear CUSUM methods is the fact that a circle has no well separated
beginning and end. Whichever point is selected as the beginning point, the distance between
it and the endpoint is zero. A family of distributions with a fixed arc on the circle as support
could in principle be treated as if the sample space were a finite fixed interval on the real line.
However, the options involved in formulating a changepoint model would then be severely
curtailed: a model involving shifts of arbitrary size in the location of the distribution would
be out of the question. The distributions from which the data in our applications in Section
5 arise encompass the full circle and are therefore not amenable to analysis by linear CUSUM
methods.

Lombard, Hawkins and Potgieter [13] reviewed the current state of change detection
procedures for circular data. They also constructed distribution free CUSUMs for circular
data in which the numerical value of an in-control mean direction is specified, the objective
being to detect a change in mean direction away from this value. The situation is analogous
to that in which the well known Page [18] CUSUM is applied, namely detection of a change
away from a specified numerical value of the mean of a distribution on the real line. However,
in the examples treated in Section 5 of the present paper, no in-control circular mean value
is specified and the objective is to detect a change away from the unknown current circular
mean value, whatever it may be. Such a CUSUM, unlike that proposed by Lombard, Hawkins
and Potgieter [13], must be rotation invariant because the outcome of the analysis should not
depend upon which point on the circle is chosen as the origin of angular measurement.

The main contribution of the present paper is the construction of such invariant
CUSUMs for circular data. The CUSUMs we construct are non-parametric in the sense
that their form is not dependent upon an underlying parametrically specified distribution.
The in-control properties of the CUSUMs are shown in a Monte Carlo study to be quite
robust over a wide class of circular distributions, which makes them near distribution free
over this class. As far as we are aware, no CUSUMs of this nature for circular data have to
date been treated in the statistical literature.

Section 2 of the paper focuses on mean direction. We provide justifications for the
form of our CUSUM and discuss some computational details. In Section 3 we elaborate on
its in-control and out-of-control properties. The results of an extensive Monte Carlo study
are also reported. In Section 4 we briefly consider a CUSUM for detecting concentration
changes. Section 5 demonstrates the application of the CUSUMs to two sets of data and
Section 6 summarizes our results.
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2. DETECTING DIRECTION CHANGE

2.1. Derivation of the CUSUM statistic

Initially the data X1, X2, ... come from a non-uniform and unimodal continuous dis-
tribution F with unknown mean direction ν = ν0 on the circle [−π, π). This defines the
in-control state. (Since mean direction is a vacuous concept in a uniform distribution, the
latter is excluded from consideration. The CUSUM of Lombard and Maxwell [14], which is
rotation invariant, can be used to detect a change from a uniform to a non-uniform distribu-
tion.) We estimate ν by

(2.1) ν̂n = atan2(Sn, Cn)

where for n = 2, 3, ...,

(2.2) Cn =
n∑

j=1

cos Xj , Sn =
n∑

j=1

sinXj ,

and atan2 denotes the four-quadrant inverse tangent function

atan2(x, y) =


tan−1(x/y) if y > 0
tan−1(x/y) + πsign(x) if y < 0
(π/2)sign(x) if y = 0, x 6= 0
0 if y = x = 0,

the symbol tan−1 denoting the usual inverse tangent function with range restricted to
(−π/2, π/2). This non-parametric estimator is, in fact, also the maximum likelihood estima-
tor of mean direction in a von Mises distribution, which is arguably the best known among
circular distributions. The von Mises distribution with mean direction ν and concentration
κ, has density function

f(x) =
1

2πI0(κ)
exp[κ cos(x− ν)], −π ≤ x < π,

where I0 denotes the modified Bessel function of the first kind of order zero. The log-likelihood
ratio based on observations X1 + δ, ...,Xn + δ is, apart from a factor not depending upon δ,
given by

l(δ) = cos(Xn − δ − ν)

and a locally most powerful test of the hypothesis H0 : δ = 0 is therefore based on the deriva-
tive

dl(δ)
dδ

∣∣∣∣
δ=0

= sin(Xn − ν).

Replacing ν by ν̂n−1 leads to consideration of a CUSUM based on the statistic

(2.3) Vn = sin(Xn − ν̂n−1).

Despite the fact that Vn originates from the von Mises distribution, it has at least two purely
non-parametric origins that do not depend upon any assumption involving the type of the
underlying distribution.
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The first of these follows upon expanding the sine function and using the trigonometric
relations

sin(ν̂n−1) = Sn−1/Rn−1, cos(ν̂n−1) = Cn−1/Rn−1,

wherein

(2.4) R2
n = C2

n + S2
n.

This gives

(2.5) Vn = (Cn−1/Rn−1) sinXn − (Sn−1/Rn−1) cos Xn,

which is the (signed) area of the parallelogram spanned by the unit length vectors
(Cn−1, Sn−1)/Rn and (sinXn, cos Xn). The former of these vectors points in the mean di-
rection of the data X1, ..., Xn−1 while the latter vector points in the direction of the new
observation Xn.and the greater the angular distance between the two directions is, the larger
will be the area of the parallelogram. Thus, if a change in mean direction ν occurs at index
n, we can expect a succession of positive or negative values Vn, n > τ .

A second non-parametric argument leading to consideration of Vn comes from consid-
ering the change ν̂n − ν̂n−1 in the estimate of ν effected by a change in mean direction from
ν to ν + δ occurring at index n. We have

ν̂n = atan2 [Sn−1 + sin(Xn + δ), Cn−1 + cos(Xn + δ)]

= atan2(Sn−1/n + δ1,n, Cn−1/n + δ2,n)

where

nδ1,n = sin(Xn + δ) = sin Xn + O(δ),

nδ2,n = cos(Xn + δ) = cos Xn + O(δ).

Since both Sn−1/n and Cn−1/n converge as n →∞, and both δ1,n and δ2,n tend to zero, we
can make a Taylor expansion around (Sn−1/n, Cn−1/n). This gives

Rn−1(ν̂n − ν̂n−1) = nδ1,n
Cn−1

Rn−1
− nδ2,n

Sn−1

Rn−1
+ O(n−1)

=
Cn−1

Rn−1
sinXn −

Sn−1

Rn−1
cos Xn + O(δ) + O(n−1)

= Vn + O(δ) + O(n−1),

which shows again the relevance of Vn for detecting changes in mean direction.

The most important property of Vn as far as motivation for the present paper is con-
cerned is its rotation invariance: its numerical values are unaffected if all the data are rotated
through the same fixed, but unknown, angle. Thus, a CUSUM based on Vn will be applicable
in situations where no in-control direction is specified and the objective is merely to detect
deviations from this arbitrary in-control direction. Both examples treated in Section 5 of
the paper are of this nature. This contrasts with the distribution free CUSUMs in Lombard,
Hawkins and Potgieter [13], which require a specified numerical value of the in-control mean
direction.
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2.2. Construction of the CUSUM

When the process is in control, that is, when X1, X2, ... are independently and identi-
cally distributed (but with unknown mean direction), then

(2.6) ξn := (Vn − En−1 [Vn])/
√

Varn−1 [Vn], n ≥ 2,

is a martingale difference sequence with conditional variance 1. Here and elsewhere, En−1[·]
and Varn−1[·] denote expected value and variance computed conditionally upon X1, ..., Xn−1.
Using standard martingale central limit theory, we can show that cumulative sums of the ξn

will be asymptotically normally distributed regardless of the type of underlying distribution
- see, e.g. Helland [8, Theorem 3.2]. Furthermore, if ν = ν0 changes by an amount δ to
ν = ν0 + δ at observation Xτ+1 (τ being the last in-control observation) then by either of the
two arguments following (2.3), we can expect Eτ [ξτ+1] to be non-zero. Thus, a standard two-
sided normal CUSUM for data on the real line, applied to the ξn sequence, could be expected
to be effective in detecting a change away from the initial direction. Furthermore, the in-
control behaviour should be quantitatively similar to that of a standard normal CUSUM.

The conditional mean and variance in (2.6) depend on the first two moments of sinX

and cos X, which are unknown parameters. Accordingly, given observations X1, ..., Xn, we
estimate the conditional mean and variance non-parametrically by

Ên−1 [Vn] =
1

n− 1

∑n−1

i=1
sin(Xi − ν̂n−1) = 0

and

(2.7) V̂arn−1 [Vn] =
1

n− 1

∑n−1

i=1
sin2(Xi − ν̂n−1) := B2

n−1.

Then a computable CUSUM is obtained upon replacing ξn in (2.6) by

(2.8) ξ̂n = Vn/Bn−1.

The CUSUM is started at observation m + 1 by setting D±
i = 0 for i = 1, ...,m and

D+
m+n = max{0, Dm+n−1 + ξ̂m+n − ζ}

(2.9)

D−
m+n = min{0, Dm+n−1 + ξ̂m+n + ζ}

for n ≥ 1, where ζ is the reference value. The run length, N , is the first index n at which either
D+

m+n ≥ h or D−
m+n ≤ −h, where h is a control limit. The control limit is chosen to produce

a specified in-control average run length (ARL), which we denote throughout by ARL0. The
first m observations serve to make an initial estimate of the population moments after which
the estimates are updated with the arrival of each new observation. Since the the random
variables sin X and cos X are bounded, convergence of sample moments to population
moments would be quite rapid so that a relatively small number m of observations should
suffice to initialize the CUSUM.
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2.3. Implementation

Implementation of the CUSUM scheme requires an efficient method of updating the
summand ξ̂n−1 upon arrival of a new observation Xn. For this, set

sn = sinXn, cn = cos Xn

and

C(2)
n =

n∑
j=1

c2
j , S(2)

n =
n∑

j=1

s2
j , A(2)

n =
n∑

j=1

sjcj

and observe that

(2.10) (n− 1)B2
n−1 =

C2
n−1

R2
n−1

S
(2)
n−1 +

S2
n−1

R2
n−1

C
(2)
n−1 − 2

Cn−1Sn−1

R2
n−1

A
(2)
n−1.

In particular, we see that the Rn−1 factors in Vn and Bn−1 cancel, whence

(2.11) ξ̂n =
V ∗

n

B∗
n−1

:=
Cn−1 sinXn − Sn−1 cos Xn√(

C2
n−1S

(2)
n−1 + S2

n−1C
(2)
n−1 − 2Cn−1Sn−1A

(2)
n−1

)
/(n− 1)

.

Next, note the simple recursions

Sn−1 = Sn−2 + sn−1, Cn−1 = Cn−2 + cn−1,

S
(2)
n−1 = S

(2)
n−2 + s2

n−1, C
(2)
n−1 = C

(2)
n−2 + c2

n−1

and
A

(2)
n−1 = A

(2)
n−2 + sn−1cn−1.

To compute V ∗
n in (2.11) given Sn−2, Cn−2, cn−1, cn, sn−1 and sn, use the first of these recur-

sions. To compute Bn−1, given Sn−1, Cn−1, S
(2)
n−1, C

(2)
n−1, A

(2)
n−1, cn−1, and sn−1, use (2.10).

A rational basis for specifying a reference value ζ is also required. This aspect of the
CUSUM design is considered in Section 3.3 of the paper.

3. In-control properties

While the proposed CUSUM is not distribution free, the asymptotic in-control nor-
mality of CUSUMs of ξ̂n suggests that it may be nearly so. Then, use of standard normal
distribution CUSUM control limits should lead to an in-control ARL sufficiently close to the
nominal value to make the CUSUMs of practical use. The requisite control limit h can be ob-
tained from the widely available software packages of Hawkins, Olwell and Wang, [7] or Knoth
[12]. To check this expectation we estimated by Monte Carlo simulation the in-control ARL
over a range of unimodal symmetric and asymmetric distributions on the circle. Among the
multitude of possible distributions, the class of wrapped stable and Student t distributions,
together with their skew versions, represent a wide range of unimodal distribution shapes on
the circle. Simulated data from these distributions are easily obtained by generating random
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numbers Y from the distribution on the real line and then wrapping these around the circle by
the simple transformation Y (mod 2π). Algorithms for generating the random numbers Y are
given in Nolan [17] and in Azzalini and Capitanio [2]. The algorithms were implemented in
Matlab and the relevant programs are included in the supplementary material to this paper.

Some simulations were also run on data from other types of distribution which are
defined directly on the circle and not obtained by wrapping. Specifically, we used the sine-
skewed distributions developed Umbach and Jammalamadaka [22] and by Abe and Pewsey
[1]. In contrast to the wrapped stable and Student t distributions, the densities of these
distributions have closed form expressions, which facilitates model fitting and parameter es-
timation. The various unimodal distribution shapes available in these classes of distributions
are quite similar to those in the class of wrapped distributions. Since the behaviour of a
non-parametric CUSUM depends more on the general shape of the underlying distribution
than on the specific parameter values producing that shape, it comes as no surprise that
the in-control behaviour of the CUSUMs proposed here is quite similar in the two classes
(wrapped and directly constructed) of distributions. Since wrapped distributions are widely
known and understood, we frame our discussion in the context of these distributions. Some
simulation results for data from the sine-skewed distributions are included in the supplemen-
tary material to this paper. In the discussion that follows, Sα, 0 < α ≤ 2, denotes a stable
distribution with index α and tn, n ≥ 1 denotes a Student t-distribution with n degrees of
freedom.

In assessing the performance of the direction CUSUM under various symmetric in-
control and out-of-control distributions, we standardize the observations to a common mea-
sure of concentration. The concentration parameter κ of the von Mises(ν, κ) distribution
satisfies the relation

(3.1) κ = A−1(E[cos(X − ν)])

where A(κ) = I1(κ)/I0(κ) and I1 denotes the modified Bessel function of the first kind of order
1. In view of the status of the von Mises distribution among circular distributions, which
is much like that of the normal distribution among distributions on the real line, we use in
this paper κ in (3.1) as a measure of the concentration of a unimodal circular distribution
with mean direction ν. Thus, given κ and the density function of Y , the scale parameter σ

is chosen to make the distribution of the wrapped random variable

X = (σY )w := σY (mod 2π)

satisfy (3.1).

For instance, suppose Y has an Sα distribution with characteristic function

φ(t;α) = E[cos tY ] = exp(−|t|α).

Then (Jammallamadaka and SenGupta, [9, Proposition 2.1]),

E[cos(σY )w] = φ(σ;α) = exp(−σα)

so that

(3.2) σ = (− log( A(κ)))1/α.
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As another example, a Student t-distribution with α degrees of freedom has characteristic
function

φ(t;α) =
Kα/2(

√
αt)(

√
αt)α/2

2α/2−1Γ(α
2 )

where Kα/2 denotes the modified Bessel function of the second kind order α/2 and Γ denotes
the gamma function. Thus, in this case,

E[cos(σY )w] = φ(σ;α) =
Kα/2(

√
ασ)(

√
ασ)α/2

2α/2−1Γ(α
2 )

,

and σ is the solution to the equation

(3.3) Kα/2(
√

ασ)(
√

ασ)α/2 = 2α/2−1Γ(
α

2
)A(κ).

Some numerical values that were used in the simulation study which is reported next, are
shown in Table 1.

Table 1: Scale parameter σ solving (3.2) and (3.3).

Distribution κ = 1 κ = 2 κ = 3

S2 0.90 0.60 0.46

S1 0.81 0.36 0.21

S1/2 0.65 0.13 0.04

t3 1.07 0.64 0.46

t2 1.00 0.55 0.38

3.1. Symmetric distributions

We used standard normal control limits in 50, 000 Monte Carlo realizations of the two-
sided CUSUM in each of five underlying symmetric unimodal distributions: wrapped Student
t-distributions with 2 and 3 degrees of freedom and three wrapped stable distributions with
indexes α = 2 (the wrapped normal distribution), α = 1 (the wrapped Cauchy distribution,
which is also the wrapped Student t-distribution with 1 degree of freedom) and α = 1/2 (the
wrapped symmetrized Lévy distribution). Except for the wrapped normal, these are wrapped
versions of heavy-tailed symmetric distributions on the real line. Each of the distributions
was standardized to concentrations of κ = 1, 2 and 3 by specifying the scale parameter σ (see
Table 1) in accordance with (3.2) and (3.3). Two sets of simulations were run. In the first
set, the CUSUMs were initiated at n = 11, the first m = 10 observations serving to establish
initial estimates of the unknown parameters. In the second set we took m = 25, initiating
the CUSUM at n = 26.

We present in Tables 2.1 and 2.2 aggregated sets of results representing the general
picture. (Detailed tables are given in the supplementary material to this paper.) Each entry
is the average of five estimated in-control ARLs, one from each of the five distributions.
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The number in brackets shows the range of the five estimates. The tables show the results
for reference values ζ = 0 and ζ = 0.25.

Table 2.1: Average in-control ARL of the non-parametric CUSUM in
five symmetric distributions (m = 10). The number in brackets
is the range of the five estimates.

ARL0

ζ = 0 ζ = 0.25

κ = 1 κ = 2 κ = 3 κ = 1 κ = 2 κ = 3

250 242 (2) 243 (5) 242 (4) 236∗(4) 233∗ (2) 225∗ (20)

500 490 (3) 491 (6) 491 (10) 493 (9) 483 (8) 464∗ (52)

1000 1037 (9) 1039 (14) 1042 (20) 1018 (7) 997 (30) 958∗† (117)

Table 2.2: Average in-control ARL of the non-parametric CUSUM in
five symmetric distributions (m = 25). The number in brackets
is the range of the five estimates.

ARL0

ζ = 0 ζ = 0.25

κ = 1 κ = 2 κ = 3 κ = 1 κ = 2 κ = 3

250 244 (2) 244 (6) 245 (7) 242 (4) 239 (3) 234∗ (8)

500 492 (4) 493 (7) 493 (10) 498 (9) 491 (7) 478 (28)

1000 1039 (11) 1041 (10) 1045 (17) 1024 (13) 1005 (26) 971 (82)

All but the four starred estimates shown in the tables lie within 5% of the nominal
value. The exceptions, which all lie within 10%, occur at ζ = 0.25 and predominantly at the
smaller warmup m = 10. In the cell marked ∗† the five estimates were 874, 959, 976, 988
and 991, the outlier 874 coming from the very heavy tailed Lévy distribution. In fact, all
three discrepancies in this column are attributable to a substantial underestimate from the
Lévy distribution Clearly, the CUSUM is very near distribution free overall when a reference
constant close to zero is used. With a larger reference constant, as the concentration increases
so does the variation in true ARL between distributions. This behaviour can be explained to a
large extent by reference to the martingale central limit theorem upon which the construction
of the CUSUM rests. If the summand ξn is replaced by ξn ∓ ζ, the cumulative sums take the
form Sk ∓ kζ where

(3.4) Sk =
m+k∑

n=m+1

ξ̂n, k ≥ 1

and ζ is positive. The rationale behind the construction of the CUSUM consists essentially in
replacing the discrete time process Sk/h =

∑m+k
n=m+1ξ̂n/h, k ≥ 1, where h is the control limit,

by a continuous time Brownian motion process, W (t), t > 0. This is effected by changing
the time scale. We identify k with th2 where h is the control limit, and then replace Sk/h by
W (th2)/h, which has the same distribution as W (t). Similarly, kζ is replaced by th2ζ/h = thζ.
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Thus, (Sk ∓ kζ)/h, k ≥ 1, is replaced by W (t)− thζ. The validity of this procedure requires
that h tends to ∞. Now, if ζ is positive and h →∞ then the drift term thζ →∞, which
makes the resulting CUSUM useless. To avoid this effect, ζ must be chosen to be O(1/h),
which in practical terms means that ζ should be a small positive number or zero.

Next, the effect of any Phase I estimation on the in-control Phase II performance of the
CUSUM needs to be considered. Given ζ̂, let ĥ be the control limit which gives a standard
normal CUSUM an in-control ARL value ARL0. The simulation results in Tables 2.1, 2.2
and 3 together with the ensuing discussion indicate that the resulting Phase II CUSUM is
near distribution free provided that the reference constant is suitably close to zero. Thus,
regardless of the form of the underlying distribution, in such cases the true Phase II in-control
ARL will be nearly constant and acceptably close to the nominal value ARL0. This behaviour
is in stark contrast to that of parametric CUSUMs where estimating unknown parameters
from Phase I data and then pretending that the Phase I estimate is the true value, affects
irrevocably the in-control ARL of the Phase II CUSUM. Then there is no guarantee that
the in-control ARL will be equal to, or even near, the nominal value. This point has been
made repeatedly in the published literature, most recently by Keefe, et al. [11, Introduction
section] and Saleh et al. [20]. Hawkins and Olwell [6, pages 159–160] give a realistic example
in which the true in-control ARL of a normal distribution CUSUM, with variance estimated
from Phase I data, differs by two orders of magnitude from the nominal value.

In this connection, and to illustrate further the in-control behaviour of the nonpara-
metric CUSUM, we present next a result that is representative of a general pattern. Consider
a situation in which data arise from a wrapped t3 distribution with concentration parameter
κ - see (3.3). CUSUMs with reference constants ζ = 0 and ζ = 0.25 and nominal in-control
ARL 500 are run at κ = 1 and κ = 3. A Phase I sample of size m = 30 is used in each case
to obtain an initial value B∗

m of the sequence of denominators in the summands ξ̂n see (2.11).
The ”true” in-control ARLs, estimated from 50, 000 Monte Carlo trials in each instance, are
shown in Table 3.

Table 3: Estimated in-control ARL of direction CUSUM for data from
a wrapped t3 distribution with concentration parameter κ.
Warmup m = 30 and based on 50, 000 Monte Carlo trials.

κ ζ = 0 ζ = 0.25

κ = 1 492 499

κ = 3 492 482

In each of the six instances the 50, 000 values of B∗
m were grouped into bins of unit

length and the average of the corresponding run lengths in each bin calculated. Figure 1
shows plots of these average run lengths against the midpoints of the bins together with con-
fidence intervals of width equal to three estimated standard errors (Bins containing fewer than
100 observations, which contain the less commonly occurring values of B∗

m, are not shown.)
The figure thus provides a representation of the Phase II in-control ARL, conditional upon
the Phase I estimate B∗

m. It is only at the combination κ = 3, ζ = 0.25. that the Phase II
in-control ARL exhibits substantial systematic variation away from the corresponding uncon-
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ditional value in Table 3.

ζ = 0 ζ = 0.25

κ = 1
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Figure 1: In-control ARL (on the vertical axis), conditional upon the value of B∗
30

(on the horizontal axis), for two concentrations κ and two reference values ζ
in wrapped t3 distributions. The stars denote the ARL values and the dotted
lines are 95% confidence intervals.

3.2. Asymmetric distributions

To assess the effect of skewness in the underlying distribution on the in-control ARL, we
generated data from wrapped skew-normal distributions (Pewsey, [19]) with mean direction
zero and skewness parameters λ = 2 (lightly skewed), λ = 7 (moderately skewed) and λ =
∞ (heavily skewed), wrapped skew-stable Cauchy- and Lévy distributions with skewness
parameters β = 0.75 and 1.0 (Jammallamadaka and SenGupta, [9, Section 2.2.8]) and from
wrapping skew-t distributions (Jones and Faddy, [10]) with 2 and 3 degrees of freedom and
skewness parameters λ = 2, 7 and ∞ . The aggregated results are in Tables 4.1 and 4.2.
Comparing the results with those in Tables 2.1 and 2.2, we see that the general pattern is



472 F. Lombard, D.M. Hawkins and C.J. Potgieter

the same. The main contributors to the apparent degradation seen at ζ = 0.25, κ = 3 are the
excessively skewed distributions, namely the wrapped skew-normal and t-distributions with
skewness parameter λ =∞ and the wrapped Lévy distribution with skewness parameter β =1.
These distributions produce estimates that are consistently substantially lower than the rest.
This is perhaps not too surprising if one takes account of their shape. The supplementary
material to this paper has a Figure showing a plot of a wrapped skew-t density with 2 degrees
of freedom and skewness parameters λ = 0, 2 and 7 at κ = 3. The extreme skewness and high
concentration at λ = 7 magnifies the deleterious effect that a large reference value has on the
approximation to the nominal in-control ARL (Section 3.1, first paragraph after Table 2.2).
The degradation noted above largely disappears when such highly skewed distributions are
eliminated from consideration.

Table 4.1: Average in-control ARL of the non-parametric CUSUM in
thirteen asymmetric distributions (m = 10). The number in
brackets is the range of the thirteen estimates.

ARL0

ζ = 0 ζ = 0.25

κ = 1 κ = 2 κ = 3 κ = 1 κ = 2 κ = 3

250 241 (2) 240 (4) 238 (7) 235 (5) 228 (11) 217 (25)

500 489 (4) 487 (6) 484 (9) 490 (8) 474 (29) 448 (71)

1000 1039 (11) 1036 (9) 1031 (13) 1013 (13) 979 (61) 915 (178)

Table 4.2: Average in-control ARL of the non-parametric CUSUM in
thirteen asymmetric distributions (m = 25). The number in
brackets is the range of the thirteen estimates.

ARL0

ζ = 0 ζ = 0.25

κ = 1 κ = 2 κ = 3 κ = 1 κ = 2 κ = 3

250 243 (2) 242 (3) 242 (4) 240 (3) 235 (7) 229 (22)

500 491 (5) 490 (6) 489 (7) 494 (7) 484 (25) 463 (59)

1000 1039 (13) 1038 (10) 1038 (11) 1019 (17) 988 (65) 935 (161)

3.3. Choice of reference constant

We saw in Sections 3.1 and 3.2 that the CUSUM exhibits good in- and out-of-control
behaviour throughout when a small positive reference constant ζ is used. In analogy with
a normal distribution CUSUM, one would expect the CUSUM to then be quite adept at
detecting small changes but less effective if the change is of substantial magnitude. In the
latter case, efficient detection of a change requires use of a larger reference constant. Again
in analogy with a normal distribution CUSUM, an appropriate choice of reference constant
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for efficient detection of a rotation of size ≥ δ0 could be

ζ =
E[sin(X + δ0 − ν)− sin(X − ν)]√

Var[sin(X − ν)]
,

which can be estimated from some in-control Phase I data X1, ..., Xm by

(3.5) ζ̂ =
δ0

2
×

m−1
∑m

j=1 sin(Xj + δ0 − ν̂m)√
m−1

∑m
j=1 sin2(Xj − ν̂m)

.

Clearly, the variability of the estimator ζ̂ will depend on both the size m of the in-control
Phase I sample and on the type of the unknown underlying distribution. If ζ̂ turns out to be
too large given the known limitations of the CUSUM, one could use a reference value ζ̂ ≤ 0.25,
say, and solve for δ0 from (3.5). This δ0 would serve as an indication of the magnitude of
change that the CUSUM could be expected to detect efficiently.

3.4. Out-of-control properties

While the in-control behaviour of the CUSUM is similar to that of a CUSUM for normal
data on the real line, the same is not true in respect of its out-of-control behaviour. In fact,
we show next that a consequence of the continual updating of the mean direction estimator
ν̂n from (2.1) is that after a change of mean direction the CUSUM will return eventually
to what appears to be an in-control state. This behaviour is similar to that of self-starting
CUSUMs for linear data, and is a warning to users of the need for corrective action as soon
as a change is diagnosed- see Hawkins and Olwell [6, Section 7.1].

Suppose there is a rotation of size δ from n = τ +1 onwards and set Yi = Xi+τ +δ, i ≥ 1.
Then, using the approximations

1
τ + k

≈ 0 and
k

τ + k
≈ 1

for large k and fixed τ ≥ m, the mean direction estimated from the data X1, ..., Xτ , Y1, ..., Yk

is

ν̂τ+k = atan2

(
Sτ +

∑k
i=1 sinYi

τ + k
,
Cτ +

∑k
i=1 cos Yi

τ + k

)

≈ atan2

(∑k
i=1 sinYi

k
,

∑k
i=1 cos Yi

k

)
:= ν̂k(Y ),

which is the estimated mean direction of Yi, 1 ≤ i ≤ k. Thus, for sufficiently large k, ν̂τ+k is in
effect estimating the mean direction of the post-change observations Y1, ..., Yk. Consequently,

ξ̂τ+k+1 ≈
sin(Yk+1 − ν̂k(Y ))√

k−1
∑k

i=1 sin2(Yi − ν̂k(Y ))

which, because of its rotation invariance, has the same distribution as the in-control variable
ξ̂k.
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A further consequence of this behaviour is that, in the absence of a substantial amount
of in-control Phase I data there is no simple manner in which to assess, a priori, the out-of-
control ARL

E[N − τ |N > τ ]

of the CUSUM. Here N − τ is the time taken for an alarm to be raised after a change has
occurred, the expected value being calculated upon an assumption of no false alarms prior
to the change. Nevertheless, simulation results indicate that the out-of-control ARL of the
two-sided CUSUM behaves in an appropriate manner, namely that the out-of-control ARL
is less than the in-control ARL0 and that it decreases as the size of the shift increases from
0 to π/2. For shifts of size in excess of π/2,the ARL starts increasing again. This behaviour
is a result of the periodic nature of the CUSUM summand. Furthermore, that choosing
ζ = 0 leads to substantially larger out-of-control ARLs compared to those produced by small
positive reference constants.

To illustrate that the general pattern of out-of-control ARL behaviour mimics that
of a normal distribution CUSUM, Table 5 gives out-of-control ARL estimates from 10, 000
simulations involving in each case shifts δ of sizes ranging from π/8, to 7π/8 in a wrapped
Cauchy distribution with κ = 2, a warmup sample size m = 25 and reference constants ζ = 0,
ζ = 0.125 and ζ = 0.25. The in-control ARL was 1, 000 throughout. The results are for shifts
induced respectively at observation τ = 100 and at observation τ = 200.

If a sufficiently large amount of in-control Phase I data are available to allow a non-
trivial nonparametric estimate of the underlying density to be made (Taylor, [21]), the in-
control and out-of-control properties of the CUSUM can be fathomed by sampling from the
estimated density.

Table 5: Estimated out-of-control ARL of direction CUSUM for data from
a wrapped Cauchy distribution with concentration parameter κ = 2.
Warmup m = 25. Changepoints τ = 100 and τ = 200.

δ
τ = 100 τ = 200

ζ = 0 ζ = 0.125 ζ = 0.25 ζ = 0 ζ = 0.125 ζ = 0.25

δ = π/8 123 49 82 82 37 39

δ = π/4 50 17 14 40 17 13

δ = π/2 31 11 8 28 11 8

δ = 3π/4 38 16 12 37 15 12

δ = 7π/8 58 29 26 61 31 28

3.5. Bimodal distributions

Thus far attention has focussed on unimodal distributions. However, many of the prop-
erties of the proposed CUSUM remain intact when the underlying distribution is multimodal.
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Here, we restrict attention to bimodal densities of the form

(3.6) f(θ) = pg(θ) + (1− p)g(θ − µ0)

with 1/2 ≤ p < 1 and a unimodal density g on the circle. Since the concentration of f will
be less than that of g, one finds that the approximation to the nominal in-control ARL often
improves markedly, even at a reference constant 0.25. For instance, let g in (3.6) be a von
Mises density with high concentration κ = 3.42 and mean 0. Then, if p = 1 (which is the
unimodal case), and with ζ = 0.25 and a nominal in-control ARL of 500, the estimated true
in-control ARL is 461. On the other hand if p = 1/3 and µ0 = −3π/4, in which case f is
bimodal with concentration equal to 1, the estimated true in-control ARL of 492 is much
closer to the nominal value.

On the other hand, the ability of the CUSUM to detect a change of size δ 6= 0 decreases
as µ0 in (3.6) nears ±π and vanishes when f in (3.6) is antipodal, that is, when p = 1/2
and |µ0| = π. Put another way, the CUSUM is then unable to distinguish between f(θ) and
f(θ − δ). The ostensible reason for this behaviour is that an antipodal distribution does
not possess a well defined mean or median Nevertheless, a non-trivial CUSUM will result
upon replacing the data Xi by 2Xi. This replacement transforms f(θ) to g(θ/2)/2, which is
unimodal - see, for instance, Jammalamadaka and SenGupta [9, page 48].

4. CONCENTRATION CHANGE

For data X1, ..., Xn from a von Mises(ν, κ) distribution, locally most powerful tests of
the hypothesis κ = κ0 (6= 0) are based on the statistic

∑n
i=1 cos(Xi − ν). However, the fact

that κ is not a scale parameter of the distribution of X complicates matters. Hawkins and
Lombard [5] showed that even if the mean direction ν is known, control limits for a specified
in-control ARL in a von Mises CUSUM for detecting change away from κ0 depend upon κ0.
Nonetheless, the locally most powerful test statistic suggests application of a CUSUM based
on

V ′
n = cos(Xn − ν̂n−1), n ≥ 1.

Again, there are purely non-parametric interpretations of V ′
n, devoid of any reference to a

von Mises distribution. For instance, since

V ′
n = (Cn−1/Rn−1) cos Xn + (Sn−1/Rn−1) sinXn,

we see that V ′
n is the (signed) length of the projection of the vector yn = (sinXn, cos Xn) in the

direction ν̂n−1 ≈ ν of the unit vector (Sn−1/Rn−1, Cn−1/Rn−1). If the concentration increases
(decreases) after n = τ , the average of V ′

τ+1, ..., V
′
τ+k will tend to be greater (smaller) than

the average of V ′
1 , ..., V

′
τ . Another non-parametric interpretation rests on the fact that R2

n in
(2.4) is a frequently used non-parametric measure of concentration in a sample X1, ..., Xn.
Simple algebra shows that the relative change in R2

n−1 brought about by the next observation
Xn is

R2
n

R2
n−1

− 1 =
2V ′

n

Rn−1
+

1
R2

n−1 ,

again justifying consideration of V ′
n.
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Proceeding in much the same manner as in Section 2.2, a CUSUM of

(4.1) ξ̂′n =
cos(Xn − ν̂n−1)−Rn−1/(n− 1)

B′
n−1

where

B′
n =

√
n−1

∑n

i=1
cos2(Xi − ν̂n)−R2

n/n2,

is suggested to detect a change in concentration.

A change in the numerical value of κ has a much greater effect on the denominator B′
n−1

in (4.1) than a change of direction has on the denominator Bn−1 in (2.8). Furthermore, the
distribution of V ′

n is heavily skewed. Consequently, a CUSUM based on ξ̂′n cannot be expected
to have a near distribution free in-control ARL over a wide range of reference values. Indeed,
simulation results indicate that one is essentially restricted to ζ = 0 and a large (≥ 500)
nominal in-control ARL if a satisfactory degree of in-control distribution freeness is to be had
over the families of distributions considered in Section 3.

5. APPLICATIONS

In the two applications treated here we define the sample mean direction of data
X1, ..., Xn by

ν̂n = atan2
(∑n

i=1
sinXi,

∑n

i=1
cos Xi

)
and the sample concentration, by

κ̂n = A−1
(
n−1

∑n

i=1
cos(Xi − ν̂n)

)
= A−1

(
Rn

n

)
,

in analogy with (3.1). After a CUSUM signals, we estimate the changepoint τ in the con-
ventional manner. That is, if the CUSUM signals with D+ (D−) at n = N , the changepoint
estimate is the last index n < N at which D+

n = 0 (D−
n = 0). Both data sets are included in

the supplementary material to the paper.

5.1. Acrophase data

The data, kindly provided by Dr. Germaine Cornelissen of the University of Minnesota
Chronobiology Laboratory, come from ambulatory monitoring equipment worn by a patient
suffering from episodes of clinical depression. The time at which systolic blood pressure
reaches its maximum value on a given day is called the acrophase. Monitoring the acrophase
can provide an automated early warning of a possible medical condition before it becomes
clinically obvious. We show the results of a two-sided CUSUM analysis with reference con-
stant ζ = 0.25 (recommended reference value from (3.5) to enable detection of a 30 degree,
i.e. π/6 = 0.52 radian, rotation) and control limits h = ± 8.59, which leads to an in-control
ARL of approximately 500. The first m = 30 observations are used to find initial estimates
of the required parameters.
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The left-hand panel in Figure 2 shows the CUSUM. The upper CUSUM D+ signals
at n = 66 and the changepoint estimate is τ̂ = 57, that is, 27 observations after the warmup
period. The right-hand panel in Figure 2 shows the CUSUM after restarting at n = 88,
observations 58 through 87 serving as a warmup to estimate the new direction. A sustained
decrease in the lower CUSUM D− is evident. The CUSUM signals at n = 120, a changepoint
being indicated at n = 110. Continuing in this manner produces the results in Table 6, which
shows the progress of the CUSUMs as the data accrue. The estimate of the mean direction
and concentration in each segment is shown in the third and fourth columns of the table.
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Figure 2: Direction CUSUMs of acrophase data. Left-hand panel: CUSUM after start at n = 31.
Right-hand panel: CUSUM after restart at n = 88. The vertical dotted lines indicate the
location of the estimated changepoints. The dashed horizontal lines indicate the control
limits.

Table 6: Acrophase data: Progression of CUSUMs.

segment signal at ν̂ κ̂

1−57 66 −1.70 (263◦) 1.86

58−110 120 −0.76 (317◦) 0.78

111−140 178 −1.90 (251◦) 2.60

141−241 255 −1.19 (292◦) 2.51

242−282 299 −0.90 (308◦) 0.31

283−306 none −.007 (360◦) 1.68

Figure 3 shows dot plots, constructed after the fact, of the data in the six identified
segments together with an indication of the mean in each segment. A noticeable feature
in this plot is the first two increases followed by a sudden large decrease to more or less
the original mean value. This is indicative of an external intervention in the treatment of
the patient to reset the acrophase. After that, there follows a sustained increase, this time
without any apparent external intervention. The figure also reveals some variation between
the concentrations within the six segments — see the fourth column in Table 6. This does
not affect the validity of the CUSUM since there is no assumption that the concentrations
in the various segments must all be the same. In retrospect, it seems that the CUSUM has
done a good job of identifying location changes.
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Figure 3: Rose plots of the data in each of the six identified segments of the acrophase data.
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5.2. Pulsar data

Lombard and Maxwell [14] developed a rotation invariant cusum to detect deviation
from a uniform distribution on the circle and applied it to some data consisting of arrival times
of cosmic rays from the vicinity of a pulsar. The objective is to detect periods of sustained high
energy radiation. Following a standard procedure in Astrophysics, the data were wrapped
around a circle of circumference equal to the period of the pulsar. If no high energy radiation
is present the wrapped data should be more or less uniformly distributed on the circumference
of the circle, while a non-uniform distribution should manifest itself during periods of high
energy radiation. They found that the first 190 observations could reasonably be assumed
to have arisen from a uniform distribution. We now apply to observations 191 through 1250
the concentration CUSUMs from Section 4 of the present paper to detect further changes in
concentration. The in-control ARL of the chart is set at 500 observations with reference value
ζ = 0 (again, the recommended reference value from (3.5) to enable detection of a 30 degree,
i.e. π/6 = 0.52 radian, rotation) and control limits ±30.46. The first m = 50 observations
are used to obtain initial estimates of the required means, variances and covariance of sin X

and cos X.
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a uniform distribution in this segment. Hawkins and Lombard (2015) applied a

retrospective segmentation method to these data. Except for a short segment

[191− 207], which falls within the warmup set used to initiate the CUSUM, the

results of the CUSUM analysis agree quite well with their results. The numerical

details are shown in Table 7.

200 300 400 500 600 700 800 900 1000 1100 1200

Observation number

-120

-100

-80

-60

-40

-20

0

20

40

C
U

S
U

M

Figure 4: Concentration CUSUM of the pulsar data.

Retrospective

segment ν̂ κ̂

191-207 -0.41 1.89

208-573 -1.58 0.35

574-1250 - 0.0

CUSUM

segment ν̂ κ̂

191-522 -1.44 0.35

523-1250 - 0.06

Table 7: Pulsar data. Segments delineated by sequential
CUSUM and retrospective segmentation

6. Summary

We develop non-parametric rotation invariant CUSUMs for detecting changes

in the mean direction and concentration of a circular distribution. The CUSUMs

are designed for situations in which the initial mean direction and concentration

Figure 4: Concentration CUSUM of the pulsar data.

The full extent of the concentration CUSUM, without restarts, is shown in Figure 4.
The first signal is at n = 191+495 = 686 and the changepoint is estimated at n = 191+331 =
522. The estimated concentration in the segment [192, 522] is 0.35. Thereafter, the lower
CUSUM D− shows a sustained decrease to the end of the data series. In fact, if the CUSUM
is restarted at n = 523, a changepoint is indicated at n = 523. Such a pattern is indicative of
a more or less continuous decrease in concentration as the series progresses. The estimated
concentration of the observations in the segment [523, 1250] is 0.06, suggesting a uniform
distribution in this segment. Hawkins and Lombard [4] applied a retrospective segmentation
method to these data. Except for a short segment [191− 207], which falls within the warmup
set used to initiate the CUSUM, the results of the CUSUM analysis agree quite well with
their results. The numerical details are shown in Table 7.
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Table 7: Pulsar data. Segments delineated by sequential CUSUM
and retrospective segmentation.

Retrospective

segment ν̂ κ̂

191−207 −0.41 1.89

208−573 −1.58 0.35

574−1250 — 0.0

CUSUM

segment ν̂ κ̂

191−522 −1.44 0.35

523−1250 — 0.06

6. SUMMARY

We develop non-parametric rotation invariant CUSUMs for detecting changes in the
mean direction and concentration of a circular distribution. The CUSUMs are designed for
situations in which the initial mean direction and concentration are unspecified, the objective
being to detect a change from the initial values, whatever the latter may be. Monte Carlo
simulation results indicate that the CUSUMs have in-control average run lengths that are
acceptably close to the nominal values over a wide class of symmetric and asymmetric cir-
cular distributions. Two applications of the methodology to data from Health Science and
Astrophysics are discussed.

SUPPLEMENTARY MATERIAL

Supplementary material for this publication is available on GitHub at:
https://github.com/cpotgieter/nonparametric-cusums

The supplementary files consist of a pdf document with detailed simulation results,
an Excel file with the datasets used in this paper, and the Matlab code for implementing
the CUSUM procedures proposed here.
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