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Abstract:

• Standard methods of variance component estimation used in the Fay-Herriot model for small areas
can produce problems of inadmissible values (negative or zero) for these variances. This implies
that the empirical best linear unbiased predictor of a small area mean does not take into account
the variance of the random effect of the corresponding area, reducing it to a regression estimator.
In this paper, we propose an approach based on the expectation-maximization (EM) algorithm to
solve the problem of inadmissibility. As stated in the theory of variance component estimation, we
confirm through Monte Carlo simulations that the EM algorithm always produces strictly positive
variance component estimates. In addition, we compare the performance of the proposed approach
with two recently proposed methods in terms of relative bias, mean square error and mean square
predictor error. We illustrate our approach with official data related to food security and poverty
collected in Mexico, showing their potential applications.
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1. INTRODUCTION

Surveys are intended not only to estimate population target parameters, but also to
estimate characteristics for a variety of subpopulations commonly known as domains or areas.
An area is considered as small if the sample domain is not sufficiently large to have a direct
estimate of the area parameter with adequate precision. Then, the goal of the small area
estimation is to produce reliable estimates of subpopulation target parameters for areas with
small samples or even where the area is not sampled at all; see Pfeffermann [30] (2013).

Currently, the small area estimation methodology is playing an important role in both
public and private sectors. Different government agencies around the world, for example,
the Bureau of Labor Statistics and Census Bureau in the United States (US), Ministry of
Social Development of Chile, National Administrative Department of Statistics in Colombia,
National Council for the Evaluation of Social Development Policy in Mexico and Office of
National Statistics in the United Kingdom (UK) are adopting such a methodology. This is
due to the need for reliable estimates on parameters of interest in specific areas or domains;
see Rao and Molina [35] (2015).

Because of the wide acceptance about small area estimation in recent years, several
models have been developed, applied and studied. Pfeffermann [30] (2013), Rao [34] (2003)
and Rao and Molina [35] (2015) reviewed the advances in this methodology from its beginnings
to the present. Small area estimation methodology can be divided into two parts (Lohr [24,
pp. 518-522], 1999): (i) design-based techniques (for example, direct, synthetic and composite
estimators) and (ii) model-based techniques (for example, area-level models and unit-level
models); see Coelho and Pereira [6] (2011), Pereira and Coelho [29] (2012) and Rueda et al.

[36] (2018). On the one hand, in design-based techniques, the existence of a model is not
recognized. Implicit models are sometimes proposed as an assisting tool, linking a number
of small areas according to administrative or census records, which is considered as auxiliary
data. Then, even when the model is misspecified, design-based properties can hold; see
Lehtonen and Veijanen [22] (2009). On the other hand, model-based techniques rely on
explicit super-population models (Datta [7], 2009) and include area-level models, relating each
small area characteristic to auxiliary data that are available for each area. Area-level modeling
is often described by the popular Fay-Herriot (FH) model (Fay and Herriot [13], 1979),
which has been widely used in small area estimation. Li and Lahiri [23] (2010) emphasized
that the main reasons for its widespread usage include: (i) its simplicity, (ii) its ability to
protect the confidentiality of microdata, and (iii) its ability to produce design-consistent
estimators. Other advantages of the FH model are that it takes into account the sampling
design (level 1 model) and only requires area auxiliary variables that, in general, are more
easily available in practice than unit auxiliary variables. Applications of the FH model
have been extensive, mainly in the study of poverty and other related socio-demographic
variables. For a reference in the context of big data sources in small area estimation through
the FH model, see Marchetti et al. [25] (2015). A recent application of the FH model for
poverty mapping in Chile can be found in Casas-Cordero et al. [2] (2016). Also, model-
based techniques include unit-level models relating the unit values of the response variable
to auxiliary variables for each individual in the survey; see Coelho and Casimiro [5] (2008).
A well-known model proposed by Battese et al. [1] (1988) is a particular example of a
unit-level model, corresponding to a nested regression model. Area and unit model-based
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techniques in small area estimation are presented by Jiang and Lahiri [20] (2006), Datta [7]
(2009) and Datta and Ghosh [8] (2012), among others. Linear mixed models have played
a crucial role in model-based techniques. Note also that these techniques can be based on
either Bayesian or frequentist methods. In this paper, we consider a frequentist model-based
technique employing the FH model under a non-informative sampling design. For informative
sampling, see Pfeffermann and Sverchkov [31] (2007).

A problem detected in small areas, using the FH model, is that the standard methods
utilized for variance component estimation may produce a negative or zero value. For more
details about these methods, see Fay and Herriot [13] (1979), Prasad and Rao [33] (1990) for
moment estimation (PR method), and Datta and Lahiri [9] (2000) for maximum likelihood
(ML) and residual or restricted ML (RML) estimation. Note that the empirical best linear
unbiased predictor (EBLUP) of a small area mean does not take into account the variance of
the random effect for the corresponding area, reducing it to a regression estimator. Li and
Lahiri [23] (2010) and Yoshimori and Lahiri [42] (2014) solved this problem adjusting the
associated likelihood function.

The expectation-maximization (EM) algorithm is a popular iterative approach to esti-
mate parameters by the ML method in models with incomplete data (unobserved or missing).
This algorithm is used in many applications of mixed models, because there the unobserved
data occur naturally. A comprehensive account of the EM algorithm is found in Laird and
Were [21] (1982), van Dyk [39] (2000) and McLachlan and Krishnan [26] (2008). Some advan-
tages of the EM algorithm are the following: (i) it is more stable than other algorithms, due
to its property of monotone convergence (Laird and Were [21], 1982); (ii) it is more robust to
starting values than other algorithms (Demidenko [11], 2013); and (iii) it generates positive
definite matrix estimates if the starting matrix is positive definite (Thompson and Meyer
[38], 1986; Searle et al. [37], 2006; Demidenko [11], 2013; El-Leithy et al. [12], 2016). An
important feature related to (iii), stated by Searle et al. [37, pp. 297-298] (2006), is that the
iterations will always remain in the parameter space, since the ML estimation is performed
for the complete data.

The main objectives of this research are: (i) to review the estimation methods proposed
at date on the topic; (ii) to propose an alternative approach for avoiding a negative or zero
value in the variance component estimates, using the EM algorithm in both ML (MLEM)
and RML (RMLEM) methods; (iii) to evaluate the proposed approach by Monte Carlo (MC)
simulations; and (iv) to illustrate potential applications of our approach with official data
related to food security and poverty. The proposed approach is compared to the methods
presented in Li and Lahiri [23] (2010) and Yoshimori and Lahiri [42] (2014).

The outline of this paper is as follows. Section 2 introduces background to the FH
model, the EBLUP of a small area mean, and a measure of its uncertainty. In addition, in
this section, some variance component estimation methods are reviewed, highlighting their
advantages and shortcomings. In Section 3, we propose an approach based on the EM algo-
rithm to get positive values for the variance component estimates. In Section 4, the results of
an MC simulation are presented to assess the performance of the proposed approach, compar-
ing it to two alternative methods recently introduced. In Section 5, we apply our approach
to estimate the small area means of monthly per capita expenditure in a food security and
poverty study conducted in Mexico; see CIESIN [4] (2005). Conclusions and future research
are discussed in Section 6.
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2. THE FAY-HERRIOT MODEL

2.1. Formulation

Suppose that there are m small areas labeled as i = 1, ...,m. Assuming a p× 1 vector of
observed values xi = (xi1, ..., xip)> for auxiliary variables is available for each area i, Fay and
Herriot [13] (1979) proposed their model to improve the direct estimator θ̂i used to compute
the true small area mean θi, consisting of the following two levels:

• Level 1 (sampling model): θ̂i|θi
IND∼ N(θi, ψi),

• Level 2 (linking model): θi
IND∼ N(x>i β, σ2), i = 1, ...,m,

where “IND” stands for “independent”, ψi is the known variance of the sampling error, β =
(β1, ..., βp)> is a vector of unknown regression coefficients to be estimated, and σ2 is the
unknown variance of the area-specific random effect to be estimated. Level 1 accounts for the
sampling variability of the survey estimates θ̂i of θi, whereas Level 2 links θi to the vector of
p known area-specific auxiliary variables; see Jiang and Lahiri [20] (2006) and Li and Lahiri
[23] (2010). Then, the FH model can be written as

(2.1) θ̂i = x>i β + bi + εi, i = 1, ...,m,

where bi
IID∼ N(0, σ2) are independent and identically distributed (IID) area-specific random

effects with unknown σ2 to be estimated from the data, and εi
IND∼ N(0, ψi) represent sampling

errors with known variances ψi. Although in this paper we are considering ψi as known, in
practical cases when the variances ψi are not available, Fay and Herriot [13] (1979) employed
generalized variance functions (Wolter [41, Chapter 7], 2007) to estimate them. In addition,
it is assumed that bi and εi are independent.

2.2. Estimation of a small area mean

We are interested in estimating or predicting the small area mean θi = x>i β + bi, as
well as in obtaining a measurement of uncertainty associated with that prediction. Under
the model given in (2.1), the best predictor (BP) of θi, which minimizes the mean squared
error (MSE), can be expressed by a weighted average of the direct estimator θ̂i and the
regression-synthetic estimator x>i β, being it defined as

(2.2) θ̂ BP
i = (1−Bi)θ̂i +Bi x

>
i β, i = 1, ...,m,

with the weight 0 < Bi < 1 defined as Bi = ψi/(σ2 + ψi). Note that (1−Bi) is a function
of the variance ratio σ2/ψi and measures the uncertainty when estimating θi relative to the
total variance σ2 + ψi; see Rao and Molina [35] (2015). In addition, the parameter σ2 is a
measure of homogeneity of the areas after accounting for the auxiliary variables xi. If σ2 is
known, β can be obtained by the standard weighted least squares estimator β; see Mert [27]
(2015). Hence, by replacing it in (2.2), one gets the best linear unbiased predictor (BLUP)



The Fay-Herriot Model in Small Area Estimation 617

of θi expressed as

(2.3) θ̂ BLUP
i = (1−Bi)θ̂i +Bi x

>
i β, i = 1, ...,m,

where

β =

m∑
i=1

xiθ̂i/(σ2 + ψi)

m∑
i=1

xix>i /(σ2 + ψi)
.

The BLUP of θi given in (2.3) depends on σ2, which is unknown in practical applications.
Replacing σ2 in (2.3) with a general estimator, that for now we denote by σ̂ 2 (see details in
Section 2.3), we obtain the EBLUP of θi as

(2.4) θ̂ EBLUP
i = (1− B̂i)θ̂i + B̂i x

>
i β̃,

where B̂i and β̃ are the estimators of Bi and β when σ2 is replaced with σ̂ 2 in (2.2) and
(2.3), respectively. Note that the model given in (2.1) can be rewritten in matrix terms as

(2.5) Y = Xβ + Imb + ε,

where Y = (Y1, ..., Ym)>, with Yi = θ̂i, X = (x1, ...,xm)> is of full rank, Im is the m×m

identity matrix, β is defined as above, b = (b1, ..., bm)> and ε = (ε1, ..., εm)>. In addition,
as mentioned in scalar terms, b and ε are independently distributed with b ∼ Nm(0,G)
and ε ∼ Nm(0,S), for G = σ2Im and S = diag{ψ1, ..., ψm}. The model defined in (2.5) is
a particular case of a more general linear mixed model (Datta et al. [10], 2005) with its
variance-covariance matrix taking the form V = G + S.

2.3. Estimation of σ2

Note that the EBLUP given in (2.4) depends on the way how σ2 is estimated. Different
methods have been proposed in the literature to estimate σ2; see Fay and Herriot [13] (1979)
and Prasad and Rao [33] (1990). In those cases when the estimate of σ2 takes a negative value,
Prasad and Rao [33] (1990) suggested to truncate the negative estimate at zero. They also
showed that the probability of having a negative estimate goes to zero as m→∞; see Datta
[7] (2009). As an alternative, the ML method has been widely used in small area estimation;
see Jiang and Lahiri [20] (2006) and Rao and Molina [35] (2015). It was employed by Datta
and Lahiri [9] (2000) in the context of the FH model, in whose case the log-likelihood function
takes the form

(2.6) `ML(σ2,β;Y ) = c− 1
2

log(|V |)− 1
2
(Y −Xβ)>V −1(Y −Xβ),

where c is a constant that is independent of σ2. By differentiating (2.6) with respect to β

and σ2, we have

∂`ML(σ2,β;Y )
∂β

= X>V −1Y −X>V −1Xβ,(2.7)

∂`ML(σ2,β;Y )
∂σ2

=
1
2
(Y −Xβ)>V −2(Y −Xβ)− 1

2
tr(V −1).(2.8)
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Thus, equating (2.7) and (2.8) to zero, and solving them simultaneously with respect to σ2

and β, we obtain the ML estimators of σ2, denoted by σ̂ 2
ML, and of β given in (2.3). If

we replace β by β̃ in (2.6), we have the corresponding profile log-likelihood (PML) function
expressed as

(2.9) `PML(σ2;Y ) = c− 1
2

log(|V |)− 1
2
Y >PY ,

where P = V −1 − V −1X(X>V −1X)−1X>V −1. Equating (2.9) to zero and solving it with
respect to σ2, we have an estimator of σ2 identical to that obtained through (2.6) by means
of the ML method; see Jiang [19] (2007). Consequently, the associated estimate computed
with the PML method is not analyzed here. Datta and Lahiri [9] (2000) obtained both the
asymptotic variance and bias of σ̂ 2

ML, given respectively by

V [σ̂ 2
ML] =

2
tr(V −2)

+ o(m−1),(2.10)

Bias[σ̂ 2
ML] =

tr(P − V −1)
tr(V −2)

+ o(m−1).

Note that the ML estimates tend to underestimate the variance components and then the
RML estimation is preferred; see Pinheiro and Bates [32] (2004). A feature of the RML
method is that, when estimating variance components, it takes into account the degrees of
freedom involved in estimating the fixed effects, which is not considered by the ML method;
see Searle et al. [37] (2006). Several alternative derivations of the RML method have been
presented in the literature; see Harville [18] (1977), Jiang [19] (2007) and references therein.

Verbyla [40] (1990) proposed an approach which divides the likelihood function into two
independent parts, one related to the fixed effect (Y1 = L>1 Y ) and the another part related
to the residual contrasts Y2 = L>2 Y , where L = [L1 L2] is a non-singular matrix, with Y

given in (2.5) and L1 and L2 being m× p and m× (m− p) matrices, respectively, both of
full column rank, which are chosen to satisfy L>1 X = Ip and L>2 X = 0. Therefore, Y is
transformed as

L>Y =
[
L>1 Y
L>2 Y

]
=
[
Y1

Y2

]
∼ Nm

([
β
0

]
,

[
L>1 V L1 L>1 V L2

L>2 V L1 L>2 V L2

])
.

The probability density function (PDF) of L>Y can be expressed as the product of the
conditional PDF of Y1 given Y2 and the marginal PDF of Y2. Hence, the log-likelihood
function of L>Y is `(β, σ2;L>Y ) = `(β, σ2;Y1|Y2) + `(σ2;Y2). Since Y1 is a p× 1 vector
and `(σ2;Y2) is not a function of β, the fixed effects are estimated from `(β, σ2;Y1|Y2). Once
β has been estimated, there is no information left for estimating σ2 and `(σ2;Y2) is used
for estimating σ2. The function `(σ2;Y2) is known as residual or restricted log-likelihood
function, from which the RML estimator is obtained. Then, under the FH model defined in
(2.5), it is expressed as

(2.11) `RML(σ2;Y2) = c− 1
2

log(|X>V −1X|)− 1
2

log(|V |)− 1
2
Y >PY .

Thus, the RML estimator of σ2, σ̂ 2
RML namely, is generated as a solution of the equation

∂`RML(σ2;Y2)
∂σ2

= 0.
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Datta and Lahiri [9] (2000) showed that V [σ̂ 2
RML] is identical to V [σ̂ 2

ML] given in (2.10),
whereas σ̂ 2

RML is asymptotically unbiased for σ2. All above estimators hold the following
properties: (i) they are m

1
2 -consistent, that is, σ̂ 2− σ2 = O(m

1
2 ); (ii) they are even functions

of Y and hence σ̂ 2(−Y ) = σ̂ 2(Y ); and (iii) they are invariant functions under translation
and so σ̂ 2(Y + Xd) = σ̂ 2(Y ), for any d ∈ Rp and for all Y ; see Datta et al. [10] (2005).
In contrast to these properties (i)-(iii), the FH, ML, PR and RML methods can provide
non-admissible negative or zero values for the estimates of σ̂ 2, especially when the number
of small areas is low; see Li and Lahiri [23] (2010) and Yoshimori and Lahiri [42] (2014).
However, as happens in practice with any of these methods, the estimate σ̂ 2 = max(σ̂ 2

M, 0) is
used, where “M” indicates the FH, PR, ML or RML method. Then, if σ̂ 2 = 0 (when the Level
2 model is perfect), the EBLUP in (2.4) reduces to the simple regression-synthetic estimator
(since B̂i = 1), which typically has an overshrinking problem. Thus, as mentioned by Li and
Lahiri [23] (2010), this situation is unrealistic, because Level 2 model cannot be perfect and
σ̂ 2 should be always greater than zero. To solve the problem of a negative or zero value for
the variance component estimate, various methods have been proposed. Li and Lahiri [23]
(2010) adjusted the ML (LML) method defining a product of σ2 and a standard likelihood
function, introducing the adjusted log-likelihood function `LML(σ2;Y ) = `(σ2;Y ) + log(σ2),
where `(σ2;Y ) may be chosen from (2.9) or (2.11). Its maximization produces the LML and
Li-Lahiri RML (LRML) estimators of σ2, denoted as σ̂ 2

LML and σ̂ 2
LRML, respectively. Both

σ̂ 2
LML and σ̂ 2

LRML are strictly positive, even for small m. Li and Lahiri [23] (2010) showed
that their asymptotic variances are as given in (2.10). In addition, the corresponding biases
are expressed as

Bias[σ̂ 2
LML] =

tr(P − V −1) + 2/σ2

tr(V −2)
+ o(m−1),

Bias[σ̂ 2
LRML] =

2/σ2

tr(V −2)
+ o(m−1).

Yoshimori and Lahiri [42] (2014) proposed other adjusted ML method, with adjusted likeli-
hood function defined as the product of a function h(σ2) and a standard likelihood function.
In this case, the adjusted log-likelihood function is defined as

(2.12) `YML(σ2;Y ) = `(σ2;Y ) + log(h(σ2)),

where `(σ2;Y ) expressed in (2.12) can be chosen from (2.9) or (2.11), and h(σ2) = (tan−1(tr−
(Im −B)))

1
m , with B = diag{B1, ..., Bm} and Bi as defined in (2.2). Thus, the Yoshimori-

Lahiri ML (YML) and Yoshimori-Lahiri RML (YRML) estimators of σ2, denoted by σ̂ 2
YML

and σ̂ 2
YRML, respectively, are obtained by maximizing (2.12) with respect to σ2. Both σ̂ 2

YML

and σ̂ 2
YRML are also strictly positive, even for small m. Yoshimori and Lahiri [42] (2014)

showed that their asymptotic variances are identical as in (2.10). In addition, we have that

Bias[σ̂ 2
YML] =

tr(P − V −1)
tr(V −2)

+ o(m−1)

and σ̂ 2
YRML is asymptotically unbiased for σ2.

2.4. Uncertainty of the EBLUP

A measure of uncertainty of the EBLUP of θi given in (2.4) is obtained by its mean
squared predicted error (MSPE), also known as MSE or predicted mean squared error (Rao
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and Molina [35, Section 5.2, p. 119], 2015), defined by

(2.13) MSPE[θ̂ EBLUP
i ] = E[θ̂ EBLUP

i − θi]2,

which, under certain regularity conditions, can be decomposed as (Datta et al. [10], 2005)

(2.14) MSPE[θ̂ EBLUP
i ] = g1i(σ2) + g2i(σ2) + E[θ̂ EBLUP

i − θ̂ BLUP
i ]2,

where

g1i(σ2) =
σ2ψi

σ2 + ψi
, g2i(σ2) =

ψ2
i

(σ2 + ψi)2
x>i

 m∑
j=1

1
σ2 + ψi

xjx
>
j

−1

xi.(2.15)

The term g1i(σ2) is of order O(1), which captures the uncertainty of the BP given in (2.2),
whereas the term g2i(σ2) is of order O(m−1), capturing the uncertainty due to the estimation
of β. The last term in (2.14) considers the uncertainty due to the estimation of σ2. Ignoring
this term seriously underestimates the MSPE. However, there is no closed-form expression
available for it, but an approximation of order O(m−1) can be expressed by (Li and Lahiri
[23], 2010)

E[θ̂ EBLUP
i − θ̂ BLUP

i ]2 = g3i(σ2) + o(m−1),

where

(2.16) g3i(σ2) =
ψ2

i

(σ2 + ψi)3
V [σ̂ 2].

Therefore, a second-order approximation to MSPE[θ̂ EBLUP
i ] in (2.13) or (2.14), under certain

regularity conditions, is defined as

(2.17) MSPE[θ̂ EBLUP
i ] = g1i(σ2) + g2i(σ2) + g3i(σ2) + o(m−1).

It is noteworthy that both terms g1i(σ2) and g2i(σ2) given in (2.17) do not depend on the
estimation method for σ2 or Bi, but σ2 affects the term g3i(σ2) through V [σ̂ 2]. For the FH
model, Datta et al. [10] (2005) and Datta [7] (2009) showed that the term g3i(σ2) is the
smallest in the ML and RML methods, but it is the largest in the PR and FH methods.

Note that MSPE[θ̂ EBLUP
i ] defined in (2.17) depends on σ2, which is unknown and

hence cannot be used to asses the uncertainty of the EBLUP for a certain data set. Then,
it is of interest to obtain a second-order unbiased estimator of MSPE(θ̂ EBLUP

i ), denoted as
M̂SPE[θ̂ EBLUP

i ], which must satisfy

E[M̂SPE[θ̂ EBLUP
i )]−MSPE[θ̂ EBLUP

i ] = o(m−1).

Datta and Lahiri [9] (2000) derived a standard second-order unbiased approximation to the
MSPE of the EBLUP, which is valid for all estimation methods of σ2 discussed in this paper,
and given by

(2.18) M̂SPE[θ̂ EBLUP
i ] = g1i(σ̂ 2) + g2i(σ̂ 2) + 2g3i(σ̂ 2)− B̂ 2

i B̂ias[σ̂ 2],

where g1i(σ̂ 2), g2i(σ̂ 2) and g3i(σ̂ 2) are defined in (2.15) and (2.16), respectively, when σ2 is
replaced by σ̂ 2 and B̂ias[σ̂ 2] is a second-order unbiased estimator of Bias[σ̂ 2]. It is important
to note that a disadvantage of the method proposed by Li and Lahiri [23] (2010) for estimating
σ2 is that it can yield a negative value for the corresponding MSPE; see Yoshimori and Lahiri
[42] (2014).
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3. EM ALGORITHM IN THE ML ESTIMATION OF σ2

3.1. The EM algorithm

Let Yo be the random vector corresponding to the observed data yo, and θ the parame-
ter of interest corresponding to a d×1 vector with parameter space Θ. The vector yo is viewed
as being incomplete and is regarded as an observable function of the complete data. The ran-
dom vector Yc = (Y >

o ,U>)> corresponds to the complete-data vector yc = (y>o ,u
>)>, where

U is the random vector associated with u, the vector of unobserved or missing data. Let
`(θ|yo) be the log-likelihood function for θ based on observed data. The EM algorithm
approaches the problem of solving the incomplete-data likelihood equation ∂`(θ|yo)/∂θ = 0
indirectly by proceeding in an iterative form in terms of the complete-data log-likelihood
function, `(θ|yc). As it is unobservable, it is replaced by its conditional expectation given
Yo = yo, using a current estimate of θ. Let θ(0) be a starting value for θ. Then, on the first
iteration, the E-step of the EM algorithm requires the calculation of

(3.1) Q ≡ Q(θ|θ(0)) = E[`(θ|Yc)|Yo,θ
(0)],

whereas its M-step needs the maximization of Q(θ|θ(0)) with respect to θ over the parameter
space Θ. Hence, we choose θ(1) such that Q(θ(1)|θ(0)) ≥ Q(θ|θ(0)), for all θ ∈ Θ. The E-step
and M-step must be iterated until reaching convergence, for example, when |`(θ(r+1)|Yo)−
`(θ(r)|Yo| < 10−5, where θ̂ (r+1) is the current ML estimate of θ and θ̂ (r) is its previous
estimate; see McLachlan and Krishnan [26, pp. 18-20] (2008). Thus, the (r + 1)-th iteration
of the EM algorithm consists of an E-step followed by an M-step described as:

E-step: Given θ̂ = θ̂(r), compute Q(θ|θ̂(r)) = E[`(θ|Yc)|Yo, θ̂
(r)].

M-step: Find θ̂(r+1) maximizing Q(θ|θ̂(r)) such that Q(θ(r+1)|θ̂(r)) ≥ Q(θ|θ̂(r)), for
all θ ∈ Θ.

3.2. The EM algorithm in the ML method for small area estimation

To solve the problem of negative or zero values when estimating the strictly positive
variance components mentioned in Section 2.3, we propose to use the EM algorithm. Then,
we derive the MLEM and RMLEM approaches. Let Yo = Y , U = b and θ = (β, σ2)>. From
(2.5), we have that

Yc =
(

Y
b

)
∼ N2m

([
Xβ
0

]
,

[
V σ2Im

σ2Im σ2Im

])
,

with V = G + S given below (2.5). Then, the distribution of b conditional on Y is b|Y =
y ∼ Nm(σ2V −1(y −Xβ), σ2(Im − σ2V −1)). Thus, the log-likelihood function for θ based
on yc can be expressed as `(β, σ2;yc) = `(β, σ2;y|b) + `(σ2; b). Hence, we have that

(3.2) `(β, σ2;yc) = c− 1
2

log(|S|)− 1
2
ε>S−1ε− 1

2
log(|σ2Im|)−

1
2σ2

b>b,

where ε = y −Xβ − b and c is a constant that is independent of σ2.
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Let Q1 ≡ Q1(β, σ2|β(0), σ2(0)
). By eliminating the constant term in (3.2) and according

to (3.1), we obtain Q1 = E[`(β, σ2|Yc)|Y ,β(0), σ2(0)
] as

(3.3)

Q1 = −1
2

log(|S|)− 1
2
E[ε>S−1ε|Y ,β(0), σ2(0)

]− 1
2

log(|σ2Im|)−
1

2σ2
E[b>b|Y ,β(0), σ2(0)

].

After some algebraic steps, we get

(3.4) E[ε>S−1ε|Y ,β(0), σ2(0)
] = tr(S−1(ε̃1 ε̃>1 + Var[b1])),

with σ2(0)
and β(0) being starting values for σ2 and β, respectively, where ε̃1= E[ε|Y ,β(0)σ2(0)

]
= Y −Xβ − b̃1, and

b̃1 =
(

1
σ2(0)

Im + S−1

)−1

S−1(Y −Xβ(0)), Var[b1] =
(

1
σ2(0)

Im + S−1

)−1

.

In addition, we have that

(3.5) E[b>b|Y ,β(0), σ2(0)
] = tr( b̃1 b̃>1 + Var[b1]),

so that substituting (3.4) and (3.5) in (3.3), we obtain

Q1 = −1
2

log(|S|)− 1
2
ε̃>1 S−1ε̃1−

1
2

log(|σ2Im|)−
1

2σ2
b̃>1 b̃1−

1
2
tr
((

1
σ2

Im + S−1

)
Var[b1]

)
.

Maximizing Q1 with respect to β and σ2, we get

β̂ = (X>S−1X)−1X>S−1(Y − b̃1), σ̂2
(1)

=
1
m

(
b̃>1 b̃1 + tr

(
1

σ2(0)
Im + S−1

)−1
)
.

Thus, the first main result of this study based on the EM algorithm, for the ML method used
in the FH model, is described as follows:

Step 0. Set r = 0 and choose starting values β(0) and σ2(0).

Step 1. For r ≥ 0, calculate

b̃
(r+1)
1 =

(
1

σ2(r)
Im + S−1

)−1

S−1(Y −Xβ̂(r)).

Step 2. For r ≥ 0, compute

β̂(r+1) = (X>S−1X)−1X>S−1(Y − b̃
(r+1)
1 ),

σ̂2
(r+1)

=
1
m

b̃
(r+1)>

1 b̃
(r+1)
1 + tr

(
1

σ̂2
(r)

Im + S−1

)−1
 .

Step 3. Iterate Steps 1 and 2 from r = 1 until reaching convergence when the differ-
ence in absolute value between the iterations (r + 1)-th and r-th is less than
a small preset precision value (for example10−5).

The EM algorithm generates positive definite matrix estimates in Step 2, if the starting
matrix is positive definite according to Thompson and Meyer [38] (1986), Searle et al. [37]
(2006), Demidenko [11] (2013) and El-Leithy et al. [12] (2016) in the context of mixed models.
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3.3. EM algorithm in the RML method for small area estimation

The joint distribution of b and Y2 (defined in Section 2.3) is given by(
Y2

b

)
∼ N2m−p

([
0
0

]
,

[
L>2 V L2 σ2L>2
σ2L2 σ2Im

])
.

From results of the multivariate normal distribution and after some matrix operations, we
have that the distribution of b conditional on Y2 is b|Y2 = y2 ∼ Nm(σ2Py2, σ

2(Im − σ2P )).
Since we propose to use the EM algorithm to estimate σ2 with the RML method, we rewrite
the log-likelihood function for Yc in (3.2) as

(3.6) `(σ2;Yc) = c− 1
2

log(|S|)− 1
2
ε>S−1ε− 1

2
log(|σ2Im|)−

1
2σ2

b>b.

Then, we maximize it conditional on Y2.

Let Q2 ≡ Q2(σ2|σ2(0)
). By eliminating the constant term in (3.6) and according to

(3.1), we have that Q2 = E[`(σ2|Yc)|Y2, σ
2(0)

] is such that

(3.7) Q2 = −1
2

log(|S|)− 1
2
E[ε>S−1ε|Y2, σ

2(0)
]− 1

2
log(|σ2Im|)−

1
2σ2

E[b>b|Y2, σ
2(0)

].

After some algebraic steps, we obtain

(3.8) E[ε>S−1ε|Y2, σ
2(0)

] = tr(S−1(ε̃2 ε̃>2 + Var[b2])),

where Var[b2]= σ2(0)
(Im−σ2(0)

P (0)), ε̃2 = E[ε|Y2, σ
2(0)

] = Y−Xβ− b̃2, with b̃2 = σ2(0)
P (0)Y

and P (0) being a starting value for P . In addition, we have that

(3.9) E[b>b|Y2, σ
2(0)

] = tr(b̃2 b̃>2 + Var[b2]),

so that substituting (3.8) and (3.9) in (3.7), it conducts to

Q2 = −1
2

log(|S| − 1
2
ε̃>2 S−1ε̃2 −

1
2

log(|σ2Im|)−
1

2σ2
b̃>2 b̃2 −

1
2
tr((σ2Im + S−1) Var[b2]).

Maximizing Q2 with respect to σ2, we obtain σ2(1) = (1/m)(b̃>2 b̃2 +tr(σ2(0)
(Im−σ2(0)

P (0)))).
Thus, the second main result of this study based on the EM algorithm, for the RML method
in the FH model, is summarized as follows:

Step 0. Set s = 0, and choose a starting value σ2(0).

Step 1. For s ≥ 0, calculate b̃
(s+1)
2 = σ̂2

(s)
P (s)Y .

Step 2. For s≥ 0, compute σ̂2
(s+1)

= (1/m)(b̃(s+1)>

2 b̃
(s+1)
2 +tr(σ̂2

(s)
(Im− σ̂2

(s)
P (s)))).

Step 3. Iterate Steps 1 and 2 from r = 1 until reaching convergence when the dif-
ference in absolute value between the iterations (r + 1)-th and r-th is less a
small preset precision value (for example10−5).
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4. MONTE CARLO SIMULATION STUDY

4.1. Scenario of the simulation

We present a multi-sample MC simulation study to compare the performance of the
approaches proposed in this paper (MLEM and RMLEM) as alternative solutions to the
problem of a negative or zero value in the estimate of σ2. The multi-sample simulation is
a common practice in MC procedures whenever we do not have an easy way to estimate
measures of dispersion of a statistic, like for the MSE; see Fishman [15] (1973), Figueiredo
and Gomes [14] (2004) and Gomes et al. [16, 17] (2011, 2016) for details about multi-sample
MC simulation. The idea is reasonably simple: in a multi-sample simulation of size R× T ,
instead of generating a sample of very large size of observed values of a statistic, Nsim = R×T
say, we collect T observations of the statistic on each of the R independent replications of the
experiment. The value of T also needs to be large enough to reduce the bias, and eventually
provide asymptotic normality. Then, we take the average of the corresponding R estimates
as overall estimate of the parameter of interest, where each estimate is computed from T

runs. Thus, under very broad conditions, the overall estimator converges to normality as
R increases. Moreover, we may estimate the standard error (SE) of this overall estimator,
even if R is small. For small values of R, and whenever we may guarantee the asymptotic
normality of the estimator for the parameter of interest, we may use the t-student distribution
with R − 1 degrees of freedom to approximate its true distribution. The performance of
the approaches proposed in this paper is compared to the LML, LRML, YML and YRML
methods, according to their percentage relative bias (PRB) and MSE, as well as the MSPE of
the EBLUP estimator. We follow the same scenario used in Yoshimori and Lahiri [42] (2014)
to do an effective comparison in relation to that work. Specifically, we consider the FH model
defined in (2.1) with a common mean µ = x>i β. As the MSE is invariant under translation,
we set µ = 0 without loss of generality. However, to account for the uncertainty in the
estimation of the common mean that arises in practice, we treat the mean as unknown. We
generate R = 20 independent MC replications with T = 500 runs (Nsim = 20× 500 = 10, 000)
of {Yi, i = 1, ...,m} using the FH model: Yi = bi + εi, where bi and εi are independent with
bi

IID∼ N(0, σ2) and εi
IND∼ N(0, ψi). We analyze both balanced (equal sampling variances ψi)

and unbalanced (unequal sampling variances ψi) cases for different values of m. To examine
the effect of the number of small areas on the performance of several estimators, we use
values of m ∈ {15, 30, 45}. In the balanced case, we consider each of the combinations of
m and ψi, where ψi ∈ {0.05, 0.1, 1, 10, 20}, fixing σ2 = 1. We also examine the effect of
σ2/ψi on the performance of the estimators as in Yoshimori and Lahiri [42] (2014). In the
unbalanced case, we also fix σ2 = 1 and assume the following three patterns of sampling
variances as in Yoshimori and Lahiri [42] (2014): (i) Pattern A, ψi ∈ {0.1, 0.4, 0.5, 0.6, 4.0},
where almost all (but one) of the sampling variances are smaller than σ2; (ii) Pattern B,
ψi ∈ {1.5, 2.0, 2.5, 3.0, 3.5}, where all sampling variances are slightly greater than σ2; and (iii)
Pattern C, ψi ∈ {2, 4, 5, 6, 20}, where not only are all sampling variances greater than σ2, but
one is much greater than σ2, representing a case for extremely small area. Pattern A was
also used by Datta and Lahiri [9] (2000) and Datta et al. [10] (2005), and Pattern C by Chen
and Lahiri [3] (2008) in their simulation studies. In each pattern, we consider five groups
(g) of small areas, each with three, six or nine small areas according to m = 15, m = 30 or
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m = 45, such that the sampling variances ψi are the same within a given group. For example,
in Pattern A for m = 15, we simulate three small areas for each case with sampling variances
ψi = 0.1, 0.4, 0.5, 0.6 and 4.0. Similarly the other patterns of sampling variances and m were
simulated.

4.2. Behavior of σ̂2

The empirical probabilities of obtaining a zero estimate of σ2 by different methods for
balanced and unbalanced cases are reported in Tables 1 (balanced case) and 2 (unbalanced
case). In both cases, the MLEM/RMLEM approaches and the LML/LRML/YML/YRML
methods produce strictly positive estimates of σ2. As mentioned in Yoshimori and Lahiri [42]
(2014), only the ML and RML methods could yield negative or zero estimate of σ2. For the
balanced case and the ML/RML methods, the probability of getting negative or zero esti-
mate increases as σ2/ψi decreases in both methods, being slightly smaller in the RML method.

Table 1: Percentage of negative or zero estimate of σ2 for the indicated m,
variance ratio and method.

m σ2/ψi ML RML LML LRML YML YRML MLEM RMLEM

15 0.05 57.57 50.50 0 0 0 0 0 0
0.1 52.28 44.89 0 0 0 0 0 0

1 8.49 6.49 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0

30 0.05 51.14 46.09 0 0 0 0 0 0
0.1 43.91 38.97 0 0 0 0 0 0

1 1.42 1.09 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0

45 0.05 48.18 44.25 0 0 0 0 0 0
0.1 39.68 36.02 0 0 0 0 0 0

1 0.26 0.18 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0

Table 2: Percentage of negative or zero estimate of σ2 for the indicated m,
pattern and method.

m Pattern ML RML LML LRML YML YRML MLEM RMLEM

15 A 0.92 0.37 0 0 0 0 0 0
B 27.33 21.65 0 0 0 0 0 0
C 35.37 27.04 0 0 0 0 0 0

30 A 0.06 0.03 0 0 0 0 0 0
B 13.87 11.29 0 0 0 0 0 0
C 28.21 23.39 0 0 0 0 0 0

45 A 0 0 0 0 0 0 0 0
B 7.50 6.24 0 0 0 0 0 0
C 21.40 18.21 0 0 0 0 0 0
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As m increases, this probability decreases and is very similar in both methods. In the unbal-
anced case, Pattern C (having an extreme value in the sampling variance) yields the largest
percentages of negative or zero variance component estimates. Similarly to the balanced case,
as m increases, this probability decreases, being smaller for the RML method than the ML
method. In the remainder of this section, we consider only the performance of those methods
mentioned above that produce strictly positive variance, because these methods solve the
problem of inadmissibility presented in this paper (we do not further comparisons for the ML
and RML methods). An aspect to be evaluated for assessing the performance of different
estimators of σ2 is their bias. We use the PRB of a given estimator of σ2, σ̂ 2 say, defined
in our simulation study as the sample mean P̂RB[σ̂ 2] = (1/R)

∑R
r=1(P̂RBr[σ̂ 2)] of the PRB

calculated on the R = 20 replications, with P̂RBr[σ̂ 2] = (1/T )
∑T

t=1((σ̂
2(t) − σ2)/σ2)× 100,

where σ̂ 2(r)
denotes an estimate of σ2 for the t-th instance in the r-th replication, with an

associated SE defined as ((1/(R−1))
∑R

r=1(P̂RBr[σ̂ 2]− P̂RB[σ̂ 2)]2)1/2. The PRBs of estima-
tors for σ2 are presented in Tables 3 and 4 for balanced and unbalanced cases, respectively.

Table 3: PRB and its corresponding SE (in parentheses) of estimators of σ2

for the indicated m, variance ratio and method.

m σ2/ψi LML LRML YML YRML MLEM RMLEM

15 0.05 1094.36 (24.35) 1272.41 (27.71) 224.55 (18.36) 309.57 (21.42) 171.28 (19.42) 262.68 (22.69)
0.1 541.57 (13.50) 636.53 (15.31) 94.98 (10.38) 143.26 (12.07) 69.39 (10.79) 121.47 (12.60)

1 44.33 (2.96) 62.77 (3.25) -11.38 (2.68) 1.38 (2.90) -12.14 (2.71) 0.81 (2.93)
10 10.61 (2.06) 20.65 (2.23) -6.94 (1.79) 0.42 (1.92) -6.95 (1.79) 0.42 (1.92)
20 9.34 (1.64) 18.86 (1.78) -6.61 (1.42) 0.42 (1.53) -6.61 (1.42) 0.42 (1.53)

30 0.05 672.31 (13.29) 737.93 (14.26) 144.30 (11.8) 187.01 (12.62) 124.84 (12.02) 175.96 (12.76)
0.1 322.88 (9.24) 358.37 (9.88) 53.59 (9.12) 78.31 (9.93) 44.51 (9.43) 73.99 (10.29)

1 21.76 (2.17) 29.46 (2.26 ) -6.19 (2.16) 0.44 (2.24) -6.24 (2.16) 0.51 (2.24)
10 4.89 (1.22) 9.14 (1.27) -3.51 (1.14) 0.16 (1.18) -3.51 (1.14) 0.17 (1.18)
20 4.19 (1.26) 8.23 (1.31) -3.44 (1.18) 0.06 (1.22) -3.44 (1.18) 0.06 (1.22)

45 0.05 515.15 (17.7) 554.32 (18.67) 111.86 (16.27) 140.66 (17.42) 101.51 (16.38) 139.52 (17.67)
0.1 243.74 (6.9) 265.20 (7.21 ) 39.55 (7.13) 56.53 (7.48) 34.93 (7.31) 57.02 (7.65)

1 13.55 (1.98) 18.40 (2.04) -4.94 (1.99) -0.51 (2.03) -4.95 (1.99) -0.39 (2.04)
10 3.08 (0.83) 5.78 (0.85) -2.43 (0.79) 0.01 (0.81) - 2.43 (0.79) 0.02 (0.81)
20 2.70 (0.67) 5.26 (0.68) -2.32 (0.64) 0.01 (0.65) -2.32 (0.64) 0.01 (0.65)

Table 4: PRB and its corresponding SE (in parentheses) of estimators of σ2

for the indicated m, pattern and method.

m Pattern LML LRML YML YRML MLEM RMLEM

15 A 26.01 (3.07) 42.66 (3.46) -9.20 (2.43) 1.99 (2.7) -9.28 (2.42) 1.97 (2.7)
B 114.71 (5.43) 146.20 (6.02) -3.76 (4.90) 15.63 (5.46) -8.00 (5.09) 12.30 (5.65)
C 258.95 (7.35) 323.53 (8.43) 24.72 (5.83) 58.94 (6.81) 14.73 (5.86) 48.72 (7.19)

30 A 10.19 (1.33) 16.72 (1.39) -5.91 (1.24) -0.51 (1.28) -5.91 (1.24) -0.47 (1.28)
B 58.85 (4.26) 71.31 (4.49) -6.07 (4.24) 4.24 (4.46) -7.03 (4.30) 4.02 (4.53)
C 123.79 (6.31) 145.68 (6.79) 0.97 (5.56) 16.90 (6.04) -2.10 (5.63) 13.38 (6.20)

45 A 6.47 (1.43) 10.52 (1.47) -4.00 (1.36) -0.42 (1.39) -4.00 (1.36) -0.38 (1.39)
B 39.56 (2.73) 47.34 (2.81) -6.07 (2.87) 1.05 (2.93) -6.40 (2.87) 1.38 (2.93)
C 87.02 (4.51) 100.23 (4.73) -1.16 (4.49) 9.85 (4.71) -2.68 (4.52) 7.83 (4.95)

In the balanced case, when σ2/ψi < 1, all methods widely overestimate σ2, with the best
performance in those methods based on the ML method than those based on the RML
method. In this case, the performance of the MLEM approach is better having the small-
est PRBs. When σ2/ψi ≥ 1, the RMLEM approach and the YRML method are the best
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options being them very similar. Also, the MLEM approach and the YML method always
underestimate σ2. For the unbalanced case, the performance of the RMLEM approach and
the YRML method are very similar and have the smallest PRBs in the following cases: (i)
for Pattern A and all m (with the PRBs being always smallest for the proposed RMLEM
approach) and (ii) for Pattern B, when m = 30 and m = 45. The performance of the MLEM
approach is better for Pattern C when m = 15 than in the other cases. For all remain-
ing situations (Pattern B with m = 15 and Pattern C with m = 30, 45), the smallest PRBs
correspond to the YML method. In both balanced and unbalanced cases, as m increases,
the performance of all estimators improves. We define the empirical percentage MSE of
an estimator σ̂2 of σ2 based in our simulation study as (Yoshimori and Lahiri [42], 2014)

M̂SEr[σ̂2] = (1/T )
∑T

t=1 (σ̂2(t) − σ2)
2
× 100, with 1 ≤ r ≤ R, for the t-th instance in the r-th

replication, where the overall MSE is then the sample mean M̂SE[σ̂2] = (1/R)
∑T

t=1 M̂SEr[σ̂2],
with an associated SE given by ((1/(R− 1))

∑R
r=1(M̂SEr[σ̂ 2]− M̂SE[σ̂ 2)]2)1/2. The empiri-

cal percentage MSEs of different estimators of σ2 are shown in Tables 5 (balanced case) and
6 (unbalanced case). In Table 5, the performance of the MLEM approach and the YML
method are better than the other ones, with a performance much better when σ2/ψi is small,
for all m. In other cases, when σ2/ψi is large, all methods have a similar performance, par-
ticularly for m = 45, but the performance of the MLEM approach and the YML method are
still slightly better than other methods. In the unbalanced case, again the MLEM approach
and the YML method have a better performance than the other methods, followed by the
RMLEM approach and the YRML method, for all patterns and values of m.

Table 5: Percentage MSE and its corresponding SE (in parentheses) of estimators of σ2

for the indicated m, variance ratio and method.

m σ2/ψi LML LRML YML YRML MLEM RMLEM

15 0.05 15530.4 (815.1) 20780.8 (1043.4) 2522.0 (354.8) 3726.0 (460.9) 2507.6 (352.9) 3722.4 (459.3)
0.1 4031.4 (223.7) 5457.1 (287.1) 770.5 (98.7) 1114.5 (127.4) 789.7 (98.5) 1133.4 (127.0)

1 74.5 (6.1) 105.5 (8.0) 46.2 (2.9) 52.9 (3.7) 47.4 (2.8) 53.9 (3.7)
10 21.1 (1.6) 27.7 (2.1) 15.5 (1.0) 17.2 (1.2) 15.5 (1.0) 17.2 (1.2)
20 20.0 (1.7) 26.0/ (2.2) 14.8 (1.1) 16.5 (1.4) 14.8 (1.1) 16.5 (1.4)

30 0.05 5940.1 (268.4) 7084.0 (308.8) 1332.7 (147.8) 1711.6 (174.0) 1348.0 (147.9) 1746.4 (174.0)
0.1 1489.0 (90.5) 1795.1 (104.6) 414.3 (48.1) 517.9 (57.2) 426.2 (47.9 ) 530.9 (56.9)

1 31.3 (2.0) 37.5 (2.4) 26.1 (1.6) 27.6 (1.7) 26.1 (1.6) 27.6 (1.7)
10 9.3 (0.9) 10.6 (1.0) 8.1 (0.7) 8.5 (0.7) 8.1 (0.7) 8.5 (0.7)
20 8.3 (0.7) 9.4 (0.8) 7.2 (0.5) 7.5 (0.6) 7.2 (0.5) 7.5 (0.6)

45 0.05 3545.6 (250.6) 4063.1 (279.6) 935.9 (138.9) 1133.6 (158.9) 947.8 (138.7) 1163.8 (158.5)
0.1 888.1 (58.1) 1027.1 (64.3) 307.1 (36.6) 361.1 (41.3) 314.0 (36.6) 368.6 (41.3)

1 19.2 (1.6) 21.7 (1.8) 17.6 (1.3) 18.1 (1.4) 17.6 (1.3) 18.1 (1.4)
10 5.9 (0.3) 6.5 (0.4) 5.4 (0.3) 5.6 (0.3) 5.4 (0.3) 5.6 (0.3)
20 5.2 (0.4) 5.7 (0.4) 4.7 (0.3) 4.9 (0.3) 4.7 (0.3) 4.9 (0.3)

Note that, although the results of the MSE in the estimation of the variance component
in our simulation study are similar under the YML and MLEM methods, we observe that
the estimation by means of the EM algorithm is slightly more accurate (with smaller SEs)
than the estimation under the YML and YRML methods, such as occurs when comparing
the YRML and RMLEM methods.
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Table 6: Percentage MSE and its corresponding SE (in parentheses) of estimators of σ2

for the indicated m, pattern and method.

m Pattern LML LRML YML YRML MLEM RMLEM

15 A 46.6 (5.8) 66.5 (8.1) 29.4 (2.7) 33.5 (3.7) 29.5 (2.7) 33.5 (3.7)
3 B 261.9 (22.0) 375.9 (28.9) 98.3 (8.6) 124.7 (11.8) 104.8 (8.4) 130.0 (11.5)

C 990.7 (58.4) 1466.0 (78.5) 207.4 (26.6) 303.4 (34.3) 219.8 (26.8) 315.8 (34.4)
30 A 18.3 (1.7) 21.5 (2.0) 15.1 (1.2) 15.9 (1.4) 15.1 (1.2) 15.9 (1.4)

B 94.2 (8.9) 117.2 (10.4) 59.9 (3.8) 66.3 (4.8) 61.5 (3.7) 67.2 (4.8)
C 282.7 (28.5) 361.3 (34.1) 112.5 (13.8) 134.5 (16.9) 117.3 (13.8) 140.6 (16.9)

45 A 11.0 (0.7) 12.3 (0.8) 9.7 (0.5) 10.1 (0.6) 9.7 (0.5) 10.1 (0.6)
B 54.0 (5.9) 63.6 (6.6) 42.4 (4.0) 44.8 (4.5) 42.9 (4.0) 44.9 (4.6)
C 162.1 (13.9) 195.5 (15.8) 86.7 (7.9) 97.1 (9.2) 89.1 (7.9) 101.1 (9.2)

4.3. Estimator of the MSPE

We study the performance of the estimators of the MSPE of the EBLUP using different
estimators of σ2. Let θ(t)

i and θ̂ EBLUP(t)
i be the empirical mean and EBLUP corresponding to

several estimators of σ2 of the area i for the t-th simulation in the r-th replication, respectively,
for i = 1, ...,m, t = 1, ..., T and r = 1, ..., R, with T = 500, R = 20 and Nsim = 10, 000, as
mentioned. The empirical MSPE of the EBLUP estimator in the area i for the r-th replication

is given by M̂SPE
(r)

i = (1/T )
∑T

t=1 (θ̂ EBLUP(t)
i − θ̂

(t)
i )

2
. Then, the overall MSPE is M̂SPEi =

(1/R)
∑R

r=1 M̂SPE
(r)

i , with an associated SE given by (
∑R

r=1(M̂SPE
r

i − M̂SPEi)2/(R−1))1/2.
Tables 7 (balanced case) and 8 (unbalanced case) report the empirical MSPEs of EBLUPs
for different estimation methods of σ2. In the balanced case, when σ2/ψi is small, both
the MLEM approach and the YML method present a performance slightly better than the
RMLEM approach and the YRML method, and much better than the LML and LRML
methods. This behavior is more pronounced when m is small. If σ2/ψi ≥ 1, all methods
provide similar results, and for a fixed σ2/ψi, the performance does not change substantially
as m increases. For the unbalanced case, all methods have a similar performance.

Table 7: Empirical MSPE and its corresponding SE (in parentheses) of EBLUPs of θ̂i

for the indicated m, ratio and method.

m σ2/ψi LML LRML YML YRML MLEM RMLEM

15 0.05 4.75 (0.15) 5.22 (0.16) 2.86 (0.11) 3.08 (0.12) 2.86 (0.11) 3.08 (0.12)
0.1 2.68 (0.08) 2.90 (0.08) 1.85 (0.06) 1.96 (0.07) 1.87 (0.06) 1.97 (0.07)

1 0.58 (0.01) 0.59 (0.01) 0.60 (0.01) 0.59 (0.01) 0.60 (0.01) 0.59 (0.01)
10 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01)
20 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01)

30 0.05 2.95 (0.06) 3.13 (0.07) 1.99 (0.05) 2.08 (0.05) 2.00 (0.05) 2.09 (0.05)
0.1 1.81 (0.05) 1.90 (0.06) 1.43 (0.04) 1.47 (0.04) 1.44 (0.04) 1.48 (0.04)

1 0.54 (0.01) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01)
10 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01)
20 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01)

45 0.05 2.31 (0.07) 2.40 (0.08) 1.68 (0.06) 1.73 (0.06) 1.69 (0.06) 1.74 (0.06)
0.1 1.53 (0.03) 1.57 (0.03) 1.29 (0.02) 1.31 (0.02) 1.29 (0.02) 1.32 (0.02)

1 0.53 (0.01) 0.53 (0.01) 0.54 (0.01) 0.53 (0.01) 0.54 (0.01) 0.53 (0.01)
10 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01)
20 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01) 0.05 (<0.01)
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Table 8: Empirical MSPE and its corresponding SE (in parentheses) of EBLUP of θ̂i

for indicated m, pattern group and method.

m Pattern g LML LRML YML YRML MLEM RMLEM

15 A 1 0.92 (0.03) 0.94 (0.03) 0.91 (0.03) 0.92 (0.03) 0.92 (0.03) 0.92 (0.03)
2 0.41 (0.01) 0.41 (0.01) 0.42 (0.01) 0.42 (0.01) 0.43 (0.01) 0.42 (0.01)
3 0.36 (0.01) 0.36 (0.01) 0.37 (0.01) 0.37 (0.01) 0.37 (0.01) 0.37 (0.01)
4 0.31 (0.01) 0.31 (0.01) 0.32 (0.01) 0.32 (0.01) 0.32 (0.01) 0.32 (0.01)
5 0.09 (<0.01) 0.09 (<0.01) 0.10 (<0.01) 0.10 (<0.01) 0.10 (<0.01) 0.10 (<0.01)

B 1 1.10 (0.04) 1.15 (0.04) 1.02 (0.04) 1.03 (0.04) 1.03 (0.04) 1.04 (0.05)
2 1.07 (0.04) 1.11 (0.04) 1.00 (0.03) 1.01 (0.03) 1.02 (0.03) 1.02 (0.03)
3 1.01 (0.04) 1.05 (0.04) 0.95 (0.04) 0.96 (0.04) 0.96 (0.04) 0.97 (0.04)
4 0.93 (0.03) 0.96 (0.04) 0.88 (0.03) 0.89 (0.03) 0.90 (0.03) 0.90 (0.03)
5 0.80 (0.04) 0.82 (0.04) 0.77 (0.04) 0.77 (0.04) 0.79 (0.04) 0.79 (0.04)

C 1 1.70 (0.06) 1.86 (0.07) 1.39 (0.04) 1.43 (0.04) 1.40 (0.04) 1.44 (0.04)
2 1.68 (0.08) 1.84 (0.09) 1.32 (0.05) 1.37 (0.06) 1.34 (0.05) 1.39 (0.06)
3 1.61 (0.10) 1.75 (0.10) 1.27 (0.07) 1.32 (0.08) 1.29 (0.07) 1.34 (0.08)
4 1.50 (0.07) 1.61 (0.07) 1.21 (0.06) 1.25 (0.06) 1.23 (0.06) 1.27 (0.07)
5 1.12 (0.04) 1.18 (0.04) 0.96 (0.04) 0.98 (0.04) 0.99 (0.04) 1.01 (0.04)

30 A 1 0.86 (0.02) 0.86 (0.03) 0.86 (0.03) 0.86 (0.03) 0.86 (0.03) 0.86 (0.03)
2 0.40 (0.01) 0.40 (0.01) 0.40 (0.01) 0.40 (0.01) 0.40 (0.01) 0.40 (0.01)
3 0.35 (0.01) 0.35 (0.01) 0.35 (0.01) 0.35 (0.01) 0.35 (0.01) 0.35 (0.01)
4 0.30 (0.01) 0.30 (0.01) 0.30 (0.01) 0.30 (0.01) 0.30 (0.01) 0.30 (0.01)
5 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01)

B 1 0.93 (0.03) 0.94 (0.03) 0.92 (0.03) 0.92 (0.03) 0.92 (0.03) 0.92 (0.03)
2 0.90 (0.02) 0.91 (0.02) 0.89 (0.02) 0.89 (0.02) 0.89 (0.02) 0.89 (0.02)
3 0.85 (0.02) 0.86 (0.02) 0.85 (0.02) 0.85 (0.02) 0.85 (0.02) 0.85 (0.02)
4 0.80 (0.02) 0.81 (0.02) 0.80 (0.02) 0.80 (0.02) 0.81 (0.02) 0.80 (0.02)
5 0.70 (0.01) 0.71 (0.01) 0.71 (0.01) 0.71 (0.01) 0.72 (0.01) 0.71 (0.01)

C 1 1.24 (0.04) 1.27 (0.05) 1.17 (0.04) 1.18 (0.04) 1.18 (0.04) 1.18 (0.04)
2 1.20 (0.03) 1.24 (0.03) 1.11 (0.03) 1.12 (0.03) 1.11 (0.03) 1.13 (0.03)
3 1.16 (0.03) 1.20 (0.03) 1.08 (0.03) 1.09 (0.03) 1.09 (0.03) 1.10 (0.04)
4 1.12 (0.03) 1.16 (0.04) 1.03 (0.03) 1.04 (0.03) 1.04 (0.03) 1.05 (0.03)
5 0.91 (0.02) 0.93 (0.02) 0.87 (0.02) 0.87 (0.02) 0.88 (0.02) 0.89 (0.02)

45 A 1 0.83 (0.02) 0.83 (0.02) 0.83 (0.02) 0.83 (0.02) 0.83 (0.02) 0.83 (0.02)
2 0.39 (0.01) 0.39 (0.01) 0.39 (0.01) 0.39 (0.01) 0.39 (0.01) 0.39 (0.01)
3 0.34 (0.01) 0.34 (0.01) 0.34 (0.01) 0.34 (0.01) 0.34 (0.01) 0.34 (0.01)
4 0.30 (0.01) 0.30 (0.01) 0.30 (0.01) 0.30 (0.01) 0.30 (0.01) 0.30 (0.01)
5 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01) 0.09 (<0.01)

B 1 0.88 (0.02) 0.88 (0.02) 0.88 (0.02) 0.88 (0.02) 0.88 (0.02) 0.88 (0.02)
2 0.85 (0.02) 0.86 (0.02) 0.86 (0.02) 0.86 (0.02) 0.86 (0.02) 0.86 (0.02)
3 0.80 (0.02) 0.81 (0.02) 0.81 (0.02) 0.81 (0.02) 0.81 (0.02) 0.81 (0.02)
4 0.75 (0.01) 0.75 (0.01) 0.76 (0.02) 0.76 (0.02) 0.76 (0.02) 0.76 (0.01)
5 0.67 (0.02) 0.68 (0.02) 0.69 (0.02) 0.69 (0.02) 0.69 (0.02) 0.69 (0.02)

C 1 1.13 (0.04) 1.14 (0.04) 1.10 (0.03) 1.11 (0.03) 1.10 (0.03) 1.11 (0.03)
2 1.07 (0.03) 1.09 (0.03) 1.03 (0.03) 1.03 (0.03) 1.03 (0.03) 1.04 (0.03)
3 1.05 (0.03) 1.07 (0.03) 1.01 (0.03) 1.02 (0.03) 1.02 (0.03) 1.02 (0.03)
4 1.01 (0.03) 1.03 (0.03) 0.97 (0.03) 0.98 (0.03) 0.98 (0.03) 0.99 (0.03)
5 0.83 (0.02) 0.84 (0.02) 0.82 (0.02) 0.82 (0.02) 0.83 (0.02) 0.83 (0.02)

5. APPLICATION

We illustrate the results of this study with real-world data taken from http://dx.doi.

org/10.7927/H4FF3Q9B; see CIESIN [4] (2005). The small areas in our application correspond
to the 32 states of Mexico. Here, mi is the number of municipalities in the state i that were
used for direct estimation within each state, which ranges from 5 to 578 municipalities.

We are interested in modeling the “average monthly per capita food expenditure for
rural household in 2000 (AMPCFERH)”. The direct estimator θ̂i is available. We use three
auxiliary variables: (i) the size of the illiterate population aged 15 years and above (X1);
(ii) the percentage of the population living in rural areas (X2); and (iii) the fraction of rural
households below the food poverty line (X3). Our small area model is given by

θ̂i = β1x1i + β2x2i + β3x3i + bi + εi, i = 1, ..., 32,

http://dx.doi.org/10.7927/H4FF3Q9B
http://dx.doi.org/10.7927/H4FF3Q9B
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where bi
IID∼ N(0, σ2) are area-specific random effects with unknown σ2; εi

IND∼ N(0, ψi) represent
the sampling errors in the area i with known variance ψi, which was calculated from the vari-
ance of the AMPCFERH within each municipality. Note that ψi 6= ψj , for i 6= j, and hence we
are in the unbalanced case. We estimate σ2 with the LML, LRML, YML, YRML, MLEM and
RMLEM methods obtaining the following values: σ̂ 2

LML = 105147.20, σ̂ 2
LRML = 123306.20,

σ̂ 2
YML = 93504.80, σ̂ 2

YLML = 108737.40, σ̂ 2
MLEM = 93503.32 and σ̂ 2

RMLEM = 108735.6. The re-
sults of the EBLUP of θ̂i generated under different estimators of σ2 are shown in Table 9.

Table 9: EBLUP of θ̂i with estimates of σ2 for the indicated Mexican state,
mi and method.

State mi
bθi LML LRML YML YRML MLEM RMLEM

Aguascalientes (Ags) 11 939.35 918.37 ± 21.27 921.38 ± 18.11 915.63 ± 24.81 918.88 ± 21.21 883.70 ± 164.85 921.38 ± 18.11
Baja California (BC) 5 1169.42 1126.60 ± 36.11 1132.35 ± 31.93 1121.75 ± 39.89 1127.78 ± 35.52 1061.41 ± 327.17 1132.35 ± 31.93
Baja California Sur (BCS) 5 1356.74 995.54 ± 182.87 1035.31 ± 166.05 963.68 ± 200.21 1003.73 ± 183.40 912.80 ± 420.93 1035.31 ± 166.05
Campeche (Camp) 11 460.49 479.69 ± 18.28 477.29 ± 15.77 481.72 ± 20.75 479.23 ± 17.97 504.41 ± 148.49 477.29 ± 15.77
Chiapas (Chis) 119 325.82 340.69 ± 15.38 338.74 ± 13.19 342.42 ± 17.79 340.35 ± 15.30 357.94 ± 103.04 338.74 ± 13.19
Chihuahua (Chih) 67 962.03 871.35 ± 94.37 879.37 ± 86.44 864.92 ± 101.19 872.73 ± 93.51 844.74 ± 166.78 879.37 ± 86.44
Coahuila (Coah) 38 879.43 856.88 ± 41.54 860.06 ± 35.87 853.96 ± 47.65 857.35 ± 41.47 834.94 ± 133.54 860.06 ± 35.87
Colima (Col) 10 803.55 789.86 ± 20.16 791.98 ± 17.31 787.95 ± 23.02 790.23 ± 19.89 752.55 ± 189.81 791.98 ± 17.31
Distrito Federal (DF) 7 1526.98 409.99 ± 335.33 459.56 ± 342.75 374.67 ± 332.40 418.91 ± 339.88 355.75 ± 364.64 459.56 ± 342.75
Durango (Dgo) 39 754.39 788.84 ± 47.27 784.37 ± 42.01 792.78 ± 52.38 788.10 ± 46.84 812.29 ± 139.89 784.37 ± 42.01
Guanajuato (Gto) 46 597.01 593.20 ± 14.86 593.98 ± 12.64 592.41 ± 17.36 593.32 ± 14.77 576.37 ± 92.82 593.98 ± 12.64
Guerrero (Gro) 76 605.11 550.19 ± 60.47 557.22 ± 53.54 544.14 ± 66.68 551.49 ± 59.49 495.19 ± 302.22 557.22 ± 53.54
Hidalgo (Hgo) 85 641.63 630.10 ± 43.78 631.72 ± 38.25 628.68 ± 48.94 630.41 ± 43.06 611.97 ± 127.91 631.72 ± 38.25
Jalisco (Jal) 124 808.46 657.37 ± 112.62 664.11 ± 110.76 652.36 ± 114.25 658.54 ± 112.67 639.18 ± 131.28 664.11 ± 110.76
México (Méx) 123 1036.92 622.15 ± 167.89 628.90 ± 167.92 617.30 ± 168.26 623.35 ± 168.21 597.08 ± 180.24 628.90 ± 167.92
Michoacán (Mich) 113 577.81 581.91 ± 17.52 581.69 ± 15.00 582.02 ± 20.23 581.85 ± 17.33 577.63 ± 55.60 581.69 ± 15.00
Morelos (Mor) 33 926.05 787.61 ± 107.11 804.31 ± 96.10 773.48 ± 118.51 790.61 ± 106.99 719.25 ± 310.25 804.31 ± 96.10
Nayarit (Nay) 20 677.62 668.68 ± 34.96 670.25 ± 30.90 667.21 ± 38.93 668.92 ± 34.66 656.15 ± 78.34 670.25 ± 30.90
Nuevo León (NL) 50 1232.20 859.37 ± 132.73 883.75 ± 131.00 841.01 ± 135.47 863.66 ± 134.46 814.11 ± 203.67 883.75 ± 131.00
Oaxaca (Oax) 578 412.72 576.55 ± 100.21 559.66 ± 92.17 590.51 ± 109.23 573.70 ± 101.17 618.84 ± 199.55 559.66 ± 92.17
Puebla (Pue) 223 423.22 462.18 ± 25.78 457.26 ± 22.49 466.51 ± 29.59 461.34 ± 25.91 491.48 ± 139.54 457.26 ± 22.49
Querétaro (Qro) 18 641.84 641.50 ± 18.55 641.64 ± 16.00 641.37 ± 21.14 641.53 ± 18.32 634.05 ± 73.27 641.64 ± 16.00
Quintana Roo (QR) 8 632.76 589.84 ± 73.18 596.10 ± 64.57 584.20 ± 81.90 590.85 ± 72.60 550.42 ± 205.72 596.10 ± 64.57
San Luis Potośı (SLP) 58 504.47 536.93 ± 24.67 532.63 ± 21.44 540.76 ± 28.47 536.20 ± 24.78 567.95 ± 146.40 532.63 ± 21.44
Sinaloa (Sin) 18 927.84 826.22 ± 66.88 838.54 ± 59.69 815.67 ± 74.98 828.40 ± 67.41 765.16 ± 278.01 838.54 ± 59.69
Sonora (Son) 72 989.80 954.36 ± 51.44 958.16 ± 45.92 951.17 ± 56.45 955.01 ± 50.76 937.69 ± 123.42 958.16 ± 45.92
Tabasco (Tab) 17 541.45 554.30 ± 10.05 552.53 ± 8.67 555.89 ± 11.56 553.98 ± 10.00 586.06 ± 161.98 552.53 ± 8.67
Tamaulipas (Tamps) 41 793.39 798.74 ± 33.53 798.14 ± 29.30 799.22 ± 37.98 798.61 ± 33.23 800.82 ± 84.05 798.14 ± 29.30
Tlaxcala (Tlax) 51 777.61 742.60 ± 66.61 747.53 ± 58.27 738.16 ± 75.27 743.37 ± 66.16 715.98 ± 157.75 747.53 ± 58.27
Veracruz (Ver) 216 515.10 515.72 ± 59.07 516.32 ± 52.16 515.10 ± 65.23 515.83 ± 58.07 501.88 ± 126.33 516.32 ± 52.16
Yucatán (Yuc) 100 344.22 369.75 ± 23.10 366.72 ± 20.06 372.30 ± 25.99 369.16 ± 22.72 392.23 ± 136.02 366.72 ± 20.06
Zacatecas (Zac) 57 842.43 836.09 ± 15.82 836.93 ± 13.70 835.33 ± 18.11 836.23 ± 15.62 826.72 ± 73.82 836.93 ± 13.70

Following to Figueiredo and Gomes [14] (2004), we have generated 10000 bootstrap samples
of size 32 (the same as the number of states) to calculate the SEs. With these SEs, we
build the corresponding bootstrap confidence intervals (BCI95%) for each EBLUP, using a
confidence level of 95%. For the EBLUP, these intervals are obtained as

(5.1) BCI95%(θ̂EBLUP
i ) =

[
θ̂
EBLUP(B)

i ± z1−α/2SD
(
θ̂
EBLUP(B)
i

)]
,

where θ̂
EBLUP(B)

i and SD(θ̂EBLUP(B)
i ) are the mean and standard deviation bootstrap, respec-

tively, and z1−α/2 is the (1− α/2)× 100-th percentile of the standard normal distribution.
The results for BCIs based on (5.1) with the Mexican data are resented in Table 9. Figure 1
shows the estimated AMPCFERH, where the states are colored according to a classification
into quartiles for the values of the estimates by the RMLEM approach. Note that, in gen-
eral, the states with smaller AMPCFERH are mainly concentrated in the southwest part
of the country, except for Quintana Roo, while the states with larger AMPCFERH are lo-
cated at the north part. A measure of uncertainty of the EBLUP of θ̂i is given in Table 10.
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Figure 1: Estimated average monthly per capita food expenditure for rural
household in 2000 with the RMLEM approach for Mexican data.

We compute the MSPE and its corresponding BCI95%, similarly as for the EBLUP given in
(5.1), using (2.18) for each of the estimation methods. We highlight two aspects: (i) the
values obtained by the MLEM and RMLEM approaches are similar to the corresponding
values of the YML and RYML methods, and moreover, its variability presents the same
results; and (ii) note that the LML and LRML approaches show lower MSPE indicators,
but, as mentioned, these methods can provide a negative value for the MSPE, making their
results underestimated and unreliable. As in Molina et al. [28] (2014), we calculate the
coefficients of variation (CVs), and its correspondig BCI95% in terms of the MSPE esti-
mates as CV[θ̂ EBLUP

i ] = ((MSPE(θ̂ EBLUP
i ))1/2/θ̂ EBLUP

i )× 100 for each bootstrap sample, in
order to analyze the gain in efficiency of the θ̂ EBLUP

i in comparison with direct estimates.
Table 11 displays these CVs, from which the two following aspects can be mentioned: (i) there
is a clear overall gain in precision when the EBLUP of θ̂i is obtained with the YML/YRML/
MLEM/RMLEM methods, if σ2 is estimated, since in almost all cases the CVs are less than
the CVs of the direct estimator; and (ii) in general, this gain in precision has a greater effect



632 J.L. Ávila-Valdez, M. Huerta, V. Leiva, M. Riquelme and L. Trujillo

in the RMLEM method, and moreover, the variability obtained by the bootstrapp resampling
shows that it also has less variability in comparison to the rest of the methods.

Table 10: MSPE of EBLUP of θ̂i with estimates of σ2 for the indicated Mexican state,
mi and method.

State mi
bθi LML LRML YML YRML MLEM RMLEM

Aguascalientes 11 – 7062.57 ± 88.31 7072.20 ± 84.91 7065.37 ± 87.95 7063.48 ± 87.76 7065.36 ± 87.95 7063.47 ± 87.76
Baja California 5 – 8533.92 ± 113.74 8537.96 ± 110.40 8545.70 ± 112.33 8533.08 ± 113.05 8545.69 ± 112.33 8533.07 ± 113.05
Baja California Sur 5 – 38291.19 ± 3898.23 38779.60 ± 3658.90 38101.79 ± 4049.52 38373.13 ± 3851.71 38101.59 ± 4049.52 38372.91 ± 3851.71
Campeche 11 – 6002.27 ± 58.62 6005.50 ± 56.77 6007.47 ± 57.86 6002.09 ± 58.32 6007.46 ± 57.86 6002.09 ± 58.32
Chiapas 119 – 4727.16 ± 36.06 4728.90 ± 34.86 4730.72 ± 35.61 4726.98 ± 35.83 4730.72 ± 35.61 4726.98 ± 35.83
Chihuahua 67 – 43346.23 ± 3745.72 43585.34 ± 3567.53 43361.26 ± 3843.81 43372.80 ± 3706.31 43361.08 ± 3843.81 43372.60 ± 3706.31
Coahuila 38 – 13307.16 ± 322.52 13340.25 ± 309.35 13314.31 ± 323.26 13310.50 ± 320.07 13314.29 ± 323.26 13310.48 ± 320.07
Colima 10 – 4821.23 ± 42.43 4824.96 ± 40.71 4823.34 ± 42.17 4821.47 ± 42.13 4823.34 ± 42.17 4821.47 ± 42.13
Distrito Federal 7 – 111400.65 ± 32054.55 113227.77 ± 30823.28 110394.68 ± 33003.71 111738.73 ± 31720.72 110393.75 ± 33003.71 111737.70 ± 31720.72
Durango 39 – 17327.26 ± 542.56 17353.87 ± 522.28 17358.39 ± 543.24 17326.94 ± 538.59 17358.36 ± 543.24 17326.91 ± 538.59
Guanajuato 46 – 6224.48 ± 74.76 6232.15 ± 71.48 6226.63 ± 74.66 6225.22 ± 74.12 6226.63 ± 74.66 6225.22 ± 74.12
Guerrero 76 – 18966.35 ± 589.66 18872.63 ± 556.05 19098.20 ± 606.77 18939.14 ± 579.86 19098.18 ± 606.77 18939.12 ± 579.86
Hidalgo 85 – 15972.62 ± 491.00 16015.04 ± 469.76 15984.87 ± 494.07 15976.51 ± 486.51 15984.84 ± 494.07 15976.48 ± 486.51
Jalisco 124 – 95196.34 ± 29228.59 97750.38 ± 28174.99 93689.46 ± 30058.90 95683.09 ± 28945.16 93688.45 ± 30058.90 95681.96 ± 28945.16
México 123 – 171437.83 ± 54229.90 174617.81 ± 52689.00 169339.63 ± 55318.79 172075.09 ± 53758.50 169338.20 ± 55318.79 172073.49 ± 53758.50
Michoacán 113 – 9280.13 ± 175.17 9298.77 ± 167.71 9282.71 ± 175.54 9282.20 ± 173.85 9282.70 ± 175.54 9282.19 ± 173.85
Morelos 33 – 26572.95 ± 1626.86 26759.52 ± 1546.85 26534.16 ± 1661.29 26600.49 ± 1611.46 26534.08 ± 1661.29 26600.39 ± 1611.46
Nayarit 20 – 22314.46 ± 1123.78 22447.65 ± 1070.15 22291.05 ± 1142.82 22333.72 ± 1113.91 22290.98 ± 1142.82 22333.66 ± 1113.91
Nuevo León 50 – 68062.42 ± 12681.30 69275.95 ± 12132.42 67486.95 ± 13078.86 68276.16 ± 12554.36 67486.42 ± 13078.86 68275.58 ± 12554.36
Oaxaca 578 – 35112.56 ± 2740.44 35374.18 ± 2611.48 35068.08 ± 2802.07 35149.58 ± 2712.87 35067.93 ± 2802.07 35149.43 ± 2712.87
Puebla 223 – 10943.82 ± 240.24 10967.14 ± 230.28 10948.83 ± 240.76 10946.20 ± 238.56 10948.81 ± 240.76 10946.18 ± 238.56
Querétaro 18 – 8204.86 ± 134.72 8217.40 ± 129.18 8208.76 ± 134.56 8206.02 ± 133.81 8208.75 ± 134.56 8206.01 ± 133.81
Quintana Roo 8 – 19958.04 ± 797.45 20018.77 ± 765.16 19976.57 ± 803.66 19963.41 ± 791.20 19976.53 ± 803.66 19963.36 ± 791.20
San Luis Potośı 58 – 9360.25 ± 174.23 9377.92 ± 166.87 9363.88 ± 174.46 9362.08 ± 173.01 9363.87 ± 174.46 9362.07 ± 173.01
Sinaloa 18 – 21443.10 ± 972.04 21545.23 ± 928.59 21438.25 ± 984.28 21456.33 ± 963.25 21438.19 ± 984.28 21456.27 ± 963.25
Sonora 72 – 23983.14 ± 1109.54 24042.02 ± 1065.55 24024.91 ± 1119.54 23985.42 ± 1100.99 24024.85 ± 1119.54 23985.35 ± 1100.99
Tabasco 17 – 3501.87 ± 22.68 3503.64 ± 21.93 3503.21 ± 22.36 3501.95 ± 22.57 3503.21 ± 22.36 3501.95 ± 22.57
Tamaulipas 41 – 16459.47 ± 547.96 16507.93 ± 525.90 16469.43 ± 550.71 16464.38 ± 544.25 16469.40 ± 550.71 16464.34 ± 544.25
Tlaxcala 51 – 20426.38 ± 867.03 20518.08 ± 828.69 20423.87 ± 876.94 20438.07 ± 859.53 20423.82 ± 876.94 20438.02 ± 859.53
Veracruz 216 – 22062.93 ± 993.54 22146.37 ± 950.78 22075.62 ± 1005.02 22071.75 ± 984.50 22075.56 ± 1005.02 22071.69 ± 984.50
Yucatán 100 – 7949.13 ± 112.31 7949.75 ± 109.16 7961.83 ± 110.59 7947.76 ± 111.89 7961.82 ± 110.59 7947.75 ± 111.89
Zacatecas 57 – 8189.27 ± 131.47 8198.87 ± 126.70 8195.48 ± 130.75 8189.79 ± 130.78 8195.47 ± 130.75 8189.78 ± 130.78

Table 11: CVs of direct estimator and EBLUP of θ̂i with estimates of σ2

for the indicated Mexican state, mi and method.

State mi
bθi LML LRML YML YRML MLEM RMLEM

Aguascalientes 11 9.21 9.15 ± 0.21 9.13 ± 0.18 9.18 ± 0.25 9.15 ± 0.21 9.51 ± 0.24 9.12 ± 0.18
Baja California 5 8.14 8.20 ± 0.27 8.16 ± 0.24 8.24 ± 0.30 8.19 ± 0.27 8.71 ± 0.29 8.16 ± 0.24
Baja California Sur 5 17.58 19.66 ± 4.56 19.02 ± 3.76 20.26 ± 5.56 19.52 ± 4.52 21.38 ± 4.45 18.92 ± 3.77
Campeche 11 17.20 16.15 ± 0.60 16.24 ± 0.53 16.09 ± 0.68 16.17 ± 0.59 15.37 ± 0.62 16.23 ± 0.53
Chiapas 119 21.47 20.18 ± 0.24 20.30 ± 0.78 20.09 ± 1.01 20.20 ± 0.88 19.22 ± 0.90 20.30 ± 0.78
Chihuahua 67 25.74 23.89 ± 3.06 23.74 ± 2.74 24.08 ± 3.34 23.86 ± 3.02 24.65 ± 2.77 23.68 ± 2.76
Coahuila 38 13.85 13.46 ± 0.68 13.43 ± 0.58 13.51 ± 0.80 13.46 ± 0.68 13.82 ± 0.72 13.41 ± 0.59
Colima 10 8.81 8.79 ± 0.23 8.77 ± 0.20 8.81 ± 0.26 8.79 ± 0.23 9.23 ± 0.25 8.77 ± 0.20
Distrito Federal 7 39.79 81.41 ± 80.28 73.22 ± 72.47 88.68 ± 83.59 79.80 ± 77.55 93.40 ± 79.40 72.74 ± 70.28
Durango 39 18.60 16.69 ± 1.01 16.79 ± 0.91 16.62 ± 1.11 16.70 ± 1.00 16.22 ± 0.98 16.78 ± 0.91
Guanajuato 46 13.55 13.30 ± 0.35 13.29 ± 0.30 13.32 ± 0.41 13.30 ± 0.35 13.69 ± 0.39 13.28 ± 0.30
Guerrero 76 23.69 25.03 ± 3.17 24.65 ± 2.71 25.40 ± 3.60 24.95 ± 3.09 27.91 ± 2.97 24.70 ± 2.72
Hidalgo 85 21.00 20.06 ± 1.55 20.03 ± 1.35 20.11 ± 1.75 20.05 ± 1.53 20.66 ± 1.51 20.01 ± 1.35
Jalisco 124 77.60 46.94 ± 11.61 47.08 ± 11.20 46.92 ± 11.97 46.97 ± 11.56 47.89 ± 9.14 46.58 ± 11.29
México 123 130.27 66.55 ± 24.00 66.44 ± 23.43 66.66 ± 24.51 66.55 ± 23.95 68.92 ± 17.91 65.96 ± 23.48
Michoacán 113 17.33 16.55 ± 0.53 16.58 ± 0.46 16.55 ± 0.60 16.56 ± 0.52 16.68 ± 0.56 16.56 ± 0.46
Morelos 33 19.88 20.70 ± 3.34 20.34 ± 2.84 21.06 ± 3.94 20.63 ± 3.33 22.65 ± 3.23 20.28 ± 2.85
Nayarit 20 24.39 22.34 ± 1.35 22.35 ± 1.20 22.38 ± 1.49 22.34 ± 1.34 22.75 ± 1.30 22.30 ± 1.21
Nuevo León 50 30.82 30.36 ± 5.98 29.78 ± 5.61 30.89 ± 6.36 30.25 ± 5.99 31.91 ± 5.06 29.57 ± 5.65
Oaxaca 578 53.03 32.50 ± 5.71 33.61 ± 5.56 31.71 ± 5.90 32.68 ± 5.77 30.26 ± 4.71 33.50 ± 5.57
Puebla 223 25.85 22.63 ± 1.28 22.90 ± 1.14 22.43 ± 1.42 22.68 ± 1.28 21.29 ± 1.24 22.88 ± 1.14
Querétaro 18 14.59 14.12 ± 0.43 14.13 ± 0.37 14.13 ± 0.48 14.12 ± 0.42 14.29 ± 0.45 14.12 ± 0.37
Quintana Roo 8 24.17 23.95 ± 3.47 23.74 ± 2.95 24.19 ± 4.10 23.91 ± 3.46 25.68 ± 3.35 23.70 ± 2.96
San Luis Potośı 58 19.93 18.02 ± 0.81 18.18 ± 0.71 17.89 ± 0.92 18.05 ± 0.81 17.04 ± 0.82 18.17 ± 0.72
Sinaloa 18 17.31 17.72 ± 1.66 17.50 ± 1.44 17.95 ± 1.91 17.68 ± 1.65 19.14 ± 1.63 17.47 ± 1.45
Sonora 72 17.13 16.23 ± 0.96 16.18 ± 0.86 16.30 ± 1.06 16.22 ± 0.95 16.53 ± 0.94 16.16 ± 0.87
Tabasco 17 11.08 10.68 ± 0.19 10.71 ± 0.17 10.65 ± 0.22 10.68 ± 0.19 10.10 ± 0.21 10.71 ± 0.17
Tamaulipas 41 17.29 16.06 ± 0.70 16.10 ± 0.62 16.06 ± 0.78 16.07 ± 0.69 16.03 ± 0.70 16.08 ± 0.62
Tlaxcala 51 20.06 19.25 ± 1.96 19.16 ± 1.68 19.36 ± 2.27 19.23 ± 1.95 19.96 ± 1.93 19.12 ± 1.69
Veracruz 216 31.55 28.80 ± 3.66 28.82 ± 3.21 28.84 ± 4.08 28.80 ± 3.59 29.60 ± 3.33 28.77 ± 3.22
Yucatán 100 26.60 24.11 ± 1.46 24.31 ± 1.29 23.97 ± 1.62 24.15 ± 1.44 22.75 ± 1.40 24.31 ± 1.29
Zacatecas 57 11.09 10.82 ± 0.22 10.82 ± 0.19 10.84 ± 0.25 10.82 ± 0.22 10.95 ± 0.24 10.81 ± 0.20
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6. CONCLUSIONS AND FUTURE RESEARCH

One of the advantages of using a methodology based on small area estimation is that
through auxiliary data we can improve direct estimates of a parameter of interest in small
areas. Standard methods of variance component estimation used in the FH model for small
areas produce a negative or zero estimate for these variances, with severe implications. In
such a context, we proposed alternative approaches to those available in the literature, based
on the EM algorithm, for estimating the variance of the random effects in the FH model,
when estimating small area means. We showed through a simulation study that the EM
algorithm is a good alternative to compute the ML estimate of the variance components,
ensuring its strictly positive value. We compared the performance of our approaches with
two recently proposed methods by means of statistical indicators. In general, the MLEM
and RMLEM approaches performed well and similarly to the YML and YRML methods
proposed by Yoshimori and Lahiri [42] (2014), but better than the LML and LRML methods
proposed by Li and Lahiri [23] (2010). The proposed approaches have the advantage of
working directly with the likelihood function without having to adjust it. A shortcoming
of the LML and LRML methods in comparison to the approaches proposed here is that
they can yield a negative value for the MSPE. Also, although the results of the MSE in
the estimation of the variance component are similar under the YML and MLEM methods,
note that the estimation with the EM algorithm is slightly more accurate in terms of SEs
than the estimation with the YML and YRML methods, such as occurs when comparing
the YRML and RMLEM methods. In an application from the real-world, we confirmed that
small area estimation through the FH model helped to improve the direct estimates of the
average monthly per capita food expenditure for Mexican rural households in 2000 according
to three auxiliary variables. A possible future study can be conducted to compare the YML
and YRML methods to their analogous based on the EM algorithm.
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