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Abstract:

• Irregularly spaced time series are commonly encountered in the analysis of time series. A particular
case is that in which the collection procedure over time depends also on the observed values.
In such situations, there is stochastic dependence between the process being modeled and the
times at which the observations are made. Ignoring this dependence can lead to biased estimates
and misleading inferences. In this paper, we introduce the concept of preferential sampling in the
temporal dimension and we propose a model to make inference and prediction. The methodology
is illustrated using artificial data as well a real data set.
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1. INTRODUCTION

Analysis of experimental data that have been observed at different points in time leads
to specific problems in statistical modeling and inference. In traditional time series the
main emphasis is on the case when a continuous variable is measured at discrete equispaced
time points, [22]. There is an extensive body of literature on analyzing equally spaced time
series data, see for example [3] and [6]. However, unevenly spaced (also called unequally
or irregularly spaced) time series data naturally occurs in many scientific domains. Natural
disasters such as earthquakes, floods, or volcanic eruptions typically occur at irregular time
intervals. In observational astronomy, for example, measurements of properties such as the
spectra of celestial objects are taken at irregularly spaced times determined by seasonal,
weather conditions, and availability of observation time slots. In clinical trials (or more
generally, longitudinal studies), a patient’s state of health may be observed only at irregular
time intervals, and different patients are usually observed at different points in time.

It must be noted that sometimes equally spaced time series are treated as irregularly
spaced time series, namely time series with missing observations and multivariate data sets
that consist of time series with different frequencies, even if the observations of each time series
are reported at regular intervals. One of the first to treat evenly sampled gene expression
time series with missing values as unevenly sampled data is [19].

There are few methods available in the literature for the analysis of irregularly spaced
series. Some authors, such us [10], [12], [2] and [5] have suggested an embedding into con-
tinuous diffusion processes, with the aim of using the well established tools for univariate
autoregressive moving average (ARMA) processes.

Observations with irregularly spaced sampling times are much harder to work with,
partly because the established and efficient algorithms developed for equally spaced sampling
times are no longer applicable [15]. A common approach to perform parametric estimation
is to construct a log-likelihood function in terms of the unknown parameter [4]. When the
sampling times are considered deterministic, the traditional approach is to build the classical
Gaussian log-likelihood function. However, because the inversion of the covariance matrix
has to be performed, numerical evaluation of this Gaussian log-likelihood function is in gen-
eral very expensive [14]. One way to overcome this computational effort is to regulate the
sampling scheme, using some form of interpolation, and consider it as being equally spaced.
Under the assumption of equally spaced sampling times, the Gaussian log-likelihood function
can be approximated, at least for a sufficiently large sample, by the Whittle log-likelihood
function [24]. This approach has been successfully applied to irregularity caused by missing
values, [16]. While, it may be reasonable to use this methodology, to deal with the mi-
nor irregularities in sampling times caused by missing values, the interpolation procedure
will typically change the dynamic of the underlying process, leading to biased estimates for
the parameters [9]. Moreover, there is little understanding of which particular interpolation
method is the most appropriate on a given data set. Alternatively, a convenient continuous
time domain dynamic model may be assumed for the underlying continuous time stationary
process such as the Continuous time ARMA (CARMA) model. The application of Kalman
recursion techniques to the parametric estimation of CARMA processes is reviewed in [22].
Additionally, [13] estimate the parameters of an irregularly sampled CARMA process using
a Bayesian framework.
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A particular case of irregularly spaced data is that in which the collection procedure
along time depends also, for practical constraints, on the observed values. For example, a
certain health indicator for an individual may be measured at different time points and with
different frequencies depending on his health state. In a completely different setting, the
times of occurrence of transactions in the financial markets depend largely on the value of
the underlying asset. In environmental monitoring applications, or in the context of smart
cities if it is decided to monitor more frequently when a value considered critical to human
health is exceeded. Therefore, additional information on the phenomena under study is
obtained from the frequency or time occurrence of the observations. In such situations, there
is stochastic dependence between the process being modeled and times of the observations,
which may be coined as temporal preferential sampling following [8] in the context of spatial
statistics.

In this work, we propose a model-based approach to analyze a time series observed
under preferential sampling. The suggested framework considers the observed time points
as the realization of a time point process stochastically dependent on an underlying latent
process (e.g. an individual health indicator or the underlying asset). This latent process is
assumed as Gaussian without loss of generality.

The paper is organized as follows. Section 2 describes our proposed model for prefer-
ential sampling in time dimension, namely to make inference and prediction. In Section 3
we describe the Monte Carlo Maximum Likelihood Estimation. In section 4 we conduct a
numerical illustration, in an artificial data set, to analyze the quality of the proposed model.
We then show the application of the previously described methodology to a real data set
related to monitoring the level of a biomedical marker, after a cancer patient undergoes a
bone marrow transplant. Section 5 is devoted to make some concluding remarks.

2. A MODEL FOR PREFERENTIAL SAMPLING

In time series, data are obtained by sampling a phenomenon S(t) : t > 0 at a discrete set
of times ti, i = 1, ..., n. Admiting the possibility that the sampling design may be stochastic,
T = (t1, ..., tn) denotes a stochastic process of observation times. In many situations, S(t)
cannot be measured without error, hence, if Y (ti) denotes the measured value at time ti, a
model for the data takes the form:

(2.1) Y (t) = µ + S(t) + N(0, τ2), t > 0

where µ is a constant mean effect and S(·) is a stationary Gaussian process with E[S(t)] = 0.
An equivalent formulation is that conditional on S(·), the Y (ti) are mutually independent,
normally distributed with mean µ + S(ti) and common variance τ2.

We consider S(·) as a continuous time autoregressive process of order 1, CAR(1), that
satisfies the differential equation dS(t) + α0S(t)dt = dW (t) where, α0 is the autoregressive
coefficient, S(·) is asymptotically stationary if an only if α0 > 0 and W (t) is a Brownian
motion with variance parameter σ2

w. For notation simplification let us denote Yi = Y (ti).
Then Y = (Y1, ..., Yn) is multivariate Gaussian with mean µ1 and covariance matrix ΣY =
σ2

w
2α0

Ry(α0) + τ2In, where 1 is a n-length vector of ones, In is the n× n identity matrix and
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Ry(α0) has elements rij = ρ (|ti − tj | ;α0) defined by

(2.2) ρ(h) =
γ(h)
γ(0)

= exp(−α0 |h|)

being γ(·) the covariance function.

Admitting that the sampling times are stochastic, a complete model needs to specify
the joint distribution of S, T and Y . Considering the stochastic dependence between S and
T , the model to deal with preferential sampling is defined through [S, T, Y ] written as:

(2.3) [S][T |S ][Y |S(T ) ]

where [·] means “the distribution of”, S = {S(t) : t > 0}, T = (t1, ..., tn) and S(T ) represents
{S(t1), ..., S(tn)}.

We define a specific class of models through the additional assumptions: conditional
on S, T is an inhomogeneous Poisson process with intensity λ (t) = exp {a + βS (t)} and
unconditionally T is a log-Gaussian Cox process. The log-Gaussian Cox process is a flexible
class of point pattern models that allows conditioning the sampling times to the variable of
interest. β is the parameter that controls the degree of preferentiality, for example, β = 2
corresponds to a situation when the sampling times are concentrated, predominantly, near the
maximum of the observed values and β = 0 corresponds to the situation of an homogeneous,
non-preferential, sampling. Conditional on S and T , Y is a set of mutually independent
Gaussian variates with τ2 being the measurement error variance.

The predicted value of S(·) at an unsampled time point tni < t0 < tnj , S(t0|T ), is given
by S(t0|T ) = E

[
S(t0)|Y (T ). Considering that the process CAR(1) is Markovian, [6, p.358]

shows that the conditional mean of S(t0) given Y (T ) is

S(t0|T ) = E
[
S(t0)|Y (T )

]
(2.4)

= exp (−α0(t0 − tni))Y (T ) + µ (1− exp (−α0(t0 − tni))) .

The variance of the prediction is

(2.5) σ2(t0) = V ar
[
S(t0)|Y (T )

]
=

σ2
w

2α0
(1− exp (−2α0(t0 − tni))) .

3. MONTE CARLO MAXIMUM LIKELIHOOD ESTIMATION

We consider a discretization of the S process with N points and a partition of S into
S = {S0, S1}, where S0 denotes the values of S at each of n times ti ∈ T , and S1 are the
values of S at the remaining (N − n).

The likelihood function for data T and Y can be expressed as

(3.1) L(θ) = [T, Y ] =
∫

S
[T, Y, S]dS =

∫
S
[S][T, Y |S]dS =

∫
S
[S][T |S][Y |T, S]dS
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where θ = (µ, σw, α0, τ, β) represents all the model parameters.
An algebraic simplification of [Y |T, S] is [Y |S0] so, we can rewrite the integral as

(3.2) L(θ) =
∫

S
[S][T |S][Y |S0]

[S|Y ]
[S|Y ]

dS.

Considering that [S] = [S1, S0] = [S1|S0][S0] and replacing the term [S|Y ] in the denom-
inator of expression (3.2) by [S|Y ] = [S0, S1|Y ] = [S1|S0, Y ][S0|Y ] = [S1|S0][S0|Y ], equation
(3.2) becomes

L(θ) =
∫

S
[S1|S0][S0][T |S][Y |S0]

[S|Y ]
[S1|S0][S0|Y ]

dS

=
∫

S
[T |S]

[Y |S0]
[S0|Y ]

[S0][S|Y ]dS(3.3)

= ES|Y

[
[T |S]

[Y |S0]
[S0|Y ]

[S0]
]

.

Taking into account that the above conditional expectation can be approximated by
Monte Carlo, MLE’s are obtained by maximizing the Monte Carlo likelihood

(3.4) LMC(θ) = m−1
m∑

j=1

[T |Sj ]
[Y |S0j ]
[S0j |Y ]

[S0j ]

where Sj are assumed as realizations of the distribution of S conditional on Y . S0j denotes
the values of Sj restricted to the n observed time points. We may notice that j takes a value
from 1 to m, the total number of Monte Carlo replicates. With this purpose, we use a tech-
nique known as conditioning by kriging [18] and we use the following construction. The new
sample Sj = U +ΣSAT

(
AΣSAT + τ2In

)−1 (V −AU) where A is the n×N matrix whose ith
row consists of N − 1 0s and a single 1 to identify the position of ti within T = (t1, ..., tn);
U = Σ1/2

S u ∼ MV N(0,ΣS) with u ∼ N(0, 1) and Σ1/2
S is obtained from the Cholesky decom-

position and V ∼ MV N(y, ΣY ). Then Sj has the required multivariate Gaussian distribution
of S given Y = y. In practice, we use antithetic pairs of realizations to reduce Monte Carlo
variance [8].

T |Sj in (3.4) is an inhomogeneous Poisson process with intensity

(3.5) λ(t) = exp {a + βSj(t)} .

For computational reasons, we work with logarithm and thus,

(3.6) log([T |Sj ]) =
n∑

i=1

(a + βSj(ti))− n log
(∫ T

0
exp(a + βSj(t))dt

)
.

As the Sj replicate is not known in [0, T ] domain, we can not calculate the integral
presented in expression (3.6), so, we approximate the integral using the composed trapezium
formula for unequally spaced data.

[S0j ] in (3.4) is multivariate Gaussian with mean 0 and covariance matrix ΣS0j =
σ2

w
2α0

RS0j (α0), where RS0j (α0) is the n×n correlation matrix with elements rij = ρ (|ti − tj | ;α0)
defined by (2.2).
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[S0j |Y ] in (3.4) is multivariate Gaussian with mean µS0j |Y = ΣS0jΣ
−1
Y (y − µ1) and

covariance matrix ΣS0j |Y = ΣS0j − ΣS0jΣ
−1
Y Σt

S0j
. For more details about conditional distri-

bution see for e.g. [1].

Obtained the Maximum Likelihood Estimates (MLE’s), we can plug them into (2.4) and
(2.5), treating them as known. We are in position of doing the so-called plug-in predictions.

4. NUMERICAL ILLUSTRATION

In this section we document the performance of the model with time series simulated
under preferential and non preferential (irregular and regular sampling) scenarios. The simu-
lation allows control the degree of preferentiality. In addition, we apply our modeling proce-
dure to a time series related to the biomedical marker level of platelet after a cancer patient
undergoes a bone marrow transplant. Taken together, these examples suggest that our model
is effective at detecting potential preferential sampling situations, estimating an adequate
model and obtaining predictions for the process. We compare the results from our model
with the traditional Kalman filter approach to irregularly spaced data (cts package [23]).
We begin by describing the procedure to simulate a time series under preferential sampling.

4.1. Artificial data

To generate a time series under preferential sampling we first generate a realization of
S from model (2.1) with α0 = 0.2 and σ2

w = 1, discretized in 400 equally spaced time points.
These values correspond to V ar[S(.)] = σ2 = σ2

w
2α0

= (1.581)2 and φ = 1
α0

= 5, being the latter
related to the lag beyond which there is no correlation for practical purposes. To generate
Y from model (2.1), we consider µ = 0 and τ = 0.1, conducting three separate sampling
procedures over the realization of S:

• preferential sampling: conditional on the values of S, we obtain n = 70 sampling
times T following an inhomogeneous Poisson process with intensity function defined
in (3.5) and β = 2;

• irregular sampling: we obtain n = 70 sampling times T from (3.5) and with β = 0,
illustrating the situation without preferential sampling;

• regular sampling: we obtain n = 70 sampling times with equidistant observations.

To illustrate the results of these sampling schemes, we represent in Figure 1 a realization
of the process S (gray line) and the three resulting data sets. We have 70 sampling times
(black points), considering β = 2 in the process intensity function, in which the preferential
nature of the sampling process results in sample times falling predominantly near the maxima.
For 70 sampling times (white points), we consider β = 0, the situation without preferential
sampling and with irregularly sampling points. For the remaining 70 points (star points), we
have the situation of regular spaced sampling times.
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Figure 1: Sample times with preferential sampling nature (black points),
without preferential sampling and irregularly spaced time
points (white points), regular spaced time points (star points)
and underlying process S (gray line).

The parameters µ, σ, φ, τ and β are the target of estimation. The estimates are ob-
tained under (3.4), henceforward denoted by MCMLE’s and from the Kalman filter, denoted
by MLE’s. For the maximization of our Monte Carlo log-likelihood function we considered
a total of grid points N = 400 and a total number of MÇ replicates m = 1000. Mean and
standard errors for the estimates obtained from 250 independent simulated samples are sum-
marized in Table 1.

Table 1: Maximum likelihood estimates, under PS model (MCMLE’s)
and by cts package (MLE’s), mean (standard errors) obtained
from a total of 250 independent samples.

PS Data set (β = 2) Irregularly Sampling (β = 0) Regular sampling
True PS model CTS PS Model CTS PS Model CTS

bµ 0 0.13 (0.18) 0.38 (0.31) 0.04 (0.12) 0.26 (0.34) 0.02 (0.22) 0.71 (0.62)
bσ 1.58 1.53 (0.21) 0.99 (0.18) 1.64 (0.11) 1.52 (0.21) 1.60 (0.13) 1.45 (0.24)
bφ 5 5.71 (1.01) 3.17 (2.55) 5.20 (0.48) 5.52 (1.96) 5.12 (0.89) 6.78 (2.93)
bτ 0.1 0.12 (0.04) 0.27 (0.13) 0.11 (0.01) 0.30 (0.18) 0.11 (0.02) 0.55 (0.28)
bβ 2 or 0 1.76 (0.39) 0.00 (0.07) 0.00 (0.02)

Analysing Table 1 we conclude that the model for Temporal Preferential Sampling
presents estimates for the parameters less biased, even when the preferability degree is null,
with regular and irregularly sampling.
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To analyse the impact of ignoring preferential sampling on the quality of predictions,
we conducted a second simulation study. We simulated 250 realizations of S and for each we
constructed a preferential sampling data set. Then, the proposed MCMLE’s and the MLE’s
from the Kalman filter approach were obtained and plugged-in equation (2.4) to predict S(t)
at 50 equally spaced time points. These together with the corresponding standard errors, in
(2.5), allowed us to calculate prediction 95% confidence intervals and estimate their coverage.

Figure 2 represents one simulation of S(t) (black line), the corresponding preferential
sampling data (black points) and the predictions acquired from MCMLE’s (white points)
and MLE’s (gray points). MLE’s which do not take into account the preferential character of
the data lead to predictions with larger bias (overestimation of the observations) and smaller
variance than that of MCMLE’s. In fact, in the overall simulation results confidence intervals
from MCMLE’s present an estimated coverage of 88% while the MLE’s provide an estimated
coverage of just 73%. Thus, the proposed model leads to estimates that are less biased but
with larger variance, reflecting the uncertainty associated with the observations.
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s

Figure 2: Predictions acquired from MCMLE’s (white points) and
MLE’s (gray points), dashed line are confidence bands, black
points are the preferential sampling data and black line is the
underlying process S.

Further studies with β taking non-integer and negative values (sampling times are con-
centrated, predominantly, near the minima of the observed values) lead to similar conclusions.
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4.2. Biomedical marker

We consider the problem of monitoring the level of a biomedical marker, platelet, after
a cancer patient undergoes a bone marrow transplant. The data in Figure 3, studied in [20]
as missing data problem, are 91 measurements made different days on variable log(platelet)
[PLT]. In the first 35 days the data were observed daily and then irregularly, once the indicator
began to show better results. According to [11], “Platelet count at about 100 days post
transplant has previously been shown to be a good indicator of subsequent long term survival”.
This data is available in the package astsa [21] with the name of “blood”.
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LT
)

Figure 3: Measurements of the log(platelet) [PLT].

The MCMLE’s for model parameters are: µ̂ = 1.99, φ̂ = 66.18, σ̂ = 0.72, τ̂ = 0.11 and
β̂ = −2.01. The estimated value for β with its negative sign indicates that the data was, in
fact, observed under a preferential framework whereby the patient is observed more frequently
when the biomarker shows lower values. Predictions of the biomarker within the period of
observations are obtained plugging-in the estimated parameters in equations (2.4) and (2.5).
Figure 4 top panel shows the 95% prediction intervals for (log of) the biomarker while the
bottom panel represents the 95% prediction intervals obtained from the MLE’s from the
Kalman filter approach, with µ̂ = 1.57, φ̂ = 53.94, σ̂ = 0.42 and τ̂ = 0.13. As expected in
view of the simulation results, the predictions obtained from MCMLE present larger variance
reflecting the uncertainty associated with the preferential data under analysis.

This kind of study is important, for example, to analyse when a new measurement of
the patient’s health indicator should be taken.
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Figure 4: Prediction 95% confidence intervals using predictions acquired
from MCMLE’s (top) and MLE’s (bottom).

5. CONCLUDING REMARKS AND FUTURE WORK

We propose, in this work, a methodology to deal with irregularly spaced time series
but also a methodology that takes into account the frequency or time occurrence of the
observations. The proposed model not only provides good estimates for model parameters
but also reveals quite satisfactory results for prediction. A key aspect of this methodology
is that it provides a tool, for example in the context of clinical trials, supporting a better
knowledge of the underlying stochastic process, goal of study.
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In their work, [7] affirm that the use of a single parameter in (3.5) to capture both
the strength of the preferentiality and the amount of non-uniformity in sampling locations is
somewhat inflexible. Alternatively, a more flexible and computational more efficient class of
models, based on the proposal of [17], is discussed. These authors suggest an extension to
the model proposed by [8], by adding a second Gaussian process and use of stochastic partial
differential equation models. For future investigation we intend to adapt those suggestions
to the time dimension.
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