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Abstract:

e Multiple Correspondence Analysis (MCA) and log-linear modeling are two techniques

for multi-way contingency table analysis having different approaches and fields of
applications. Log-linear models are interesting when applied to a small number of
variables. Multiple Correspondence Analysis is useful in large tables. This efficiency
is balanced by the fact that MCA is not able to explicit the relations between more
than two variables, as can be done through log-linear modeling. The two approaches
are complementary. We present in this paper the distribution of eigenvalues in MCA
when the data fit a known log-linear model, then we construct this model by succes-
sive applications of MCA. We also propose an empirical procedure, fitting progres-
sively the log-linear model where the fitting criterion is based on eigenvalue diagrams.
The procedure is validated on several sets of data used in the literature.
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1. INTRODUCTION

Multiple Correspondence Analysis and log-linear modeling are two very
different, but mutually beneficial approaches to analyzing multi-way contingency
tables: log-linear models are profitably applied to a small number of variables.
Multiple Correspondence Analysis is useful in large tables. This efficiency is
balanced by the fact that MCA is not able to explicit relations between more
than two variables, as can be done through log-linear modeling. The two ap-
proaches are complementary. After a short reminder on MCA and log-linear
approaches, we study the distribution of eigenvalues in MCA under modeling
hypotheses, especially in the case of independence. At the end we propose an
algorithmic approach for fitting log-linear models where the fitting criterion is
based on eigenvalues diagram.

2. A SHORT SURVEY OF MULTIPLE CORRESPONDENCE
ANALYSIS AND LOG-LINEAR MODELS

We first introduce MCA and log-linear modelling, then we present some
works using both methods.

2.1. Multiple Correspondence Analysis

Correspondence Analysis (CA) has quite a long history as a method for
the analysis of categorical data. The starting point of this history is usually
set in 1935 [28], and since then CA has been reinvented several times. We can
distinguish simple CA (CA of contingency tables) and MCA or Multiple Cor-
respondence Analysis (CA of so-called indicator matrices). MCA traces back
to Guttman [23], Burt [8] or Hayashi [25]. In France, in the 1960s, Benzecri [6]
proposes, other developments of this method. Outside France, MCA has been de-
veloped by J. de Leeuw since 1973 [22] under the name of Homogeneity Analysis,
and the name of Dual Scaling by Nishisato [38].

Multiple Correspondence Analysis (MCA) is a multidimensional descriptive
technique of categorical data. A theoretical version of Multiple Correspondence
Analysis of p variables can be defined as the limit, when the number of statistical
units increases, of the CA of a complete disjunctive table.

Let X be a complete disjunctive table of p categorical variables X1, Xo, ...,
Xp, with respectively m1,mo, ..., m;, modalities observed over a sample of n in-
dividuals. CA of this complete disjunctive table is equivalent to the analysis
of B [8], where B = X'X is the Burt table associated with X. The two anal-
yses have the same factors, but the eigenvalues in MCA equal to the squared
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root of the eigenvalues in the CA of the associated Burt table. MCA of X cor-
responds to the diagonalization of the matrix %(D‘lX 'X) = %(D‘lB) where
D = Diag(X'X) = Diag(B).

The structure of the eigenvalue diagram depends on the variable interac-
tions. It is well known that in the case of pairwise independent variables, the ¢
non-trivial eigenvalues are theoretically equal to to %, where

(1) q:Zmi—p.
i=1

2.2. Log-linear modeling

Log-linear modeling is a well-known method for studying structural rela-
tionships between categorical variables in a multiple contingency table when all
the variables have no particular role. Relatively recent and not as well known
in France as MCA, log-linear modeling has many classical references. After first
works of Birch [7] in 1963 and Goodman [17], we must mention the basic books
of Haberman [24], Bishop, Fienberg & Holland [8], Fienberg [15].

More Recently, Dobson [12], Agresti [1], Christensen [10] have written syn-
theses on the subject supplemented with personal contributions.

Whittaker [41] devotes a large part of his book to log-linear models before
defining associated graphical models.

2.2.1. Log-linear modeling in the binomial case

Let X = (Xy, Xy, ..., Xp) be a k-dimensional random vector, with values in
{0,1}*. The expression for the k-dimensional probability density of X is:

fe(X) = p(0,0,..., O)(l_zl)(l_m)m(l_“) -p(1,0, ..., O)ml(l—-’EQ)"'(l—il?k)
. p(O, 1,..., 0)(1—:21):102--.(1711@) p(O, 0,..., 1)(17951)(17332)...%
~-p(1,1, .., 0)1112-"(17:1:1@) cep(1,1, ., 1)PER

We can write the density function as a log-linear expansion:

k k k
log[fr(X)] = uo + ZuzscZ + Zuij iz + Zuiﬂxixjxl
i=1

ij=1, ij, I=1,
1#j 1#£j#l
+ 0 4 U123 K T1 X2 T

p(0,0,...,0,1,0,...0)
p(0707"'70)
are a log cross product ratio in the (k, k) probability table. The u-term u;; is set

to zero when X; and X; are independent variables.

where u, =1og[p(0,0,...,0)], u; =log| ] and the u-terms w;j, ..., w123
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2.2.2. Log-linear modeling in the multinomial case

Let X = (X3, Xo, ..., X)) be a k-dimensional random vector, with values in
{0,1,...,m1—1} x {0,1,...,ma—1} x ... x {0,1, ..., mp—1} instead of in {0,1}" as
in the preceding case.

The generalisation to the k-dimensional cross-classified multinomial distri-
bution is the log-linear expansion:

k k k
log[fe(X)] = wo + Y wilz) + > uy(x) + > () + -+ + uizs. k(x) .
i=1 i.j=1, i, I=1,
1#] 1#j#l

Each u-term is a coordinate projection function with the coordinates indi-
cated by its index; and each u-term is constrained to be zero whenever one of its
indicated coordinates is zero.

The importance of log-linear expansions rests with the fact that many in-
teresting hypotheses can be generated by setting some u-terms to zero.

We are interested particularly in this paper with graphical and hierarchical
log-linear models.

2.2.2.1. Graphical log-linear models

Let G = (K, E) be the independence graph of the k-dimensional random
vector X, with k vertices in K = {1,2,...,k} and edge set E. G is the set of
pairs (7,7) such that whenever (i,j) is not in E the variables X; and X, are
independent conditionally on the other variables.

Given an independence graph G, the cross classified multinomial distribu-
tion for the random vector X is a graphical model for X, if the distribution of X
is different from constraints of the form that for all pair of coordinates not in the
edge set F of G, the u-terms constraining the selected coordinates are identically
zZero.

2.2.2.2. Hierarchical log-linear models

A graphical model satisfies constraints of the form that all u-terms ‘above’
a fixed point have to be zero to get conditional independence. A larger class of
models, the hierarchical models, is obtained by allowing more flexibility in setting
the u-terms to zero.

A log-linear model is hierarchical if, whenever one particular u-term is
constrained to zero then all higher u-terms containing the same set of subscripts
are also set to zero.
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We note here that every distribution with a log-linear expansion has an
interaction (or independence) graph, and a hierarchical log-linear model is graph-
ical if and only if its maximal u-terms correspond to cliques in the independence
graph.

When all the u-terms are non-zero, we have the saturated model.

In the case when only the u; are non-zero, the model is called the mutual
independence model:

k
log[f(X)] = uo(x) + ) ui(x) .
i=1

When only u; and some of u;; are non-zero, the model is called a condi-
tional independence model:

k
log[fie(X)] = uo(x) + > ui(z) + Y uij(x) .
=1 2,J

These conditional independence models refer to simple interactions between
some variables.

2.2.3. Parameters estimation and related tests

Theoretical frequencies are generally estimated using the maximum-likeli-
hood method. Weighted regression, or iterative methods can be also used as
well since log-linear models are particular cases of the generalized linear model.
Usually the classical x? or the G? tests (the likelihood ratio) are used to assess
log-linear models. The values of the two statistics increase with the number of
variables, and decrease with the number of interactions. The closer the statistics
are to zero, the better the models.

Model selection becomes difficult when the number of variables grow:
e.g. with four variables there are 167 different hierarchical models. To avoid the
“combinatory explosion” we can use criterions based on the Kullback information
like the Akaike criterion:

AIC = —2log(L) + 2k (An Information criterion) ,
or the Schwartz criterion:

BIC = —2log(L) + klog(n)  (Bayesian Information criterion) ,

where L is the maximum of the likelihood function (L), and k the number of
parameters maximising L.
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2.3. Multiple Correspondence Analysis and log-linear model as com-
plementary tools of analysis

In this section, we present some works that show how CA (or MCA) and
log-linear modeling can be related. This leads to a better understanding of CA,
and to a combined use of both methods.

CA is often introduced without any reference to other methods of statistical
treatment of categorical data with proven usefulness and flexibility.

A major difference between CA and most other techniques for categorical
data analysis lies in the use of probability models. In log-linear analysis (LLA),
for example, a distribution is assumed under which the data are collected, then
a log-linear model for the data is hypothesized and estimations are made under
the assumption that this probability model is true, and finally these estimates
are compared with the observed frequencies to evaluate the log-linear model.
In this way it is possible to make inferences about the population on the basis of
the sample data.

In CA, it is claimed that no underlying distribution has to be assumed and
no model has to be hypothesized, but a decomposition of the data is obtained to
study the ‘structure’ in the data.

A vast literature has been devoted to the assessment of CA (or MCA) and
LLA. We briefly report here some of that literature.

Several works compare CA or MCA and LLA. Daudin and Trecourt [11]
demonstrate empirically that LLA is better adapted to study global relationships
between the variables, in the sense that marginal liaisons are eliminated in the
computation of profiles.

Goodman [17],[18],[19],]20],[21] defines two models belonging to the same
family: the saturated row column correspondence analysis model as a general-
ization of MCA, and the row column association model as a generalization of
LLA. He demonstrates, with illustrations by examples, that using these models
is better than using the classical methods.

Baccini, Mathieu and Mondot [3] use an example to compare the two
methods. Jmel [30], De Falguerolles, Jmel and Whittaker [13],[14] use graphi-
cal models compared to MCA.

Other works use CA or MCA and LLA as a combined approach to con-
tingency table analysis: Van der Heijden and de Leeuw [26],[27],[28], Novak and
Hoffman [39] and others, use CA as a tool for the exploration of the residuals
from log-linear models, and give an example of the procedure.

Worsley [42] shows that in certain cases CA leads directly to the appropriate
log-linear model.

Lauro and Decarli [31] used AC as a procedure for the identification of best
log-linear models.
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3. EIGENVALUES IN CORRESPONDENCE ANALYSIS

It is well known that MCA is an extension of CA, although we first present
eigenvalues in CA, and some simple rules for the selection of the number of
eigenvalues.

3.1. Asymptotic distribution of eigenvalues in Correspondence Analysis

Let N be a contingency table with mq rows and mo columns, and let us
assume that N is the realization of a multinomial distribution M (n,p;;) which
is realistic. In this framework the observed eigenvalues u; are estimators of the
eigenvalues \; of nP, where P is the table of unknown joint probabilities.

Lebart [32] and O’Neill [34],[35],[36] proved the following result:

if ;1; =0 then \; has the same distribution as the corresponding eigenvalues of a
(m1—1)(ma—1) degrees of freedom from the Wishart matrix: Wiy, —1)(mq—1)(7,1)
where r = min(m;—1, mg—1).

If p1;= 0 then \/E is asymptotically normally distributed, but with param-
eters depending on the unknown p;;. Since it is difficult to test this hypothesis,
some authors have proposed a bootstrap approach, which unfortunately is not
valid: since the empirical eigenvalues, on which the replication is based, are gen-
erally not null, we cannot observe the distribution based on the Wishart matrix.

3.2. Malinvaud’s test

Based upon the reconstitution formula, which is a weighted singular value
decomposition of N:

> (@i bis)

k

n V>\k ’

where a;, b are the factorial components associated to the row and column
profiles.

We may use a chi-square test comparing the observed n;; from a sample
of size n to the expected frequencies under the null-hypothesis Hy of only k& non
zeros. The p; weighted least squares estimates of these expectations are precisely
the n;; of the reconstitution formula with its first k& terms. We then compute the
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classical chi-square goodness of fit statistic:
(723 — nij)?
Qr = —

If k£ = 0 (independence), Qo is compared to a chi-square with (m; — 1) (mg — 1)
degrees of freedom. Under Hy, Q) is asymptotically distributed like a chi-square
with (mq — k — 1) (mg — k — 1) degrees of freedom. However @ suffers from the
following drawback: if n;; is small, 7;; can be negative and the test statistic can-
not be used. This is not the case for the modification proposed by E. Malinvaud
[37] who proposed to use i 5) instead of 7 n;j for the denominator. Furthermore,
this leads to a simple relatlon with the sum of the discarded eigenvalues:

(Nij — ngj)
Qk _ZZ j J =n (M1 + M2+ oo+ A)

mn]

Q). is also asymptotically distributed like a chi-square with (p—k—1) (¢ —k —1)
degrees of freedom.

4. BEHAVIOUR OF EIGENVALUES IN MCA UNDER
MODELING HYPOTHESES

Let X = (X;|X3]...|X) be a disjunctive table of p categorical variables X
(with respectively m; modalities) observed on a sample of n individuals, and ¢
the number of non trivial eigenvalues (as defined in §2.1).

Multiple Correspondence Analysis is the CA of disjunctive table X.
The rank of X: rank(X) = min(¢+1;n), so equals ¢+1 if n > g+1.

We suppose, without loss of generality, that n is large enough, which is the
usual case. CA factors are the eigenvectors of the matrix % D™1B (where B and

D are defined in §2.1). So D™ B is a diagonal unit matrix.

1 1L
Its trace is: Tr(D E m; and —Tr(Dle) = - E m;.
P
i=1
P

Since Z i = Z m; — 1, we can conclude that
i=1

1< 1
2 SN = -
®) DI
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and

q

(3) > () =

i=1

Y ) + Y3

i#]

where gogj is the observed Pearson’s ¢? crossing of X; with X;, and

2
(nw M) X2
ZZ =
(n;. and n.; are margin effectives).

Although MCA is an extension of CA, the results of §3 are not valid and
one cannot use Malinvaud’s test: elements of X being 0 or 1 and not frequencies,
Q and Q). do not follow a chi-square distribution.

However it is possible to get information about the dispersion of the ¢
eigenvalues in particular cases [5].

4.1. Distribution of eigenvalues in MCA under independence
hypothesis

Under the hypothesis of pairwise independence of the variables Xj,
all gogj = 0 and equation (3), becomes

q 1 p
St = 53 0m
1= =1

Using (2) we get

and finally:

d 1 1 ’
> = 5 = 1300
i=1 p 77

Since the mean of the squared pu; equals their squared means only if all the terms
are equal, we can conclude that all the eigenvalues have the same value, so that:

mi = — Vi .
p
We conclude that the theoretical MCA (i.e. for the population), under the hy-
pothesis of pairwise independence of the variables X; leads to one g-multiple
non-trivial non-zero eigenvalue A = %. And the eigenvalue diagram has the par-
ticular shape shown in Figure I:
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Al Eigenvalues diagram

AL | stokstoskokskokosk stk skokskokosk sk ko stk ok ok ok
A2 | sskskotokokoskkoskskosksk sk kk skk sk sk sk sk ok ok ok
A3 | stokskoskokskokosk stk skokskoksk sk ks sk sk ok ok ok
A | sskskotoskokokkoskskoksk sk kok sk sk sk sk sk ok ok ok
A5 | skskskskoktokfsk stk sk ok sk sk sk sk ok ok
ok ok skokokok ok sk ok sk sk sk ok koo ok ok ok skokok ok
Ag | el Rk ok ok

Figure 1: Theoretical eigenvalues diagram in the independence case.

This result is not true when we have a finite sample, since sampling fluc-
tuations make the observed golzj # 0. Although the trace of %(D_IB) and 71 the
mean of the observed non-trivial eigenvalues, are constants, we observe ¢ different
non-trivial eigenvalues p; # 1_1?’ and the eigenvalue diagram takes the shape shown
in Figure 2:

A1 Eigenvalues diagram

Al Sk sk sk sk sk sk sk sk sk sk SRRk sk sk sk sk kR skoskoskoskoskoskok
AQ >k sk sk ok skosk sk sk ok skok sk sk kok sk sk ok skokoskoskokoksk sk
Ag >ksk sk sk sk sk skosk sk skoskoskoskoskoskoskoskoskoskoskoskoskoskoskosksk
A4 >k sk sk ok sk ok sk ok >kok sk sk sk okok skok kokoskosk kokok

A5 koo sk sk sk sk koo sk sk sk sk skoskoskoskoskoskoskoskoskoskoskosk

: >k ok sk ok ok ok ok ok ok sk ok sk sk ok sk ok kokok ko k

Aq koo sk ok ok sk sk ok ok ok skosk sk sk ok sk skoskoskokokok

Figure 2: Observed eigenvalues diagram in the independence case.

4.1.1. Dispersion of eigenvalues

Let 5’2 be the measure of p; around % given by:

1< 1 1< 1
52:_ <,U'——>:— M,Q__’

g ; ") o« ;( S

which implies
1 1
> = (st + 5 ) -
i=1

Using equations (1)&(3), we have:
q

N P DI MR R D) P

2 2
i=1 b i#i P i#]
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Under the hypothesis of pairwise independence of the variables,
2 . . 2 . .
the Xi; are realizations of X{imi—1)(m; 1) variables, so their expected values are
(mi — 1) (m; — 1).

We can then easily compute E(Y} %, (1;)?), and get:

B(3 00 = e HE S Y- 1my 1)

1=1 1#]
Finally:
2 1 : 2 1
E(S,) = gE > )’ ) - =
and we obtain:

(52_11122 (m; —1) .

LR ey

Now, since E (Sﬁ) =02, we may assume that £ + 2o contains roughly 95%
of the eigenvalues. Moreover, since the kurtosis of the set of eigenvalues is lower

than for a normal distribution, this proportion is actually probably larger then
95%.

4.1.2. Estimation of the Burt table

Let X be the disjunctive table associated to p categorical variables Xj,
with m; modalities respectively, observed on a sample of n individuals, where
Xi = (Xi1, Xi2, -y Xim, ), X is a matrix made (of p-block) of p blocks X;

X=(X1|Xo| | Xi| | Xp) -
Let (X7 i X fp) be the observed value of X; on the ;' individual.

We can write

My 1 1 1 1 1 1
Xll"' Xl . 5(1... X , 5(1... X
XZ X2 X'2 X'Q X'Q X2
X 1 " 1ma 21 2my T pl " pmyp
xXn X" X X7 X" X
| 211 " 1my 21 °°° 2mg pl "7 pmy

The Burt table of X is then

XIX) X|Xs - XX, By B -+ By
X,X1 XbXo -+ X)X Bay By -+ By

B = L

X\ X1 X)Xa - X)X, By By -+ By
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where ~ -
Y o(XY)? > (X1 (X3) > (X)) (X,,0)
Jj=1 Jj=1 J=1
B, = By n ' 4 n n . .
dxd)(xdy > (x)? > (X3 (X7,
= X/X; = | i=1 j=1 j=1
YD X D (X0 (X > (X,
| j=1 j=1 J=1 i
and

y 0
Xy = 1

with > X,ZZ. = 1. Since there is only one k in {1,...,m;} such as X]’-“i =1, all
other being zero, we obtain:

Z(X,gi)2 — ngi in {1,..,n}, Vke{l,., m;
k=1 k=1
and .
(X)) (Xed) =0 Yk kefl,.m}.
k=1

And so can conclude that Vi=1, ..., p the diagonal sub-matrices of the Burt
table are themselves diagonal matrices:

r n

> (x1)? 0

J=1

(X7,)?

n
Jj=1 i

Furthermore, we know that

3 (3234) = St - .
j=1

k=1 k=1

where
n
_ N
Ngi = Zin =1y
j=1

is the number of individuals that have the k"' modality of the ‘" variable
(for 1<i<pand 1 <k<m).
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So the diagonal sub-matrices of the Burt table are:

1
n; 0

N
B; = B; = nf where g % =1 Vi=1,....,p.
. k=1

Consider now two independent variables X, and X3 amongst the p vari-
ables having respectively m, and mg modalities.

Let B, be the (mq, mq) square matrix By = X, X, and Byg the (mq, mg)
rectangular matrix Bog = X/, X3.

We have
n
(Ba)ii = Y XE =X$ and  (Ba)y=0 ifi#j,
k=1

and where (Byg)ij = sza szﬁ s n.

Under the hypothesis that X, and Xz are independent

(Ba)ij (Bg)ij _ X3 X}
n n

(Bap)ij =

Since X§ =n$* and Xf = niﬁ, we can write

n B a, B
xo xP n&n’;
(Bap)ij = E Xp X = ==t = ’
J n n
k=1
and, more generally, we can conclude that
[ g i d ind ]
mmo om0 Mg
n n n
i i i
ngny o npny o Mol
/ — p—
X;X; = B;j = n n
i J i ] i
Mo, V] Moy, M Mo, Tim
- n n n _

if the p variables are mutually independent.
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Now consider a sample of p multinomial random variables X;. Let pf = Dik
be the probability that an individual be in the k' category of the i'" variable,
and pfj be the probably that the j* individual be in the k" category of the i*®
variable.

The observed Burt table is:

(XIX) XXy o X!X,]
poxix - | BN X
XX, XX, o X)X, |
with
. -
(X5)° 0
j=1
n
X!X; = N; = > (XL = diag{n!,..,n"} .
j=1
n .
0 (X,)”
L Jj=1 J
But nf:Z(X}Ci)z:npf and przl, so that an: anfzn, Vi=1,..,p
=1 k=1 i k=1 k=1
np} 0
and X/X; = npk
L 0 np; |

Since X; and X, are independent variables, X/X; = N;; and (Njj)kw =
(X!/X;)er = npkph’, which implies

i i m
npipy  Mpipy o NiNm,
™ ™ j
npyp;  MPyPy  ccc MPyPm,

i ] i ] i j
| nph,pl MphL,py o MDD |
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nk

The maximum-likelihood estimator of pf is ﬁf:#, SO

-1 -
n; 0
\T. k
N; = n; = Bj;
sz
L 0 n;
and - : i i
1 1
n n
i i,,J i,
Nl] — n n n == B’L]
i i i
Ny, MV T, T o Ny, Vim
L n n n i

We can conclude that the the maximum-likelihood estimator B of the theo-
retical Burt table is B the observed one. Using the invariance functional propriety
we can affirm that the maximum-likelihood estimators of the eigenvalues of D' B
are the eigenvalues of D' B, so that each y; is the maximum-likelihood estimator
of )\i =\

Maximum-likelihood estimators are asymptotically normal, and so, asymp-
totically, each p; is normally distributed. But due to the fact that eigenvalues
are ordered, the eigenvalues are not identically and independently distributed.
However:

1 1 1 1
E(pp) > » E(pq) <2—9 but E(u1) — — and E(py) — — .

Furthermore the eigenvalue variances are not the same. And from simula-
tions of large samples of n observations (n = 100, ..., n = 10000), we notice that
the convergence of the eigenvalue distribution to a normal one is slow, especially
for the extremes (1 and fi4), even for very large samples [4].

4.2. Distribution of eigenvalues in MCA under non-independence
hypotheses

4.2.1. Distribution of the theoretical eigenvalues

Let 1 be an eigenvalue of D™'X’X. Since p can be also obtained by
diagonalization of %XD_lX’, 1 is a solution of %XD_lX’z = z, where z is an
eigenvector associated to pu.
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So
1 (& 1, 12
— ZXi(Xin‘) X, |z =pz <= —ZBz:uz,
P \iZ Prim

P

where P, = Xi(XZ(XZ-)_ng is the orthogonal projector on the space spanned
i=1

by linear combinations of the indicators of variables categories X;.

Let A; the centered projector associated to P;:

Lo
A, =P, — 7; : where 1,,,m, =

And so we get

P
ZAiz = uz.
i=1

4.2.1.1. The Case of two-way interactions

Let us assume that among the p studied variables, there is a two-way inter-
action between X; and X}, and that the (p —2) reminding variables are mutually
independent. Multiplying equation (4) by A; we get:

1
= (AjAL+ AjAg ook AgAy ot Ak AjAy )2 = Az
J

since all variables are pairwise independent except X;, X, and the A; are or-
thogonal projectors. Thus:

(5) AjAz = (pp—1)Ajz.

Similarly, multiplying (4) by Ag, we get:

(6) ApAjz = (pp—1)Apz .

Now let us multiply (5) by A to get:

ApAjALz = (pp—1) AAj 2 .

Using (6) we obtain

ApAj Az = (pp—172 A,z .

21 Z1
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With the notation A = (pu — 1), we finally write:

(7) AkA] 21 = )\Zl .

Equation (7) implies that A is an eigenvalue of the product of the centered
projector A A; associated to the eigenvector 2.

In general: Vj,k=1,...,p, if there is an interaction between X; and Xj,
the orthogonal projector A;Aj admits a non zero eigenvalue A = (pp — 1)2.
EAA£0e pu# %, the trace of Burt table being constant, there is, at least,

another eigenvalue not equal to %.

Let ng be the number of eigenvalue non equal to 1—1), so that Y 10 \; = %.

Theoretically, (except for the particular case, where A = 1, for which we
have p = % and p/ = 0), the number of non-trivial-eigenvalues greater than % is

equal to the number of non-trivial eigenvalues smaller than %.

The eigenvalue diagram shape is shown on Figure 3:

Ar Figenvalues diagram

AL | sokskotoskokskokosk stttk otk sk sk skoksk ok ok ok
A2 | sskskotoskokskokok skskok sk sk ok sk sk sk ok ok ok
A3 | sokskokskokskskokstokskkokksk sk stk ok ok

AL | sskskoskokskskosksksok ok sk sk sk ok ok ok

A5 | sokskokskokskskoskstoksk sk ksk ok stk ok ok

: sokokokokokokokokok sk ok ok kKK ok

Ag | HRsssssskkkkrooR ok

Figure 3: Theoretical eigenvalues diagram in two-way interaction case.

The number ng depends on the number of categories of X; and X, on the
number of variables and on the number of dependent variables.

Let n; be the multiplicity of %, we will show that ny= ¢ — 2min((m;—1);
(mg—1)), when p > 2, and when there is only one two-way interaction between
the variables.

This result can be shown as follows:

Let us consider equation (4), and suppose, without loss of generality,
that X7 and X5 are dependant. So, upon multiplication by As: 117 S Az =pz
becomes I%(AgAl + AsAg + A3As + -+ AsAp) z = pAs z, and we get p = %.
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Now multiply equation (4) by Ay and A; in turn to get:

(A1As+ A1 Ay + A Ay + -+ A Ap) 2 = ppds 2
<
<A2A1 + Ag Ay + As A+ -+ + AQAP> z = p/LAQ z

(A1 +A1Ag) 2z = ppuAiz
<
(AQAl +A2)Z = p/LAQZ

AlAQb = Az
—
A2A1b = Az

where A= (ppu—1)2, a= A1z and b= Ay 2.

We recognize here the CA equations, so that the CA of Burt tables, when
only two variables are dependent is equivalent to the CA of the contingency
tables crossing the two dependent variables. It is well known that the number of
eigenvalue in CA equals ¢ — 2min((m; —1); (my—1)), and for all non trivial A;,
there corresponds the values y; and g such that:

1+ vV )
Wi = ——— and ;= ————
p p
Finally, the CA of the Burt table may have 2 min((m;—1);(mj—1)) eigenval-

ues non trivial and not equal to %, associated to the CA of the contingency table.
So the number of supplementary eigenvalues equals ¢ — 2min((m;—1); (mg—1)).

There is, in addition, one n; multiple eigenvalue, where n; is at least
q — 2min((m; — 1); (my, — 1)).

4.2.1.2. The case of higher order interactions

Since the Burt table is constructed with pairwise cross products of variables,
its observation cannot give us information about multiway interactions.

However the observation of the bi-dimensional theoretical Burt sub-tables,
for all pairwise variable combinations, can provide us with all the two-way inter-
actions.

The theoretical Burt table can reveal the existence of higher order interac-
tions in the following case:

If Bij 75 Bu 1mjijjj and sz 75 Bu 1mkkakk: there may be a triple
interaction between X;, X; and Xj.

In general, a Burt table doesn’t give either the order of the interactions, or
supplementary information on the eigenvalue behavior.
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4.2.2. Distribution of observed eigenvalues

Exceptionally, with a small number of interactions, we observe the par-

ticular shape of the eigenvalue diagram exhibited in Figure 4, where we can
distinguish eigenvalues near ]l) (theoretically equal to %), and so we are able to

recognize the existence of the independent variables in the analysis.

A1 FEigenvalues diagram

AL | sokskotokokoskokosk skt stk ok sk sk sk sk ok ok ok
A | skskskskokokok sk sk skosk sk sk sk sk sk sk sk ok ok
A3 | seokskoskokskskokskoksk ok sk sk ssk ok ok

Ag | skokskotokotosrokskosk ok sk sk sk sk ok o

Ap | sokskotskoksk stk skokskkosk sk ko sk ok

: kst sk sk sk ok sk skok skokok ok

: skok sk ok sk sk sk skok sk skok sk

Aq skokokokokoskosk sk sk skok ok

Figure 4: Observed eigenvalues diagram in a two-way interaction case.

When the number of interaction grows, we cannot distinguish eigenvalues
theoretically equal to % from the eigenvalues non equal to 11—7.

To detect the existence or interactions, we can first check if the observed
variables are mutually independent. In that case, the eigenvalues distribution
diagram should have a particular shape (see §4.1.), with more than 95% of the
eigenvalues within the confidence interval % +20 (see §4.1.1).

If there is one or more eigenvalues out of the confidence interval, we can
then assume the existence of one or more two-way interaction between variables.

5. AN EMPIRICAL PROCEDURE FOR FITTING LOG-LINEAR
MODELS BASED ON THE MCA EIGENVALUE DIAGRAM

We propose an empirical procedure for progressively fitting a log-linear
model where the fitting test at each step is based on the MCA eigenvalues dia-
gram.

Let X;, X, and X}, three categorical variables, with respectively m;, m;
and my, modalities, and let a cross variable with (m;xm;) modalities. We suppose
that X;; and X}, have the same behavior if my = m; x m;.
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Under the hypothesis that two dependant variables X; and X; have the
same behaviour as the variable X, with the same characteristics of the cross
variable X;;, we propose here an empirical procedure for fitting progressively,
with p steps, the log-linear model where the fitting criterion at each step is based
on the MCA eigenvalue diagram. Distribution of observed eigenvalues

5.1. Description of the procedure steps

The first step of the procedure consist to test the pairwise independence
hypothesis of the variables. To detect existence of interactions, we must first
check if all variables are mutually independent. For that matter, we calculate the
eigenvalues of MCA on all the p variables, and construct the related confidence
interval: the eigenvalue distribution diagram should have a particular shape (cf.
§4.1.). If all the eigenvalues belong to the confidence interval % +20 (cf. §4.1.1),
we can conclude that the p variables are mutually independent. The log-linear
model associated to the variables is a simple additive one:

log[f,(X)] = uo() + Y uilx) ,
i=1

and the procedure is stopped.

If one or more eigenvalue are not in the confidence interval, we conclude
that there is at least one double interaction between variables, and we go to the
second step of the procedure.

In the second step, we look at all two-way interaction u-terms. We isolate
one variable amongst the p variables that we note X,,, without loss of generality,
and so we obtain a set of (p—1) variables X;, and apply the first step to test
pairwise independence of the (p—1) variables.

If the (p—1) variables are independent, we can conclude that the doubles
interactions are amongst X, and at least one of the X;, so we construct corre-
spondent cross variables X, by using the first step to test independence between
variables (X;, X,) where i=1,...,p—1. The log-linear model associated to the
variables is:

p

p—1
log[fp(X)] = wo() + Y ui(z) + Y uip(@) 5ip
i=1

i=1

and the procedure stopped, (with d;, =1 if the interaction between X, and X;
exists, otherwise it is set to zero.)

If the (p—1) variables are not independent, we can conclude that there is
double interaction between X; and X; where ¢, j=1, ..., p—1, and perhaps between
X; and X,
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We can construct correspondent cross variables X;, and X;; by using the
first step to test independence of variables (X;, X}) and variables (X;, X;) where
1,7 =1,...,p—1. The log-linear model associated to the variables is:

D p—1
log[f,(X)] = uo(x) + Y ui(z) + Y uip(r) 6ip + terms due to the interaction
=1

i=1 between three or more variables

and we go to the third step of the procedure

In the third step, we look at three-way interaction u-terms, by testing the
dependence of variables X; and cross variables X, where 4,7,k = 1,...,p and
i, J, k are different, and construct cross variables X;;;. The independence test is
based on the eigenvalue pattern of the related MCA as described in the first step.

Continuing this way, in the k' step, we look at k-way interaction u-terms,
and in the least step we look at the p-way interaction u-term.

This algorithm is summarized in Figure 5.

5.2. An example for a graphical model

For this example we use a data set given by Haberman [24] that was used in
Falguerolles et al. [14] to fit a graphical model. The data reports attitudes toward
non therapeutic abortions among white subjects crossed with three categorical
variables describing the subjects.

The data set is a contingency table observed for 3181 individuals, crossing
four three modality variables X1, Xs, X3 and X4, defined in Table 1.

The first step of the procedure consists of testing the pairwise indepen-
dence hypothesis of the variables. We first transform the contingency table in
a complete disjunctive table, then calculate the parameters (defined in §2.1 and
§4.1.1) needed for the test (Table 2).

MCA on the four variables gives the eigenvalues diagram of Figure 6.

The shape of eigenvalues diagram refers clearly to the existence of depen-
dent variables.

Eigenvalues A1, A7 and Ag are not in the interval I., so there is at least two
dependent variables: there is one or more two-way interactions between variables.
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[Data table of P variables X;--- Xx|
<

pep
* 71
[MCA on p variables : calculi of eigenvalues A ;]
lcompute mean m and variance 6~ of A;]
fcompute confidence interval Ic =[m-26, m+20 |
fest on belonging of A; to interval I
/ N ) I
The p variables are existence of one or more two-way —p
independents interaction between variables p<(p-1
p=2lor p=p P #2|and P #p
y
sto

MCA on Xy and Xp and compute
Ai.m,candl; when r<p-—1

i/

A el

[X; and Xp, are independents lconstruction of cross-variables Xp|

MCA on X; an;Xs and compute A ,

m, G and I¢ when 1 # Sand 1,Ss<p -1
[X; and Xg are independents"m

\ 4

Ji/ }“i EIC

fconstruction of cross-variables Xg

Putting of p) cross-variables in a same
table with the pj initial variables non
used in construction of cross-variables

)

P« P1+Po

Figure 5: Block diagram for the Empirical procedure.
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Table 1: Attitudes toward non therapeutic abortions among white.

Year Religion: Education Attitude: X4
X4 X5 in years: X3 | positive mixed negative
1972 | northern Protestant <8 09 16 41
9-12 85 52 105
> 13 77 30 38
southern Protestant <8 08 08 46
9-12 35 29 54
>13 37 15 22
Catholic <8 11 14 38
9-12 47 35 115
>13 25 12 42
1973 | northern Protestant <8 17 17 42
9-12 102 38 84
>13 88 15 31
southern Protestant <8 14 11 34
9-12 61 30 59
> 13 49 11 19
Catholic <8 06 16 26
9-12 60 29 108
>13 31 18 50
1974 | northern Protestant <8 23 13 32
9-12 106 50 88
> 13 79 21 31
southern Protestant <8 05 15 37
9-12 38 39 54
>13 52 12 32
Catholic <8 08 10 24
9-12 65 39 89
>13 37 18 43

Table 2: Parameters needed for the test
(first step of the example for a graphical model).

o ol mfmylmilglm | o [ 1 |

13181 [4] 3 | 3] 3] 3 |8]025]00109][0.2283 02717 |

A1 = 0.3221 | seokskskskokokoskosskokskokskokokskkskok sk skok ok ok
Ao = 0.2704 | soksksoksksoksksskksrsk ok kkokk

A3 = 0.2599 | seksksksrskokokskskokoskkkskokoskkkok

A = 0.2531 | soksksksroksksokskokokkokokokkokk

A5 = 0.2451 | soksksoksksokksokkskoskkokokk

Ag = 0.2393 | sskskskoksksksroksoskkokkokkok

A7 = 0.2277 | skssokksrksksskskxk

Ag = 0.1823 | soksksksskokskskskok

Figure 6: Eigenvalues diagram
(first step of the example for a graphical model).
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The second step consists of the detection of two-way interactions. In a
first time, we use our first step with only three variables X7, Xo and X3.

With the values of n and m; (for i =1,...,3) still the same, the other
parameters become (Table 3):

Table 3: Parameters for the test
(second step of the example for a graphical model).

| m | o | & |
| 6] 0.33333 | 0.0118 | [0.3097, 0.3569)] |

We get the following eigenvalue diagram (Figure 7):

AL = 0.3606 | soksksosksksokoksrosk ok kokskkok ok kok ook ok
Ao = 0.3448 | sokssokskskskkskskossk sk kkokkkok ok ok
A3 = 0.3385 | sksksksrokokokskoskokoskskskokokskkskok sk sk kok
A = 0.3305 | soksksksrokskskokskokokkokokok sk kkok ok ok

A5 = 0.3025 | sokskstokskssokoksroskkokoskkskoskokkok ok

Figure 7: Eigenvalues diagram
(second step of the example for a graphical model).

A1 and A5 are not in interval I, so there is one or more two-way interaction
between X7, X5 and X3, as also as interactions between X4 and others.
In a second step we look at the interactions between X4 and X; (i = 1,2, 3).

For i =1 to i =3 we look at the eigenvalues of the MCA of Xy with X,
and calculate their variances and intervals I..

Crossing X with Xy we get (Table 4):

Table 4: MCA on X; and X4 (parameters and eigenvalues).

lalm[ o [ 2 [ A [ % [ % [ M |
| 4] 0.5 ] 0.0125 | 0.4750, 0.5250] | 0.5380 | 0.5156 | 0.4644 | 0.4611 |

Crossing Xy with X4 we get (Table 5):

Table 5: MCA on X, and X4 (parameters and eigenvalues).

lafm] o | & T on [ x| x [ M
| 4] 0.5 | 0.0125 | [0.4750, 0.5250] | 0.5741 | 0.5076 | 0.4924 | 0.4259 |
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Crossing X3 with X4 we get (Table 6):

Table 6: MCA on X3 and X4 (parameters and eigenvalues).

lalm| o [ L [ x| % [ X | A |
| 4] 0.5 ] 00125 | [0.4750, 0.5250] | 0.6112 | 0.5041 | 0.4959 | 0.3979 |

In the three cases, A1 and A4 are not in the intervals I., so there is a two-
way interaction between X; and Xy, X2 and X4 and between X3 and X4, so we
can construct cross variables X4; having 9 modalities (i = 1,2, 3).

Now, we use the first step with only two variables X; and Xs, after we look
for interactions between X3 and X; (i = 1, 2).

Crossing X; with Xy we get (Table 7):
Table 7: MCA on X; and X, (parameters and eigenvalues).

lalm] o [ L [ n | % [ X | A\ |
| 4] 0500125 | [0.4750, 0.5250] | 0.5153 | 0.5045 | 0.4955 | 0.4848 |

All the eigenvalues are in the confidence interval, so X; and Xs are in-
dependent conditionally on the other, and there is no cross variable Xi5. The
corresponding u-term w12 equals to zero.

Let us now look, when i = 1 and i = 2, at the eigenvalues of the MCA of
X3 with X;, with their variances and intervals I:

Crossing X with X3 we get (Table 8):

Table 8: MCA on X; and X3 (parameters and eigenvalues).

lalm[ o [ L [ n [ % [ % [ A ]
| 4] 05 ] 0.0125 | [0.4750, 0.5250] | 0.5134 | 0.5023 | 0.4978 | 0.4866 |

All the eigenvalues are in the confidence interval I., so X; and X3 are
independent conditionally on the other, and there is no cross variable Xi3: the
corresponding u-term w33 equals to zero.

Crossing now X with X3 we get (Table 9):

Table 9: MCA on X, and X3 (parameters and eigenvalues).

lalm[ o [ L [ n [ % [ % [ M ]
| 4] 05 ] 0.0125 | [0.4750, 0.5250] | 0.5401 | 0.5128 | 0.4872 | 0.4599 |

Here, A1 and A4 are not in the interval I, so there is a two-way interaction
between X9 and X3, uog is not set to zero, and we can add the cross variable X3go
(as well as Xo3) with 9 modalities to the model.
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The third step consists of the detection of triple interactions between
variables, that is to two-way interactions between the variables X; and the cross
variables X .

We first put the cross variables (X1, X492, X43, X32) with the initial vari-
ables that were deemed non dependent in the second step of the procedure, i.e. Xy
and X5, and then we use the first step of the procedure with the set of obtained
variables.

So we get the following results (7Table 10 and Figure 8):

Table 10: MCA on )(17 XQ, X41, X42, X43 and X32
(parameters third step of the example for a graphical model).

o m | o | 1 |
| 36 | 0.1667 | 0.0168 | [0.1331, 0.2003] |

A1 = 0.5201 | ssroksksksrokokskskskokskskskokosk sk skskokosk ok kokok
Ao = 0.5006 | ssxskokskoksrokokskskokskskokskokokkokskokok ok x
Az = 0.3447 | skxsksrskokskkskskskkskskokok ok

A = 0.3347 | sxkssrkssrksrkkokkkokk

A5 = 0.3303 | sssksksrkssrokssrksokkdokk

Ao = 0.3193 | ssskoksksksrokokskskokskokkskok

A7 = 0.1810 | ssrsksoksoksoksoks

Ag = 0.1796 | sssksksokskskokskok

Ag = 0.1732 | ssskksoknskokskok

Ao = 0.1710 | sswskosrokonskokskok

A11 = 0.1664 | ssskoksksksrokoskksk

A2 = 0.1627 | ssxsksskkokkskksk

A13 = 0.1626 | sxsksskokskokskksk

A1a = 0.1578 | ssksksrkskskoksk

A5 = 0.1538 | ssskosrokosrokk

Mg = 0.1423 | ssskokskssokok

Figure 8: MCA on Xl, XQ, )(417 )(427 X43 and X32
(eigenvalues diagram, third step of the example for a graphical model).

The first six eigenvalues are not in I.: there is one or more two-way inter-
action between the initial variables X;, and the crossed ones Xj;;, so there exists
a triple interaction between simple variables.
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We drop X32 and use the first step with the five other variables to get the
following results (Table 11 and Figure 9):

Table 11: MCA on X1, Xo, X41, X4 and Xy3
(parameters for the test).

lalm[ o | E |
| 28 | 0.2 | 0.0162 | [0.1671, 0.2324] |

A1 = 0.6105 | ssrskskskssokokskskskokskskskokskskokskoksk sk skokok
Ao = 0.6000 | sk skskokkokskkokokkok sk kok ok
Az = 0.4143 | ssskskskoksksksksokksokkk

A = 0.4028 | skskssrsksksksksskkk

A = 0.3982 | scxsksokstokskokkokkokokkok

e = 0.3831 | ssskssrokssroksskskskk

A7 = 0.2262 | sxkksokssoksk

Ag = 0.2220 | sxksxkkkkksk

Ag = 0.2162 | sxsksokskoksksksk

Ao = 0.2083 | ssxskosroskonskok

A11 = 0.2054 | ssskcksrokorskok

A2 = 0.2017 | ssskoksksksrokok

A13 = 0.1952 | ssksksrokksok

A1ga = 0.1986 | ssskksokkskok

A5 = 0.1952 | skskrsoksokk

A1 = 0.1928 | ssxskosroskonskok

A7 = 0.1878 | sk

A1g = 0.1837 | ssksksskoksk

A1g = 0.1815 | ssksksskoksok

Aoo = 0.1711 | ks

Figure 9: MCA on Xl, XQ, )(417 X42 and X43
(eigenvalues diagram, third step of the example for a graphical model).

The first six eigenvalues are not in I., so there is at least one two-way
interaction between the variables. We know that simple variables X7, Xo and
the crossed variables X41, X4, X43 are dependent so we have to test dependence
between X; and Xso only. Crossing X; and X3o we get the following results
(Table 12):

Table 12: MCA on X; and X3»
(parameters and eigenvalues).

L o | m [ o | 1. |

| 10 [ o5 [0.0159 | [0.4682, 0.5318] |

‘ A1 ‘ A2 ‘ A3 ‘ A4 ‘ As ‘ A6 ‘ A7 ‘ As ‘ A9 ‘ A10 ‘
|

0.5287 | 0.5194 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.4806 | 0.4713 |
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All the eigenvalues are in the confidence interval I., so X; and X3, are
independent conditionally on the other, and there is no cross variable Xis3s.
The corresponding u-term w123 equals zero.

Now we can drop the cross variable X43. The remaining variables X, Xa,
X1, Xyo are dependent by construction. We have only to test for dependence
between X and Xy3.

Crossing X7 with X3, we get the same parameter as the crossing of X,
and Xs9, and the following eigenvalues (Table 13):

Table 13: MCA on X; and X435 (eigenvalues).

Coxn [ o | ox o [ [ [T x| oa [ x| ao |
| 0.5445 | 05232 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.4768 | 0.4555 |

We remark that A1 and Ay are not in the interval I., so X7 and X43 seem
to be dependent. But we have to fit a graphical model, that is a particular case
of hierarchical models (as defined in §2.2.2.2, a log-linear models is hierarchical
if, whenever one particular u-term is constrained to zero then all higher u-terms
containing the same set of subscripts are also set to zero).

Here the u-term w13 is set to zero, so the u-term w34 is also set to zero.
Crossing Xo with X435, we get the same parameter as the crossing of X3

and X32, and the following eigenvalues (Table 14):

Table 14: MCA on X3 and X435 (eigenvalues).

Lox o2 o [y [ [ [ oa | o | | do |
| 0.5871 | 0.5466 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.4534 | 0.4143 |

Eigenvalues A1, A2, A\g and Aqg are not in the interval I., the u-terms wuog
and usy are not set to zero, and since X and X453 are not dependent the u-term
U234 18 not set to zero.

Crossing X1 with X9 (or equivalently Xy with X41) we get the same pa-
rameter as the crossing of X; and Xss, and the following eigenvalues:

Table 15: MCA on X; and X4o (eigenvalues).

o [ o [ ox o [ [ [ x| oas [ x| ao |
| 0.5434 | 0.5280 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.4711 | 0.4566 |
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Eigenvalues A1 and Ajg are not in the interval I., the u-term w14 is equal
to zero, X; and X4o are dependent, and the u-term w24 is set to zero.
Finally, variables X1 and X4; are dependent by construction.

The procedure stops here because we can’t have more than triple interac-
tions in a hierarchical model when all the two-way interactions are not present.
We obtain the following model (see Figure 10 for the associated graph):

U4 @ Uy3 @
A

Figure 10: Lattice diagram (example for a graphical model).

x4

log[f4(X)] = wo + wix1 + ug 2 + u3 T3 + Ua T4 + Uz T2T3 + U1 T4T1 + Ua2 TaT2

+ U43 4T3 + U432 T4X3T2 -

5.3. An example for a saturated model

Here we use a data set given by Israéls [29] that was also used by Van der
Heijden et al. [28] about ‘shop-lifting’ habits.

Table 16 is a contingency table crossing three variables: sex (2 modalities),
age (9 modalities) and type of goods (13 modalities: Clothing (C), Clothing
accessories (Ca), Provision-Tobacco (PT), Writing materials (Wm), Books (B),
Records (R), Household goods (Hg), Sweets (S), Toys (T), Jewellery (J), Perfume
(P), Hobbies tools(Ht), and Others(O)) observed over 33 101 individuals.

In the first step, we test the pairwise independence of variables X7, X9 and
X3. We first transform the contingency table in a complete disjunctive table,
then compute the parameters (defined in §2.2 & §4.1.1) needed for the test to
get (Table 17).

A MCA on the three variables gives the eigenvalue diagram of Figure 11.

The eigenvalue diagram shows clearly that the variables are not indepen-
dent: only 8 eigenvalues (A7, ..., A\15) are in the confidence interval.

Using the second step of the procedure, we get the two-way interactions.
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Table 16: Multicontingency table for the shop-lifting data.

71

Sex: Age: Goods: X3
X1 Xo | ¢ [Ca|PT[Wm| B[R [Hg|s|T|J]|P][H]O
<11 81| 66| 150 | 667 | 67| 24| 471|430 | 743 | 132 | 32| 197 | 209
12-14 138 | 204 | 340 | 1409 | 259 | 272 | 117 | 637 | 684 | 408 | 57 | 547 | 550
15-17 | 304 | 193 | 229 | 527 | 258 | 368 | 98 | 246 | 116 | 298 | 61 | 402 | 454
1820 | 384 | 149 | 151 84 | 146 | 141 61 | 40 13| 71 52 | 138 | 252
Male 21-29 | 942 | 297 | 313 92 | 251 | 167 | 193 | 30 16 | 130 | 111 | 280 | 624
30-39 | 359 | 109 | 136 36| 96| 67| 75| 11| 16| 31| 541|200 | 195
40-49 | 178 | 53| 121 36| 48| 29| 50 5 6| 14| 41| 152 | 88
50-64 137 | 68 | 171 37| 56| 27| 55 17 3 11 50 | 211 90
> 65 45 | 28 | 145 17| 41 71 29| 28 8 10| 28 | 111 | 34
<11 71 19| 59| 224 19 7| 22 (137|113 |162 | 70 15| 24
12-14 | 241 | 98 | 111 | 463 | 60| 32| 29 | 240 | 98 | 138 | 178 | 29 | 58
15-17 | 477 | 114 | 58 91 50 | 27| 41| 80 14 | 548 | 141 9| 72
18-20 | 436 | 108 | 76 18| 32 12| 32 12 10 [ 303 | 70 14 | 67
Female | 21-29 | 1180 | 207 | 132 30| 61| 21| 65| 16| 12| 741|104 | 30 | 157
30-39 | 1009 | 165 | 121 27 | 43 9| 74| 14| 311|100 | 81| 36 |107
40-49 | 517 [ 102 | 93 23| 31 7| 51 10 8| 48 | 46| 24| 66
50-64 | 488 | 127 | 214 271 57| 13| 79| 23| 17| 22| 69| 35| 64
> 65 173 | 64 | 215 13| 44 0| 39| 42 6 12| 41 11 55
Table 17: Parameters needed for the test
(first step of the example for a satured model).
Lo [olmlm|ms|g[ m [ o [ 1 |
133100 [3] 2 [ 9 [ 13 |21 [0.3333 | 0.0061 | [0.3211, 0.3455] |
A1 = 0.5759 | skstskskssoskoksrosksdokskskskoskskok sk kok sk stk sokok skskok sk skok skok sk ok stk kb o skok o skok ook
Ao = 0.4256 | skewskosrokotsrokokoskokokoskokskokokskoskofoskokfokskoskoskskokskokok o
A3 = 0.3960 | sk ksrokkorokkok ook sokokkokok R kok ok
Ag = 0.3899 | skskskokskokskosk sk skskokok sk skok ok soksk ok sk ok sk ok ok koK ok
A5 = 0.3542 | swskokstokskssokkosrokkokokkskokkskok ok ok kok ok
Ae = 0.3494 | srskoksokosiokofosrokofoskokokskokskokskskok ok
A7 = 0.3407 | sokosksksksrokoskskokskokskokskokok sk skok sk ok kok ok o
Ag = 0.3384 | skowskskoskokoskokokskskskskskok sk sk kokkok ok ok
Ag = 0.3344 | skwsoksokskstokskskokdkokokkkokkkok ok
A10 = 0.3333 | skekskokstokokskokokskokofoskokkoskokokskok ok
A11 = 0.3333 | skoksksksrokokskokskok sk skokok ok skok ok
A2 = 0.3333 | serskokskskorskokskokskokokskokokok sk ok kok
A13 = 0.3322 | serskotskotsroskoosroksrokskokokok ok ok
Mg = 0.3271 | sessokokoksokoskoksksrokosk sk skokok ok kok
A5 = 0.3260 | sokoksksksrokskskskokskskokskok sk ok skokok
Mg = 03177 | skwskorssokossoskdosrskkskskkokok ok
A7 = 0.3103 | skesskokstoksksokkosrokkokokkskok ok
A1g = 0.2802 | sksskokstokskstok sk ook ok
A1g = 0.2632 | sskskssksoskssrokkskokkk
Aog = 0.1925 | sswskokssokoksroskokskok
A1 = 0.1423 | ssxskoksokk

Figure 11: MCA on X, X5 and X3

(eigenvalues diagram, third step of the example for a saturated model).
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MCA of X; and X3 gives the following results (Table 18 and Figure 12):

Table 18: MCA on X; and X3
(parameters).

n Jelaf[m] o | & ]
33101 | 2 | 13 | 0.5 | 0.00002 | [0.5000, 0.5000] |

A1 = 0.7032 | ssrsksksksososkskosok stk koskok ok sk kok ok sk sk kok otk ok ok ok ok ok ok
Ao = 0.5000 | sokskstsksksoskskskokkskokkskskkokskokok sk kok
Az = 0.5000 | sskskskskskssoksksrokkskokkoskskkokskkokkkok
Mg = 0.5000 | ssrskokskskskoskskokskosk sk skokskok sk ok skokok sk ok
As = 0.5000 | skssksoksokskokskokskosksksk sk sk stk kok

e = 0.5000 | sksroskoksksksroskskskskokskskskskok sk sk skokokskokok
A7 = 0.5000 | sksrkokskskoskoskoskskskokskkskoskokskkkokok ok kok
Ag = 0.5000 | sskskstskskssokskskokkskokkoskoskkskskokok sk kok
Ag = 0.5000 | ssrsksrsksrokssksokskokskokkokkokkok ok
A10 = 0.5000 | sesrssrskssoksosksokskokskokskokkok ok sk ok
A11 = 0.5000 | ssrskskskskosskskossk sk sosokkokokkk
A2 = 0.5000 | skskoksksksiokoskskskskokskokskokok sk sk skok ok
A13 = 0.2968 | ks

Figure 12: MCA on X; and X3
(eigenvalues diagram, second step of the example for a saturated model).

The first and the last eigenvalues are not in the confidence interval so the
u-term w13 is not set to zero.

We notice here the peculiar form of the eigenvalues diagram, due to the
fact that multiple eigenvalue \ = % that have a multiplicity 11 = m3 — m; is an
artificial one (cf. §4.2.1.1).

MCA of X3 and X3 gives the following results (Table 19 and Figure 13):

Table 19: MCA on X5 and X3
(parameters).

I PR S
33101 | 2 | 20 [ 0.5 | 0.0001 | [0.4998, 0.5002] |

The 8 first and the 8 last eigenvalues are not in the confidence interval so
the u-term uo3 is not set to zero.
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AL = 0.7852 | sessksrsksroskskskskokkokokok sk kok sk ok skok ok ok ook ook ok ok sk ok ok ok
Ao = 0.6074 | soksksoksrokokskskokskskokskokskoksokok ok skokok ok okok ok ok

Az = 0.5903 | sskskstskoksroksksrokokskokkokskkokokkok otk kok ok

Mg = 0.5346 | sokoksoksrokokskskoskosk skoksk ok sk ok skokok sk skok ok

A5 = 0.5245 | sksrskokskskoskoskskokskokskskskskok sk ok skokok ko ok

Ao = 0.5112 | sekoksksksrokokskskskokskokskokoskkkoskok ok sk ok
A7 = 0.5100 | ssksksksksksosksksokksokkskokkokskokokok ok
Ag = 0.5019 | sesrsksrsksokssksskkokkokkokokokkok ok k
Ag = 0.5000 | sksksksksrsksrsksokskoksokkokkok ok

A10 = 0.5000 | skksksksksrsksrskstokskoksokkok ok o

A11 = 0.5000 | sksrskokskskosroskskskskokskskokskokok ok k

A12 = 0.5000 | sokskstskssosk stk kskokkskokkokok

A13 = 0.4981 | ssksksksksksokskskokkstokkkokkk

Aa = 04891 | sk

A1 = 0.4888 | skssksosksokskokskokkoskkok sk ok

A6 = 0.4755 | sskskssksksokksrokkskokkok*

A17 = 0.4654 | ssksksskosksokskrokkkokkk

A1g = 0.4097 | ssksksosksksokksokk

A1g = 0.3926 | sskskskskskssksksnok

AQO = 0.2148 kskokokckox

Figure 13: MCA on X, and X3
(eigenvalues diagram, second step of the example for a saturated model).

MCA of X; and X gives the following eigenvalue results (Table 20, Figure 14):

Table 20: MCA on X; and X,
(parameters).

L n lpla[m| o | & |
133101 | 2 [ 9| 0.5 0.0037 | [0.4926, 0.5074] |

A1 = 0.6241 | soksorskoksokssokokskokskok sk sk skok sk sk skok sk ok ok ok sk skok sk ok skokok ok
Ao = 0.5000 | sokssrsksokskssk sk sk ok kokkkok ok

Az = 0.5000 | sokssksksosksksskskosskkokoskfokkokokkkok ok

Ag = 0.5000 | sskcksorsorsiorsoksroksokskok ok ook ook ok

A = 0.5000 | soksskokskoskskstokskorokkokoskkskokkok ok kok ok

Ag = 0.5000 | sokskskoskskostsrsksrskskskskokskokkokkokokokokk

A7 = 0.5000 | soxssksssokskskkkkoron stk

Ag = 0.5000 | sokskskokskoksksksksksroskskokskokskokkokkokkok

Ag = 0.3759 | sekeksrokoksrokokk

Figure 14: MCA on X; and X
(eigenvalues diagram, second step of the example for a saturated model).

The first and the last eigenvalues are not in the confidence interval so the
u-term w19 is not set to zero. At the end of the second step, we obtain all three
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two-way interactions. To know if the model is a saturated one we can built one of
the crossed variables and test its dependence with the remaining simple variable.

MCA of X359 with X; gives the following eigenvalues:

A =0.7285, MX=A3=-=A156=0.5,

A117 = 0.2715  and I, = [0.4615, 0.5384] .

The first and the last eigenvalues are not in the confidence interval so the
u-term wuq23 is not set to zero.

At the end we get the following saturated model:

10g[fg(X)] = U9 +U1T1 + U T2 + U3 T3 + U2 T1T2 + U23 T2T3 + U3 L1L3

+ U123 T1T2x3 -

5.4. An example for a mutual independence model

Here we use a data set given by Andersen [2] as a contingency table cross-
ing four variables observed over 299 individuals corresponding to a retrospective
study of ovary cancer, defined in Table 21:

Table 21: Retrospective study of ovary cancer.

X 1 X 2 X 3 X 4

stage operation survival X-ray
No Yes
Early radical no 10 17
limited yes 41 64
no 1 3
yes 13 9
Advanced radical no 38 64
limited yes 6 11
no 3 13
yes 1 5

In the first step of procedure, we test for the pairwise independence of
variables X1, X5, X3 and Xy. We first transform the contingency table in a
complete disjunctive table, then compute the parameters (see §4.1.1) needed for
the test.
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The MCA on the four variables gives the following results ( Table 22 and Figure 15):

Table 22: Parameters needed for the test
(first step of the example for a mutual independence model).

o Lol [ [ [ o[ [ o | & ]

1200 (4] 2 | 2] 2] 2 [4]o025]00250 | [0.2000, 0.3000] |

A1 = 0.4145 | soksksksrokskoksokokskokskokokskskoksk sk skskok sk ok skok ok sk ok skok ok
Ao = 0.2512 | sokskskorsksksoksokokskokskokoskkoxok

Az = 0.2449 | soksksokksokkskskkskkkokkkok

Ag = 0.0894 | sokssskoksknsk

Figure 15: MCA on X, X5, X5 and X4
(eigenvalues diagram, first step of the example for a mutual independence model).

The eigenvalue diagram shows clearly that variables are not independent,
only Ao and Ag are in the confidence interval.

Let’s drop X4 and use the second step of the procedure. MCA on the three
remaining variables gives the following results (Table 23 and Figure 16):

Table 23: MCA on X;, X5 and X3
(parameters).

[ nlplal m | o | L |
1200 | 3] 3] 0.3333 | 0.0273 | [0.2787, 0.3879] |

A1 = 0.3639 | ssrskskskskosskskossksksokkokokkkokkk
Ao = 0.3342 | sokskskssoskokskskskokoskokskokoskkkskok
A3 = 0.3019 | sksksksksksosksksokkskokkkokkk

Figure 16: MCA on X, X5 and X3
(eigenvalues diagram).

The eigenvalue diagram shows clearly that variables are independent, since
all the eigenvalues are in the confidence interval, so there is surely one or more
interaction Xy and X;, 1=1,...,3.
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The MCA on X4 and X; gives the following results ( Table 24 and Figure 17):

Table 24: MCA on X4, X;
(parameters).

Lo [ofg|m] o [ |
1200 [ 2] 2] 05 ] 0.0283 | [0.4434, 0.5566] |

X, and X; | X, and X, | X, and X;
A1 = 0.5365  skksksorokkxrk | A = 0.8198  sxswokskksorokk | Ap = 0.5058  sokosksksksrokokkxk
Ay = 0.4635  skskskokskskokx Ao = 0.1802  sxx Ao = 0.4942  sksxkksrkkk

Figure 17: Eigenvalues diagram for MCA on X4 and Xj,
MCA on X4 and X5 and MCA on X4 and X3.

It’s clear that there exists only an interaction between X4 and Xs, X; and
X3 are non dependent of X4, then ui4y = w1z = 0 and ugoq # 0 and we build the
crossed variable Xo4.

The MCA of X;, X3 and Xy4 gives the following results (7Table 25 and
Figure 18):

Table 25: MCA on Xl, X3 and X24
(parameters).

Lo lolal m [ 0 | 1 |
1200 [ 3] 5] 0.3333 | 0.0273 | [0.2787, 0.3879] |

A1 = 0.3647 | sokoksksksrokskoskskoskokskokskokokskkskok ok
Ao = 0.3624 | sokoksksksrokskskskoskokskokskokok sk kskok ok
A3 = 0.3333 | sskskskokskskskosskskokokkokokkkok ok
Mg = 0.3047 | sokskksokokskokskokskokskokokkokkok
A5=0.3016 koo dokokok ok skkok ok okok ok ok

Figure 18: Eigenvalues diagram for MCA on X, X3 and Xo4.

The eigenvalue diagram shows that the variables are independent, all the
eigenvalues being within the confidence interval, and there is no triple interaction
between variables.

We finally obtain the same model as Andersen:

log[f4(X)] = Ug +UITT + UL T2 + U3 X3 + Ug T4 + T24XL4X2 .
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6. CONCLUSION

Log-linear modeling and MCA are two complementary techniques for the
analysis of categorical data. In this framework, we propose a method for fitting
progressively log-linear models, using the eigenvalue shape of MCA.

We show that, in MCA, under the independence hypothesis for the
variables, each observed eigenvalue is asymptotically normally distributed.
These distributions have the same mean, different variances and converge to
normal distributions. In this case, the eigenvalue diagram takes a peculiar shape.
This shape is different if there is one or more interactions between variables, and
we can recognize the log-linear model fitted for the data in some special cases.

Then, based on these results, we propose a simple procedure for progres-
sively fitting log-linear models, where the fitting criterion is based on MCA eigen-
value diagrams: the chosen model is constructed by successive utilizations of
MCA (non constrained by the variables number). Finally, we validate this pro-
cedure on three sets of data drawn from the literature.
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