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Abstract:

• Multiple Correspondence Analysis (MCA) and log-linear modeling are two techniques
for multi-way contingency table analysis having different approaches and fields of
applications. Log-linear models are interesting when applied to a small number of
variables. Multiple Correspondence Analysis is useful in large tables. This efficiency
is balanced by the fact that MCA is not able to explicit the relations between more
than two variables, as can be done through log-linear modeling. The two approaches
are complementary. We present in this paper the distribution of eigenvalues in MCA
when the data fit a known log-linear model, then we construct this model by succes-
sive applications of MCA. We also propose an empirical procedure, fitting progres-
sively the log-linear model where the fitting criterion is based on eigenvalue diagrams.
The procedure is validated on several sets of data used in the literature.
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1. INTRODUCTION

Multiple Correspondence Analysis and log-linear modeling are two very
different, but mutually beneficial approaches to analyzing multi-way contingency
tables: log-linear models are profitably applied to a small number of variables.
Multiple Correspondence Analysis is useful in large tables. This efficiency is
balanced by the fact that MCA is not able to explicit relations between more
than two variables, as can be done through log-linear modeling. The two ap-
proaches are complementary. After a short reminder on MCA and log-linear
approaches, we study the distribution of eigenvalues in MCA under modeling
hypotheses, especially in the case of independence. At the end we propose an
algorithmic approach for fitting log-linear models where the fitting criterion is
based on eigenvalues diagram.

2. A SHORT SURVEY OF MULTIPLE CORRESPONDENCE

ANALYSIS AND LOG-LINEAR MODELS

We first introduce MCA and log-linear modelling, then we present some
works using both methods.

2.1. Multiple Correspondence Analysis

Correspondence Analysis (CA) has quite a long history as a method for
the analysis of categorical data. The starting point of this history is usually
set in 1935 [28], and since then CA has been reinvented several times. We can
distinguish simple CA (CA of contingency tables) and MCA or Multiple Cor-
respondence Analysis (CA of so-called indicator matrices). MCA traces back
to Guttman [23], Burt [8] or Hayashi [25]. In France, in the 1960s, Benzecri [6]
proposes, other developments of this method. Outside France, MCA has been de-
veloped by J. de Leeuw since 1973 [22] under the name of Homogeneity Analysis,
and the name of Dual Scaling by Nishisato [38].

Multiple Correspondence Analysis (MCA) is a multidimensional descriptive
technique of categorical data. A theoretical version of Multiple Correspondence
Analysis of p variables can be defined as the limit, when the number of statistical
units increases, of the CA of a complete disjunctive table.

Let X be a complete disjunctive table of p categorical variables X1, X2, ...,

Xp, with respectively m1,m2, ...,mp modalities observed over a sample of n in-
dividuals. CA of this complete disjunctive table is equivalent to the analysis
of B [8], where B = X ′X is the Burt table associated with X. The two anal-
yses have the same factors, but the eigenvalues in MCA equal to the squared
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root of the eigenvalues in the CA of the associated Burt table. MCA of X cor-
responds to the diagonalization of the matrix 1

p
(D−1X ′X) = 1

p
(D−1B) where

D = Diag(X ′X) = Diag(B).

The structure of the eigenvalue diagram depends on the variable interac-
tions. It is well known that in the case of pairwise independent variables, the q
non-trivial eigenvalues are theoretically equal to to 1

p
, where

(1) q =

p∑

i=1

mi − p .

2.2. Log-linear modeling

Log-linear modeling is a well-known method for studying structural rela-
tionships between categorical variables in a multiple contingency table when all
the variables have no particular role. Relatively recent and not as well known
in France as MCA, log-linear modeling has many classical references. After first
works of Birch [7] in 1963 and Goodman [17], we must mention the basic books
of Haberman [24], Bishop, Fienberg & Holland [8], Fienberg [15].

More Recently, Dobson [12], Agresti [1], Christensen [10] have written syn-
theses on the subject supplemented with personal contributions.

Whittaker [41] devotes a large part of his book to log-linear models before
defining associated graphical models.

2.2.1. Log-linear modeling in the binomial case

Let X= (X1, X2, ..., Xp) be a k-dimensional random vector, with values in
{0, 1}k. The expression for the k-dimensional probability density of X is:

fk(X) = p(0, 0, ..., 0)(1−x1)(1−x2)···(1−xk) · p(1, 0, ..., 0)x1(1−x2)···(1−xk)

· p(0, 1, ..., 0)(1−x1)x2···(1−xk) ··· p(0, 0, ..., 1)(1−x1)(1−x2)···xk

··· p(1, 1, ..., 0)x1x2···(1−xk) ··· p(1, 1, ..., 1)x1x2···xk .

We can write the density function as a log-linear expansion:

log[fk(X)] = uo +
k∑

i=1

ui xi +
k∑

i,j=1,
i6=j

uij xi xj +
k∑

i,j, l=1,
i6=j 6=l

uijl xi xj xl

+ · · · + u123...k x1 x2 · · ·xk

where uo=log[p(0,0,...,0)], ui=log[p(0,0,...,0,1,0,...0)
p(0,0,...,0) ] and the u-terms uij , ..., u123...k

are a log cross product ratio in the (k, k) probability table. The u-term uij is set
to zero when Xi and Xj are independent variables.
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2.2.2. Log-linear modeling in the multinomial case

Let X= (X1, X2, ..., Xk) be a k-dimensional random vector, with values in
{0, 1, ...,m1−1} × {0, 1, ...,m2−1} × ...× {0, 1, ...,mk−1} instead of in {0, 1}k as
in the preceding case.

The generalisation to the k-dimensional cross-classified multinomial distri-
bution is the log-linear expansion:

log[fk(X)] = uo +
k∑

i=1

ui(x) +
k∑

i,j=1,
i6=j

uij(x) +
k∑

i,j, l=1,
i6=j 6=l

uijl(x) + · · · + u123...k(x) .

Each u-term is a coordinate projection function with the coordinates indi-
cated by its index; and each u-term is constrained to be zero whenever one of its
indicated coordinates is zero.

The importance of log-linear expansions rests with the fact that many in-
teresting hypotheses can be generated by setting some u-terms to zero.

We are interested particularly in this paper with graphical and hierarchical
log-linear models.

2.2.2.1. Graphical log-linear models

Let G = (K,E) be the independence graph of the k-dimensional random
vector X, with k vertices in K = {1, 2, ..., k} and edge set E. G is the set of
pairs (i, j) such that whenever (i, j) is not in E the variables Xi and Xj are
independent conditionally on the other variables.

Given an independence graph G, the cross classified multinomial distribu-
tion for the random vector X is a graphical model for X, if the distribution of X
is different from constraints of the form that for all pair of coordinates not in the
edge set E of G, the u-terms constraining the selected coordinates are identically
zero.

2.2.2.2. Hierarchical log-linear models

A graphical model satisfies constraints of the form that all u-terms ‘above’
a fixed point have to be zero to get conditional independence. A larger class of
models, the hierarchical models, is obtained by allowing more flexibility in setting
the u-terms to zero.

A log-linear model is hierarchical if, whenever one particular u-term is
constrained to zero then all higher u-terms containing the same set of subscripts
are also set to zero.
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We note here that every distribution with a log-linear expansion has an
interaction (or independence) graph, and a hierarchical log-linear model is graph-
ical if and only if its maximal u-terms correspond to cliques in the independence
graph.

When all the u-terms are non-zero, we have the saturated model.

In the case when only the ui are non-zero, the model is called the mutual

independence model:

log[fk(X)] = uo(x) +
k∑

i=1

ui(x) .

When only ui and some of uij are non-zero, the model is called a condi-

tional independence model:

log[fk(X)] = uo(x) +
k∑

i=1

ui(x) +
∑

i,j

uij(x) .

These conditional independence models refer to simple interactions between
some variables.

2.2.3. Parameters estimation and related tests

Theoretical frequencies are generally estimated using the maximum-likeli-
hood method. Weighted regression, or iterative methods can be also used as
well since log-linear models are particular cases of the generalized linear model.
Usually the classical χ2 or the G2 tests (the likelihood ratio) are used to assess
log-linear models. The values of the two statistics increase with the number of
variables, and decrease with the number of interactions. The closer the statistics
are to zero, the better the models.

Model selection becomes difficult when the number of variables grow:
e.g. with four variables there are 167 different hierarchical models. To avoid the
“combinatory explosion” we can use criterions based on the Kullback information
like the Akaike criterion:

AIC = −2 log(L̂) + 2 k (An Information criterion) ,

or the Schwartz criterion:

BIC = −2 log(L̂) + k log(n) (Bayesian Information criterion) ,

where L̂ is the maximum of the likelihood function (L), and k the number of
parameters maximising L.
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2.3. Multiple Correspondence Analysis and log-linear model as com-

plementary tools of analysis

In this section, we present some works that show how CA (or MCA) and
log-linear modeling can be related. This leads to a better understanding of CA,
and to a combined use of both methods.

CA is often introduced without any reference to other methods of statistical
treatment of categorical data with proven usefulness and flexibility.

A major difference between CA and most other techniques for categorical
data analysis lies in the use of probability models. In log-linear analysis (LLA),
for example, a distribution is assumed under which the data are collected, then
a log-linear model for the data is hypothesized and estimations are made under
the assumption that this probability model is true, and finally these estimates
are compared with the observed frequencies to evaluate the log-linear model.
In this way it is possible to make inferences about the population on the basis of
the sample data.

In CA, it is claimed that no underlying distribution has to be assumed and
no model has to be hypothesized, but a decomposition of the data is obtained to
study the ‘structure’ in the data.

A vast literature has been devoted to the assessment of CA (or MCA) and
LLA. We briefly report here some of that literature.

Several works compare CA or MCA and LLA. Daudin and Trecourt [11]
demonstrate empirically that LLA is better adapted to study global relationships
between the variables, in the sense that marginal liaisons are eliminated in the
computation of profiles.

Goodman [17],[18],[19],[20],[21] defines two models belonging to the same
family: the saturated row column correspondence analysis model as a general-
ization of MCA, and the row column association model as a generalization of
LLA. He demonstrates, with illustrations by examples, that using these models
is better than using the classical methods.

Baccini, Mathieu and Mondot [3] use an example to compare the two
methods. Jmel [30], De Falguerolles, Jmel and Whittaker [13],[14] use graphi-
cal models compared to MCA.

Other works use CA or MCA and LLA as a combined approach to con-
tingency table analysis: Van der Heijden and de Leeuw [26],[27],[28], Novak and
Hoffman [39] and others, use CA as a tool for the exploration of the residuals
from log-linear models, and give an example of the procedure.

Worsley [42] shows that in certain cases CA leads directly to the appropriate
log-linear model.

Lauro and Decarli [31] used AC as a procedure for the identification of best
log-linear models.
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3. EIGENVALUES IN CORRESPONDENCE ANALYSIS

It is well known that MCA is an extension of CA, although we first present
eigenvalues in CA, and some simple rules for the selection of the number of
eigenvalues.

3.1. Asymptotic distribution of eigenvalues in Correspondence Analysis

Let N be a contingency table with m1 rows and m2 columns, and let us
assume that N is the realization of a multinomial distribution M(n, pij) which
is realistic. In this framework the observed eigenvalues µi are estimators of the
eigenvalues λi of nP , where P is the table of unknown joint probabilities.

Lebart [32] and O’Neill [34],[35],[36] proved the following result:

if µi=0 then λi has the same distribution as the corresponding eigenvalues of a
(m1−1)(m2−1) degrees of freedom from the Wishart matrix: W(m1−1)(m2−1)(r, l)
where r = min(m1−1, m2−1).

If µj= 0 then
√
λj is asymptotically normally distributed, but with param-

eters depending on the unknown pij . Since it is difficult to test this hypothesis,
some authors have proposed a bootstrap approach, which unfortunately is not
valid: since the empirical eigenvalues, on which the replication is based, are gen-
erally not null, we cannot observe the distribution based on the Wishart matrix.

3.2. Malinvaud’s test

Based upon the reconstitution formula, which is a weighted singular value
decomposition of N :

nij =
(ni· n·j)

n


1 +

∑

k

(aik bki)

√
λk


 ,

where aik, bik are the factorial components associated to the row and column
profiles.

We may use a chi-square test comparing the observed nij from a sample
of size n to the expected frequencies under the null-hypothesis Hk of only k non
zeros. The µi weighted least squares estimates of these expectations are precisely
the ñij of the reconstitution formula with its first k terms. We then compute the
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classical chi-square goodness of fit statistic:

Qk =
∑

i

∑

j

(ñij − nij)
2

ñij
.

If k = 0 (independence), Q0 is compared to a chi-square with (m1 − 1) (m2 − 1)
degrees of freedom. Under Hk, Qk is asymptotically distributed like a chi-square
with (m1 − k − 1) (m2 − k − 1) degrees of freedom. However Qk suffers from the
following drawback: if nij is small, ñij can be negative and the test statistic can-
not be used. This is not the case for the modification proposed by E. Malinvaud

[37] who proposed to use
(ni· n·j)

n
instead of ñij for the denominator. Furthermore,

this leads to a simple relation with the sum of the discarded eigenvalues:

Q′
k =

∑

i

∑

j

(ñij − nij)
2

(ni·n·j)
n

= n (λk+1 + λk+2 + ...+ λr) .

Q′
k is also asymptotically distributed like a chi-square with (p− k− 1) (q− k− 1)

degrees of freedom.

4. BEHAVIOUR OF EIGENVALUES IN MCA UNDER

MODELING HYPOTHESES

Let X = (X1|X2|...|Xp) be a disjunctive table of p categorical variables Xi

(with respectively mi modalities) observed on a sample of n individuals, and q

the number of non trivial eigenvalues (as defined in § 2.1).

Multiple Correspondence Analysis is the CA of disjunctive table X.

The rank of X: rank(X) = min(q+1;n), so equals q+1 if n > q+1.

We suppose, without loss of generality, that n is large enough, which is the
usual case. CA factors are the eigenvectors of the matrix 1

p
D−1B (where B and

D are defined in § 2.1). So D−1B is a diagonal unit matrix.

Its trace is: Tr(D−1B) =

p∑

i=1

mi and
1

p
Tr(D−1B) =

1

p

p∑

i=1

mi.

Since

q∑

i=1

µi =
1

p

p∑

i=1

mi − 1, we can conclude that

(2)
1

q

q∑

i=1

µi =
1

p
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and

(3)

q∑

i=1

(µi)
2 =

1

p2

p∑

i=1

(mi−1) +
1

p2

∑

i6=j

∑
ϕ2
ij

where ϕ2
ij is the observed Pearson’s ϕ2 crossing of Xi with Xj , and

ϕ2 =
1

n

∑

i

∑

j

(
nij − ni· n·j

n

)2

ni· n·j
n

=
χ2

n
,

(ni· and n·j are margin effectives).

Although MCA is an extension of CA, the results of § 3 are not valid and
one cannot use Malinvaud’s test: elements of X being 0 or 1 and not frequencies,
Qk and Q′

k do not follow a chi-square distribution.

However it is possible to get information about the dispersion of the q

eigenvalues in particular cases [5].

4.1. Distribution of eigenvalues in MCA under independence

hypothesis

Under the hypothesis of pairwise independence of the variables Xi,
all ϕ2

ij = 0 and equation (3), becomes

q∑

i=1

(µi)
2 =

1

p2

p∑

i=1

(mi − 1) .

Using (2) we get
q∑

i=1

(µi)
2 =

1

p2
q ,

and finally:
q∑

i=1

(µi)
2 =

1

p2
=

[
1

q

∑

i

(µi)

]2

.

Since the mean of the squared µi equals their squared means only if all the terms
are equal, we can conclude that all the eigenvalues have the same value, so that:

µi =
1

p
, ∀ i .

We conclude that the theoretical MCA (i.e. for the population), under the hy-
pothesis of pairwise independence of the variables Xi leads to one q-multiple
non-trivial non-zero eigenvalue λ = 1

p
. And the eigenvalue diagram has the par-

ticular shape shown in Figure 1 :
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λI Eigenvalues diagram

λ1

λ2

λ3

λ4

λ5
...
λq

****************************
****************************
****************************
****************************
****************************
****************************
****************************

Figure 1: Theoretical eigenvalues diagram in the independence case.

This result is not true when we have a finite sample, since sampling fluc-
tuations make the observed ϕ2

ij 6= 0. Although the trace of 1
p
(D−1B) and µ the

mean of the observed non-trivial eigenvalues, are constants, we observe q different
non-trivial eigenvalues µi 6= 1

p
, and the eigenvalue diagram takes the shape shown

in Figure 2 :

λI Eigenvalues diagram

λ1

λ2

λ3

λ4

λ5
...
λq

****************************
***************************
**************************
*************************
************************
***********************
**********************

Figure 2: Observed eigenvalues diagram in the independence case.

4.1.1. Dispersion of eigenvalues

Let S2
µ be the measure of µi around

1
p
given by:

S2
µ =

1

q

q∑

i=1

(
µi −

1

p

)2

=
1

q

q∑

i=1

(µi)
2 − 1

p2
,

which implies
q∑

i=1

(µi)
2 = q

(
S2
µ +

1

p2

)
.

Using equations (1)&(3), we have:

q∑

i=1

(µi)
2 =

q

p2
+

1

p2

∑

i6=j

∑
ϕ2
ij =

q

p2
+

1

n p2

∑

i6=j

∑
χ2
ij .
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Under the hypothesis of pairwise independence of the variables,
the χ2

ij are realizations of χ2
(mi−1)(mj−1) variables, so their expected values are

(mi − 1) (mj − 1).

We can then easily compute E(
∑q

i=1(µi)
2), and get:

E

( q∑

i=1

(µi)
2

)
=

q

p2
+

1

p2

1

n

∑

i6=j

∑
(mi − 1) (mj − 1) .

Finally:

E(S2
µ) =

1

q
E

( q∑

i=1

(µi)
2

)
− 1

p2

and we obtain:

E(S2
µ) =

1

p2

1

n

1

q

∑

i6=j

∑
(mi − 1) (mj − 1) .

Now, since E(S2
µ)=σ

2, we may assume that 1
p
± 2σ contains roughly 95%

of the eigenvalues. Moreover, since the kurtosis of the set of eigenvalues is lower
than for a normal distribution, this proportion is actually probably larger then
95%.

4.1.2. Estimation of the Burt table

Let X be the disjunctive table associated to p categorical variables Xi,
with mi modalities respectively, observed on a sample of n individuals, where
Xi = (Xi1, Xi2, ..., Ximi

), X is a matrix made (of p-block) of p blocks Xi

X = (X1 | X2 | ... | Xi | ... | Xp) .

Let (Xj
i1, X

j
i2, ..., X

j
ip) be the observed value of Xi on the jth individual.

We can write

X =




X1
11 · · · X1

1m1
X1

21 · · · X1
2m2

· · · X1
p1 · · · X1

pmp

X2
11 · · · X2

1m1
X2

21 · · · X2
2m2

· · · X2
p1 · · · X2

pmp

...
...

...
...

Xn
11 · · · Xn

1m1
Xn

21 · · · Xn
2m2

· · · Xn
p1 · · · Xn

pmp



.

The Burt table of X is then

B =




X ′
1X1 X ′

1X2 · · · X ′
1Xp

X ′
2X1 X ′

2X2 · · · X ′
2Xp

...
...

. . .
...

X ′
pX1 X ′

pX2 · · · X ′
pXp



=




B11 B12 · · · B1p

B21 B22 · · · B2p
...

...
. . .

...

Bp1 Bp2 · · · Bpp



,
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where

Bi = Bii

= X ′
iXi =




n∑

j=1

(Xj
1i)

2
n∑

j=1

(Xj
1i) (X

j
2i) · · ·

n∑

j=1

(Xj
1i) (X

j
mii

)

n∑

j=1

(Xj
2i) (X

j
1i)

n∑

j=1

(Xj
2i)

2 · · ·
n∑

j=1

(Xj
2i) (X

j
mii

)

...
...

. . .
...

n∑

j=1

(Xj
mii

) (Xj
1i)

n∑

j=1

(Xj
mii

) (Xj
2i) · · ·

n∑

j=1

(Xj
mii

)2




and

X
j
ki =

{
0

1

with
∑mi

k=1X
j
ki = 1. Since there is only one k in {1, ...,mi} such as Xk

ji = 1, all
other being zero, we obtain:

n∑

k=1

(Xj
ki)

2 =
n∑

k=1

X
j
ki in {1, ..., n}, ∀ k ∈ {1, ...,mi}

and
n∑

k=1

(Xj
ki) (Xk′i

j) = 0 ∀ k, k ∈ {1, ...,mi} .

And so can conclude that ∀ i=1, ..., p the diagonal sub-matrices of the Burt
table are themselves diagonal matrices:

X ′
iXi = Bi =




n∑

j=1

(Xj
1i)

2 0

. . .
n∑

j=1

(Xj
ki)

2

. . .

0
n∑

j=1

(Xj
mii

)2




.

Furthermore, we know that
mi∑

k=1

(
n∑

j=1

X
j
ki

)
=

mi∑

k=1

(nki) = n ,

where

nki =
n∑

j=1

X
j
ki = nki

is the number of individuals that have the kth modality of the i th variable
(for 1 ≤ i ≤ p and 1 ≤ k ≤ mi).
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So the diagonal sub-matrices of the Burt table are:

Bi = Bii =




n1
i 0
. . .

nki
. . .

0 nmi

i




where

mi∑

k=1

nki

n
= 1 ∀ i=1, ..., p .

Consider now two independent variables Xα and Xβ amongst the p vari-
ables having respectively mα and mβ modalities.

Let Bα be the (mα,mα) square matrix Bα= X ′
αXα, and Bαβ the (mα,mβ)

rectangular matrix Bαβ = X ′
αXβ .

We have

(Bα)ii =
n∑

k=1

Xk
iα = Xα

·i and (Bα)ij = 0 if i 6= j ,

and where (Bαβ)ij = Xk
iαX

k
iβ ≤ n.

Under the hypothesis that Xα and Xβ are independent

(Bαβ)ij =
(Bα)ij (Bβ)ij

n
=

Xα
·i X

β
·i

n
.

Since Xα
·i = nαi and X

β
·i = n

β
i , we can write

[
(Bαβ)ij =

n∑

k=1

Xα
kiX

β
kj =

Xα
·i X

β
·i

n
=

nαi n
β
j

n

]

and, more generally, we can conclude that

X ′
iXj = Bij =




ni1n
j
1

n

ni1n
j
2

n
· · · ni1n

j
mj

n

ni2n
j
1

n

ni2n
j
2

n
· · · ni2n

j
mj

n
...

...
...

nimi
n
j
1

n

nimi
n
j
2

n
· · · nimi

n
j
mj

n




if the p variables are mutually independent.
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Now consider a sample of p multinomial random variables Xi. Let p
k
i = pik

be the probability that an individual be in the kth category of the ith variable,
and pkij be the probably that the jth individual be in the kth category of the ith

variable.

The observed Burt table is:

B = X ′X =




X ′
1X1 X ′

1X2 · · · X ′
1Xp

X ′
2X1 X ′

2X2 · · · X ′
2Xp

...
...

...
...

X ′
pX1 X ′

pX2 · · · X ′
pXp



,

with

X ′
iXi = Ni =




n∑

j=1

(X1
ij)

2 0

. . .
n∑

j=1

(Xj
ki)

2

. . .

0
n∑

j=1

(Xj
mii

)2




= diag{n1
i , ..., n

mi

i } .

But nki =

n∑

j=1

(X i
ki)

2=npki and

mi∑

k=1

pki =1, so that

mi∑

k=1

nki = n

mi∑

k=1

pki =n, ∀ i=1, ..., p

and X ′
iXj =




n p1
i 0
. . .

n pki
. . .

0 n pmi

i



.

Since Xi and Xj are independent variables, X ′
iXj = Nij and (Nij)kk′ =

(X ′
iXj)kk′ = n pki p

k′

j , which implies

X ′
iXj = Nij =




n pi1p
j
1 n pi1p

j
2 · · · ni1n

j
mj

n pi2p
j
1 n pi2p

j
2 · · · n pi2p

j
mj

...
...

...

n pimi
p
j
1 n pimi

p
j
2 · · · n pimi

p
j
mj



.
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The maximum-likelihood estimator of pki is p̂ki=
nk

i

n
, so

N̂i =




n1
i 0
. . .

nki
. . .

0 nmi

i



= Bii

and

N̂ij =




ni1n
j
1

n

ni1n
j
2

n
· · · ni1n

j
mj

n

ni2n
j
1

n

ni2n
j
2

n
· · · ni2n

j
mj

n
...

...
...

nimi
n
j
1

n

nimi
n
j
2

n
· · · nimi

n
j
mj

n




= Bij .

We can conclude that the the maximum-likelihood estimator B̂ of the theo-
retical Burt table is B̃ the observed one. Using the invariance functional propriety
we can affirm that the maximum-likelihood estimators of the eigenvalues ofD−1B

are the eigenvalues of D−1B̃, so that each µi is the maximum-likelihood estimator
of λi = λ.

Maximum-likelihood estimators are asymptotically normal, and so, asymp-
totically, each µi is normally distributed. But due to the fact that eigenvalues
are ordered, the eigenvalues are not identically and independently distributed.
However:

E(µ1) >
1

p
, E(µq) <

1

p
but E(µ1) −→

n→∞

1

p
and E(µq) −→

n→∞

1

p
.

Furthermore the eigenvalue variances are not the same. And from simula-
tions of large samples of n observations (n = 100, ..., n = 10 000), we notice that
the convergence of the eigenvalue distribution to a normal one is slow, especially
for the extremes (µ1 and µq), even for very large samples [4].

4.2. Distribution of eigenvalues in MCA under non-independence

hypotheses

4.2.1. Distribution of the theoretical eigenvalues

Let µ be an eigenvalue of D−1X ′X. Since µ can be also obtained by
diagonalization of 1

p
XD−1X ′, µ is a solution of 1

p
XD−1X ′z = z, where z is an

eigenvector associated to µ.
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So

1

p

(
p∑

i=1

Xi

(
X ′
iXi

)−1
X ′
i

)
z = µ z ⇐⇒ 1

p

p∑

i=1

Pi z = µ z ,

where Pi =
p∑
i=1

Xi(X
′
iXi)

−1
X ′
i is the orthogonal projector on the space spanned

by linear combinations of the indicators of variables categories Xi.

Let Ai the centered projector associated to Pi:

Ai = Pi −
1mimi

n
where 1mimi

=



1 1 · · · 1
...

...
...

1 1 · · · 1


 .

And so we get

(4)
1

p

p∑

i=1

Ai z = µ z .

4.2.1.1. The Case of two-way interactions

Let us assume that among the p studied variables, there is a two-way inter-
action between Xj and Xk, and that the (p−2) reminding variables are mutually
independent. Multiplying equation (4) by Aj we get:

1

p

(
AjA1︸ ︷︷ ︸

0

+AjA2︸ ︷︷ ︸
0

+ · · ·+AjAj︸ ︷︷ ︸
Aj

+ · · ·+AjAk + · · ·+AjAp︸ ︷︷ ︸
0

)
z = µAj z ,

since all variables are pairwise independent except Xj , Xk, and the Ai are or-
thogonal projectors. Thus:

(5) AjAk z = (p µ− 1)Aj z .

Similarly, multiplying (4) by Ak, we get:

(6) AkAj z = (p µ− 1)Ak z .

Now let us multiply (5) by Ak to get:

AkAjAk z = (p µ− 1)AkAj z .

Using (6) we obtain

AkAj Ak z︸︷︷︸
z1

= (p µ− 1)2Ak z︸︷︷︸
z1

.
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With the notation λ = (p µ− 1)2, we finally write:

(7) AkAj z1 = λ z1 .

Equation (7) implies that λ is an eigenvalue of the product of the centered
projector AkAj associated to the eigenvector z1.

In general: ∀ j, k = 1, ..., p, if there is an interaction between Xj and Xk,
the orthogonal projector AjAk admits a non zero eigenvalue λ = (p µ− 1)2.
If λ 6= 0⇔ µ 6= 1

p
, the trace of Burt table being constant, there is, at least,

another eigenvalue not equal to 1
p
.

Let n0 be the number of eigenvalue non equal to 1
p
, so that

∑n0

i=1 λi =
n0

p
.

Theoretically, (except for the particular case, where λ = 1, for which we
have µ = 2

p
and µ′ = 0), the number of non-trivial-eigenvalues greater than 1

p
is

equal to the number of non-trivial eigenvalues smaller than 1
p
.

The eigenvalue diagram shape is shown on Figure 3 :

λI Eigenvalues diagram

λ1

λ2

λ3

λ4

λ5
...
λq

****************************
***************************
************************
************************
************************
******************
*****************

Figure 3: Theoretical eigenvalues diagram in two-way interaction case.

The number n0 depends on the number of categories of Xj and Xk, on the
number of variables and on the number of dependent variables.

Let n1 be the multiplicity of 1
p
, we will show that n1= q − 2min((mj−1);

(mk−1)), when p > 2, and when there is only one two-way interaction between
the variables.

This result can be shown as follows:

Let us consider equation (4), and suppose, without loss of generality,
that X1 and X2 are dependant. So, upon multiplication by A3:

1
p

∑p
i=1Aiz = µz

becomes 1
p
(A3A1 +A3A2 +A3A3 + · · ·+A3AP ) z = µA3 z, and we get µ = 1

p
.
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Now multiply equation (4) by A2 and A1 in turn to get:





(
A1A1 +A1A2 +A1A3 + · · ·+A1AP

)
z = p µA1 z

(
A2A1 +A2A2 +A2A3 + · · ·+A2AP

)
z = p µA2 z

⇐⇒

⇐⇒
{

(A1 +A1A2) z = p µA1 z

(A2A1 +A2) z = p µA2 z

⇐⇒
{
A1A2 b = λ z

A2A1 b = λ z

where λ = (p µ− 1)2, a = A1 z and b = A2 z.

We recognize here the CA equations, so that the CA of Burt tables, when
only two variables are dependent is equivalent to the CA of the contingency
tables crossing the two dependent variables. It is well known that the number of
eigenvalue in CA equals q − 2min((mj−1); (mk−1)), and for all non trivial λi,
there corresponds the values µi and µ

′
i such that:

µi =
1 +

√
λi

p
and µ′

i =
1−

√
λi

p
.

Finally, the CA of the Burt table may have 2min((mj−1);(mk−1)) eigenval-
ues non trivial and not equal to 1

p
, associated to the CA of the contingency table.

So the number of supplementary eigenvalues equals q− 2min((mj−1); (mk−1)).

There is, in addition, one n1 multiple eigenvalue, where n1 is at least
q − 2min((mj − 1); (mk − 1)).

4.2.1.2. The case of higher order interactions

Since the Burt table is constructed with pairwise cross products of variables,
its observation cannot give us information about multiway interactions.

However the observation of the bi-dimensional theoretical Burt sub-tables,
for all pairwise variable combinations, can provide us with all the two-way inter-
actions.

The theoretical Burt table can reveal the existence of higher order interac-
tions in the following case:

If Bij 6= Bii 1mjmj
Bjj and Bik 6= Bii 1mkmk

Bkk: there may be a triple
interaction between Xi, Xj and Xk.

In general, a Burt table doesn’t give either the order of the interactions, or
supplementary information on the eigenvalue behavior.
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4.2.2. Distribution of observed eigenvalues

Exceptionally, with a small number of interactions, we observe the par-
ticular shape of the eigenvalue diagram exhibited in Figure 4, where we can
distinguish eigenvalues near 1

p
(theoretically equal to 1

p
), and so we are able to

recognize the existence of the independent variables in the analysis.

λI Eigenvalues diagram

λ1

λ2

λ3

λ4

λ5
...
...
λq

****************************
***************************
***********************
**********************
*********************
**************
*************
************

Figure 4: Observed eigenvalues diagram in a two-way interaction case.

When the number of interaction grows, we cannot distinguish eigenvalues
theoretically equal to 1

p
from the eigenvalues non equal to 1

p
.

To detect the existence or interactions, we can first check if the observed
variables are mutually independent. In that case, the eigenvalues distribution
diagram should have a particular shape (see § 4.1.), with more than 95% of the
eigenvalues within the confidence interval 1

p
± 2σ (see § 4.1.1).

If there is one or more eigenvalues out of the confidence interval, we can
then assume the existence of one or more two-way interaction between variables.

5. AN EMPIRICAL PROCEDURE FOR FITTING LOG-LINEAR

MODELS BASED ON THE MCA EIGENVALUE DIAGRAM

We propose an empirical procedure for progressively fitting a log-linear
model where the fitting test at each step is based on the MCA eigenvalues dia-
gram.

Let Xi, Xj and Xk, three categorical variables, with respectively mi, mj

andmk modalities, and let a cross variable with (mi×mj) modalities. We suppose
that Xij and Xk, have the same behavior if mk = mi ×mj .
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Under the hypothesis that two dependant variables Xi and Xj have the
same behaviour as the variable Xk with the same characteristics of the cross
variable Xij , we propose here an empirical procedure for fitting progressively,
with p steps, the log-linear model where the fitting criterion at each step is based
on the MCA eigenvalue diagram. Distribution of observed eigenvalues

5.1. Description of the procedure steps

The first step of the procedure consist to test the pairwise independence
hypothesis of the variables. To detect existence of interactions, we must first
check if all variables are mutually independent. For that matter, we calculate the
eigenvalues of MCA on all the p variables, and construct the related confidence
interval: the eigenvalue distribution diagram should have a particular shape (cf.
§ 4.1.). If all the eigenvalues belong to the confidence interval 1

p
±2σ (cf. § 4.1.1),

we can conclude that the p variables are mutually independent. The log-linear
model associated to the variables is a simple additive one:

log[fp(X)] = u0(x) +

p∑

i=1

ui(x) ,

and the procedure is stopped.

If one or more eigenvalue are not in the confidence interval, we conclude
that there is at least one double interaction between variables, and we go to the
second step of the procedure.

In the second step, we look at all two-way interaction u-terms. We isolate
one variable amongst the p variables that we note Xp, without loss of generality,
and so we obtain a set of (p−1) variables Xi, and apply the first step to test
pairwise independence of the (p−1) variables.

If the (p−1) variables are independent, we can conclude that the doubles
interactions are amongst Xp and at least one of the Xi, so we construct corre-
spondent cross variables Xip by using the first step to test independence between
variables (Xi, Xp) where i= 1, ..., p−1. The log-linear model associated to the
variables is:

log[fp(X)] = u0(x) +

p∑

i=1

ui(x) +

p−1∑

i=1

uip(x) δip ,

and the procedure stopped, (with δip = 1 if the interaction between Xp and Xi

exists, otherwise it is set to zero.)

If the (p−1) variables are not independent, we can conclude that there is
double interaction between Xi and Xj where i, j=1, ..., p−1, and perhaps between
Xi and Xp.
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We can construct correspondent cross variables Xip and Xij by using the
first step to test independence of variables (Xi, Xp) and variables (Xi, Xj) where
i, j = 1, ..., p−1. The log-linear model associated to the variables is:

log[fp(X)] = u0(x) +

p∑

i=1

ui(x) +

p−1∑

i=1

uip(x) δip + terms due to the interaction
between three or more variables

and we go to the third step of the procedure

In the third step, we look at three-way interaction u-terms, by testing the
dependence of variables Xi and cross variables Xjk, where i, j, k = 1, ..., p and
i, j, k are different, and construct cross variables Xijk. The independence test is
based on the eigenvalue pattern of the related MCA as described in the first step.

Continuing this way, in the kth step, we look at k-way interaction u-terms,
... and in the least step we look at the p-way interaction u-term.

This algorithm is summarized in Figure 5.

5.2. An example for a graphical model

For this example we use a data set given by Haberman [24] that was used in
Falguerolles et al. [14] to fit a graphical model. The data reports attitudes toward
non therapeutic abortions among white subjects crossed with three categorical
variables describing the subjects.

The data set is a contingency table observed for 3181 individuals, crossing
four three modality variables X1, X2, X3 and X4, defined in Table 1.

The first step of the procedure consists of testing the pairwise indepen-
dence hypothesis of the variables. We first transform the contingency table in
a complete disjunctive table, then calculate the parameters (defined in § 2.1 and
§ 4.1.1) needed for the test (Table 2).

MCA on the four variables gives the eigenvalues diagram of Figure 6.

The shape of eigenvalues diagram refers clearly to the existence of depen-
dent variables.

Eigenvalues λ1, λ7 and λ8 are not in the interval Ic, so there is at least two
dependent variables: there is one or more two-way interactions between variables.
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Figure 5: Block diagram for the Empirical procedure.
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Table 1: Attitudes toward non therapeutic abortions among white.

Year Religion: Education Attitude: X4

X1 X2 in years: X3 positive mixed negative

1972 northern Protestant ≤ 8 09 16 41
9–12 85 52 105
≥ 13 77 30 38

southern Protestant ≤ 8 08 08 46
9–12 35 29 54
≥ 13 37 15 22

Catholic ≤ 8 11 14 38
9–12 47 35 115
≥ 13 25 12 42

1973 northern Protestant ≤ 8 17 17 42
9–12 102 38 84
≥ 13 88 15 31

southern Protestant ≤ 8 14 11 34
9–12 61 30 59
≥ 13 49 11 19

Catholic ≤ 8 06 16 26
9–12 60 29 108
≥ 13 31 18 50

1974 northern Protestant ≤ 8 23 13 32
9–12 106 50 88
≥ 13 79 21 31

southern Protestant ≤ 8 05 15 37
9–12 38 39 54
≥ 13 52 12 32

Catholic ≤ 8 08 10 24
9–12 65 39 89
≥ 13 37 18 43

Table 2: Parameters needed for the test
(first step of the example for a graphical model).

n p m1 m2 m3 m4 q m σ Ic

3181 4 3 3 3 3 8 0.25 0.0109 [0.2283, 0.2717]

λ1 = 0.3221
λ2 = 0.2704
λ3 = 0.2599
λ4 = 0.2531
λ5 = 0.2451
λ6 = 0.2393
λ7 = 0.2277
λ8 = 0.1823

**************************
*********************
********************
*******************
******************
*****************
****************
***********

Figure 6: Eigenvalues diagram

(first step of the example for a graphical model).
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The second step consists of the detection of two-way interactions. In a
first time, we use our first step with only three variables X1, X2 and X3.

With the values of n and mi (for i = 1, ..., 3) still the same, the other
parameters become (Table 3 ):

Table 3: Parameters for the test
(second step of the example for a graphical model).

q m σ Ic

6 0.33333 0.0118 [0.3097, 0.3569]

We get the following eigenvalue diagram (Figure 7 ):

λ1 = 0.3606
λ2 = 0.3448
λ3 = 0.3385
λ4 = 0.3305
λ5 = 0.3025

**************************
*************************
************************
**********************
*********************

Figure 7: Eigenvalues diagram

(second step of the example for a graphical model).

λ1 and λ5 are not in interval Ic, so there is one or more two-way interaction
between X1, X2 and X3, as also as interactions between X4 and others.

In a second step we look at the interactions between X4 and Xi (i = 1, 2, 3).

For i= 1 to i= 3 we look at the eigenvalues of the MCA of X4 with Xi,
and calculate their variances and intervals Ic.

Crossing X1 with X4 we get (Table 4 ):

Table 4: MCA on X1 and X4 (parameters and eigenvalues).

q m σ Ic λ1 λ2 λ3 λ4

4 0.5 0.0125 [0.4750, 0.5250] 0.5389 0.5156 0.4644 0.4611

Crossing X2 with X4 we get (Table 5 ):

Table 5: MCA on X2 and X4 (parameters and eigenvalues).

q m σ Ic λ1 λ2 λ3 λ4

4 0.5 0.0125 [0.4750, 0.5250] 0.5741 0.5076 0.4924 0.4259
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Crossing X3 with X4 we get (Table 6 ):

Table 6: MCA on X3 and X4 (parameters and eigenvalues).

q m σ Ic λ1 λ2 λ3 λ4

4 0.5 0.0125 [0.4750, 0.5250] 0.6112 0.5041 0.4959 0.3979

In the three cases, λ1 and λ4 are not in the intervals Ic, so there is a two-
way interaction between X1 and X4, X2 and X4 and between X3 and X4, so we
can construct cross variables X4i having 9 modalities (i = 1, 2, 3).

Now, we use the first step with only two variables X1 and X2, after we look
for interactions between X3 and Xi (i = 1, 2).

Crossing X1 with X2 we get (Table 7 ):

Table 7: MCA on X1 and X2 (parameters and eigenvalues).

q m σ Ic λ1 λ2 λ3 λ4

4 0.5 0.0125 [0.4750, 0.5250] 0.5153 0.5045 0.4955 0.4848

All the eigenvalues are in the confidence interval, so X1 and X2 are in-
dependent conditionally on the other, and there is no cross variable X12. The
corresponding u-term u12 equals to zero.

Let us now look, when i = 1 and i = 2, at the eigenvalues of the MCA of
X3 with Xi, with their variances and intervals Ic:

Crossing X1 with X3 we get (Table 8 ):

Table 8: MCA on X1 and X3 (parameters and eigenvalues).

q m σ Ic λ1 λ2 λ3 λ4

4 0.5 0.0125 [0.4750, 0.5250] 0.5134 0.5023 0.4978 0.4866

All the eigenvalues are in the confidence interval Ic, so X1 and X3 are
independent conditionally on the other, and there is no cross variable X13: the
corresponding u-term u13 equals to zero.

Crossing now X2 with X3 we get (Table 9 ):

Table 9: MCA on X2 and X3 (parameters and eigenvalues).

q m σ Ic λ1 λ2 λ3 λ4

4 0.5 0.0125 [0.4750, 0.5250] 0.5401 0.5128 0.4872 0.4599

Here, λ1 and λ4 are not in the interval Ic, so there is a two-way interaction
between X2 and X3, u23 is not set to zero, and we can add the cross variable X32

(as well as X23) with 9 modalities to the model.
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The third step consists of the detection of triple interactions between
variables, that is to two-way interactions between the variables Xi and the cross
variables Xjk.

We first put the cross variables (X41, X42, X43, X32) with the initial vari-
ables that were deemed non dependent in the second step of the procedure, i.e.X1

and X2, and then we use the first step of the procedure with the set of obtained
variables.

So we get the following results (Table 10 and Figure 8 ):

Table 10: MCA on X1, X2, X41, X42, X43 and X32

(parameters third step of the example for a graphical model).

q m σ Ic

36 0.1667 0.0168 [0.1331, 0.2003]

λ1 = 0.5201
λ2 = 0.5006
λ3 = 0.3447
λ4 = 0.3347
λ5 = 0.3303
λ6 = 0.3193
λ7 = 0.1810
λ8 = 0.1796
λ9 = 0.1732
λ10 = 0.1710
λ11 = 0.1664
λ12 = 0.1627
λ13 = 0.1626
λ14 = 0.1578
λ15 = 0.1538
λ16 = 0.1423

**************************
*************************
******************
******************
******************
*****************
************
***********
***********
***********
***********
***********
***********
***********
**********
*********

Figure 8: MCA on X1, X2, X41, X42, X43 and X32

(eigenvalues diagram, third step of the example for a graphical model).

The first six eigenvalues are not in Ic: there is one or more two-way inter-
action between the initial variables Xi, and the crossed ones Xik, so there exists
a triple interaction between simple variables.
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We drop X32 and use the first step with the five other variables to get the
following results (Table 11 and Figure 9 ):

Table 11: MCA on X1, X2, X41, X42 and X43

(parameters for the test).

q m σ Ic

28 0.2 0.0162 [0.1671, 0.2324]

λ1 = 0.6105
λ2 = 0.6006
λ3 = 0.4143
λ4 = 0.4028
λ5 = 0.3982
λ6 = 0.3831
λ7 = 0.2262
λ8 = 0.2220
λ9 = 0.2162
λ10 = 0.2083
λ11 = 0.2054
λ12 = 0.2017
λ13 = 0.1952
λ14 = 0.1986
λ15 = 0.1952
λ16 = 0.1928
λ17 = 0.1878
λ18 = 0.1837
λ19 = 0.1815
λ20 = 0.1711

**************************
**************************
****************
****************
****************
***************
**********
**********
**********
*********
*********
*********
*********
*********
*********
*********
********
********
********
********

Figure 9: MCA on X1, X2, X41, X42 and X43

(eigenvalues diagram, third step of the example for a graphical model).

The first six eigenvalues are not in Ic, so there is at least one two-way
interaction between the variables. We know that simple variables X1, X2 and
the crossed variables X41, X42, X43 are dependent so we have to test dependence
between X1 and X32 only. Crossing X1 and X32 we get the following results
(Table 12):

Table 12: MCA on X1 and X32

(parameters and eigenvalues).

q m σ Ic

10 0.5 0.0159 [0.4682, 0.5318]

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

0.5287 0.5194 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.4806 0.4713
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All the eigenvalues are in the confidence interval Ic, so X1 and X32 are
independent conditionally on the other, and there is no cross variable X132.
The corresponding u-term u123 equals zero.

Now we can drop the cross variable X43. The remaining variables X1, X2,
X41, X42 are dependent by construction. We have only to test for dependence
between X1 and X43.

Crossing X1 with X43, we get the same parameter as the crossing of X1

and X32, and the following eigenvalues (Table 13 ):

Table 13: MCA on X1 and X43 (eigenvalues).

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

0.5445 0.5232 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.4768 0.4555

We remark that λ1 and λ10 are not in the interval Ic, so X1 and X43 seem
to be dependent. But we have to fit a graphical model, that is a particular case
of hierarchical models (as defined in § 2.2.2.2, a log-linear models is hierarchical
if, whenever one particular u-term is constrained to zero then all higher u-terms
containing the same set of subscripts are also set to zero).

Here the u-term u13 is set to zero, so the u-term u134 is also set to zero.

Crossing X2 with X43, we get the same parameter as the crossing of X1

and X32, and the following eigenvalues (Table 14 ):

Table 14: MCA on X2 and X43 (eigenvalues).

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

0.5871 0.5466 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.4534 0.4143

Eigenvalues λ1, λ2, λ9 and λ10 are not in the interval Ic, the u-terms u23

and u24 are not set to zero, and since X2 and X43 are not dependent the u-term
u234 is not set to zero.

Crossing X1 with X42 (or equivalently X2 with X41) we get the same pa-
rameter as the crossing of X1 and X32, and the following eigenvalues:

Table 15: MCA on X1 and X42 (eigenvalues).

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

0.5434 0.5289 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.4711 0.4566
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Eigenvalues λ1 and λ10 are not in the interval Ic, the u-term u14 is equal
to zero, X1 and X42 are dependent, and the u-term u124 is set to zero.

Finally, variables X1 and X41 are dependent by construction.

The procedure stops here because we can’t have more than triple interac-
tions in a hierarchical model when all the two-way interactions are not present.
We obtain the following model (see Figure 10 for the associated graph):

Figure 10: Lattice diagram (example for a graphical model).

log[f4(X)] = u0 + u1x1 + u2 x2 + u3 x3 + u4 x4 + u32 x2x3 + u41x4x1 + u42 x4x2

+u43 x4x3 + u432 x4x3x2 .

5.3. An example for a saturated model

Here we use a data set given by Israëls [29] that was also used by Van der
Heijden et al. [28] about ‘shop-lifting’ habits.

Table 16 is a contingency table crossing three variables: sex (2 modalities),
age (9 modalities) and type of goods (13 modalities: Clothing (C), Clothing
accessories (Ca), Provision-Tobacco (PT), Writing materials (Wm), Books (B),
Records (R), Household goods (Hg), Sweets (S), Toys (T), Jewellery (J), Perfume
(P), Hobbies tools(Ht), and Others(O)) observed over 33 101 individuals.

In the first step, we test the pairwise independence of variables X1, X2 and
X3. We first transform the contingency table in a complete disjunctive table,
then compute the parameters (defined in § 2.2 & § 4.1.1) needed for the test to
get (Table 17 ).

A MCA on the three variables gives the eigenvalue diagram of Figure 11.

The eigenvalue diagram shows clearly that the variables are not indepen-
dent: only 8 eigenvalues (λ7, ..., λ15) are in the confidence interval.

Using the second step of the procedure, we get the two-way interactions.
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Table 16: Multicontingency table for the shop-lifting data.

Sex: Age: Goods: X3

X1 X2 C Ca PT Wm B R Hg S T J P Ht O

≤ 11 81 66 150 667 67 24 47 430 743 132 32 197 209
12–14 138 204 340 1409 259 272 117 637 684 408 57 547 550
15–17 304 193 229 527 258 368 98 246 116 298 61 402 454
18–20 384 149 151 84 146 141 61 40 13 71 52 138 252

Male 21–29 942 297 313 92 251 167 193 30 16 130 111 280 624
30–39 359 109 136 36 96 67 75 11 16 31 54 200 195
40–49 178 53 121 36 48 29 50 5 6 14 41 152 88
50–64 137 68 171 37 56 27 55 17 3 11 50 211 90
≥ 65 45 28 145 17 41 7 29 28 8 10 28 111 34

≤ 11 71 19 59 224 19 7 22 137 113 162 70 15 24
12–14 241 98 111 463 60 32 29 240 98 138 178 29 58
15–17 477 114 58 91 50 27 41 80 14 548 141 9 72
18–20 436 108 76 18 32 12 32 12 10 303 70 14 67

Female 21–29 1180 207 132 30 61 21 65 16 12 74 104 30 157
30–39 1009 165 121 27 43 9 74 14 31 100 81 36 107
40–49 517 102 93 23 31 7 51 10 8 48 46 24 66
50–64 488 127 214 27 57 13 79 23 17 22 69 35 64
≥ 65 173 64 215 13 44 0 39 42 6 12 41 11 55

Table 17: Parameters needed for the test
(first step of the example for a satured model).

n p m1 m2 m3 q m σ Ic

33101 3 2 9 13 21 0.3333 0.0061 [0.3211, 0.3455]

λ1 = 0.5759
λ2 = 0.4256
λ3 = 0.3966
λ4 = 0.3899
λ5 = 0.3542
λ6 = 0.3494
λ7 = 0.3407
λ8 = 0.3384
λ9 = 0.3344
λ10 = 0.3333
λ11 = 0.3333
λ12 = 0.3333
λ13 = 0.3322
λ14 = 0.3271
λ15 = 0.3260
λ16 = 0.3177
λ17 = 0.3103
λ18 = 0.2802
λ19 = 0.2632
λ20 = 0.1925
λ21 = 0.1423

***************************************************
***********************************
********************************
*******************************
****************************
****************************
***************************
**************************
**********************
**********************
**********************
**********************
*********************
*********************
*********************
********************
*******************
******************
****************
************
*******

Figure 11: MCA on X1, X2 and X3

(eigenvalues diagram, third step of the example for a saturated model).
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MCA of X1 and X3 gives the following results (Table 18 and Figure 12 ):

Table 18: MCA on X1 and X3

(parameters).

n p q m σ Ic

33101 2 13 0.5 0.00002 [0.5000, 0.5000]

λ1 = 0.7032
λ2 = 0.5000
λ3 = 0.5000
λ4 = 0.5000
λ5 = 0.5000
λ6 = 0.5000
λ7 = 0.5000
λ8 = 0.5000
λ9 = 0.5000
λ10 = 0.5000
λ11 = 0.5000
λ12 = 0.5000
λ13 = 0.2968

****************************************
*************************
*************************
*************************
*************************
*************************
*************************
*************************
**********************
**********************
**********************
**********************
**********

Figure 12: MCA on X1 and X3

(eigenvalues diagram, second step of the example for a saturated model).

The first and the last eigenvalues are not in the confidence interval so the
u-term u13 is not set to zero.

We notice here the peculiar form of the eigenvalues diagram, due to the
fact that multiple eigenvalue λ = 1

2 that have a multiplicity 11 = m3 −m1 is an
artificial one (cf. § 4.2.1.1).

MCA of X2 and X3 gives the following results (Table 19 and Figure 13 ):

Table 19: MCA on X2 and X3

(parameters).

n p q m σ Ic

33101 2 20 0.5 0.0001 [0.4998, 0.5002]

The 8 first and the 8 last eigenvalues are not in the confidence interval so
the u-term u23 is not set to zero.
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λ1 = 0.7852
λ2 = 0.6074
λ3 = 0.5903
λ4 = 0.5346
λ5 = 0.5245
λ6 = 0.5112
λ7 = 0.5109
λ8 = 0.5019
λ9 = 0.5000
λ10 = 0.5000
λ11 = 0.5000
λ12 = 0.5000
λ13 = 0.4981
λ14 = 0.4891
λ15 = 0.4888
λ16 = 0.4755
λ17 = 0.4654
λ18 = 0.4097
λ19 = 0.3926
λ20 = 0.2148

****************************************
*******************************
*****************************
**************************
*************************
************************
************************
***********************
********************
********************
********************
********************
*******************
******************
******************
*****************
****************
************
***********
******

Figure 13: MCA on X2 and X3

(eigenvalues diagram, second step of the example for a saturated model).

MCA of X1 and X2 gives the following eigenvalue results (Table 20, Figure 14 ):

Table 20: MCA on X1 and X2

(parameters).

n p q m σ Ic

33101 2 9 0.5 0.0037 [0.4926, 0.5074]

λ1 = 0.6241
λ2 = 0.5000
λ3 = 0.5000
λ4 = 0.5000
λ5 = 0.5000
λ6 = 0.5000
λ7 = 0.5000
λ8 = 0.5000
λ9 = 0.3759

****************************************
*************************
*************************
*************************
*************************
*************************
*************************
*************************
**********

Figure 14: MCA on X1 and X2

(eigenvalues diagram, second step of the example for a saturated model).

The first and the last eigenvalues are not in the confidence interval so the
u-term u12 is not set to zero. At the end of the second step, we obtain all three
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two-way interactions. To know if the model is a saturated one we can built one of
the crossed variables and test its dependence with the remaining simple variable.

MCA of X32 with X1 gives the following eigenvalues:

λ1 = 0.7285 , λ2 = λ3 = · · · = λ116 = 0.5 ,

λ117 = 0.2715 and Ic = [0.4615, 0.5384] .

The first and the last eigenvalues are not in the confidence interval so the
u-term u123 is not set to zero.

At the end we get the following saturated model:

log[f3(X)] = u0 + u1x1 + u2 x2 + u3 x3 + u12 x1x2 + u23 x2x3 + u13 x1x3

+u123 x1x2x3 .

5.4. An example for a mutual independence model

Here we use a data set given by Andersen [2] as a contingency table cross-
ing four variables observed over 299 individuals corresponding to a retrospective
study of ovary cancer, defined in Table 21:

Table 21: Retrospective study of ovary cancer.

X1 X2 X3 X4

stage operation survival X-ray

No Yes

Early radical no 10 17
limited yes 41 64

no 1 3
yes 13 9

Advanced radical no 38 64
limited yes 6 11

no 3 13
yes 1 5

In the first step of procedure, we test for the pairwise independence of
variables X1, X2, X3 and X4. We first transform the contingency table in a
complete disjunctive table, then compute the parameters (see § 4.1.1) needed for
the test.
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The MCA on the four variables gives the following results (Table 22 and Figure 15 ):

Table 22: Parameters needed for the test
(first step of the example for a mutual independence model).

n p m1 m2 m3 m4 q m σ Ic

299 4 2 2 2 2 4 0.25 0.0250 [0.2000, 0.3000]

λ1 = 0.4145
λ2 = 0.2512
λ3 = 0.2449
λ4 = 0.0894

**********************************
********************
*******************
*********

Figure 15: MCA on X1, X2, X3 and X4

(eigenvalues diagram, first step of the example for a mutual independence model).

The eigenvalue diagram shows clearly that variables are not independent,
only λ2 and λ3 are in the confidence interval.

Let’s drop X4 and use the second step of the procedure. MCA on the three
remaining variables gives the following results (Table 23 and Figure 16 ):

Table 23: MCA on X1, X2 and X3

(parameters).

n p q m σ Ic

299 3 3 0.3333 0.0273 [0.2787, 0.3879]

λ1 = 0.3639
λ2 = 0.3342
λ3 = 0.3019

**********************
********************
*******************

Figure 16: MCA on X1, X2 and X3

(eigenvalues diagram).

The eigenvalue diagram shows clearly that variables are independent, since
all the eigenvalues are in the confidence interval, so there is surely one or more
interaction X4 and Xi, i=1, ..., 3.
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The MCA on X4 and Xi gives the following results (Table 24 and Figure 17 ):

Table 24: MCA on X4, Xi

(parameters).

n p q m σ Ic

299 2 2 0.5 0.0283 [0.4434, 0.5566]

X4 and X1 X4 and X2 X4 and X3

λ1 = 0.5365 **********
λ2 = 0.4635 *********

λ1 = 0.8198 **********
λ2 = 0.1802 ***

λ1 = 0.5058 **********
λ2 = 0.4942 *********

Figure 17: Eigenvalues diagram for MCA on X4 and X1,

MCA on X4 and X2 and MCA on X4 and X3.

It’s clear that there exists only an interaction between X4 and X2, X1 and
X3 are non dependent of X4, then u14 = u13 = 0 and u24 6= 0 and we build the
crossed variable X24.

The MCA of X1, X3 and X24 gives the following results (Table 25 and
Figure 18 ):

Table 25: MCA on X1, X3 and X24

(parameters).

n p q m σ Ic

299 3 5 0.3333 0.0273 [0.2787, 0.3879]

λ1 = 0.3647
λ2 = 0.3624
λ3 = 0.3333
λ4 = 0.3047
λ5=0.3016

**********************
**********************
*********************
********************
********************

Figure 18: Eigenvalues diagram for MCA on X1, X3 and X24.

The eigenvalue diagram shows that the variables are independent, all the
eigenvalues being within the confidence interval, and there is no triple interaction
between variables.

We finally obtain the same model as Andersen:

log[f4(X)] = u0 + u1x1 + u2 x2 + u3 x3 + u4 x4 + x24x4x2 .



Eigenvalues in MCA and Log-Linear Models 77

6. CONCLUSION

Log-linear modeling and MCA are two complementary techniques for the
analysis of categorical data. In this framework, we propose a method for fitting
progressively log-linear models, using the eigenvalue shape of MCA.

We show that, in MCA, under the independence hypothesis for the
variables, each observed eigenvalue is asymptotically normally distributed.
These distributions have the same mean, different variances and converge to
normal distributions. In this case, the eigenvalue diagram takes a peculiar shape.
This shape is different if there is one or more interactions between variables, and
we can recognize the log-linear model fitted for the data in some special cases.

Then, based on these results, we propose a simple procedure for progres-
sively fitting log-linear models, where the fitting criterion is based on MCA eigen-
value diagrams: the chosen model is constructed by successive utilizations of
MCA (non constrained by the variables number). Finally, we validate this pro-
cedure on three sets of data drawn from the literature.
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