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Abstract:

• Using resistant and robust methods we propose the statistic Tn = (FU−M)/(M−FL)
for testing exponentiality versus generalized Pareto, where FU , FL andM are, respec-
tively, the upper and lower fourths and the median of a random sample of size n.
The statistic Tn is based on the statistic Vn = (Xn:n−M)/(M−X1:n) used by Gomes
(1982) to discriminate extremal models in a similar context but with a higher break-
down point.
The simulated power of Tn is compared with the simulated power of Un =Xn:n/M
and Vn, which can also be used to test the exponential behaviour of the sample data.
Although we observe that the power of Tn is lower than the power of Un and Vn, we
show that the performance of the first test is better than the performance of the two
other tests when compared to broadened situations and mixtures commonly used to
evaluate resistance and robustness.
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1. INTRODUCTION

Given the importance of the generalized Pareto distribution in Statistics
(e.g., analysis of POT data) we propose a test for testing exponentiality versus
generalized Pareto which, although it is not the best one among possible tests, is
however resistant to disturbing data, and robust in the sense that it is not sensitive
to some departures of the assumptions inherent to a chosen probabilistic model.

Some statistics have been proposed to test the exponential behaviour of sam-
ples from generalized Pareto populations, specially for the vonMises–Jenkinson
parametrization of the distribution, i.e.,

F
β
(x) = 1−

(
1 + β

x

δ

)−1/β

, 1 + β
x

δ
> 0, x > 0 ,

where −∞ < β <∞ is a shape parameter and δ > 0 a scale parameter. One test
that can be used is based on the statistic Un= Xn:n

M (Gomes and van Monfort,
1987). Another possible test is based on Vn= Xn:n−M

M−X1:n
which was used by Gomes

(1982) to discriminate extremal models in a similar context. However, since Un

and Vn are both functions of extreme order statistics, they possess a disadvantage,
a zero breakdown point, in the sense of Hampel, as defined below:

Definition 1.1. A statistic T has an α breakdown point (0≤α≤1) if
the proportion of the sample data that can be replaced by arbitrarily other data
with T remaining bounded approaches α.

As an alternative to the tests mentioned above we propose the test statistic

Tn =
FU −M
M − FL

,

where FU and FL denote the upper and lower fourths and M the median of a
random sample of size n, with a higher breakdown point (approximately equal
to 0.25).

In section 2 we obtain the sample distribution of Tn under the null hy-
pothesis β = 0 (i.e., exponential behaviour) as well as the limiting distribution.
In section 3 the power of the tests Tn, Un and Vn are compared and the perfor-
mance of each one is evaluated under broadened situations and mixtures in order
to determine their resistance and robustness qualities.
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2. SAMPLE DISTRIBUTION OF Tn UNDER THE HYPOTHESIS
OF AN EXPONENTIAL PARENT

Let (X1, ..., Xn) be a random sample from an exponential distribution with
distribution function

F0(x) =
(
1− e−x/δ

)
I
]0,+∞[

,

(δ > 0) and let (X1:n, ..., Xn:n) be the vector of ascending order statistics associ-
ated with the sample.

In order to preserve the ranking symmetry of the fourths from the extremes
of the sample, we use the following definition for the (100p)th sample percentile

ξp =



X{np}:n if p < 0.5 ,

Xn−{n(1−p)}+1:n if p > 0.5 ,

where {a} denotes the number a rounded to the nearest integer in the usual way
(cf. Casella and Berger, 2002).

Therefore, when n is odd

Tn =
Xn−{n

4}+1:n −Xn+1
2

:n

Xn+1
2

:n −X{n
4}:n

,

and when n is even

Tn =
Xn−{n

4}+1:n − 1
2

(
Xn

2
:n +Xn

2
+1:n

)
1
2

(
Xn

2
:n +Xn

2
+1:n

)
−X{n

4}:n

.

The independence of the spacings of the exponential model yields the in-
dependence of the generalized spacings Xn−{n

4}+1:n−Xn+1
2

:n and Xn+1
2

:n−X{n
4}:n

when n is odd, and therefore the probability density function of Tn was obtained
using standard techniques in this case.

When n is even we no longer have independence between numerator and
denominator of Tn, and hence the expression that defines the probability den-
sity function was obtained calculating the marginal distribution of Tn from the
joint probability distribution of the random vector (X{n

4}:n, Xn/2:n −X{n
4}:n,

Xn/2+1:n−Xn/2:n, Tn).
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Consequently, if n is odd, the density function is defined by

f(t) =

(
n− {

n
4

})
!({

n
4

} − 1
)
!
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2 − {

n
4

})
!
2
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n
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(n−1
2 −{

n
4

}
i

)
(−1)iB
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(
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4
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1
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}
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(
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{
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4

})
t
, t > 0 ,

where B(· , ·) represents the beta function; and, if n is even,
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if t ≥ 1.

For larger sample sizes we can use the normal distribution as an approxi-
mation to the distribution of Tn. In order to prove that Tn has a limiting normal
distribution under the hypothesis of an exponential parent we consider the fol-
lowing lemma (cf. Chernoff et al., 1967).
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Lemma 2.1. Let Zi:n be the i th ascending order statistic of n i.i.d.
standard exponential random variables Z1, ..., Zn. Then,

P

{
τ−1
n

n∑
i=1

ai:n(Zi:n − µi:n) ≤ t

}
−−−−−→
n→+∞ Φ(t) ,

for every t, if and only if,

max
1≤j≤n

τ−1
n |bj,n| −−−−−→

n→+∞ 0 ,

where µi:n= E(Zi:n), bj,n= (n−j+1)−1
∑n

i=j ai:n and τ2
n =

∑n
i=1 b

2
i,n .

Using the lemma’s notation for Xn−{n
4}+1:n−Xn+1

2
:n we have

ai:n =



−1 , i = n+1

2 ,

1 , i = n−{
n
4

}
+1 ,

0 , elsewhere ,

and

bj,n =




0 , 1 ≤ j ≤ n+1
2 ,

1
n−j+1

, n+1
2 +1 ≤ j ≤ n−{

n
4

}
+1 ,

0 , n−{
n
4

}
+2 ≤ j ≤ n .

Hence,

τ2
n =

n−
{

n
4

}
+1∑

j=
n+1

2 +1

1
(n− j + 1)2

=

n−1
2∑

k=
{

n
4

} 1
k2
.

Applying the lemma we get

τ−1
n

(
Xn−{n

4}+1:n −Xn+1
2

:n− λn

)
d−−−−−→

n→+∞ Z # Normal(0, 1) ,

where

λn = µn−{n
4}+1:n− µn+1

2
:n =

n−1
2∑

k=
{

n
4

} 1
k
,

and since ln(3/2)
X n+1

2 :n
−X{n

4}:n

converges in probability to 1, it follows from Slutsky’s

theorem that

ln(3/2) τ−1
n

(
Tn − λn

ln(3/2)

)
d−−−−−→

n→+∞ Z # Normal(0, 1) .



Exponentiality Versus Generalized Pareto — A Resistant and Robust Test 7

However, simpler normalizing constants can be found. Since λn∼ ln 2 and
τ2
n ∼ 2

n we have

ln(3/2)
√
n

2

(
Tn − ln 2

ln(3/2)

)
d−−−→

n→∞ Z # Normal(0, 1) .

On the other hand, it is quite straightforward to show that

ln 2 Un− lnn d−−−→
n→∞ Y # Gumbel(0, 1)

and

ln 2 Vn− ln(n/2) d−−−→
n→∞ Y # Gumbel(0, 1) .

3. POWER, RESISTANCE AND ROBUSTNESS COMPARISON

The choice of the appropriate statistical test for a particular situation must
be guided by a sensible criteriom. Usually, power considerations weight consid-
erably in the decision process.

For inference purposes and comparison of the power functions we register
on Table 1 the simulated critical points (based on 4999 simulations) of the sample
distributions of Tn, Un and Vn under the null hypothesis β = 0.

Table 1: Simulated critical points of Tn, Un and Vn.

α

.01 .025 .05 .1 .9 .95 .975 .99

T10 .21* .30* .40* .56* 4.90* 6.88* 9.37* 13.65*
U10 1.53 1.70 1.87 2.12 7.62 9.53 11.68 14.97
V10 .59 .79 1.00 1.29 8.00 10.38 12.99 18.07

T20 .43* .54* .66* .83* 3.89* 4.89* 5.97* 7.59*
U20 2.13 2.37 2.65 2.98 8.50 10.08 11.82 13.95
V20 1.18 1.47 1.75 2.11 8.23 10.02 11.95 14.72

T30 .50* .61* .72* .88* 3.30* 4.00* 4.74* 5.80*
U30 2.53 2.91 3.17 3.54 9.11 10.47 12.05 13.87
V30 1.62 1.96 2.25 2.66 8.57 10.10 11.64 13.57

T50 .67 .79 .89 1.03 2.86 3.31 3.80 4.50
U50 3.24 3.49 3.85 4.23 9.55 11.02 12.24 14.12
V50 2.29 2.58 2.91 3.33 8.83 10.35 11.77 13.67

T100 .87 .99 1.09 1.21 2.47 2.75 3.02 3.32
U100 4.19 4.53 4.83 5.24 10.46 11.56 12.63 14.33
V100 3.26 3.57 3.88 4.30 9.58 10.73 11.79 13.46

T250 1.12 1.20 1.28 1.36 2.17 2.31 2.44 2.57
U250 5.49 5.89 6.21 6.68 11.51 12.60 13.71 15.09
V250 4.52 4.92 5.25 5.72 10.58 11.66 12.79 14.22

(* exact critical points)
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Figures 1 and 2 show the simulated power functions (5 000 simulations)
of Tn, Un and Vn for a α = 0.05 level right one-sided and two-sided tests and
n = 10, 20, 30, 50, 100, 250.
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Figure 1: Power functions for a α = 0.05 level right one-sided test.

From Figures 1 and 2 we observe that Tn performs quite badly in detecting
departures from the exponential behaviour when compared with the other two
tests. If we had to choose based exclusively on the power of the test, we would
choose for smaller sample sizes (n ≤ 30) Un and for larger sample sizes Un or Vn.
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A comparison of the power of the three tests was also made for a α = 0.01 level
one-sided and two-sided tests, but the results are not presented here because they
reveal a similar pattern as in the case α = 0.05.
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Figure 2: Power functions for a α = 0.05 level two-sided test.

The power criteria can be pushed to a second place if we find stronger
reasons which can sustain such a decision. In fact, the lesser power of Tn will
be in a way compensated when we evaluate its performance after introducing
disturbing observations in the sample (e.g., an observation from an exponential
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population with a larger scale), or when we consider the sample from a mixture
of exponentials, which is a variation (or contamination) of the “pure” exponential
model. In order to compare the resistance and robustness of the tests we will
evaluate the performance of each one in a broadened situation and mixture.

In an one broadened situation, which is the case presented here, we as-
sume that the margins of the random vector (X1 , ..., Xn−1 , X

∗) are independent,
X1 , ..., Xn−1 are standard exponentials and X∗ is an exponential variable with
distribution function

F ∗(x) =
(
1 − e−x+K−1

K

)
I
]1−K,+∞[

.

In a mixture situation we assume that the random sample (X1 , ..., Xn)
is from a population with distribution function

F (x) =
[
(1 − θ)

(
1− e−(x−θ(1−K))

)
+ θ

(
1 − e−x−θ(1−K)

K

)]
I
]θ(1−K),+∞[

,

where 0 < θ < 1 (θ is sometimes called the percentage contamination).

In robustness studies it is usual to consider K= 3, 10 and θ = 0.05, 0.1
(cf. Hoaglin et al., 1983). However, we will only show the results obtained for
K= 3, 10 and θ = 0.05, and for the classical level α = 0.05.

In Tables 2 to 5 we indicate the probability of rejecting the exponential
hypothesis, as well as the standard error of the estimates and the corresponding
95% confidence interval.

Table 2: Right one-sided test in an one broadened situation.

K= 3

n Tn s.e. 95% C.I. Un s.e. 95% C.I. Vn s.e. 95% C.I.

10 .050 .0031 [.044, .056] .116 .0045 [.107, .125] .070 .0036 [.063, .077]
20 .051 .0031 [.045, .057] .099 .0042 [.091, .107] .063 .0034 [.056, .070]
30 .048 .0030 [.042, .054] .093 .0041 [.085, .101] .067 .0035 [.060, .074]
50 .051 .0031 [.045, .057] .086 .0040 [.078, .094] .063 .0034 [.056, .070]

100 .053 .0032 [.047, .059] .077 .0038 [.070, .084] .053 .0032 [.047, .059]
250 .049 .0031 [.043, .055] .079 .0038 [.072, .086] .053 .0032 [.047, .059]

K = 10

n Tn s.e. 95% C.I. Un s.e. 95% C.I. Vn s.e. 95% C.I.

10 .055 .0032 [.049, .061] .248 .0061 [.236, .260] .186 .0055 [.175, .197]
20 .053 .0032 [.047, .059] .239 .0060 [.227, .251] .193 .0056 [.182, .204]
30 .050 .0031 [.044, .056] .238 .0060 [.226, .250] .203 .0057 [.192, .214]
50 .050 .0031 [.044, .056] .226 .0059 [.214, .238] .196 .0056 [.185, .207]

100 .054 .0032 [.048, .060] .215 .0058 [.204, .226] .185 .0055 [.174, .196]
250 .049 .0031 [.043, .055] .206 .0057 [.195, .217] .175 .0054 [.164, .186]
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Table 3: Two-sided test in an one broadened situation.

K= 3

n Tn s.e. 95% C.I. Un s.e. 95% C.I. Vn s.e. 95% C.I.

10 .051 .0031 [.045, .057] .085 .0039 [.077, .093] .186 .0055 [.175, .197]
20 .052 .0031 [.046, .058] .073 .0037 [.066, .080] .273 .0063 [.261, .285]
30 .050 .0031 [.044, .056] .078 .0038 [.071, .085] .339 .0067 [.326, .352]
50 .054 .0032 [.048, .060] .068 .0036 [.061, .075] .381 .0069 [.368, .394]

100 .054 .0032 [.048, .060] .070 .0036 [.063, .077] .428 .0070 [.414, .442]
250 .056 .0033 [.050, .062] .073 .0037 [.066, .080] .467 .0071 [.453, .481]

K = 10

n Tn s.e. 95% C.I. Un s.e. 95% C.I. Vn s.e. 95% C.I.

10 .053 .0032 [.047, .059] .205 .0057 [.194, .216] .645 .0068 [.632, .658]
20 .052 .0031 [.046, .058] .205 .0057 [.194, .216] .701 .0065 [.688, .714]
30 .050 .0031 [.044, .056] .208 .0057 [.197, .219] .711 .0064 [.698, .724]
50 .054 .0032 [.048, .060] .198 .0056 [.187, .209] .723 .0063 [.711, .735]

100 .051 .0031 [.045, .057] .203 .0057 [.192, .214] .738 .0062 [.726, .750]
250 .056 .0033 [.050, .062] .194 .0056 [.183, .205] .750 .0061 [.738, .762]

Table 4: Right one-sided test in a 5% contamination situation.

K= 3

n Tn s.e. 95% C.I. Un s.e. 95% C.I. Vn s.e. 95% C.I.

10 .055 .0032 [.049, .061] .142 .0049 [.132, .152] .086 .0040 [.078, .094]
20 .056 .0033 [.050, .062] .188 .0055 [.177, .199] .119 .0046 [.110, .128]
30 .053 .0032 [.047, .059] .217 .0058 [.206, .228] .138 .0049 [.128, .148]
50 .058 .0033 [.052, .064] .268 .0063 [.256, .280] .182 .0055 [.171, .193]

100 .062 .0034 [.055, .069] .405 .0069 [.391, .419] .285 .0064 [.272, .298]
250 .064 .0035 [.057, .071] .619 .0069 [.606, .632] .471 .0071 [.457, .485]

K = 10

n Tn s.e. 95% C.I. Un s.e. 95% C.I. Vn s.e. 95% C.I.

10 .062 .0034 [.055, .069] .459 .0070 [.445, .473] .231 .0060 [.219, .243]
20 .069 .0036 [.062, .076] .685 .0066 [.672, .698] .382 .0069 [.369, .395]
30 .059 .0033 [.052, .066] .816 .0055 [.805, .827] .501 .0071 [.487, .515]
50 .065 .0035 [.058, .072] .921 .0038 [.914, .928] .683 .0066 [.670, .696]

100 .074 .0037 [.067, .081] .992 .0013 [.990, .994] .887 .0045 [.878, .896]
250 .092 .0041 [.084, .100] 1.000 .0000 — .994 .0011 [.992, .996]

The analysis of the previous tables show that Tn is by far less sensitive to the
disturbing observation, even when it comes from an exponential population with a
standard deviation ten times greater than the standard deviation of the standard
exponential. In other words this means that with Tn we will be rejecting a true
null hypothesis with probability approximately equal to α = 0.05. The same can
be said when we consider that 5% of the observations are from an exponential
population with standard deviation K= 10. Therefore the results confirm that
Tn is more resistant and robust.
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Table 5: Two-sided test in a 5% contamination situation.

K= 3

n Tn s.e. 95% C.I. Un s.e. 95% C.I. Vn s.e. 95% C.I.

10 .050 .0031 [.044, .056] .106 .0044 [.097, .115] .074 .0037 [.067, .081]
20 .053 .0032 [.047, .059] .139 .0049 [.129, .149] .093 .0041 [.085, .101]
30 .051 .0031 [.045, .057] .160 .0052 [.150, .170] .112 .0045 [.103, .121]
50 .052 .0031 [.046, .058] .212 .0058 [.201, .223] .143 .0050 [.133, .153]

100 .052 .0031 [.046, .058] .333 .0067 [.320, .346] .234 .0060 [.222, .246]
250 .050 .0031 [.044, .056] .528 .0071 [.514, .542] .385 .0069 [.372, .398]

K = 10

n Tn s.e. 95% C.I. Un s.e. 95% C.I. Vn s.e. 95% C.I.

10 .052 .0031 [.046, .058] .545 .0070 [.531, .559] .205 .0057 [.194, .216]
20 .053 .0032 [.047, .059] .704 .0065 [.691, .717] .345 .0067 [.332, .358]
30 .051 .0031 [.045, .057] .805 .0056 [.794, .816] .462 .0071 [.448, .476]
50 .054 .0032 [.048, .060] .913 .0040 [.905, .921] .645 .0068 [.632, .658]

100 .054 .0032 [.048, .060] .989 .0015 [.986, .992] .864 .0048 [.854, .874]
250 .060 .0034 [.053, .067] 1.000 .0000 — .990 .0014 [.987, .993]

4. FINAL COMMENTS

It is important to use resistant and robust methods given the fact that: (i)
classical techniques behave poorly when the general situation departs from the
set of initial assumptions; (ii) in practice we never know the exact underlying
conditions, specially when it is not so unlikely to admit the existence of disturbing
data in the sample.

The conclusions of section 3 reinforce the general idea that resistant and
robust methods are the best compromise possible for a large set of scenarios,
although not necessarily the best ones for a very specific and limiting situation.

The analysis of the power function shows that the extreme order statistics
carry important information for the issue at hand, and therefore trimming out
25% of the sample data may be too drastic. Unfortunately, there is no rule of
thumb for an appropriate choice k in Tn(k)=

Xn−k(n)+1:n−M

M−Xk(n):n
that optimizes results

in what concerns power and resistance and robustness altogether.
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