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Abstract:

• We propose an estimator of the Pareto tail index m of a distribution, that competes
well with the Hill, Pickands and moment estimators. Unlike the above estimators,
that are based only on the extreme observations, the proposed estimator uses all
observations; its idea rests in the tail behavior of the sample mean X̄n, having a simple
structure under heavy-tailed F . The observations, partitioned into N independent
samples of sizes n, lead to N sample means whose empirical distribution function is
the main estimation tool. The estimator is strongly consistent and asymptotically
normal as N → ∞, while n remains fixed. Its behavior is illustrated in a simulation
study.
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1. INTRODUCTION

Let X1, ..., Xn be independent nonnegative random variables, identically
distributed with distribution function F . The exact shape of F is generally
unknown, but we assume that F is absolutely continuous with density f and
nondegenerate right tail of the Pareto type satisfying

(1.1) lim
x→∞

− log
(
1− F (x))
m log x

= 1

for some m > 0. Then, by the von Mises condition (see Embrechts et al. [4]),

(1.2) 1− F (x) = x−mL(x)

where L(x) is a function, slowly varying at ∞, and hence F belongs to the
domain of attraction of the Fréchet distribution with the distribution function
Φm(x) = exp {−x−m} , x > 0.

Among the estimators of the Pareto index m or its reciprocal γ = 1
m ,

proposed in the literature, the Hill [9], Pickands [15] and moment estimators
[3] are the most well-known. Either of these estimators is based only on the frac-
tion of the observations, namely on kn largest ones, where kn → ∞ and kn/n→ 0
as n → ∞. The consistency and asymptotic normality of these estimators was
proved under various regularity conditions on kn and on F, some of them not easy
to verify. The problem of the estimating was considered by many other authors,
e.g. Smith [16], Beirlant et al. [2], Feuerverger et al. [8], Gomes and Martins [7].

We propose another estimator of the Pareto index m, that competes well
with the above estimators; the regularity conditions, required for its strong con-
sistency and asymptotic normality, are apparently more transparent and less
restrictive. The proposed estimator uses all observations, unlike the estimators
mentioned above. The idea of the estimator is based on the tail behavior of the
sample mean X̄n, that has a simple structure under heavy-tailed F, satisfying
(1.1). The estimator is strongly consistent and asymptotically normal and it was
also discussed by the same authors in [5, 6].

The tail behavior of the sample mean is described is Section 2. The es-
timator is defined in Section 3, along with the formulation of its consistency
and asymptotic normality. Its behavior is illustrated in a simulation study in
Section 4. The proofs of the main results are postponed to Section 5. In Sec-
tion 6 we propose a test of a one-sided hypothesis on m, that can be used as a
preliminary test before the estimation.
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2. TAIL-BEHAVIOR OF THE SAMPLE MEAN

Let X1, ..., Xn be a random sample from a distribution with an abso-
lutely continuous distribution function F and density f, positive on interval
(Kf ,∞), Kf ≥0. Let X̄n= 1

n

∑n
i=1Xi.

For a heavy-tailed F , symmetric around 0, Jurečková [10] showed that the
tail behavior of X̄n coincides with that of F . The following lemma demonstrates
a similar behavior of the sample mean also for heavy-tailed F concentrated only
on the positive half-axis.

Lemma 2.1. Let X1, ..., Xn be a random sample from the distribution

with absolutely continuous d.f. F and density f such that

(i) f(x) = 0 for x < 0 and 0 < f(x) <∞ for x ≥ Kf ≥ 0.

(ii) F satisfies (1.1) for some m, 0 < m <∞.

Then, for any fixed n,

(2.1) lim
a→∞

− logPm(X̄n > a)
− log

(
1− F (a)) =

− log
(
1− FX̄n

(a)
)

− log
(
1− F (a)) = 1 .

Proof: Let 0 ≤ Xn:1 ≤ ... ≤ Xn:n be the order statistics corresponding
to X1, ..., Xn. Then

P(X̄n > a) = P

(
n∑

i=1

Xi > na

)
≥ P(Xn:n > na) ≥ 1− F (na)

and

P(X̄n > a) ≤ P(Xn:n > a) = 1− (F (a))n ≤ n
(
1− F (a)) ,

hence

lim
a→∞

− logP(X̄n > a)
− log

(
1− F (a)) ≥ lim

a→∞
− log

(
n(1− F (a))

− log
(
1− F (a)) = 1

and

lim
a→∞

− logP(X̄n > a)
− log

(
1− F (a)) ≤ lim

a→∞
− log

(
1− F (na))

− log
(
1− F (a)) = 1 ,

what implies (2.1).
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Notice that (2.1) and (1.1) imply

(2.2) lim
a→∞

− logPm(X̄n > a)
m log a

= 1 ,

hence

(2.3) m = lim
a→∞mn(a) ,

where

(2.4) mn(a) =
− logPm(X̄n > a)

log a
=

− log
(
1− FX̄n

(a)
)

log a

with FX̄n
being the distribution function of X̄n. There are two possibilities how

to estimate m with the aid of formula (2.4): First, we can estimate the unknown
FX̄n

in (2.4) by the empirical distribution function, based on N realizations of X̄n

(nonparametric approach). Second, the distribution function can be modelled by
the by some parametric model whose parameters are then estimated. The “per-
turbed Pareto distribution”, considered recently by Feuerverger and Hall [8], is a
possible parametric model. Both approaches lead to the asymptotically normal
estimators, that are generally biased, unless the distribution has exactly Pareto
tails. The parametric model enables to reduce the bias, provided it is correct,
e.g. using efficient estimators of its parameters. The bias in the nonparametric
approach is expressed by means on the unknown slowly varying function; it can
be still reduced if the slowly varying function can be further parametrized.

In the present paper, we shall develop the nonparametric approach, replac-
ing FX̄n

by the empirical distribution function. In this way we obtain a consistent
estimator of m under N → ∞, while n remains fixed. Because we need to esti-
mate the limit of (2.4) as a→ ∞, the argument aN of the empirical distribution
function should be sufficiently large, but some observations should be still greater
than aN .

The estimator and its properties are described in the next section.

3. ESTIMATOR OF THE TAIL INDEX BASED ON SAMPLE
MEANS

Let us partition the set of observations into N non-overlapping samples of
the same sizes n (a modification to different sample sizes is possible), denoted
as (X(1)

1 , ..., X
(1)
n ), ..., (X(N)

1 , ..., X
(N)
n ). Then the vector (X̄(1)

n , ..., X̄
(N)
n ) of the

corresponding sample means is a random sample from a distribution with distri-
bution function FX̄n

(x) = P(X̄n ≤ x) (unknown).
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Denote F̂ (N)

X̄n
(x) = 1

N

∑N
j=1 I[X̄

(j)
n ≤x] the empirical distribution function,

based on (X̄(1)
n , ..., X̄

(N)
n ).

The argument aN of the empirical distribution function should be suffi-
ciently large, but such that there are still some observations behind aN . If we
know that F is not lighter than the Pareto distribution with index m0 for some
fixed m0, 0 < m0 <∞, hence we know that 0 < m ≤ m0, then a possible choice
of aN is as in (3.1) below. This situation is considered in the present paper.
We can either have such information from the experience or from the character
of the experiment.

Remark 3.1. Another possibility would be a preliminary test estima-
tion, when we first apply a preliminary test of the hypothesis H: 0 < m ≤ m0.
In Section 5 we shall briefly describe one possible test of H based on the sample
means. Other tests of H were recently proposed and numerically illustrated by
Picek and Jurečková [14], Jurečková and Picek [12]; the test on the tail of errors
in linear model was proposed by Jurečková [11]. A preliminary test estimator
will be a subject of the next study.

Choose the sequence {aN}∞N=1, aN → ∞ as N → ∞, in the following way:

(3.1) aN = N
1−δ
m0 , with a fixed δ ∈ (0, 1)

and consider the sequence of random functions

(3.2) m̂N (a) = m̃N (a) I
[
0<F̂ (N)

X̄n
(a)<1

]
+m0 I

[
F̂

(N)

X̄n
(a)=0 or 1

]
, a>0 ,

where

(3.3) m̃N (a) =
− log

(
1− F̂ (N)

X̄n
(a)
)

log a
, a > 0 .

We propose m̂N =m̂N (aN ) as an estimator of the parameter m; more precisely,

(3.4) m̂N = m̃N (aN ) I
[
0<F̂ (N)

X̄n
(aN )<1

]
+m0 I

[
F̂

(N)

X̄n
(aN )=0 or 1

]
with m̃N (a) defined in (3.3) and aN defined in (3.1) with a fixed choice of δ,
0 < δ < 1.

We must first show that the estimator m̂N is well defined. It follows from
the following lemma:
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Lemma 3.1. Let F satisfy the conditions of Lemma 2.1 with 0<m≤m0,

m0>0 fixed. Let {aN} be the sequence defined in (3.1). Then aN → ∞ and

(3.5) Pm

(
0 < F̂ (N)

X̄n
(am) < 1

)
→ 1 as N → ∞ .

Proof: If F is heavy-tailed with Pareto index m, satisfying (1.1), then, by
Lemma 2.1,

(3.6) lim
a→∞

1− F (a)
m log a

= lim
a→∞

1− FX̄n
(a)

m log a
= 1

and both F and FX̄n
belong to the domain of attraction of the Fréchet distribution

Φm with the distribution function Φm(x) = exp {−x−m}, x > 0. Let X̄ (N)
n =

max1≤j≤N X̄
(j)
n denote the maximum of X̄(1)

n , ..., X̄
(N)
n . Then

(3.7) Pm

( X̄ (N)
n

ξN
≤ x
)

→ Φm(x) as N → ∞

with ξN satisfying N
[
1−FX̄n

(ξN )
]
= 1, N=1, 2, ...; then we conclude from (3.10)

that ξN = N
1
mL∗

2(N) with some slowly varying function L∗
2 and, by (3.7),

(3.8) Pm

(
X̄ (N)

n ≤ aN

)
= Pm

( X̄ (N)
n

ξN
≤ aN

ξN

)
→ 0 as N → ∞ .

It means that at least one X̄(j)
n lies above aN with probability tending to 1, and

thus

lim
N→∞

Pm

(
F̂

(N)

X̄n
(aN ) < 1

)
= 1 .

On the other hand, we obtain from (3.10),

Pm

(
min

1≤j≤N
X̄(j)

n ≥ aN

)
=
(
1− FX̄n

(aN )
)N

= a−mN
N

(
L∗(aN )

)N
= N

−m(1−δ)
m0

N(
L∗(aN )

)N → 0 as N → ∞ ,

and hence there is at least one X̄(j)
n below aN with probability tending to one.

This completes the proof of (3.5).

The first main property of estimator m̂N is its strong consistency with
respect to the asymptotics N → ∞ :
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Theorem 3.1. Let {X1, X2, ...} be a sequence of random variables, iden-

tically distributed according to distribution function F of the Pareto type (1.1),

satisfying the conditions (i) and (ii) of Lemma 2.1 with 0 < m ≤ m0 <∞. Let

m̂N be the estimator of m defined in (3.4). Then

(3.9) m̂N → m with probability 1, as N → ∞ .

The second main result is the asymptotic normality of m̂N . The problem
of estimating m is semiparametric in its nature, involving an unknown slowly
varying function. If distribution function F is of the type (1.1) with index m,
then Lemma 2.1 implies that FX̄n

also satisfies (1.1) with the same m; hence, by
the von Mises condition, it has the form

(3.10) 1− FX̄n
(x) = x−mL∗(x) ,

where L∗(x) is a function, slowly varying at ∞. The presence of L∗ can cause a
bias in the asymptotic distribution of m̂N , generally not asymptotically negligible,
unless we impose some more restrictive condition on F . We shall see (Lemma5.1)
that (m̂N −mn(aN )), with mn(·) defined in (2.4), is asymptotically normal and
unbiased, while the bias of (m̂N − m) is due to the term (mn(aN ) − m), that
tends to 0, but generally not fast enough to eliminate function L∗.

Theorem 3.2. Under the conditions of Theorem 3.1, the sequence

(3.11) N
1
2 log aN

(
1− FX̄n

(aN )
FX̄n

(aN )

)1
2
(
m̂N −m+

logL∗(aN )
log aN

)
is asymptotically normally distributed as N → ∞, where L∗ is the function,

defined in (3.10).

Remark 3.2. The order of the coefficient by
(
m̂N (aN )−m+ log L∗(aN )

log aN

)
in (3.11) can be alternatively expressed as

N
1
2 log aN

(
1− FX̄n

(aN )
FX̄n

(aN )

)1
2

∼ 1−δ
m0

(
L∗(aN )

) 1
2 ·N 1

2

(
1− m

m0
(1−δ)

)
logN

≥ 1−δ
m0

(
L∗(aN )

) 1
2 ·N δm

2m0

(
→ ∞ as N→∞

)
,(3.12)

where bN ∼ cN means that limN→∞ bN
cN

→ 1.
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4. NUMERICAL ILLUSTRATION

The performance of the estimation procedure for different choices of m
and δ is illustrated on the simulated random samples: The replications (N= 200
and N= 2000) of samples of sizes n=5 were simulated 1000 times from the
following distributions:

Pareto F (x) = 1−
(

1
1 + x

)m

, x ≥ 0 ;

Burr F (x) = 1−
(

1
1 + xm

)α

, x ≥ 0 ;

Generalized
Pareto F (x) =



1−
(
1+

x

mβ

)−m

if x≥0, 0<m<∞, β>0,

1−
(
1+

x

mβ

)−m

if 0≤x≤−mβ, m<0, β>0,

1− e−x/β if m=∞, β>0,

0 otherwise ;

Inverse
normal F (x) =

 2
(
1− Φ

(
1√
x

))
x > 0,

0 x ≤ 0 .

For each distribution we proceeded as follows:

(1) we generated the independent observations X1, ..., Xn, Xn+1, ..., X2n,
..., XNn;

(2) computed sample means X(1)
n , ...,X

(N)
n

(3) and found the empirical distribution function based on X(1)
n , ...,X

(N)
n ;

(4) for aN = N
1−δ
m0 we calculated

m̂N = m̃N (aN ) I
[
0<F̂ (N)

X̄n
(aN )<1

]
+ m0 I

[
F̂

(N)

X̄n
(aN )=0 or 1

]
;

(5) Step (4) was repeated for various values m0, δ ;
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(6) For a comparison, the Hill estimator

H(k) =
1
k

k∑
i=1

logX(Nn−i+1:Nn) − logX(Nn−k:Nn) ,

the Pickands estimator

P (k) =
1

log 2
log
(
XNn−k+1:Nn −XNn−2k+1:Nn

XNn−2k+1:Nn −XNn−4k+1:Nn

)
,

the moment estimator

M(k) = 1 +M(k)(1) +
1
2

((
M(k)(1)

)2
M(k)(2)

− 1

)−1

,

where

M(k)(j) =
1
k

k∑
i=1

(
logX(Nn−i+1:Nn) − logX(Nn−k:Nn)

)j
,

and Gomes and Martins [7] estimator

GM(k) =
1
k

k∑
i=1

Ui −
(
1
k

k∑
i=1

i Ui

) k∑
i=1

(2 i− k − 1)Ui

k∑
i=1

i (2 i− k − 1)Ui

,

where

Ui = i

[
log

XNn−i+1:Nn

XNn−i:Nn

]
,

were computed for k = 1, ..., Nn− 1.

(7) steps (1)–(6) were repeated 1 000 times.

(8) Selected sample quantiles of estimates
(
m̂1

N , ..., m̂
1000
N

)
and selected sample

statistics of pertaining estimates were computed and tabulated.

Selected sample quantiles for different distributions of the errors are summarized
in Table 1 and Table 2. Fig. 1 and 2 show the behaviour of the tail index estimator
with regard to δ and m0 in 1000 simulated samples (N = 2000) of Pareto with
m = 1.

For a comparison, the Hill, Pickands, moment and Gomes and Martins [7] esti-
mators were computed. The question is the choice of k, respectively δ for our
procedures. To compare we followed the standard approach of minimizing the
mean squared error (MSE); the Table 3 give the selected sample statistics of
estimators of m for various distribution shapes of errors.
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Table 1: Sample quantiles of the estimation of Pareto index under different
distributions for some values m0 and δ (N=200).

sample m0 δ min 5% 25% 50% 75% 95% max
distr. quantile

Pareto 0.75 0.1 0.279 0.321 0.354 0.379 0.397 0.443 0.580
m = 0.5 0.5 0.205 0.242 0.263 0.278 0.297 0.327 0.355

2 0.1 0.141 0.165 0.187 0.200 0.214 0.239 0.274
0.5 0.043 0.063 0.080 0.092 0.105 0.123 0.164

Pareto 1.5 0.1 0.694 0.815 0.885 0.942 1.013 1.160 1.449
m = 1 0.5 0.548 0.663 0.721 0.763 0.808 0.884 1.038

3 0.1 0.489 0.617 0.670 0.707 0.747 0.824 0.938
0.5 0.253 0.311 0.356 0.388 0.428 0.479 0.551

Pareto 3.5 0.1 3.083 3.380 3.500 3.500 3.889 3.889 3.889
m = 3 0.5 3.042 3.422 3.717 3.958 4.253 4.874 6.084

5 0.1 3.252 3.677 4.102 4.404 4.829 5.556 5.556
0.5 2.272 2.774 2.991 3.185 3.344 3.711 4.254

Burr 0.75 0.1 0.283 0.327 0.354 0.379 0.407 0.443 0.615
α = 1 0.5 0.220 0.267 0.293 0.310 0.327 0.360 0.416
m = 0.5 2 0.1 0.200 0.232 0.258 0.274 0.295 0.321 0.359

0.5 0.164 0.202 0.238 0.259 0.280 0.314 0.373

Burr 1.5 0.1 0.694 0.837 0.912 0.975 1.055 1.164 1.667
α = 1 0.5 0.654 0.752 0.820 0.870 0.926 1.020 1.250
m = 1 3 0.1 0.617 0.737 0.812 0.860 0.911 0.983 1.173

0.5 0.541 0.667 0.741 0.796 0.843 0.930 1.066

Burr 3.5 0.1 3.083 3.500 3.500 3.500 3.889 3.889 3.889
α = 1 0.5 3.500 3.958 4.429 4.633 5.168 6.084 7.000
m = 3 5 0.1 3.375 3.868 4.404 4.829 5.000 5.556 5.556

0.5 3.290 3.847 4.166 4.443 4.767 5.310 6.327

General. 0.75 0.1 0.315 0.370 0.407 0.430 0.456 0.527 0.661
Pareto 0.5 0.270 0.323 0.355 0.376 0.398 0.435 0.528
m = 0.5 2 0.1 0.243 0.287 0.317 0.330 0.354 0.390 0.434
β=1 0.5 0.192 0.232 0.264 0.291 0.314 0.349 0.418

General. 1.5 0.1 0.694 0.837 0.912 0.975 1.055 1.164 1.667
Pareto 0.5 0.617 0.737 0.812 0.860 0.911 0.983 1.173
m = 1 3 0.1 0.654 0.752 0.820 0.870 0.926 1.020 1.250
β = 1 0.5 0.541 0.667 0.741 0.796 0.843 0.930 1.066

General. 3.5 0.1 1.901 2.129 2.363 2.574 2.708 3.083 3.889
Pareto 0.5 1.798 2.025 2.180 2.314 2.468 2.716 3.252
m = 3 5 0.1 1.635 1.971 2.126 2.266 2.421 2.646 3.042
β = 1 0.5 1.753 2.007 2.151 2.304 2.437 2.655 3.038

Inverse 0.75 0.1 0.304 0.354 0.388 0.407 0.443 0.488 0.661
normal 0.5 0.207 0.243 0.270 0.287 0.308 0.335 0.390

2 0.1 0.242 0.297 0.323 0.341 0.365 0.398 0.456
0.5 0.132 0.168 0.192 0.217 0.238 0.269 0.337
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Table 2: Sample quantiles of the estimation of Pareto index under different
distributions for some values m0 and δ (N=2000).

sample m0 δ min 5% 25% 50% 75% 95% max
distr. quantile

Pareto 0.75 0.1 0.361 0.388 0.402 0.411 0.424 0.440 0.476
m = 0.5 0.5 0.313 0.327 0.336 0.342 0.349 0.358 0.374

2 0.1 0.249 0.261 0.269 0.274 0.279 0.288 0.302
0.5 0.137 0.146 0.151 0.156 0.161 0.168 0.179

Pareto 1.5 0.1 0.881 0.921 0.961 0.989 1.021 1.088 1.185
m = 1 0.5 0.825 0.857 0.880 0.899 0.915 0.942 0.978

3 0.1 0.786 0.826 0.848 0.865 0.881 0.907 0.933
0.5 0.540 0.562 0.577 0.590 0.604 0.623 0.649

Pareto 3.5 0.1 3.180 3.500 3.500 3.500 3.889 3.889 3.889
m = 3 0.5 3.899 4.112 4.288 4.447 4.570 4.879 5.350

5 0.1 3.739 4.036 4.379 4.542 4.753 5.556 5.556
0.5 3.648 3.780 3.877 3.968 4.051 4.202 4.488

Burr 0.75 0.1 0.361 0.390 0.402 0.411 0.424 0.440 0.480
α = 1 0.5 0.322 0.336 0.345 0.351 0.358 0.368 0.383
m = 0.5 2 0.1 0.276 0.293 0.301 0.307 0.313 0.322 0.338

0.5 0.237 0.248 0.257 0.263 0.270 0.279 0.294

Burr 1.5 0.1 0.881 0.921 0.961 0.989 1.021 1.088 1.185
α = 1 0.5 0.843 0.891 0.915 0.933 0.953 0.980 1.028
m = 1 3 0.1 0.833 0.873 0.898 0.917 0.933 0.960 0.990

0.5 0.735 0.783 0.805 0.820 0.838 0.863 0.897

Burr 3.5 0.1 3.180 3.500 3.500 3.500 3.889 3.889 3.889
α = 1 0.5 4.112 4.391 4.570 4.712 4.976 5.208 6.362
m = 3 5 0.1 3.873 4.133 4.542 4.753 5.049 5.556 5.556

0.5 4.171 4.391 4.528 4.635 4.752 4.907 5.285

General. 0.75 0.1 0.394 0.424 0.437 0.450 0.464 0.485 0.529
Pareto 0.5 0.373 0.392 0.402 0.410 0.418 0.429 0.444
m = 0.5 2 0.1 0.335 0.356 0.366 0.373 0.380 0.391 0.409
β=1 0.5 0.285 0.298 0.307 0.314 0.322 0.333 0.353

General. 1.5 0.1 0.881 0.921 0.961 0.989 1.021 1.088 1.185
Pareto 0.5 0.833 0.873 0.898 0.917 0.933 0.960 0.990
m = 1 3 0.1 0.843 0.891 0.915 0.933 0.953 0.980 1.028
β = 1 0.5 0.735 0.783 0.805 0.820 0.838 0.863 0.897

General. 3.5 0.1 2.410 2.539 2.662 2.765 2.893 3.065 3.889
Pareto 0.5 2.267 2.390 2.471 2.527 2.588 2.696 2.878
m = 3 5 0.1 2.178 2.270 2.326 2.379 2.430 2.510 2.671
β = 1 0.5 2.028 2.161 2.216 2.260 2.301 2.363 2.466

Inverse 0.75 0.1 0.377 0.411 0.426 0.437 0.450 0.468 0.523
normal 0.5 0.306 0.323 0.332 0.338 0.345 0.355 0.377

2 0.1 0.354 0.369 0.380 0.386 0.394 0.406 0.420
0.5 0.230 0.242 0.251 0.257 0.264 0.272 0.288
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Figure 1: Dependence of tail index estimator in 1000 simulated samples of
Pareto (m = 1) on the parameter δ for m0 = 1.5.
Plotted are the median and the 1, 25, 75 and 99 percentiles.
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Figure 2: Dependance of tail index estimator in 1000 simulated samples of
Pareto (m = 1) on the value m0 for δ = 0.1.
Plotted are the median and the 1, 25, 75 and 99 percentiles.
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The Table 3 shows that the estimator based on the sample means (FJP) can
be considered as comparable with the most popular estimators of the tail index.
The regularity conditions, required for its strong consistency and asymptotic
normality, are apparently more transparent and less restrictive.

Table 3: Sample statistics of the estimates of the Pareto index under differ-
ent distributions for minimal MSE and N = 200 and n = 5

sample method fraction MSE mean median var MAD

Pareto Hill k = 998 0.0010 1.0003 0.9984 0.0010 0.0321
m = 1 Moment k = 998 0.0023 1.0053 1.0033 0.0022 0.0454

Pickands k = 985 0.0221 1.0177 0.9967 0.0218 0.1349
Gomes k = 997 0.0044 1.0016 0.9968 0.0044 0.0655
FJP δ = 0.15 0.0123 0.9542 0.9371 0.0102 0.0900

Burr Hill k = 112 0.0098 0.9517 0.9489 0.0075 0.0885
α = 1 Moment k = 257 0.0101 0.9478 0.9383 0.0074 0.0802
m = 1 Pickands k = 985 0.0221 1.0177 0.9967 0.0218 0.1349

Gomes k = 998 0.0012 1.0007 0.9989 0.0012 0.0345
FJP δ = 0.22 0.0111 0.9574 0.9402 0.0093 0.0981

General. Hill k = 310 0.0010 0.4847 0.4841 0.0007 0.0261
Pareto Moment k = 367 0.0010 0.4880 0.4863 0.0009 0.0283
m = 0.5 Pickands k = 993 0.0020 0.5030 0.4997 0.0020 0.0429
β=1 Gomes k = 482 0.0025 0.5227 0.5210 0.0020 0.0440

FJP δ = 0.01 0.0084 0.4177 0.4123 0.0016 0.0395

General. Hill k = 112 0.0098 0.9517 0.9489 0.0075 0.0885
Pareto Moment k = 257 0.0101 0.9478 0.9383 0.0074 0.0802
m = 1 Pickands k = 985 0.0221 1.0177 0.9967 0.0218 0.1349
β = 1 Gomes k = 998 0.0012 1.0007 0.9989 0.0012 0.0345

FJP δ = 0.22 0.0111 0.9574 0.9402 0.0093 0.0981

General. Hill k = 23 0.5527 2.4329 2.3598 0.2314 0.4397
Pareto Moment k = 257 0.5037 2.5140 2.4248 0.2678 0.4368
m = 3 Pickands k = 890 16.1112 3.6237 3.0364 15.7379 1.1255
β = 1 Gomes k = 102 0.4795 2.4276 2.4020 0.1520 0.3966

FJP δ = 0.01 0.2869 2.5618 2.5565 0.0949 0.2841

Inverse Hill k = 360 0.0008 0.4894 0.4888 0.0007 0.0250
normal Moment k = 472 0.0008 0.4889 0.4881 0.0007 0.0258

Pickands k = 893 0.0026 0.5142 0.5111 0.0024 0.0467
Gomes k = 588 0.0021 0.5202 0.5184 0.0017 0.0407
FJP δ = 0.01 0.0127 0.3937 0.3890 0.0014 0.0347



Estimating Pareto Tail Index Based on Sample Means 89

5. PROOFS OF THEOREMS 3.1 AND 3.2

5.1. Asymptotic normality

We shall start with the asymptotic normality of m̂N ; and first prove that
the sequence

N
1
2 log aN

(
1− FX̄n

(aN )
FX̄n

(aN )

)1
2 (
m̂N −mn(aN )

)
,

with mn(·) given in (2.4), has asymptotically standard normal distribution:

Lemma 5.1. Let {X1, X2, ...} be a sequence of independent random

variables, identically distributed with distribution function F of the Pareto type

satisfying the conditions (i) and (ii) of Lemma 2.1 with 0 < m ≤ m0 < ∞. Put

aN = N
1−δ
m0 , 0 < δ < 1 and

m̂N = m̃N (aN ) I
[
0<F̂ (N)

X̄n
(aN )<1

]
+ m0 I

[
F̂

(N)

X̄n
(aN )=0 or 1

]
,

(5.1)

m̃N (a) =
− log

(
1− F̂ (N)

X̄n
(a)
)

log a
, a > 0 .

Then the sequence

(5.2) N
1
2 log aN

(
1− FX̄n

(aN )
FX̄n

(aN )

)1
2 (
m̂N −mn(aN )

)
with mn(x) defined in (2.4), is asymptotically normally distributed N (0, 1),
as N → ∞ and for any fixed n.

Proof: By the Hungarian embedding theorems (see, e.g., [13]), there exists
a sequence of Brownian bridges {BN}, BN dependent on X̄(1)

n , ..., X̄
(N)
n , such that

(5.3) sup
a∈R

∣∣∣∣√N[1−F̂ (N)

X̄n
(a)−(1−FX̄n

(a)
)]
+ BN

(
FX̄n

(a)
)∣∣∣∣ = O

(
N− 1

2 logN
)

a.s.

as N→∞.

Because BN (FX̄n
(a)) is normally distributed N (0, FX̄n

(a)(1− FX̄n
(a))
)
,

then

Pm

(
BN

(
FX̄n

(a)
)
> C

[
FX̄n

(a)
(
1− FX̄n

(a)
)] 1

2

)
= 1− Φ(C) ,
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holds for all a ∈ R and all C > 0, where Φ is the standard normal distribution
function; hence ∀ ε > 0 ∃C > 0 such that, for all a ∈ R,

(5.4) Pm

(
BN

(
FX̄n

(a)
)
> C

[
FX̄n

(a)
(
1− FX̄n

(a)
)] 1

2

)
< ε .

Let us first consider the first term of m̂N , i.e.

m̃N (aN ) I
[
0<F̂ (N)

X̄n
(aN )<1

]
=

− log
(
1− F̂ (N)

X̄n
(aN )

)
log aN

I
[
0<F̂ (N)

X̄n
(aN )<1

]
.

We can write

(5.5)

√
N log aN

(
1− FX̄n

(aN )
FX̄n

(aN )

)1
2 (
m̃N (aN )−mn(aN )

)
I
[
0<F̂ (N)

X̄n
(aN )<1

]
=

=
√
N log aN

(
1− FX̄n

(aN )
FX̄n

(aN )

)1
2

·

− log
(
1− F̂ (N)

X̄n
(aN )

)
log aN

−
− log

(
1− FX̄n

(aN )
)

log aN

 I[0<F̂ (N)

X̄n
(aN )<1

]

=
√
N

(
1− FX̄n

(aN )
FX̄n

(aN )

) 1
2

·
− log

1− F̂ (N)

X̄n
(aN )

1− FX̄n
(aN )

− 1 + 1

 I[0<F̂ (N)

X̄n
(aN )<1

]
.

An expansion of log(1 + x) or log(1− x), x > 0, gives

(5.6)

− log

1− F̂ (N)

X̄n
(aN )

1− FX̄n
(aN )

− 1 + 1

 =

= 1−
1− F̂ (N)

X̄n
(aN )

1− FX̄n
(aN )

+O
1− 1− F̂ (N)

X̄n
(aN )

1− FX̄n
(aN )

2 ;

further we obtain from (5.3)

(5.7)

√
N

(
1− FX̄n

(aN )
FX̄n

(aN )

)1
2

1− 1− F̂ (N)

X̄n
(aN )

1− FX̄n
(aN )

 =

=
BN

(
FX̄n

(aN )
)[

FX̄n
(aN )

(
1− FX̄n

(aN )
)] 1

2

(
1 + op(1)

)
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and

(5.8)

√
N

(
1− FX̄n

(aN )
FX̄n

(aN )

)1
2

1− 1− F̂ (N)

X̄n
(aN )

1− FX̄n
(aN )

2

=

= N
− 1

2

(
1− m

m0

)
− δm

2m0 (L∗(aN ))−
1
2

(
BN

(
FX̄n

(aN )
))2

FX̄n
(aN )

(
1− FX̄n

(aN )
)

= op

(
N−δ/2

)
.

It follows from (5.6), (5.7), (5.8) that

√
N log aN

(
1− FX̄n

(aN )
FX̄n

(aN )

)1
2 (
m̃N (aN )−mn(aN )

)
I
[
0<F̂ (N)

X̄n
(aN )<1

]
=

=

 BN

(
FX̄n

(aN )
)(

var BN

(
FX̄n

(aN )
)) 1

2

(
1 + op(1)

)
+Op

(
N−δ/2

) I
[
0<F̂ (N)

X̄n
(aN )<1

]
,

hence

lim
N→∞

Pm

(√
N log aN

(
1− FX̄n

(aN )
FX̄n

(aN )

)1
2 (
m̃N (aN )−mn(aN )

)
≤ y
)

=

= lim
N→∞

Pm

(√
N log aN

(
1− FX̄n

(aN )
FX̄n

(aN )

)1
2 (
m̃N (aN )−mn(aN )

)
≤ y ,

0 < F̂ (N)

X̄n
(aN ) < 1

)
= Φ(y) .

(5.9)

Proof of Theorem 3.2: By (3.10), 1− FX̄n
(x) = x−mL∗(x) where L∗ is

slowly varying at ∞. Moreover, m̂N −m = (m̂N −mn(aN )) + (mn(aN ) −m),
while

√
N log aN

(
1− FX̄n

(aN )
FX̄n

(aN )

)1
2 (
m̂N −mn(aN )

)
has asymptotically the standard normal distribution by Lemma 5.1. By (2.2),
mn(aN )−m→ 0 as N → ∞; more precisely,

lim
N→∞

(
mn(aN )−m

)
= lim

N→∞

− log
(
1− FX̄n

(aN )
)

log aN
−m


= lim

N→∞

[
m log aN − log

(
L∗(aN )

)
log aN

−m
]

(5.10)

= lim
N→∞

− log
(
L∗(aN )

)
log aN

= 0 ,
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but the term
√
N

(
1− FX̄n

(aN )
FX̄n

(aN )

)1
2 ∣∣log(L∗(aN )

)∣∣
converges to 0 in only special cases and hence will create a bias; this, together
with Lemma 5.1, implies the theorem.

5.2. Strong consistency

We shall prove Theorem 3.1 with the aid of the following lemma.

Lemma 5.2. Under the assumptions of Theorem 3.1,

(5.11)
(
m̃N (aN )−m

)
I
[
0<F̂ (N)

X̄n
(x)<1

]
→ 0

with probability 1, as N → ∞.

Proof: Because m̃N (aN ) − m = [m̃N (aN ) − mn(aN )] + [mn(aN ) − m]
and because of (2.4), it suffices to prove that

(5.12)
(
m̃N (aN )−mn(aN )

)
I
[
0<F̂ (N)

X̄n
(x)<1

]
→ 0

with probability 1, as N → ∞. Using (5.5) and (5.6), we obtain

(5.13)

(
m̃N (aN )−mn(aN )

)
I
[
0<F̂ (N)

X̄n
(aN )<1

]
=

= (log aN )−1


[
1−

1−F̂ (N)

X̄n
(aN )

1−FX̄n
(aN )

]
+O

[1− 1−F̂ (N)

X̄n
(aN )

1−FX̄n
(aN )

]2


= A
(1)
N +A(2)

N

and, using again the strong embedding of empirical processes,

A
(1)
N = (log aN )−1

(
1− FX̄n

(aN )
)−1

·
[
N− 1

2 BN

(
FX̄n

(aN )
)
+Oa.s.

(
N−1 logN

)]
(5.14)

= (log aN )−1N
1
2

(
m

m0
−1
)
− mδ

2m0

(
L∗(aN )

)− 1
2

BN

(
FX̄n

(aN )
)(

FX̄n
(aN )

(
1− FX̄n

(aN )
)) 1

2

+ N
m

m0
−1−δ m

m0

(
L∗(aN )

)−1 Oa.s.(1) .



Estimating Pareto Tail Index Based on Sample Means 93

The second term on the right-hand side of (5.14) converges to 0 almost surely as
N → ∞. The first term is normally distributed, hence, because m ≤ m0, it holds
for any ε > 0,

∞∑
N=1

Pm

(log aN )−1N
1
2

(
m

m0
−1
)
− mδ

2m0

(
L∗(aN )

)− 1
2

∣∣BN

(
FX̄n

(aN )
)∣∣(

FX̄n
(aN )

(
1−FX̄n

(aN )
))1

2

>ε

 ≤

≤ 2
∞∑

N=1

[
1− Φ

(
ε
1−δ
m0

N
mδ
2m0 logN

(
L∗

1(N)
) 1

2

)]
.(5.15)

Using the inequality 1− Φ(x) ≤ 1
x
√

2π
e−

x2

2 , x>0 in (5.15), we obtain

∞∑
N=1

1

N
mδ
2m0 logN

exp

{
−ε

2

2

(
1−δ
m0

)2

(logN)2N
mδ
m0L∗

1(N)

}
≤

≤ K1

∞∑
N=1

exp
{−K2N

κ
}
< ∞

where K1,K2, κ > 0 are constants, and by the Borel–Cantelli lemma we conclude
that the first term on the right-hand side of (5.14) also converges to 0 almost
surely as N→∞. Similarly we prove that A(2)

N = o(1) a.s. as N→∞. This
proves (5.12) and, in turn, (5.11).

Proof of Theorem 3.1: For any ε > 0, it holds
∞∑

N=1

Pm

(∣∣m̂N (aN )−m∣∣ > ε) ≤

≤
∞∑

N=1

Pm

(∣∣m̃N (aN )−m∣∣ I[0<F̂ (N)

X̄n
(aN )<1

]
>
ε

2

)
(5.16)

+
∞∑

N=1

Pm

(
(m0 −m) I

[
F̂

(N)

X̄n
(aN )=0 or 1

]
>
ε

2

)
.

The convergence of the first series on the right-hand side of (5.16) follows from
Lemma 5.2. The sum of the second series is bounded from above by

∞∑
N=1

Pm

(
(m0 −m) I

[
F̂

(N)

X̄n
(aN )=0

]
>
ε

4

)
+

+
∞∑

N=1

Pm

(
(m0 −m) I

[
F̂

(N)

X̄n
(aN )=1

]
>
ε

4

)
≤

(5.17)

≤
∞∑

N=1

(
1− FX̄n

(aN )
)N

+
∞∑

N=1

(
FX̄n

(aN )
)N

=
∞∑

N=1

(
a−m

N L∗(aN )
)N +

∞∑
N=1

(
1− a−m

N L∗(aN )
)N

.
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Because a−η
N <L∗(aN )<aη

N for N>Nη and ∀ η>0, we conclude

(5.18)
(
a−m

N L∗(aN )
)N
<
(
a−m+η

N

)N ≤
(

1

N
1−δ
m0

(m−η)

)N

hence the first series on the right-hand side of (5.17) converges for sufficiently
small η. Similarly,(

1− a−m
N L∗(aN )

)N
<
(
1− a−m−η

N

)N

≤
(
1− 1

N
1−δ
m0

(m+η)

)N

(5.19)

≤
[
exp
{
−(N 1−δ

m0
(m+η))−1

}]N

,

what implies the convergence of the second series on the right-hand side of (5.17).

6. TEST ON THE PARETO INDEX

We shall now briefly describe one possible test of the hypothesis on the
Pareto index, based on the sample means. For other tests we refer to [12] and
[14].

Because the problem is of semiparametric nature, we should first think
over a proper formulation of the hypothesis. Following [12], we shall consider the
hypothesis

(6.1) Hm0 : xm0

(
1− F (x)

)
≥ 1 ∀x > x0

with a hypothetical m0>0 and with some x0≥0. Such hypothesis and hence the
test are nonparametric; the test is based on splitting the set of observations into
N subsamples of sizes n and on the empirical distribution function of the means
of the subsamples; the asymptotics is for N→∞ and fixed n (eventually small),
and the asymptotic null distribution of the test criterion is normal. The proposed
test is consistent against exponentially tailed alternatives, as well as against heavy
tailed alternatives with index m > m0. The test is asymptotically unbiased for
the broad family of distributions represented by Hm0 and its alternative. Such
test may be used as a supplement to the usual tests of the Gumbel hypothesis
m = ∞ against m <∞, namely in the situation that the latter tests reject the
hypothesis of exponentiality.
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Similarly as in the estimation, we partition the set of observations into N
non-overlapping samples of the same sizes n, denoted as

(6.2)
(
X

(1)
1 , ..., X(1)

n

)
, ...,

(
X

(N)
1 , ..., X(N)

n

)
and denote X̄(1)

n , ..., X̄
(N)
n the respective sample means. Let FX̄n

(x)=Pm(X̄n≤x)
be the common distribution function of the sample means and let F̂ (N)

X̄n
(x) =

1
N

∑N
j=1 I[X̄

(j)
n ≤x] be the corresponding empirical distribution function. Let

(6.3) aN = N (1−δ)/m0 , 0 < δ < 1 .

We propose the test rejecting Hm0 if

either F̂
(N)

X̄n
(an) = 1

or F̂
(N)

X̄n
(an) < 1 and simultaneously

N δ/2
[
− log

(
1−F̂ (N)

X̄n
(an)

)
− (1−δ) logN

]
≥ Φ−1(1−α)(6.4)

where Φ is the standard normal distribution function. If F satisfies (6.1) as an
equality, as the Pareto distribution, then α is the asymptotic probability of the
error of the first kind; for any other distribution satisfying (6.1), the asymptotic
probability of the error of the first kind it is ≤ α.

The asymptotic null distribution of the test is described in the following
theorem:

Theorem 6.1. LetX1, X2, ... be independent observations, identically dis-

tributed according to absolutely continuous distribution functionF satisfying (6.1).

Let F̂
(N)

X̄n
be the empirical distribution function of the means of samples (6.2).

Then

(6.5) lim
N→∞

Pm0

(
F̂

(N)

X̄n
(aN )<1

)
= 1

with aN defined in (6.3), and

(6.6)

lim
N→∞

Pm0

{
N δ/2

[
− log

(
1−F̂ (N)

X̄n
(aN )

)
− (1−δ) logN

]
≥τα , F̂ (N)

X̄n
(aN )<1

}
≤ α ,

where τα = Φ−1(1−α), 0<α<1, and Φ is the standard normal distribution

function.
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Moreover, if there exists x0 such that

(6.7) xm0

(
1− F (x)

)
= 1 for x > x0 ,

then

(6.8)

lim
N→∞

Pm0

{
N δ/2

[
− log

(
1−F̂ (N)

X̄n
(aN )

)
− (1−δ) logN

]
≥τα , F̂ (N)

X̄n
(aN )<1

}
= α .

Proof: First, (6.5) follows from Lemma 3.1. Further, (6.8) follows from the
proof of Lemma 5.1, namely from (5.9), where we insert the pertinent expressions
for mn(a) and aN according to (2.4), (5.1) and (6.3), respectively.

If F satisfies (6.1), then the right tail of 1−F̂ (N)

X̄n
is ultimately not smaller

stochastically than that of F satisfying (6.7); this implies (6.6).

The following Corollary shows the set of alternatives against which is the
test asymptotically unbiased:

Corollary 6.1.

(i) Under the conditions of Theorem 6.1, the test with the critical region (6.4)

is asymptotically unbiased for the hypothesis Hm0 against the alternative

(6.9) xm0

(
1− F (x)

)
< 1 for x > x0 .

(ii) The test attains the asymptotic power 1 against the alternative that F is of

type (1.1) with index m > m0, including m = ∞.

Proof: Under Hm0 , (6.6) holds by Theorem 6.1, hence the asymptotic size
of the test is equal to α for the whole hypothesis Hm0 .

Under (6.9), 1−F̂ (N)

X̄n
is ultimately stochastically smaller than under Pareto

with index m0, hence

lim
N→∞

Pm0

{
N δ/2

[
− log

(
1−F̂ (N)

X̄n
(aN )

)
− (1−δ) logN

]
≥τα , F̂ (N)

X̄n
(aN )<1

}
≥ α .

This proves the asymptotic unbiasedness.

Let now F satisfy (1.1) with index m > m0. Then FX̄n
also satisfies (1.1)

and it implies that, given ε > 0, there exists N0 such that, for N>N0,

N
− m

m0
(1+ε)(1−δ) = a

−m(1+ε)
N ≤ 1− FX̄n

(aN ) ≤ a
−m(1−ε)
N = N

− m
m0

(1−ε)(1−δ)
.
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If 1−F̂ (N)

X̄n
(aN ) = 0, we reject Hm0 . If 1−F̂ (N)

X̄n
(aN ) > 0, then

Pm0

{
N δ/2

[
− log

(
1−F̂ (N)

X̄n
(aN )

)
− (1−δ) logN

]
≥τα

}
=(6.10)

= Pm

N δ/2

[
− log

(
1−F̂ (N)

X̄n
(aN )

1−FX̄n
(aN )

)
− log

(
1−FX̄n

(aN )
)
− (1−δ) logN

]
≥ τα


→ 1 as N → ∞ ,

because the first term of the argument on the right-hand side of (6.10) is stochas-
tically bounded under index m (cf. the proof of Lemma 3.1), while the second
term tends to infinity form > m0. Hence, we reject Hm0 with probability tending
to 1. The case m = ∞ corresponds to the exponential tail.

The performance of the test procedure for different choices of m0 is illus-
trated again on the simulated random samples. The replications (N= 200) of
samples of sizes n = 5 were simulated 1000 times. Fig. 3–5 show the number of
rejection of the null hypothesis Hm0 as a function of m0 for Pareto (m = 1), Burr
(m = 2) and generalized Pareto (m = 0.5) distributions with δ = 0.1, 0.5 on the
level α = 0.01, 0.05.
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Figure 3: The number of rejection of Hm0 as a function of m0

for Pareto distribution with m = 1.
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Figure 4: The number of rejection of Hm0 as a function of m0

for Burr distribution with m = 2.
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Figure 5: The number of rejection of Hm0 as a function of m0

for Generalized Pareto distribution with m = 0.5.
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[13] Komlós, J.; Major, P. and Tusnády, G. (1975). An approximation of partial
sums of independent R.V.’s and the sample DF, Y. Wahrscheinlichkeitstheorie
verw. Geb., 32, 111–131.
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