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Abstract:

• When several clustering algorithms are applied to a dataset E or the same algorithm
with different parameters, we get several different partitions of the dataset. In this
paper we consider the problem of finding a consensus partition between the set of these
partitions. This consensus partition, called central partition, minimises the average
number of disagreements between all of the partitions and has been considered for
instance in [14, 5] in a different context from ours. We consider it in the context of
partition-distance defined in [7]. We focus our attention in two particular distance
functions between partitions and then do an experimental comparison between the two
corresponding central partitions. In addition, by using the concept of strong patterns
(maximal subset of elements that are always clustered together in all partitions), we
define a new graph where the nodes are the strong patterns. This graph contains
essentially the same information as the partition graph corresponding to the set E
defined in [7], but is much simpler as the number of strong patterns is expected to be
much smaller than the cardinal of E. Then, some properties of this new graph are
proved.
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1. INTRODUCTION

The concept of similarity between two partitions arises in several applica-
tions, such as molecular expression data in computational biology. When several
different clustering methods are applied to the same data, or the same algorithm
with different parameters, different partitions of the same data are produced.
Also, if we have K qualitative variables describing our population, we might
want to find a “central variable” which sumarizes these variables. These two
problems are the same, because there is a one-to-one correspondence between
qualitative variables and partitions. The problem of determining a central par-
tition arises also in the case where the given partitions (qualitative variables)
result from measurements at times t, t+1, ..., t+K−1 and we want to consider the
notion of a moving consensus smoothing the partitions (or qualitative variables)
at those times.

According to Barthelemy and Leclerc [2], there are three overlapping ap-
proaches that have been used to tackle the consensus problem:

(i) the axiomatic approach, where a central partition must satisfy some condi-
tions that arise, for instance, from experimental evidence;

(ii) the constructive approach, where a way to construct the consensus is ex-
plicitly given, like the Pareto rule which states that two objects are linked
in a consensus partition if and only if they are linked in all the K given
partitions;

(iii) the combinatorial optimization problem, where we have some criterion mea-
suring the remoteness (see equation (2.1)) of any partition to the given
K partitions and we search for a partition that minimises this remoteness
function.

This last approach, which goes back to Régnier [14], is the one we use in this
work.

In order to find the best consensus, it becomes necessary to evaluate the
closeness of the partitions produced. There are many distances that can be
defined between two partitions of a dataset. The partition-distance is one such
distance measure. This concept has been defined in [1], although Régnier [14] and
Lerman (see p. 51 of [9]) had considered it before. This distance is further studied
in [7], in which it is shown that the partition-distance between two partitions on
a given set can be computed in polynomial time.

Further in [7], a new class of graphs called partition graphs has been defined.
It is proved that the partition-distance between two partitions is equal to the size
of the smallest node cover of the corresponding partition graph. By establishing
the arrayed layout structure of the partition graph, it is shown in [7], that the
partition graph is perfect.
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Suppose K ≥ 2 partitions of a nonempty set E consisting of n elements
are given. In this paper, we define the notion of central partition with respect to
the partition-distance used in [7]. The concept of central partition has been used
in [5] in another context and with respect to a different measure of distance be-
tween partitions. The central partition is a partition that represents a consensus
between all the initial K partitions obtained by different clustering algorithms or
by the same algorithm with different parameters.

The computation of the central partition is hard. Hence, we have used an
approximate algorithm (heuristic), described in [5], to compute an approximation
to the central partition. In order to do this, we use the concept of strong patterns.
A strong pattern is a maximal subset of elements of E that have been always
clustered together in all of the K partitions. The heuristic consists in assuming
that these elements should also be together in the central partition. In addition,
by using this concept of strong patterns, we can define a graph where the nodes
are the strong patterns, which contains essentially the same information as the
partition graph corresponding to the K partitions, but is much simpler as the
number of strong patterns is expected to be much smaller than n. The complexity
is therefore dominated by determining the strong patterns.

The main goal of our work is first to make a summary of the works that
have been done in the problem of consensus partitions. Then, the distance used in
[5] and the partition-distance are compared using graph terminology. An exper-
imental evaluation of the central partitions corresponding to these two distances
is also presented. Next, a special graph, the strong pattern graph, is defined and
some of its properties are given.

2. RELATED WORK

Suppose that we have Kqualitative variables describing our set of objects E.
Each such variable defines a partition of the set E. We can associate an equiva-
lence relation on E with each variable: x and y are in the same equivalence
class if the values of this variable are the same for x and y. Thus we obtain K
equivalence relations on E : R1, R2, ..., RK . In 1965 Régnier [14] proposes as a
good clustering of E, a partition whose associated equivalence Ep minimises the
quantity

(2.1)
K

∑

i=1

δ(Ep, Ri) ,

which is called a remoteness function. δ(R, Ep) = |R∪Ep|−|R∩Ep| = |R−Ep|+
|Ep −R| is the number of non ordered pairs of points that are in the same cluster
in one partition but not in the other. The partition which minimises equation
(2.1) is called central partition by Régnier.
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In 1981, Barthelemy and Monjardet [3] use the notion of median in order
to unify the treatment of some problems which are based on the minimization
of a remoteness function, like for instance aggregation problems in cluster analy-
sis, social choice theory and paired comparisons methods. We will restrict and
adapt the presentation of their median procedure to the case of clustering. These
authors start by defining the partitions πα (resp. πβ) to be such that two ele-
ments x and y are in the same cluster for this partition iff they are together in
the same cluster for at least K/2 + 1 (resp. K/2 + 0.5) of the initial partitions.
One can easily see that πα≤ πβ, which means that any cluster of πα is included
in a cluster of πβ . The authors define then the median interval of the K initial
partitions to be [πα, πβ ]. If K is odd, then πα = πβ and so there is only one me-
dian partition; otherwise, every partition contained in that interval is a median
partition. Barthelemy and Monjardet [3] then present some properties of this
median procedure and survey some interesting mathematical problems related to
the notion of median. In a later paper, Barthelemy and Leclerc [2], concentrate
on the problem of finding a consensus partition that summarizes a K-tuple of
partitions by using the median procedure. A detailed survey of the median pro-
cedure for partitions is given, from the axiomatic and the algorithmic points of
view.

William Day [6] describes two models for the enumeration of metrics be-
tween partitions, focusing on the complexity of computing these metric distances.
By doing so he rediscovers some metrics that already existed in the literature,
but discovers some new metrics also. For some of them, there exist efficient
algorithms with time complexities ranging from O(n) to O(n3).

Strehl and Ghosh [15] propose three techniques for obtaining high-quality
consensus partitions. The first one uses a similarity measure which is based on the
given K initial partitions and then reclusters the objects using this new similarity
measure. The second technique is based on hypergraph partitioning and the third
technique collapses groups of clusters into meta-clusters which then compete for
each object to determine the central partition. These authors claim that their
techniques have low computational costs and so suggest further to use the three
approaches for a given situation and then choose the best solution.

Monti et al. [10] use a resampling-based method to find the central (con-
sensus) partition in the context of gene-expression microarray data. This type of
data has the particularity of presenting many more variables (genes) than obser-
vations, which is a challenge for classical data analysis methods (see for instance
[11]). Monti et al. [10] call their methodology consensus clustering which pro-
vides for a method to represent the consensus across multiple runs of a clustering
algorithm and to assess the stability of the discovered clusters. They also provide
a visualization tool to inspect and validate the number of clusters, membership
and boundaries.
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3. TWO DISTANCES BETWEEN PARTITIONS BASED ON THE

PARTITION-GRAPH

Let E be a nonempty set consisting of n elements. A cluster of E is a
nonempty subset of E. A partition of E is a collection of mutually exclusive
clusters of E, whose union is E. Two partitions π and π′ of E are identical if
and only if every cluster in π is also a cluster in π′.

Given two partitions π and π′, the partition-distance, Dp(π, π′), between π
and π′ is the minimum number of elements that must be removed from E such
that the two induced partitions (π and π′ restricted to the remaining elements)
are identical.

In [7] this definition is extended to the case of K >2 partitions. Also in [7],
it is written that the partition-distance is equal to the minimum number of ele-
ments that must be moved between clusters in π, so that the resulting partition
equals π′. This definition had already appeared before in the work of Régnier
[14].

Example 3.1. Let E = {1, 2, 3, 4, 5, 6}. Consider the following partitions,
π and π′ of E:

π =
{

{1, 2, 4, 6}, {3, 5}
}

, π′ =
{

{1, 2, 6}, {3}, {4, 5}
}

;

then the partition-distance between π and π′ equals two, as the removal of two
elements, namely 3 and 4, will make π and π′ identical and no single element of E
has this property.

Proposition 3.1. The partition-distance, Dp(π, π′), between π and π′

verifies the properties of a distance function.

Proof: The first three properties are obvious. In fact, (i) Dp(π, π) = 0 ;
(ii) Dp(π, π′)=Dp(π

′, π); (iii) Dp(π, π′)=0 ⇒ π=π′.

As for the triangular inequality, (iv) Dp(π, π′) ≤ Dp(π, π′′) + Dp(π
′′, π′),

let us start by denoting Dp(π, π′) = n1, Dp(π, π′′) = n2 and Dp(π
′′, π′) = n3.

Suppose that n1 > n2 + n3. If we remove n2 elements from E, the two induced
partitions of π and π′′ become identical; the same happens between π′′ and π′

if we remove a certain set of n3 elements. This means that if we remove at most
n2 + n3 (corresponding to the union of the two previous sets to be removed)
elements from E, the three induced partitions of π, π′′ and π′ become identical.
This is absurd since by hypothesis, we need to remove at least n1 elements, which
is more than n2 + n3, in order to make the two induced partitions of π and π′

identical. Therefore, we can not have n1 > n2 + n3.
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Given two partitions π and π′ of the same set E, consider the graph G(π, π′)
with one node for each element of the set E; two nodes are adjacent iff they are
together in the same cluster of either π or π′, but not in both. G(π, π′) is called
a partition graph (see [7]). A node-cover of a graph is a subset of nodes Q such
that every edge in the graph is incident with at least one node in Q.

As it is shown in [7], the partition-distance between two partitions π and
π′ is equal to the size of the smallest node-cover of the graph G(π, π′) (it has
not been proved that the smallest node cover is unique). This means that the
set of elements that must be removed so that the two induced partitions become
identical is one of the smallest node covers. The distance used in [5] has also an
interpretation in terms of this graph. For each partition πl let vl represent its
associated equivalence relation: vl(i, i

′) = 1 iff the two elements are in the same
cluster. Then, the distance used in [5] is

DC(π, π′) =
1

2

∑

i,i′ ∈E

∣

∣v(i, i′) − w(i, i′)
∣

∣

where the equivalence relations v and w correspond to the partitions π and π′

respectively. It is easy to see that this distance is equal to the number of edges
of the partition graph G(π, π′).

4. THE CENTRAL PARTITION FOR A PARTITION-DISTANCE

In this section we start by defining the concept of strong pattern. Given K
partitions of a dataset E, a strong pattern is a maximal subset of elements of E
that have been always clustered together in all of the K partitions.

Now, in order to determine the strong patterns, we start by building a
matrix R with n rows and K columns, where each column represents a partition.
So, for instance, if the first partition has 5 clusters, the first column of R is
composed of a sequence of numbers belonging to the set {1, 2, 3, 4, 5}. Thus, the
element Rij of this matrix is the cluster number attributed by partition πj to the
i th observation.

From R we construct a square matrix A, of size n, such that Aii′ is equal
to the number of times that the objects i and i′ are clustered together in the
Kpartitions. The complexity of building the matrix A is therefore n(n−1)×K/2.

Consider now the equivalence relation

∀ (i, i′) ∈ E×E , wK(i, i′) =

{

1 if Aii′ = K

0 otherwise .
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The partition of strong patterns corresponds to this equivalence relation. To find
this partition we look at the elements of matrix A row by row, starting with the
first row. First, to the first element is attributed the first cluster, which we can
call cluster 1. Then, in the first row, everytime we find that A1i′ = K, we put
the element i′ in cluster 1 also, and we delete the row corresponding to i′ from
consideration. Then we go to the next row to be considered, and we do the same,
this time attributing its elements to cluster 2. We proceed in the same manner
until there are no more rows to be considered. The complexity of this step is at
most n(n−1)/2. Therefore the complexity for determining the strong patterns is
O(n2K).

Suppose we have K partitions of E, (π1, π2, ..., πK). We are going to
consider now how to obtain from these K partitions a new partition which
best represents a consensus between all of the initial K partitions. We call it
Central Partition. First of all, the partition corresponding to the strong patterns
represents an unanimous consensus between all the K partitions; nevertheless, it
usually cannot be considered as a central partition because it has got too many
clusters (strong patterns) and is therefore too refined.

Let us denote by π∗ the central partition that we are looking for. We define
the central partition as the one that minimises the following criterium:

C(π∗) =
K

∑

k=1

Dp(π
∗, πk)

where Dp(π
∗, πk) is the partition-distance between the partitions π∗ and πk, that

is, the number of elements that have to be removed so that the two induced par-
titions become identical. Intuitively, the central partition minimises the average
number of disagreements between the K partitions. The problem of finding π∗ is
NP-hard and so we are going to use an heuristic to find an approximation of it.
This heuristic has already been used and justified in [5]; we will adapt it to our
context. In [5], the distance between two partitions, DC(π, π′), is equal to the
number of edges of the partition graph G(π, π′) that has been defined in [7].
In our case we use the partition-distance, Dp(π, π′) .

Let us denote by S the set of strong patterns and q (q<<n) its cardinality.
We define now a square matrix B of size q such that Bpp′ is the number of times
that the strong patterns p and p′ are together in all of the K partitions.

Theoretically, the partition corresponding to the strong patterns is associ-
ated with an equivalence relation uK :

∀ (p, p′) ∈ S×S , uK(p, p′) =

{

1 if Bpp′ = K

0 otherwise .

In a similar way, other relations uj , j = 0, 1, ..., K−1, can be defined:

∀ (p, p′) ∈ S×S , uj(p, p′) =

{

1 if Bpp′ ≥ j

0 otherwise .
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These relations uj , are in general not transitive and so cannot represent a
partition. Only u0 and uK represent partitions. To u0 is associated the elemen-
tary partition, where there is only one cluster; to uK is associated the partition
of strong patterns. For j = 1, ..., K−1, uj does not represent a partition, because
it is generally not transitive, and the authors in [5] associate with each uj an
equivalence relation uj , which is the transitive closure of uj . Let Γj represent the
partition associated with uj . Let Γ0 represent the partition with only one cluster
and ΓK the partition of strong patterns. It is then shown that the partitions
Γ0, Γ1, Γ2, ...,ΓK are nested, that is, Γj is obtained from Γj+1, by merging two of
its clusters.

The heuristic that is then used in order to find the approximate central
partition consists in restraining the search to the partitions Γj . Each such par-
tition is composed of clusters of strong patterns. In 1984 Celeux [4] has shown
that in practice the approximate central partitions obtained by this heuristic are
the same or very close to the exact central partition. That is, the clusters corre-
sponding to both partitions, the exact and the one found using the heuristic, are
similar.

Let S be the set of strong patterns and define the distance index

d(p, p′) = K − Bpp′ , ∀ (p, p′) ∈ S .

Let us now prove that this measure is really a distance index. In fact,
(i) d(p, p)=0 because Bpp =K. Next, (ii) d(p, p′)=d(p′, p) because the matrix
B is symetric. Now, if (iii) d(p, p′)=0, we have Bpp′ = K; this only happens
if the two strong patterns p and p′ are in fact one, that is, p = p′.

Using this distance index, we build a matrix of distance indices between the
strong patterns. The partitions Γj can be obtained in the following manner [5].
Start by building a minimal spanning tree (MST) containing q nodes (the strong
patterns) and using the distance index d(p, p′) = K−Bpp′ defined above. The
edge joining two adjacent nodes p and p′ has weight d(p, p′). Now, in order to
determine the candidate central partitions, Γ0, Γ1, ...,ΓK , we do the following:
Γ0 has just one cluster. Γ1 is obtained from the MST by removing the edge of
maximum weight and writing down the two obtained clusters. We continue by
successively removing the edges of maximum weight, obtaining the other candi-
date central partitions Γ2, Γ3, ...,ΓK . Everytime that we find two or more edges
with maximum weight, we remove all of these at once. Celeux et al. [5] show
that the candidate central partitions obtained by this methodology are the same
defined above associated with uj .

For each candidate central partition, Γj , we compute the criterium defined
above, that is,

C(Γj) =
K

∑

k=1

Dp(Γ
j , πk) ,

and we choose the partition which minimises this criterium. So, the central par-
tition obtained is the one which minimises the sum of all the partition-distances
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between the central partition and the initial K partitions.

Example 4.1. Let E = {1, 2, 3, 4, 5, 6} and consider the following four
partitions:

π1 =
{

{1, 2}, {3, 4}, {5}, {6}
}

, π2 =
{

{1, 2, 4}, {3, 5}, {6}
}

,

π3 =
{

{1, 2, 6}, {3, 4}, {5}
}

and π4 =
{

{1, 2, 5}, {4, 6}, {3}
}

.

This is a very small example with quite different partitions, but it serves to
illustrate the determination of central partition. The strong patterns are therefore
the subsets {1, 2}, {3}, {4}, {5}, {6}.

The symetric matrix B is:

{1, 2} {3} {4} {5} {6}

{1, 2} 4 0 1 1 1
{3} 4 2 1 0
{4} 4 0 1
{5} 4 0
{6} 4

From B we construct the matrix of distance indices d(p, p′) = K−Bpp′ :

{1, 2} {3} {4} {5} {6}

{1, 2} 0 4 3 3 3
{3} 0 2 3 4
{4} 0 4 3
{5} 0 4
{6} 0

Now, we build the minimal spanning tree (MST) between the strong pat-
terns using for instance Prim’s algorithm (see Figure 1).

Then, by starting to remove the edges of maximal weight, we get three
candidate central partitions. Whenever two or more edges have maximum weight,
we remove all of them at once.

The candidate central partitions are therefore:

Γ0 =
{

1, 2, 3, 4, 5, 6
}

,

Γ1 =
{

{1, 2}, {3, 4}, {5}, {6}
}

,

Γ2 =
{

{1, 2}, {3}, {4}, {5}, {6}
}

.
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Figure 1: One possible MST between the strong patterns.

Now, in order to choose one of these three candidate central partitions as
a central partition, we need to compute the value of C(Γj), j = 0, 1, 2; we will
do this using the partition-distance defined above:

C(Γ0) = 4 + 3 + 3 + 3 = 13 ,

C(Γ1) = 0 + 2 + 1 + 2 = 5 ,

C(Γ2) = 1 + 2 + 2 + 2 = 7 .

The final partition chosen, that is the one which minimises the criterium
C(Γj), is the partition

{

{1, 2}, {3, 4}, {5}, {6}
}

, which, in this case, coincides with
one of the initial partitions.

5. EXPERIMENTAL COMPARISON BETWEEN THE TWO

CENTRAL PARTITIONS

In this section we will show the results of some experiences in order to
compare the two central partitions corresponding to the partition-distance used
in [7], Dp(π, π′), and the distance used in [5], DC(π, π′). As was shown above,
the partition-distance between two partitions π and π′ is equal to the size of the
smallest node-cover of the graph G(π, π′) and the distance used in [5] corresponds
to the number of edges of G(π, π′). Since the first of these two distances is more
complicated to compute, it is of interest to know if the corresponding central
partition represents a better consensus between the initial K partitions; otherwise
it would be better to use the other distance. To see which of the two central
partitions represents a better consensus, we use the Rand index [13], which was
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latter corrected for chance in [8]. We start by computing the value of this index
between the central partition and each of the initial K partitions and then find
the average. The formula for the corrected Rand index between two partitions,
one with L clusters and the other with C clusters, is

(5.1) CRI =

L
∑

i=1

C
∑

j=1

(

nij

2

)

−

(

n
2

)

−1 L
∑

i=1

(

ni.

2

) C
∑

j=1

(

n.j

2

)

1

2

[

L
∑

i=1

(

ni.

2

)

+

C
∑

j=1

(

n.j

2

)

]

−

(

n
2

)

−1 L
∑

i=1

(

ni.

2

) C
∑

j=1

(

n.j

2

)

where n is the total number of objects, nij denotes the number of objects that
are common to clusters ui and vj , ni. and n.j referring respectively to the number
of objects in clusters ui and vj . This index takes values in the interval [−1, 1]
where the value 1 indicates a perfect agreement between the partitions, whereas
values close to 0 correspond to cluster agreement found by chance.

We start by generating 19 random partitions of a dataset with 600 elements,
with different numbers of clusters in each partition. We do not take into account
the structure of the dataset underlying those partitions. In fact, the partitions
were obtained by simulating an integer vector of size 600, where each compo-
nent of this vector contains the cluster number attributed to the ith element,
i = 1, 2, ..., 600. This is because the two central partitions considered in this
work only take into account the labels associated to each element of the dataset;
that is, its cluster number, regardless of the structure of the dataset. So, the aim
of this experiment is just to see which central partition best agrees with the initial
partitions. Our aim is not to see if the initial partitions are a good clustering of
any dataset. We suppose we are given K initial partitions and we want just to
find the best possible consensus between them.

To generate the random partitions, we have used the code in [12], where it is
also explained how the random partitions are generated. Then, we have written
a program to compute the two central partitions. Let π∗1 denote the central
partition using the partition-distance Dp(π, π′) and π∗2 the central partition using
the distance DC(π, π′). Now, we compute the corrected Rand index between each
central partition and the initial 19 partitions and find the average. This procedure
was repeated six times and the results are given in Table 1.

Table 1: CRI values for the two central partitions.

Dataset Values relating to π∗1 Values relating to π∗2

1 .450616 .349814
2 .370913 .220207
3 .434782 .353463
4 .401694 .222835
5 .355193 .239976
6 .360283 .278106
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As can be seen from these results, the central partition corresponding to
the partition-distance presents higher CRI values, indicating therefore greater
average similarity with the initial 19 partitions.

We have performed another controlled experiment that allows us to com-
pare the two central partitions in the presence of noise. First, we partition a set
with 500 elements into 10 clusters at random, as we did above, to obtain the
original clustering. We duplicate this clustering 10 times, but, in each of these
new 10 labelings, a fraction of the labels is replaced with random labels from a
uniform distribution from 1 to 10 (number of clusters). Then, we find the two
central partitions, π∗1 and π∗2, for these 10 noisy partitions, and we compare
each central partition with the initial partition which has no noise. The results,
which are given in Table 2, contain the CRI values between π∗1 and the initial
partition, the average CRI values between π∗1 and the given 10 partitions; and
the same for π∗2.

Table 2: CRI values for the two central partitions in the presence of noise.

Fraction Average CRI CRI between π∗1 Average CRI CRI between π∗2

of noise values for π∗1 and initial part. values for π∗2 and initial part.

10% .818964 .819189 .818964 .819189

20% .672516 .667547 .666279 .651882

30% .556944 .560007 .535590 .546835

40% .454627 .487534 .398607 .414782

50% .355307 .387085 .272208 .290658

60% .274852 .298431 .167627 .174901

70% .194300 .236023 ..060229 .061390

80% .119703 .149001 .024150 .028592

From these last results, we can see that the central partition corresponding
to the partition-distance has higher CRI values with the initial partition than
the other central partition; except for the case of 10% noise, where the results
are the same. It seems also clear that the higher the presence of noise the larger
the difference between the CRI values for the two central partitions. We can
conclude therefore that in the presence of noise, the central partition using the
partition-distance Dp(π, π′) is superior to the central partition using the distance
DC(π, π′). On the other hand, we can again see that the average CRI values are
higher for π∗1 than for π∗2, which confirms the results obtained above.

From this experimental study, we find that the partition-distance is more
adequate to find a consensus partition.
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6. STRONG PATTERN GRAPH

Having shown experimentally that the partition-distance is more adequate
to find a consensus partition, we now present some independent results that
were developped during the course of our investigation on the central partition.
We start by defining a new graph based on the notion of strong pattern. This
new graph contains essentially the same information as the partition-graph, but
is much simpler. Then, some properties of this new graph are proved.

Let U1, U2, ..., Um be the strong patterns of Kpartitions on a set E of size n.
The strong pattern graph sp(G) consists of m nodes, U1, U2, ..., Um and any two
nodes Uq, Uj are adjacent if the strong patterns Uq and Uj are together in the
same cluster in at least one partition.

We will now prove that the smallest node-cover of G(π, π′), which is a
subset of E, is the union of a set of strong patterns; that is, if an element of
E belongs to the smallest node-cover, all of the elements belonging to the same
strong pattern belong also to the smallest node-cover.

Proposition 6.1. Any smallest node-cover of G(π, π′) is composed of

a subset of strong patterns.

Proof: In order to prove this proposition, consider two elements x and y
belonging to the same strong pattern. Suppose now that x belongs to a smallest
node-cover of G(π, π′). From the results above, x belongs also to a smallest set
of elements that have to be removed so that the two induced partitions become
identical. We want to prove that y belongs also to the same smallest node-cover;
that is, that y has also to be removed. Suppose not; that is, after removing all
the elements that have to be removed so that the two induced partitions become
identical, y stays. This means that the cluster of the induced partition of π
containing y and the cluster of the induced partition of π′ containing y are the
same. Hence, if we add x to these two clusters, these two clusters remain also
the same, because x and y belong to the same strong pattern, that is, are always
clustered together; and so x would not have to be removed, which is absurd by
hypothesis. Therefore y has also to be removed.

A clique in a graph is a subset of nodes which are pairwise adjacent;
let K(G) be the size of the largest clique in graph G. An independent set of
nodes is a subset of nodes where no two nodes are adjacent; let I(G) be the size
of the largest independent set in graph G. If U is a non empty subset of the
node set of graph G, then the subgraph H of G induced by U is the graph having
the node set U and whose edge set consists of those edges of G incident with
two distinct elements of U . The subgraph H is called a node-induced subgraph.
A graph G is called perfect if K(H) = I(H) for every node-induced subgraph H
of G.
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Proposition 6.2. The strong pattern graph for two partitions of the

same set is a perfect graph.

Proof: The strong pattern graph corresponding to two partitions π1 and
π2 is itself a partition graph. In fact we can form two partitions of the set of
strong patterns: π1

S is composed of clusters of strong patterns whose individual
elements were clustered together in π1; similarly for π2

S . The strong pattern graph
defined above corresponds to the partition graph for π1

S and π2
S . It is proved in

[7] that any partition graph is a perfect graph. Therefore, the strong pattern
graph, being a partition graph, is a perfect graph.

7. CONCLUSIONS AND FUTURE WORK

We have considered in this paper the problem of finding a consensus parti-
tion (central partition) between a set of partitions corresponding for instance to
the results of different clustering algorithms. The distance between partitions is
the one defined in [7]. As the determination of the central partition is NP-hard,
we have adapted an heuristic [5] which consists in assuming that if two elements
are always clustered together in all of the initial partitions, they should also be
together in the central partition. We have then shown experimentally that the
central partition corresponding to the partition-distance represents a better con-
sensus than the usual central partition, which uses the distance defined in [5].
By defining a strong pattern to be a maximal subset of elements which are al-
ways together, we have then defined a strong pattern graph where the nodes
correspond to the strong patterns and two nodes are adjacent if the correspond-
ing strong patterns are together in at least one partition. We have then proved
that any smallest node-cover of a partition graph is composed of a subset of
strong patterns and also that the strong pattern graph is a perfect graph.

As for the future work, we plan to implement a computer program to do
some experiments in order to analyse the results of some clustering algorithms.
This will serve as a way of summarising the results of several clustering algo-
rithms, specially when we do not know which one is best suited to the particular
problem at hand. Even if we do know which clustering algorithm to use, its results
usually depend on a set of parameters which are not known. By trying different
parameters, we will get different partitions and once again, it makes sense to find
the central partition (corresponding to the partition-distance) as the one which
minimises the average number of disagreements between the various outputs.
We plan also to study more deeply the strong pattern graph which we introduce
in this article.
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