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– ISCAP / Inst. Politécnico do Porto, Univ. Portucalense and CEAUL,
R. Prof. Jaime Lopes Amorim, 4465-111 S. Mamede de Infesta, Portugal

Ian R. Dunsmore

– Department of Probability and Statistics, University of Sheffield,
Sheffield S3 7RH, U.K.

David J. Robson

– Department of Probability and Statistics, University of Sheffield,
Sheffield S3 7RH, U.K.

Received: April 2004 Revised: November 2004 Accepted: February 2005

Abstract:
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1. INTRODUCTION

Robbins and Zhang ([13], [14], [15]) consider the estimation of a multiplica-
tive treatment effect under biased allocation. For example, with a slight change
from their notation to allow for generalization, suppose that within a Poisson er-
rors in variables model (θi, Xi, Yi), i=1, 2, ..., n, are independent random vectors
such that

(i) given θi, Xi is Po(θi) ;

(ii) given β1, β2, θi and xi,

Yi is Po(β1θi) if treatment T1 is used ;

Yi is Po(β2θi) if treatment T2 is used ;

(iii) given a, T1 is used if xi < a and T2 is used if xi ≥ a ;

(1.1)

where Po(µ) represents a Poisson distribution with mean µ. No distributional
assumptions about the θi’s are made, and their values are not observed.
The unknown parameters β1 and β2 could be thought of as multiplicative treat-
ment effects. An alternative parameterization would be through logarithmic link
functions with additive treatment effects.

Robbins and Zhang [15] discuss two scenarios for this model. The first
concerns the number of accidents at road junctions. Suppose that Xi counts the
number of night accidents during year 1 at junction i, i=1, 2, ..., n. Extra lights
are installed at the beginning of year 2 at those junctions for which xi≥a, with
no change being made to the light system at other junctions. Then, Yi records
the number of night accidents at junction i during year 2. Of particular interest
is whether or not the extra lights reduce the frequency of night accidents.

The second, more controversial, application is in the context of clinical
trials in which the allocation of treatments is based on the screening variable X.
Robbins and Zhang [15] then seek to estimate the differential treatment effects
based on this biased allocation of treatments to patients.

In both situations Robbins and Zhang [15] consider the problem as one of
estimation, and take the difference β2−β1 or the ratio β2/β1 as a measure of the
differential treatment effect. Based on data (x n,yn) = {(xi, yi) : i=1, 2, ..., n},
they derive the following consistent estimates for β1 and β2:

β1,n =

n
∑

i=1

yi I(xi<a)

n
∑

i=1

xi I(xi<a+1)

, β2,n =

n
∑

i=1

yi I(xi≥a)

n
∑

i=1

xi I(xi≥a+1)

,(1.2)

where I represents the indicator function. They suggest the use of the cen-
tral limit theorem to obtain confidence intervals for β1, β2, β2−β1 or β2/β1
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with coverage probabilities that tend to 0.95, say, as n→∞, but omit details.
They also note that the Poisson assumption for the conditional distribution of Yi
in (ii) of (1.1) is not required for the consistency of the estimates in (1.2).

Godambe and Kunte [6] provide an alternative semi-parametric solution
for the estimation of β1 and β2 through the use of optimum estimating functions
(Godambe and Thompson, [7]). Their model does not require the Poisson as-
sumptions in (1.1) for Xi or Yi, but only the mean value specifications. However,
they do require an additional assumption, namely that

(iv) given xi the mean value of θi is f(xi),
f being a specified function of xi .

The assumption that the θi are (unobservable) random variables distinguishes the
model from one in which they are unknown parameters. In this latter case, one
might then consider the θi as “incidental” parameters, following the terminology
of Neyman and Scott [10], as opposed to the “structural” parameters β1 and β2.
Kiefer andWolfowitz [8] discuss problems of consistency with maximum likelihood
estimation in such cases, and illustrate how these may be overcome if the θi are
independent chance variables with a common distribution, as in here.

We develop here, in Section 2, an approach to treatment comparisons based
on predictive criteria, which perhaps seem more relevant for answering, in the
medical context for example, the question “Which of the two treatments do I give
to the next patient?”. The approach extends the models used in Dunsmore
and Robson [2] for other Poisson errors in variables models. We concentrate
attention on the outcomes Yn+1,1 and Yn+1,2 from separate applications of the
two treatments, T1 and T2, applied to patient n+1, and seek to make predictions
for future values yn+1,1 and yn+1,2 based on (xn,yn) and xn+1.

An illustrative example is provided in Section 3, and extensions to several
treatments and other distributional models are discussed briefly in sections 4 and 5.

2. POISSON PREDICTIVE MODELS

2.1. Predictive distribution

Consider the Poisson errors in variables model specified in (1.1). Suppose
further that for a future individual, labelled by n + 1, we observe xn+1 from a
Po(θn+1) distribution and model potential outcomes from the two treatments
through

Yn+1,1 is Po(β1θn+1) ; Yn+1,2 is Po(β2θn+1) .(2.1)
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The dependence between the outcomes for this individual from the two treatments
is modelled through the common (unobserved) θn+1.

Such an individual will only be given one of the two treatments, and the
predictive paradigm suggests that the choice centres around properties of the joint
predictive function p

(

yn+1,1, yn+1,2 |xn+1,x
n,yn

)

, or perhaps considerations of
Yn+1,2 − Yn+1,1.

We denote the treatment given to an individual, for i = 1, 2, ..., n, by

δij =







1, if individual i gets treatment Tj ,

0, otherwise ,

so that δi1 + δi2 = 1 for each i; and let, for j = 1, 2,

nj =
n
∑

i=1

δij ; n = n1 + n2 ;

Sxj =
n
∑

i=1

δij xi ; Tx =
2
∑

j=1

Sxj =
n
∑

i=1

xi ;

Syj =
n
∑

i=1

δij yi ; Ty =
2
∑

j=1

Syj =
n
∑

i=1

yi .

The maximum likelihood estimates of the parameters are given by

θ̂i =
xi + yi

1 +
2
∑

j=1

δij β̂j

, i=1, 2, ..., n; θ̂n+1 = xn+1; β̂j =
Syj
Sxj

, j=1, 2 .(2.2)

In this notation the Robbins and Zhang [15] estimates (1.2) based on (x n,yn)
are given by

β1,n =
Sy1

Sx1 + aNa
, β2,n =

Sy2
Sx2 − aNa

,(2.3)

where Na are the number of xi’s equal to a. The additional information provided
by xn+1 could be used to amend these estimates to

β∗1,n =

(

1 +
1

n

)

Sy1
Sx1 + aNa + xn+1 I (xn+1< a+1)

,

β∗2,n =

(

1 +
1

n

)

Sy2
Sx2 − aNa + xn+1 I (xn+1 ≥ a+1)

.

(2.4)



66 F. Magalhães, I. Dunsmore and D. Robson

2.2. Plug-in estimates

Predictive approaches within the classical framework typically involve plug-
in estimates, pivotal statistics or tolerance regions. A simple plug-in estimate for
the probability function of Z = Yn+1,2 − Yn+1,1, for example, would be given by

P (Z=z) =
∞
∑

i=max(0,−z)

2
∏

j=1

(β̂j θ̂n+1)
i+(j−1)z exp(−β̂j θ̂n+1)
(

i+ (j−1)z
)

!
.(2.5)

Other such estimates are available if specification of the underlying distribution
for the θi’s is provided. As an illustration, we take p(θi) to be γ exp(−γθi) with
unknown parameter γ > 0. The model specification in (1.1) then reduces to

p
(

xi, yi | β1, β2, γ
)

=
(xi + yi)!

xi! yi!

γ βδi1yi

1 βδi2yi

2
(

1 + γ + δi1β1 + δi2β2

)xi+yi+1 ,(2.6)

whilst Godambe and Kunte’s [6] condition (iv) above is satisfied by
f(x) = (x+1)/(γ+1). Both Robbins and Zhang [15] and Godambe and Kunte [6]
consider this case. The former demonstrate that their estimates β1,n and β2,n

in (1.2) compete well with the maximum likelihood estimates based on (x n,yn)
from this fully parametric model; whilst the latter’s solution coincides with them.

With the additional information from xn+1, the maximum likelihood esti-
mates are now given by

β̆1 = (1 + γ̆)
Sy1

Sx1+ n1
; β̆2 = (1 + γ̆)

Sy2
Sx2 + n2

; γ̆ =
n+ 1

Tx + xn+1
.(2.7)

A simple plug-in estimate for the probability function of Z = Yn+1,2 − Yn+1,1

would then be given by

P (Z=z) =
∞
∑

i=max(0,−z)

(z + 2i)!

i! (z + i)!

γ̆ β̆i1 β̆
i
2

(

γ̆ + β̆1 + β̆2

)z+2i+1
.(2.8)

2.3. Hierarchical prior structure

Within a Bayesian framework for the model specified by (1.1) and (2.1),
the central feature is the predictive function p

(

yn+1,1, yn+1,2 |xn+1,x
n,yn

)

given
by

∫ 2
∏

j=1

{

p(yn+1,j |βj , θn+1)
}

p
(

θn+1, β1, β2 |xn+1,x
n,yn

)

dθn+1 dβ1 dβ2 ,(2.9)
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where p
(

θn+1, β1, β2 |xn+1,x
n,yn

)

is the posterior density function. Notice here
that θn = (θ1, θ2, ..., θn) behaves in the same way as a nuisance parameter, and
we only require the posterior distribution of (θn+1, β1, β2) — or indeed only of
(β1θn+1, β2θn+1).

Following the ideas in Gelfand and Smith [5], we adopt a Bayesian hierar-
chical prior structure. At the first stage we take

p
(

θn, θn+1, β1, β2 | γ, η1, η2

)

=
n+1
∏

i=1

p(θi | γ)
2
∏

j=1

p(βj | ηj) ,

whilst at the second stage we assume

p(γ, η1, η2) = p(γ)
2
∏

j=1

p(ηj) .

An appropriate structure here would be of the form

θi ∼ Ga(k, γ) , βj ∼ Ga(gj , ηj) ,

γ ∼ Ga(`,m) , ηj ∼ Ga(uj , vj) ,

for i=1, 2, ..., n, n+1 and j=1, 2, where Ga(a, b) represents a gamma distribution
with density proportional to θa−1 exp(−bθ), θ>0, and where k, g1, g2, `, m, u1,
v1, u2 and v2 are known constants. Gaver and O’Muircheartaigh [3] and Gelfand
and Smith [5] suggest, in a similar framework, that k, g1 and g2 might be treated
as tuning parameters or estimated in an empirical Bayes spirit. Notice that the
distributional assumptions about θn and θn+1 in Section 2.2 are a special case of
the above.

The posterior density function p
(

θn, θn+1, β1, β2, γ, η1, η2 | xn+1,x
n,yn

)

is
proportional to

n
∏

i=1



exp

{

−θi

(

1 +
2
∑

j=1

δij βj + γ

)

}

θxi+yi+k
i



 ×

× exp
{

−θn+1(1+γ)
}

θ
xn+1+k
n+1 γ(n+1)k+` exp{−mγ} ×

×
2
∏

j=1

{

β
Syj+gj

j exp(−ηjβj) η
gj+uj

j exp(−vjηj)
}

.

(2.10)

Eliminating θn, η1 and η2 we have that p
(

θn+1, β1, β2, γ |xn+1,x
n,yn

)

is pro-
portional to

exp
{

−θn+1(1+γ)
}

θ
xn+1+k
n+1

2
∏

j=1

{

β
Syj+gj

j

}

γ(n+1)k+` exp{−mγ}

2
∏

j=1

{

(1 + βj + γ)Wj (vj + βj)
gj+uj

}

,(2.11)
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where Wj= Sxj + Syj + k nj , j=1, 2. Elimination of γ cannot be undertaken
explicitly, but we find that p

(

yn+1,1, yn+1,2 |xn+1,x
n,yn

)

is proportional to

∫

Γ(xn+1 + yn+1,1 + yn+1,2 + k)

yn+1,1! yn+1,2!
×

×

2
∏

j=1

{

β
Syj+yn+1,j+gj

j

}

(1 + β1 + β2 + γ)xn+1+yn+1,1+yn+1,2+k
×

×
γ(n+1)k+` exp{−mγ}

2
∏

j=1

{

(1 + βj + γ)Wj (vj + βj)
gj+uj

}

dβ1 dβ2 dγ

(2.12)

for yn+1,1= 0, 1, ... and yn+1,2= 0, 1, ... . The joint predictive probability function
may then be found numerically through three dimensional integration techniques.

Although no simple analytical form is available for (2.12) here, it is possible
to obtain the marginal (but dependent) predictive probabilities in the case of
vague second stage priors (`,m, u1, v1, u2, v2 → 0) explicitly, namely, for j=1, 2,

p
(

yn+1,j |xn+1,x
n,yn

)

∝
B(xn+1+ yn+1,j+k, Wj)

B(yn+1,j+1, Sij−1)
, yn+1,j= 0, 1, ... ,(2.13)

and these can easily be compared graphically.

2.4. Approximations

Alternatively, we might consider approximations through the use of, for
example, posterior normality assumptions, Gibbs sampling or Laplace approxi-
mations to evaluate the predictive probabilities.

Noting that, as the sample size increases, the number of parameters in our
model also increases, we surmise that problems may arise over assumptions of
asymptotic normality of the overall posterior distribution, especially for the usual
asymptotic normal approximation for the full posterior distribution in (2.10) —
see, for example, Bernardo and Smith ([1, pp. 285–97]). A better result is likely
from following O’Hagan’s ([11, pp. 208]) suggestion of using a normal approxima-
tion for the reduced posterior p

(

θn+1, β1, β2, γ |xn+1,x
n,yn

)

alone, based on the
posterior mode and modal dispersion matrix. We do not pursue this approach
here, but further details can be found in Magalhães [9].
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2.4.1. Gibbs sampling

The conditional distributions of θn+1, β1, β2 and γ follow from (2.11) in a
straightforward manner, and, using rejection sampling with t iterations in each
cycle, we obtain M random samples

(

θ
(t)
n+1(`), β

(t)
1(`), β

(t)
2(`), γ

(t)
(`)

)

, ` = 1, 2, ...,M .

The prediction function (2.9) can then be estimated using

p̂
(

yn+1,1, yn+1,2 | xn+1,x
n,yn

)

=
1

M

M
∑

`=1

2
∏

j=1

µ
yn+1,j

j` e−µj`

yn+1,j !
,(2.14)

where µj` = β
(t)
j` θ

(t)
n+1(`), j=1, 2. If interest lies, say, in Z = Yn+1,2 − Yn+1,1, we

then need to derive the predictive distribution of Z.

Notice that, although it is necessary to generate values of γ
(t)
(`) in this Gibbs

routine, the values of this hyperparameter are not required further for our pre-
diction problem.

2.4.2. Laplace approximation

Since the joint predictive probability function in (2.9) is a posterior expec-
tation, which may be written, in generic form, as

E
{

g(ψ) | data
}

=

∫

g(ψ)L(data) p(ψ) dψ
∫

L(data) p(ψ) dψ

=

∫

exp{−nh∗(ψ)} dψ
∫

exp{−nh(ψ)} dψ

,

we may also use the Laplace approximation method; see, for example, Bernardo
and Smith ([1, pp. 340–5]). In the posterior expectation above, ψ represents an
unknown parameter and L(data) is the likelihood function. Also, functions h(ψ)
and h∗(ψ) are defined such that

−nh(ψ) = ln p(ψ)+lnL(data) and −nh∗(ψ) = ln g(ψ)+ln p(ψ)+lnL(data) .

Again, we present the results for the special case of vague second stage priors.
A good approximation for (2.9) is given by

1

yn+1,1!

1

yn+1,2!

(

σ∗

σ̃

)

exp

[

−n
{

h∗(θ∗n+1, β
∗
1 , β

∗
2 , γ

∗)− h(θ̃n+1, β̃1, β̃2, γ̃)
}

]

,(2.15)
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where

−nh(θn+1, β1, β2, γ) = −θn+1(1+γ) + (xn+1+k) ln θn+1 + (n+1) k ln γ

+
2
∑

j=1

{

Syj lnβj −Wj ln (1+βj+γ)
}

,

−nh∗(θn+1, β1, β2, γ) =

= −nh(θn+1, β1, β2, γ) +
2
∑

j=1

{

yn+1,j(ln θn+1 + lnβj)− θn+1 βj

}

and where θ̃n+1, β̃1, β̃2, γ̃ and θ∗n+1, β
∗
1 , β

∗
2 , γ

∗ are the modes of −h and −h∗,
respectively. The former are given by

θ̃n+1 =
(xn+1 + Tx) (xn+1 + k)

xn+1 + Tx + (n+1)k
, γ̃ =

(n+1)k

xn+1 + Tx
,

β̃j =

{

xn+1 + Tx + (n+1)k
}

Syj

(xn+1+ Tx) (Wj − Syj)
, j = 1, 2 ;

(2.16)

whilst the latter are found iteratively from

θn+1

(

1 +
2
∑

j=1

βj + γ

)

= xn+1 +
2
∑

j=1

yn+1,j + k ,

βj

(

θn+1 +
Wj

1 + βj + γ

)

= yn+1,j + Syj , j = 1, 2 ,

γ

(

θn+1 +
2
∑

j=1

Wj

1 + βj + γ

)

= (n+1)k .

Finally, σ̃ and σ∗ are the square roots of the inverse of the determinants of the
appropriate hessian matrices of second order derivatives, namely

σ̃ =
∣

∣n∇2h(θ̃n+1, β̃1, β̃2, γ̃)
∣

∣

− 1
2 ,

σ∗ =
∣

∣n∇2h∗(θ∗n+1, β
∗
1 , β

∗
2 , γ

∗)
∣

∣

− 1
2 .

Full details can be found in Magalhães [9].
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3. ILLUSTRATION

In order to illustrate the different approximations, we consider the data
shown in Table 1.

Table 1: Simulated data set of size n = 20.

xi δi1 yi xi δi1 yi

7 0 3 11 0 22
8 0 8 6 0 13
9 0 1 9 0 10

13 0 16 6 0 10
5 1 1 10 0 16
2 1 2 17 0 16

13 0 12 3 1 0
4 1 2 2 1 2
6 0 12 2 1 1
7 0 4 8 0 11

These n = 20 data values were simulated from models with β1 = 0.3 and
β2 = 1.4, with a = 6, and for a random selection of θi values. Note that β̂1 = 0.44
and β̂2 = 1.25 from (2.2), whilst the equivalent Robbins and Zhang [15] are
β1,n = 0.22 and β2,n = 1.46 from (2.3).

Predictions are given for y21,1 and y21,2 corresponding to x21 = 4. The

amended maximum likelihood estimates are now β̆1 = 0.38 and β̆2 = 1.29 from
(2.7), whilst the Robbins and Zhang values are updated to β∗1,n+1 = 0.21 and
β∗2,n+1=1.53 from (2.4).

In the analyses we assume a vague second stage prior (`,m, u1, v1, u2, v2→0).
For such a case, specification of g1 and g2 is not necessary. We take k = 6
based on matching the first two marginal moments of the Xi’s; see Dunsmore
and Robson [2].

A clear picture emerges if we consider the marginal predictive functions
for y21,1 and y21,2 separately. Figures 1 and 2 show the approximations from
the two methods together with the exact forms from (2.13). Clearly, the Gibbs
and Laplace methods provide excellent approximations to the exact distribution.
Also shown in Figures 1 and 2 are the marginal predictive functions with the
posterior normal approximations mentioned in Section 2.4. Normal approxima-
tion 1 refers to the Bernardo & Smith [1] approach and normal approximation 2
refers to O’Hagan’s [11] approach. The anticipated problems with a sample size
of only 20 manifest themselves, although perhaps not surprisingly O’Hagan’s [11]
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suggestion, based on only four parameters, seems superior to the more usual pos-
terior normal approximation, based on 26 parameters. Figures 1 and 2 also show
that the predictive approach leads to more disperse distributions than the ones
obtained through the plug-in method. This fact is not surprising because the
predictive approach incorporates uncertainty about the parameters.

Figure 1: Comparison of the predictive functions p
(

y21,1 |x21,x
20,y20

)

from the four approximations with the exact form in (2.13).

Figure 2: Comparison of the predictive functions p(y21,2 | x21,x
20,y20)

from the four approximations with the exact form in (2.13).

We may conclude that the Gibbs and Laplace methods lead to excellent
results when compared to the exact predictive distribution. The speed of the
Laplace method, in comparison to Gibbs sampling, is a strong point in its favour.
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Figure 3 compares the predictive functions for Z = Y21,2 − Y21,1 for the Laplace
method and the plug-in method of (2.5), and illustrates the unsatisfactory nature
of the latter.

Similar conclusions were drawn in several other simulations.

Figure 3: Comparison of the predictive functions for Z = Y21,2 − Y21,1

from the Laplace method and the plug-in form in (2.8).

4. GENERALISATION TO J ≥ 2 TREATMENTS

The models can be extended to the case of J treatments in a straightforward
manner. Suppose that we can define mutually disjoint and exhaustive subsets
C1, C2, ..., CJ of the non negative integers, such that treatment Tj is used for
individual I if xi ∈ Cj . We assume that Yi is Po(βjθi) if treatment Tj is used for
individual i, (i = 1, 2, ..., n+1; j = 1, 2, ..., J). Notice that the identification of
subsets through cut-off points a1 < a2 < ... < aJ−1 is only one possible partition.

Robbins and Zhangs [15] method generalises (1.2) above to give consistent
estimates

βjn =

n
∑

i=1

yi I(xi ∈ Cj)

n
∑

i=1

xi I(xi−1 ∈ Cj)

for j = 1, 2, ..., J . Similarly, with an obvious extension of the notation for δij ,
nj , Sxj , Syj , Tx, Ty, the maximum likelihood estimates corresponding to (2.2)
generalise in a simple way.
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Numerical integration for the joint predictive probability

p
(

yn+1,1, yn+1,2, ..., yn+1,J | xn+1,x
n,yn

)

,

corresponding to (2.9) becomes impractical, but the Gibbs and Laplace methods
provide approximations. Full details are again given in Magalhães [9].

Of interest now might be predictive probabilities associated with
max(yn+1,1, yn+1,2, ..., yn+1,J ). Within the Gibbs framework, one way of deri-
ving these would be to consider the yn+1,1, yn+1,2, ..., yn+1,J as missing data and
within each cycle to generate values of yn+1,j from a Po(βjθn+1) distribution,
j = 1, 2, ..., J .

From the resulting samples
(

y
(t)
n+1,1(`), y

(t)
n+1,2(`), ..., y

(t)
n+1,J(`)

)

it is then
straightforward to approximate the probability that treatment Tj , say, provides
the maximum response.

5. CONCLUSIONS

We have developed Bayesian predictive models for a Poisson errors in vari-
ables situation in which there are simple, multiplicative effects. Whilst standard
numerical integration techniques, here in three dimensions, might be suitable
for the determination of the appropriate predictive distributions, we have found
that Laplace approximation and Gibbs sampling can provide alternative and reli-
able approaches. The use of the posterior normal approximations can be suspect
because of the high dimensionality of the parameters, although O’Hagan’s [11]
approach improves matters somewhat.

Robbins and Zhang [15] also consider estimation in a binomial model, whilst
Robbins [12] discusses the exponential case. Similar predictive frameworks can
be developed for these situations. For example, in the model specification in
Section 2 we might replace the Poisson assumptions (i) and (ii) by

(i) given r and θi, Xi is Bi

(

r,
θi

1 + θi

)

;

(ii) given s β1, β2, θi and xi,

Yi is Bi

(

s,
β1θi

1 + β1θi

)

if treatment T1 is used ;

Yi is Bi

(

s,
β2θi

1 + β2θi

)

if treatment T2 is used .

Here, the odds ratios are θi for Xi and β1θi or β2θi for Yi. Details of the predictive
distributions for the binomial and exponential cases can be found in Magalhães
[9].
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