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Abstract:

• Difference gel electrophoresis (DIGE) is the new gold standard analysing complex
protein mixtures in proteomics. It is used for measuring the expression levels of
proteins in different mixtures on the same two-dimensional electrophoresis (2-DE)
gel. In this paper we review a method for the calibration and normalization of those
protein expression measurements. Further we show how to find treatment effects and
time-treatment-interactions in longitudinal data obtained from DIGE experiments.
A problem in those data sets is the existence of a lot of missing values. Therefore,
we propose a method for the estimation of missing data points.
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1. INTRODUCTION

While the focus of biochemical research was addressed on the genome in
the last decade the view is now turned onto the proteome. Big data sets of
gene expression obtained from DNA-microarrays made the development of sta-
tistical methods necessary to make correct inferences from these measurements.
For quantitative protein expression analysis either mass spectrometry (cf. Aeber-
sold and Goodlett ([1]) and Gygi et al. ([7])) or two-dimensional gel electrophore-
sis (2-DE) (cf. Westermeier et al. ([14])) is applied. In this paper we focus on
the analysis of protein expression data obtained from a new detection method
(DifferenceGel Electrophoresis, DIGE) based on fluorescence labelling before 2-DE.
2-DE separates the proteins of a mixture by their isoelectric point (pI) and
molecular size to distinct spots. After separation the proteins are detected using
a confocal fluorescence scanner whereas fluorescence intensity of a spot can be
regarded as a measure of expression for its respective protein. DIGE enables the
user to put up to three different mixtures of proteins on the same gel. The dif-
ferent mixtures are labelled by different fluorescence dyes (Cy2, Cy3 and Cy5).
For quantitative proteome analysis image analysis software automatically deter-
mines the boundaries and sizes of the spots. Usually, a DIGE experiment is
designed such that m independent replications of treatment and control mixtures
are put on the same m gels. The internal standard, a mixture of same amounts
of all m treatment and m control probes, is also put on each gel. This internal
standard allows high accuracy calibration of the expression values. Calibration
and normalization of protein expression data is reviewed in section 2. In or-
der to obtain information about interactions of treatment and control with the
time, DIGE experiments often include measurements over several time points.
Known statistical methods for the analysis of longitudinal data can be used to
analyze those experiments. One possible method for such an analysis is detailed
in section 3. Often, 2-DE data contains up to 50% of missing values. The
missing values occur because not each protein is visible on each gel when repli-
cating probes on several gels. For example, on gel number one there are 1732
protein spots and 1967 spots are on gel number two, but only 1447 of these
spots belong to proteins commonly represented on both gels. Some statistical
methods, however, need complete data sets, for example, some methods for the
detection of differentially expressed genes (cf. Gannoun et al. ([6])) or the corre-
spondence analysis for microarray data (cf. Fellenberg et al. ([5])). These methods
could also be applied to protein expression data if the data sets were complete.
One possible method to overcome this problem is to estimate the missing values
by using the available measurements from other proteins. In section 4, we inves-
tigate how the k nearest neighbor method behaves when being applied to DIGE
data. This method was also applied for the estimation of missing values in gene
expression data by Troyanskaya et al. ([13]). The idea of this method is that
there are groups of proteins with similar expression profiles. A missing value of
a protein can then be estimated by available values from the proteins of the
same group.
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2. CALIBRATION, NORMALIZATION AND STANDARDIZA-

TION OF DIGE DATA

A usual DIGE experiment results in three values for each spot on a gel,

i.e. treated, untreated and internal standard. From the DeCyderTM software one

can obtain the background subtracted spot volumes (cf. Amersham Biosciences

([2])). In this software, a borderline for each spot is automatically detected

and the sum of the pixel intensities within the spot boundary is the spot volume.

The background is subtracted by excluding the lowest 10th percentile pixel values

on the spot boundary. As we will see in this section the statistical analysis

cannot be done with this raw data material. Data obtained from analytical

instruments are always affected by technical and biological variation. To make

correct inferences on the biological variation preprocessing of data is necessary.

In this section we discuss the features of the background subtracted spot volumes

and describe how to calibrate and transform the values for further actual analysis.

One source of technical variation comes from the different dyes. In figure 1

the Cy5 and Cy3 spot volumes of a DIGE gel are plotted against each other.
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Figure 1: Scatterplot of the Cy5 versus the Cy3 spot volumes
of a DIGE gel.

It can be seen that the Cy5 dye causes higher volume values than the Cy3 dye.

To calibrate the spot volumes Karp et al. ([9]) proposed to use a scaling fac-

tor which adjusts for the dye-specific gain, and to use an additive offset which

compensates for any constant additive bias present after background subtraction.
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The additive offset is used because the different dyes result in different background

fluorescence. This calibration method was originally introduced by Huber et al.

([8]) for the preprocessing of DNA-microarray data. Having n spots on a gel with

three different mixtures (internal standard, treated, untreated) this calibration

can be modelled by

(2.1) ỹih = ah + bhyih

with i = 1, ..., n and h = 1, 2, 3. For h = 1 we have the value for the treated

probe, h = 2 for the untreated probe and h = 3 for the internal standard.

In this model ỹih are the measured background subtracted spot volumes, ah are

the additive offsets and bh are the scaling factors. Hence, 2 ∗ 3 parameters have

to be estimated. How to do this will be explained below. Some more features of

the raw data require a second transformation. The scanning of the fluorescent

gels results in lognormal distributions of the spot volumes. However, a normal

distribution would be more appropriate for most statistical applications so the

data has to be normalized. Furthermore, the variance of the spot volumes is

dependent on the mean of the spot volumes. This is illustrated in figure 2.
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Figure 2: Scatterplot of the variance of the Cy3 and Cy5 spot
volumes versus the rank their mean.

The variance of the spot volumes increases when the mean also increases.

One possibility to normalize the data and to stabilize the variance would be to

apply the logarithm on the data. But the logarithm results in a bias for low spot

volumes as can be seen in in figure 3 where the Cy3 and Cy5 spot volumes with

the logarithm applied on them are plotted against each other. Instead of using

the logarithm we will use the arsinh for normalization and variance stabilization.
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Figure 3: Scatterplot of the log-transformed Cy5 spot volumes
versus the log-transformed Cy3 spot volumes.

The graphs of the logarithm and the arsinh are plotted in figure 4.
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Figure 4: Graphs of the arsinh and the logarithm.

The relationship between the two functions can be expressed by

lim
ξ→∞

(arsinh ξ − log ξ − log 2) = 0 .

Hence, for big values the arsinh is equivalent to the logarithm, but it has not a

singularity at zero and it is smooth for small values. Now, using the calibration
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transformation and the arsinh, the true protein abundance xih can be modelled

by

(2.2) arsinh
ỹih − ah

bh
= xih + εih

where εih ∼ N(0, σε). To estimate (a1, a2, a3, b1, b2, b3) Huber et al. ([8]) pro-

posed a robust version of maximum likelihood estimation. The robust version is

necessary because maximum likelihood estimation itself is very sensitive to devia-

tions from the normal distribution and to the presence of differentially expressed

proteins. The above estimation algorithm is implemented in the vsn-package for

the software R (both free available at http://cran.r-project.org). The resulting

benefits of calibration and normalization can be seen in the figures 5 and 6.
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Figure 5: Calibrated and transformed Cy3 spot volumes versus
calibrated and transformed Cy5 spot volumes.

In figure 5 it is shown that there is no more dye-specific gain for the cal-

ibrated and transformed spot volumes. Further, the bias for low spot volumes

has disappeared. The variance of the calibrated and transformed volumes versus

the rank of their mean is plotted in figure 6. It can be seen that there is no

more dependence between variance and mean. Now, after calibration and nor-

malization, we can use the benefit of the internal standard to reduce the gel-to-gel

variation and bring all gels on the same level. This means we set the calibrated

and arsinh-transformed treatment and control values in relation to the internal

standard value. More precisely we have to subtract the internal standard from

the treatment and control value, respectively, because ratios become differences

when the logarithm or the arsinh is applied on them. Hence, the standardized

treatment value is xi1 − xi3 and the standardized control value is xi2 − xi3.
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Figure 6: Variance of the calibrated and normalized spot vol-
umes versus the rank of their mean.

3. ANALYSIS OF LONGITUDINAL DIGE DATA

A frequent subject of DIGE studies is the comparison of the temporal

course of the protein expression in some treated probes to the temporal course

of the protein expression in some untreated probes. Since there are only a few

time points to be regarded such a study can be analyzed by using methods of

longitudinal data analysis. Here, we adapt such a method, given in Diggle et al.

([4]), to the situation of a DIGE experiment. The design for a time dependent

DIGE experiment is given in table 1. For each spot, which has been detected

Table 1: Design of a time dependent DIGE experiment.

replication 1 replication 2 ... replication m

time 1 gel11 gel12 ... gel1m
time 2 gel21 gel22 ... gel2m

...
...

...
. . .

...
time p gelp1 gelp2 ... gelpm

on each of the pm gels, the analysis is done separately. Recall, that for each spot

and each gel we get a standardized volume value for the treated probe and a
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standardized value for the untreated probe. We denote yhiq as the standardized

volume value for the spot in question on the jth gel at the qth time point within

the hth group (treated, untreated), where j = 1, ...,m , q = 1, ..., p and h = 1, 2.

Since we analyze the same protein over the time we need a model which heeds

the time-dependence of the values. Therefore, we regard the mixed linear model

(3.1) yhjq = βh + γhq + Uhj + Zhjq

where βh is the main effect of the hth group, γhq is the interaction between group

and time, Uhj ∼ N(0, ν2) is the random effect of the jth replication and Zhjq ∼

N(0, σ2) are the random errors. With the given distribution assumptions for

the random effects the vector Yhj = (Yhj1, Yhj2, ..., Yhjp) is normally distributed

with covariance matrix V = σ2I + ν2J . That means that the correlation between

two time points is given by ρ = ν2/(ν2 + σ2). At first we want to test the null

hypothesis that there is no treatment effect, i.e. testing βh = β for h = 1, 2,

meaning that the temporal course for the protein in the treated and untreated

probe are on the same level. The F -statistic for testing this hypothesis is given by

F1 = {BTSS1/(2− 1)}/{RSS1/(2m− 2)} ∼ F(2−1),(2m−2). The sums of squares

are given in the corrected ANOVA table 2 below. We are further interested in

the question if there is a treatment-time interaction, i.e. the temporal courses

are not parallel. This can be answered by testing the null hypothesis γhq = γq
for h = 1, 2 and for q = 1, ..., p. This null hypothesis means that the response

profiles of the group means are parallel. The according test statistic is given by

F2 = {ISS2/[(2−1)(p−1)]}/{RSS2/[(2m−2)(p−1)]} ∼ F(2−1)(p−1),(2m−2)(p−1).

Table 2: ANOVA table for the Analysis of longitudinal DIGE data.

source of variance sums of squares d.o.f.

between treatment BTSS1 = p
∑2

h=1 m(yh·· − y···)
2 2− 1

whole plot residual RSS1 = TSS1 −BTSS1 2m− 2

whole plot total TSS1 = p
∑2

h=1

∑m
j=1(yhj· − y···)

2

between time BTSS2 = 2m
∑p

q=1(y··q − y···)
2 p− 1

treatment-time ISS2 =
∑p

q=1

∑2
h=1 m(yh·q − y···)

2 (2− 1)×

interaction −BTSS1 −BTSS2 (p− 1)

split plot residual RSS2 = TSS2 − ISS2 (2m− 2)×
−BTSS2 − TSS1 (p− 1)

split plot total TSS2 =
∑2

h=1

∑m
j=1

∑p
q=1(yhjq − y···)

2 2pm− 1
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4. MISSING VALUE ESTIMATION

As mentioned in the beginning missing values are a general problem in 2-DE

data. In this section we present a method for the estimation of missing data, using

the k nearest neighbor method. We begin with some notation. Let E = (eij) be

the matrix of observations, where the rows are referred to protein spots and the

columns are referred to replications (gels). Hence, eij is the expression value of

protein i on gel j, with i = 1, ..., n and j = 1, ...,m, as given below.

(4.1)

















e11 ... e1m
...

...
ei1 eij eim
...

...
en1 ... enm

















Now, we can define distances between each pair of rows of E (Ei = (ei1, ..., eim)
′,

Ei′ = (ei′1, ..., ei′m)
′). The Euclidean distance is given by

(4.2) d1(Ei, Ei′) =
√

(ei1 − ei′1)2 + (ei2 − ei′2)2 + ...(eim − ei′m)2 ,

the Tschebyscheff distance is given by

(4.3) d2(Ei, Ei′) = sup |eij − ei′j | ,

j = 1, ...,m, and the Mahalanobis distance is given by

(4.4) d3(Ei, Ei′) =
√

(Ei − Ei′)TA−1(Ei − Ei′) ,

where A is the empirical covariance matrix of the m gels. The principle of the

k nearest neighbor method is now the following. For the row Ei the k nearest

neighbors are those rows of E with the k smallest distances to Ei. More details

on the k nearest neighbor method can be found in Ripley ([11]). This method

was used in nonparametric estimation of the density (see for example Rosenblatt

([12]) and regression (see for example Devroye ([3])) as well as in classification

problems (see for example Ketskemety ([10])). With the above given notations

missing protein measurements can be estimated as follows. Let Ei be the row

where the value eij is missing. Let Qi be the set of non missing values of Ei.

We denote these values by e′
ip, p = 1, ..., q, and E′

i = (e′
i1, ..., e

′
iq)

T . Let Es, s 6= i,

be the row s of the Matrix E. We suppose that esj is available and at least

q other esp are available, too, in the same columns as in Ei. Then we denote

E′
s = (e′

s1, ..., e
′
sq)

T and give the
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Definition 4.1. Ei and Es are neighbors if d(E
′
i, E

′
s) is small.

and

Definition 4.2. The k rows Es (s 6= i) with the k smallest distances to

Ei are the k nearest neighbors to Ei.

To estimate the missing value eij let es1j , es2j , ..., eskj be the esj such that

Es belongs to the k nearest neighbors of Ei. The missing value eij can now be

estimated by

(4.5) êmean
ij =

1

k

k
∑

l=1

eslj ,

(4.6) êwmean
ij =

1

k

k
∑

l=1

wisl
eslj ,

with

(4.7) wisl
=

1

d(E′
i, E

′
sl
)

k
∑

t=1

1
d(E′

i
,E′

st
)

,

or by

(4.8) êmedian
ij = median(es1j , es2j , ..., eskj) .

We applied the k nearest neighbor algorithm to protein expression data from a

neuroblastoma DIGE study. To get an idea of how good the method works, we

took a complete matrix A from which we generated an incomplete matrix B with

40% of randomly chosen missing values. The missing values where estimated

with the k nearest neighbor method by using different combinations of distances

(d1, d2, d3) and estimators (êmean
ij , êwmean

ij , êmedian
ij ) as well as different ks.

For each estimated matrix B we calculated the normalized root mean square

(RMS) error

(4.9)

√

m
∑

j=1

n
∑

i=1
(Aij −Bij)2/(n ∗m)

mean(A)
,

to compare it to the complete matrix A. By comparing the errors for the different

ways of estimation we came to the result that êmean
ij , êwmean

ij and êmedian
ij have a

similar performance. Further, we found out that the error is nearly the same

when the Euclidean or Mahalanobis distance is used, but it is higher when the

sup-distance is used. For the appropriate number of neighbors, we saw that the

error was smallest between 5 and 20 neighbors. We applied this missing value

estimation to get a balanced data structure for the analysis of the longitudinal

DIGE data using the mixed linear model described in section 3.
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