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1. INTRODUCTION

In biomedical research, studies in which repeated measurements are taken
on a series of individuals or experimental animals play an important role. Models
including random effects to model this kind of data enjoy an increasing popular-
ity. In these models it is assumed that all responses follow a similar functional
form, but with parameters that vary among individuals. The increasing popular-
ity of mixed-effects models lies in the flexible modeling of correlation structures,
where the total variation is specifically split in within-group and between-group
variation. This will often lead to more precise estimation of population parame-
ters. Especially in pharmacokinetic/pharmacodynamic (PK/PD) modeling most
studies include random effects in the models, thereby improving population pa-
rameter estimation.

Continuous biological processes are often described by systems of ordinary
differential equations (ODE), which unfortunately cannot account for noisy com-
ponents often present in biological systems, representing the parts of the dynamics
that we cannot predict or understand, or that we choose not to include in the ex-
plicit modeling. A natural extension is given by systems of stochastic differential
equations (SDE), where system noise is modeled by including a diffusion term of
some suitable form in the driving equations. In PK/PD modeling the focus is
most often on the infinitesimal changes of substances, which naturally leads to a
ODE-system. The inter-individual variability is modeled with the random effect,
and the intra-individual variability with an additive noise term (possibly after
some convenient transformation). However, noise in the differential equations
describing the behavior of the system requires an extension of the model class to
SDE models.

The theory for mixed-effects models is well developed for deterministic mod-
els (without system error), both linear and non-linear ([2, 3, 14, 25]), and stan-
dard software for model fitting is available, see e.g. ([18]) and references therein.
Early and important references in the pharmacokinetic field are ([21, 22]).
Estimating parameters in SDE models is not straightforward, except for simple
cases. A natural approach would be likelihood inference, but the transition den-
sities are rarely known, and thus it is usually not possible to write the likelihood
function explicitly. A variety of methods for statistical inference in discretely
observed diffusion processes has been developed during the past decades, see e.g.
([1, 4, 5, 6, 7, 9, 10, 13, 16, 17, 20, 23, 24]). However, to our knowledge there is
practically no theory at present for SDE models with random effects. In ([15]) it
is suggested to apply the Kalman filter to approximate the likelihood function for
a SDE model with random effects, with a non-linear drift term and a constant
diffusion term. Eventually, as SDE models will be more commonly applied to
biomedical data, there will be an increasing need for developing a theory includ-
ing mixed effects, and for results on the estimation of model parameters. In ([8])
methods for PK/PD population modeling are reviewed, but the authors regret
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that system noise is not considered since it is difficult to estimate, and that there
exists no software at present in the pharmacokinetic field.

In the present paper a class of statistical models is proposed where ran-
dom effects are incorporated into a diffusion model, and an expression for the
likelihood function is derived. In general, though, it is not possible to find an
explicit expression for the likelihood function, but in a very simple example it is
derived and explicit maximum likelihood estimators are found. The estimators
are evaluated in a simulation study and illustrated on experimental data.

2. THE MODEL

Consider the one-dimensional SDE model for some continuous process evolv-
ing in M different subjects randomly chosen from a population:

dX i
t = g(X i

t ,θ,b
i) dt+ σ(X i

t ,θ,b
i) dW i

t ; i = 1, ...,M(2.1)

bi ∼ N(0,Σ)

Xi
0 = xi0

where θ is a p-dimensional fixed effects parameter (the same for the entire pop-
ulation) and bi is a q-dimensional random effects parameter (subject specific),
which is assumed to follow a normal distribution in the population, with covari-
ance matrix Σ that is assumed known up to the parameter vector Ψ. TheW i

t are
standard Brownian motions. The W i

t and b
j are assumed mutually independent

for all 1 ≤ i, j ≤ M , and independent of X i
0. The drift and the diffusion coeffi-

cient functions g(·) and σ(·) are assumed known up to the parameters, and are
assumed sufficiently regular to ensure a unique solution. Let E ⊆ R denote the
state space of X i

t . Assume that the distribution of X
i
t given b

i and X i
s = x, t > s,

has a strictly positive density w.r.t. the Lebesgue measure on E, which we denote
by

y 7→ p
(

y, x, t− s|bi,θ
)

> 0 , y ∈ E .(2.2)

Assume the M subjects each are observed at the (ni + 1) discrete time points
(ti0, t

i
1, ..., t

i
ni
). Let yi be the (ni + 1)-dimensional response vector for the i’th

subject: yi = (yi0, ..., y
i
ni
), y(tij) = yi

tij
= yij , and let y be the N -dimensional total

response vector, N =
∑M

i=1(ni+1). Write t
i
j−tij−1 = ∆i

j for the distance between
observation j − 1 and j for subject i.

Parameters of the model are θ and Ψ, which we wish to estimate.
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3. MAXIMUM LIKELIHOOD ESTIMATION IN SDE MIXED

EFFECTS MODELS

To obtain the marginal density, we integrate the conditional density of the
data given the non-observable random effects bi with respect to the marginal
density of the random effects, using the fact that W i

t and b
i are independent.

This yields the likelihood

L(θ,Ψ|y) =
M
∏

i=1

p(yi|θ,Ψ) =
M
∏

i=1

∫

p(yi|bi,θ) p(bi|Ψ) dbi(3.1)

where L(·) is the likelihood and p(·) are densities. Now

p(yi|bi,θ) =
ni
∏

j=1

p(yij , y
i
j−1,∆

i
j |bi,θ)(3.2)

since X i
t given b

i is Markov, where the transition densities are as in (2.2), and,
by hypothesis,

p(bi|Ψ) = exp
{

−(bi)TΨ−1bi/2
}

√

|Ψ|(2π)q/2
,(3.3)

where T denotes transposition. Substituting (3.2) and (3.3) into (3.1) we obtain

L(θ,Ψ|y) =
M
∏

i=1

∫ ni
∏

j=1

p(yij , y
i
j−1,∆

i
j |bi,θ)

exp
{

−(bi)TΨ−1bi/2
}

√

|Ψ|(2π)q/2
dbi .(3.4)

Solving the integral yields the marginal likelihood of the parameters, independent
of the random effects bi. Note how it is straightforward to generalize to other dis-
tributions for the random effects by letting p(bi|Ψ) be any distribution depending
on the parameter Ψ. In general it will not be possible to find an explicit solution,
but in simple cases we can find an explicit expression for the likelihood, and even
find explicit estimating equations for the maximum likelihood estimators.

3.1. A random effect in Brownian motion with drift

In the simplest pharmacokinetic situation, the metabolism of a compound
is modeled as a mono-exponential decay in the following way (first-order kinetics):

dC(t)

dt
= −kC(t) ; C(0) = D/V(3.5)

with solution

C(t) = C(0) e−kt
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where C(t) is the concentration of the compound in plasma at time t after a bolus
injection, k is the (positive) rate elimination constant, D is the injected dose at
time t = 0, and V the apparent volume of distribution of the compound. Now
assume that we want to model the erratic behavior of the metabolic processes
responsible for the removal of the compound from plasma, by allowing k to vary
randomly as k+ ξ(t), where ξ(t) is a white noise process. Then ξ(t) dt = σ dW (t)
where W (t) is Brownian motion and σ a scaling parameter. Incorporating this
into (3.5), writing Xt = C(t) and β = −k, we obtain the equation

dXt = βXt dt+ σXt dWt ,

which is the equation of geometric Brownian motion. The state space E is
given by the positive real line. By applying Itô’s formula to the transformation:
Yt = logXt, we obtain a Brownian motion with linear drift:

dYt =
(

β − 1
2
σ2
)

dt+ σ dWt

with solution

Yt = Y0 +
(

β − 1
2
σ2
)

t+ σWt .

Assume an experiment is conducted on different subjects where the concentra-
tion of a compound in plasma is measured at different time points after a bolus
injection. We are interested in estimating the parameters in the population,
but expect individual differences in the metabolic processes, and would therefore
consider a random effect in β, which leads to the model:

Y i
t = Y i

0 +
(

β + βi − 1
2
σ2
)

t+ σW i
t(3.6)

βi ∼ N(0, σ2β) .

Another example where this model naturally arises is provided by the initial
growth of bacterial or tumor cell populations, where we expect β > 0.

In this simple example we have θ = (β, σ2) and Ψ = σ2β. We wish to

estimate ζ = (β, σ2, σ2β). The conditional distribution (Y
i
t |Y i

0 = yi0;β, σ
2, βi) is

Gaussian with

E
[

Y i
t |Y i

0 = yi0;β, σ
2, βi

]

= yi0 +
(

β + βi − 1
2
σ2
)

t

Var
[

Y i
t |Y i

0 = yi0;β, σ
2, βi

]

= σ2t

so the conditional transition density is given by

p(yij , y
i
j−1,∆

i
j ;β, σ

2, βi) =
1

√

2πσ2∆i
j

exp











−

(

yij − yij−1 −
(

β+βi− 1
2
σ2
)

∆i
j

)2

2σ2∆i
j











.

We will find the likelihood (3.4):

L(ζ|y) =
M
∏

i=1

∫

p(yi|βi, β, σ2) p(βi|σ2β) dβi .
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The computation would be much simplified if we assumed equidistant observa-
tions, that is ∆i

j = ∆ for all times and subjects, but unfortunately this is rarely
the case in real data. Not only will measurements often be taken with varying
time gaps, but different subjects might be measured at different time points.
In general nl 6= nk, and ∆

l
j 6= ∆k

j 6= ∆k
i (unbalanced data).

Due to the simplicity of the model, techniques adapted from linear regres-
sion with a random regression coefficient can be applied, (see e.g. [18]). Define
the precision factor: η2 = σ2/σ2β. The conditional densities can be written as
follows:

p(yi|βi, β, σ2) =
ni
∏

j=1

p(yij , y
i
j−1,∆

i
j |βi, β, σ2) =

=

ni
∏

j=1

1
√

2πσ2∆i
j

exp











−

(

yij − yij−1 −
(

β + βi − 1
2
σ2
)

∆i
j

)2

2σ2∆i
j











=
1

(2πσ2)
ni
2

exp











−

∑

j
1
∆i

j

(

yij − yij−1−
(

β + βi − 1
2
σ2
)

∆i
j

)2

2σ2











ni
∏

j=1

1
√

∆i
j

and

p(βi|σ2β) =
1

√

2πσ2β

exp

{

−(β
i)2

2σ2β

}

=
(η2)

1
2

√
2πσ2

exp

{

−(ηβ
i)2

2σ2

}

.

For ease of notation we define the parameter function α = β − 1
2
σ2 and the

quantities ∆i =
(

∏ni

j=1∆
i
j

) 1
ni and T i =

∑ni

j=1∆
i
j . The last sum is simply the

length of the observation interval for the i’th subject; tni
− t0. We obtain

L(ζ|y)=
M
∏

i=1

(η2)
1
2

(2πσ2∆i)
ni
2

∫

exp







−

∑

j
1
∆i

j

(

yij− yij−1− (α+βi)∆i
j

)2
+ (ηβi)2

2σ2







√
2πσ2

dβi.

Solving the last integral yields the marginal likelihood of the parameters, inde-
pendent of the random effects βi. Define the vectors

ỹi =
(

(∆i
1)
−

1
2 (yi1 − yi0), ..., (∆

i
ni
)−

1
2 (yini

− yini−1
), 0
)T

x̃i =
(

(∆i
1)

1
2 , ..., (∆i

ni
)

1
2 , 0
)T

z̃i =
(

(∆i
1)

1
2 , ..., (∆i

ni
)

1
2 , η
)T

where T indicates transposition. Then

‖ỹi − x̃iα− z̃iβi‖2 =
ni
∑

j=1

1

∆i
j

(

yij − yij−1 − (α+ βi)∆i
j

)2
+ (ηβi)2
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such that, splitting the sum of squares into two parts that are independent of
and dependent on the random effects, respectively, and noting that the integral
of the dependent part is simply the integral of a normal density up to a constant,
the likelihood function can be expressed as

L(ζ|y) =
M
∏

i=1

(η2)
1
2

(2πσ2∆i)
ni
2

∫ exp

{

−‖ỹ
i − x̃iα− z̃iβi‖2

2σ2

}

√
2πσ2

dβi

=
M
∏

i=1

(η2)
1
2

(2πσ2∆i)
ni
2

exp

{

−‖ỹ
i − x̃iα− z̃iβ̂i‖2

2σ2

}

1
√

T i + η2

=
(η2)

M
2

(2πσ2)
N−M

2

M
∏

i=1

1

(∆i)
ni
2

√

T i + η2
×

exp















−

∑

i

(

∑

j
1
∆i

j

(

yij − yij−1 − (α+ β̂i)∆i
j

)2
+ (ηβ̂i)2

)

2σ2















=
(η2)

M
2

(2πσ2)
N−M

2

M
∏

i=1

1

(∆i)
ni
2

√

T i + η2
×

exp







−

∑

i,j
1
∆i

j

(yij − yij−1− α∆i
j)
2 −∑i(y

i
ni
− yi0 − αT i)2(T i+η2)−1

2σ2







,(3.7)

where β̂i minimizes the sum of squares ‖ỹi − x̃iα − z̃iβi‖2 for fixed α, and is
obtained from standard regression theory:

β̂i = ((z̃i)T z̃i)−1(z̃i)T (ỹi − x̃iα) =
∑ni

j=1(y
i
j − yij−1 − α∆i

j)
∑ni

j=1∆
i
j + η2

=
yini
− yi0 − αT i

T i + η2
.

These directly provide predictors of the random effects given the parameters.
The log-likelihood is

logL(ζ|y) = M

2
log η2 − N −M

2
log(2πσ2)− 1

2

M
∑

i=1

log
(

(∆i)ni(T i + η2)
)

−

∑

i,j
1
∆i

j

(yij − yij−1 − α∆i
j)
2 −∑i(y

i
ni
− yi0 − αT i)2(T i + η2)−1

2σ2
.(3.8)

The derivatives of the log-likelihood function with respect to the parameters yield
the score functions whose zeros will provide the maximum likelihood estimators
of the parameters. Straightforward calculations yield the estimating equations,
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where the estimator of a parameter is indicated with a hat, e.g. β̂:

0 =
M
∑

i=1

(

yini
− yi0 − α̂T i

T i + η̂2

)

0 =

M
∑

i=1

(

σ̂β
2T i

T i + η̂2
− (y

i
ni
− yi0 − α̂T i)2

(T i + η̂2)2

)

0 =

M
∑

i=1





ni
∑

j=1

(

(yij − yij−1 − α̂∆i
j)
2

∆i
j

)

− (y
i
ni
− yi0 − α̂T i)2

T i + η̂2



− σ̂2(N −M) .

If we assume that each subject is observed in the same time interval, that is, we
assume T i = T for all 1 ≤ i ≤M , this simplifies to the explicit estimators:

β̂ = α̂+
σ̂2

2
(3.9)

σ̂2 =
1

N − 2M
(

(N −M)SSQ∆ −MSSQT
)

(3.10)

σ̂2β =
N −M

T (N − 2M)
(

SSQT − SSQ∆
)

(3.11)

where

α̂ =
1

MT

M
∑

i=1

(yini
− yi0)(3.12)

SSQT =
1

MT

M
∑

i=1

(yini
− yi0 − α̂T )2(3.13)

SSQ∆ =
1

N −M

M
∑

i=1

ni
∑

j=1







(

yij − yij−1 − α̂∆i
j

)2

∆i
j






.(3.14)

The asymptotic variances of the estimators estimated from the inverted Fisher
information evaluated at the optimum is given by:

V̂ar(β̂) =
σ̂2βT + σ̂2

MT
+

σ̂4

2(N − 2M)(3.15)

V̂ar(σ̂) =
σ̂2

2(N − 2M)(3.16)

V̂ar(σ̂β) =
(σ̂2βT + σ̂2)2

2MT 2σ̂2β
+

σ̂4

2(N − 2M)T 2σ̂2β
.(3.17)

There will only be positive solutions for the variance parameters in the data set
if

M

N −M
SSQT < SSQ∆ < SSQT .(3.18)



146 S. Ditlevsen and A. De Gaetano

The last inequality ensures existence of the estimator of the random effect vari-
ance parameter σ2β , and can be interpreted in the following way: For simplicity

assume ∆i
j = ∆ for all i, j. Define a

i
j = (y

i
j − yij−1 − α̂∆), the increment for sub-

ject i from observation j − 1 to observation j subtracted the expected increment
in the population. Then

SSQT =
1

MT

M
∑

i=1

( ni
∑

j=1

aij

)2

and SSQ∆ =
1

MT

M
∑

i=1

ni
∑

j=1

(aij)
2 .

For SSQ∆ to be smaller than SSQT, it is required that at least for one i,
∑ni

j=1(a
i
j)
2 < (

∑ni

j=1 a
i
j)
2, which e.g. will be the case if all aij are of the same

sign. If this is the case it means that all observed increments are either above
or under the expected increments for the population, which indicates that the
decay rate for this specific subject most probably is different from the general
population decay rate β, that is βi 6= 0. On the other hand, to estimate the
system noise parameter σ2, we require ∆T SSQT < SSQ∆. The left hand side
increases when the number of measured points for each subject decreases. In this
case it is natural that we have more information on variation between subjects
than variation within subjects.

Considering model (3.6) with σ2β = 0, such that β
i = 0 for all i (no random

effects), leads to the log-likelihood function

logL(β, σ2|y) = −N −M

2
log(2πσ2)−

∑

i

ni
2
log(∆i)−

∑

i,j

(yij − yij−1 − α∆i
j)
2

2σ2∆i
j

which could also be derived from (3.8) by letting η2 → ∞. This leads to the
maximum likelihood estimators

β̂ = α̂+ σ̂2/2(3.19)

σ̂2 = SSQ∆ .(3.20)

The asymptotic variances of the estimators estimated from the inverted Fisher
information evaluated at the optimum is given by:

V̂ar(β̂) =
σ̂2

MT
+

σ̂4

2(N −M)
(3.21)

V̂ar(σ̂) =
σ̂4

2(N −M)
.(3.22)
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3.2. Simulation results

To check the estimators a simulation study was performed. Six sets of
parameter values were used to investigate the behavior of the estimators for
different relations among the variance components, namely for σ2 À σ2β, σ

2 ≈
σ2β , and σ2 ¿ σ2β , respectively, and for two different values of β, consistent
with physiologically observed decay rate values. Moreover, two sets of values for
the experimental designs were investigated, namely for M À n and M ¿ n,
respectively. The values used in the different simulations are reported in Table 1.

Table 1: Values used in the different simulations.

Parameter values used in simulations

β σ2 σ2β M n

1 -0.02 0.02 0.02 10 50
2 -0.02 0.2 0.02 10 50
3 -0.02 0.02 0.2 10 50
4 -0.02 0.02 0.02 50 10
5 -0.02 0.2 0.02 50 10
6 -0.02 0.02 0.2 50 10
7 -0.2 0.02 0.02 10 50
8 -0.2 0.2 0.02 10 50
9 -0.2 0.02 0.2 10 50
10 -0.2 0.02 0.02 50 10
11 -0.2 0.2 0.02 50 10
12 -0.2 0.02 0.2 50 10

For each of these 12 sets of values, 1.000 data sets were generated from
model (3.6), by simulating trajectories according to the Milstein scheme with a
step size of 0.01, see Kloeden and Platen (1999), and retaining the observation
points at equidistant time points depending on the chosen n. For all simulations
the total length of the simulation interval was 100, and the initial value was
log(100). On the simulated data sets, parameters were estimated using Equations
(3.9) to (3.14). Parameters were also estimated assuming (wrongly) the model
with no random effects by Equations (3.19) and (3.20). Results are reported in
Table 2, where the 95% confidence intervals are the 2.5% and 97.5% empirical
quantiles of estimates, and are given in brackets.

In all 12.000 simulations the estimators existed (σ̂2, σ̂2β > 0), but for β =
−0.02 a considerable part of the estimates were positive, reflected in the large
97.5% quantiles for β̂. Not surprisingly, β is more difficult to estimate when σ2β is

large. The diffusion parameter σ2 is well determined with 95% of estimates lying
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no more than 11% from the true value, whereas σ2β is more difficult to estimate
and depends on the size of M : for small M , the distribution of estimates is
right-skewed with wide confidence limits; for larger M , σ2β is better determined.

Table 2: Mean of estimates (95% CI) from simulations of model (3.6).
For each set of values, 1.000 data sets were generated and
the parameters were estimated using (3.9) to (3.11) (assum-
ing random effects) and (3.19) and (3.20) (assuming no ran-
dom effects). For all simulations T = 100 and Y i

0 = log(100).
See also main text.

Assuming random effects

β̂ σ̂2 σ̂2
β

1 -0.018 (-0.094;0.060) 0.020 (0.018;0.022) 0.018 (0.006;0.035)
2 -0.019 (-0.097;0.056) 0.200 (0.178;0.222) 0.018 (0.006;0.034)
3 -0.027 (-0.263;0.210) 0.020 (0.018;0.022) 0.178 (0.063;0.317)
4 -0.021 (-0.054;0.012) 0.020 (0.018;0.022) 0.020 (0.013;0.027)
5 -0.021 (-0.057;0.017) 0.200 (0.178;0.221) 0.020 (0.013;0.028)
6 -0.020 (-0.119;0.080) 0.020 (0.018;0.022) 0.197 (0.137;0.267)
7 -0.199 (-0.276;-0.126) 0.020 (0.018;0.022) 0.017 (0.006;0.034)
8 -0.198 (-0.281;-0.123) 0.201 (0.180;0.223) 0.017 (0.005;0.035)
9 -0.198 (-0.440;0.029) 0.020 (0.018;0.022) 0.175 (0.066;0.337)
10 -0.200 (-0.233;-0.167) 0.020 (0.018;0.022) 0.020 (0.013;0.026)
11 -0.201 (-0.236;-0.163) 0.200 (0.178;0.222) 0.020 (0.013;0.027)
12 -0.202 (-0.302;-0.096) 0.020 (0.018;0.022) 0.195 (0.135;0.260)

Assuming no random effects (wrong model)

β̂ σ̂2 -

1 0.000 (-0.076;0.079) 0.057 (0.033;0.091)
2 -0.001 (-0.082;0.076) 0.236 (0.203;0.275)
3 0.155 (-0.089;0.404) 0.384 (0.151;0.667)
4 0.087 ( 0.039;0.141) 0.237 (0.166;0.315)
5 0.088 ( 0.033;0.144) 0.418 (0.339;0.510)
6 1.075 ( 0.729;1.458) 2.209 (1.543;2.985)
7 -0.181 (-0.260;-0.107) 0.056 (0.033;0.089)
8 -0.181 (-0.264;-0.105) 0.236 (0.202;0.277)
9 -0.020 (-0.292;0.257) 0.377 (0.156;0.708)
10 -0.092 (-0.138;-0.042) 0.237 (0.170;0.310)
11 -0.092 (-0.142;-0.039) 0.418 (0.343;0.499)
12 0.884 ( 0.547;1.273) 2.192 (1.519;2.907)

If a model with no random effects is wrongly assumed, both β and σ2 are
poorly estimated. The estimates are worse for large σ2β and largeM , as expected.
This illustrates the need to include random effects in the modelling process if they
are present in the data.
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3.3. Application to Metoprolol Tartrate dissolution data

The method was applied on Metoprolol Tartrate dissolution data taken
from [19], where the percentage of released drug of four types of tablet formu-
lations of 100-mg Metoprolol Tartrate are tabulated at 5-min intervals up to 30
minutes and at 45 minutes after the onset of the experiments, except for the Slow
Dissolving Test Formulation, where measurements were taken up to two hours,
for details see [19]. Each experiment was repeated six times. The data were
also analysed in [12, 13]. In [12], they found that the formulation closest to an
exponential behavior was the Slow Dissolving Test Formulation, which is used
here to illustrate the methods. Only data up to 45 minutes are used.

The data are illustrated in Figure 1. The percentage of Metoprolol not
yet dissolved is modeled as (3.6), where yij are the log-transformed measured
percentages for experiment i at time point j. Moreover, the measurement at 30
minutes for experiment four was removed in the analysis since the dissolution
process cannot go backwards, see Figure 1. Finally M = 6 and N = 41.
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Figure 1: Dissolution profiles of Metoprolol Tartrate tablets.
Data is taken from [19].

The data set yields the following quantities: α̂ = −0.026, SSQT = 0.000166
and SSQ∆ = 0.0000699 such that condition (3.18) is fulfilled. Estimates and their
standard errors are reported in Table 3. The estimates of β are in agreement with
comparable values found in [12, 13, 19]. Since σ̂2β is small compared to σ̂

2, the
estimates in the model without random effects only change slightly.
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Table 3: Metoprolol data estimates using Equations (3.9) to (3.11)
(assuming random effects) and (3.19) and (3.20) (assuming
no random effects). The standard errors were estimated
using Equations (3.15), (3.16), (3.17), (3.21) and (3.22).

Assuming random effects Assuming no random effects

estimate std error estimate std error

β̂ -0.02594 0.00083 -0.02593 0.00054
σ̂ 0.00707 0.00093 0.00836 0.00001
σ̂β 0.00171 0.00071 - -

Figure 2 shows simulated trajectories from the random effects model with
the estimated parameters, and the observed points from two of the six dissolution
profiles.
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Figure 2: Simulated trajectories from model (3.6), incorporating the
estimated parameters and random effect estimates for two
of the dissolution profiles. The points are the observed data
for the same two dissolution profiles.
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4. SUMMARY

In the present paper we propose to extend random effects techniques to
the estimation of parameters in SDE models. We believe this extension to be
both relevant and needed. It is relevant because as the sophistication of builders
and users of mathematical models of biological processes increases, there will be a
progressive growth of the use of stochastic differential equations to represent noisy
processes. When only few observations can be collected from any given human or
animal experimental subject, as is usually the case, recourse to random or mixed
effects models will be necessary.

Statistical inference for this class of models is not straightforward. In the
present work, a very simple model gave rise to explicit expressions for the likeli-
hood function and for the maximum likelihood estimators. This model is in its
deterministic version frequently employed in pharmacokinetics (e.g. to represent
drug elimination from plasma or initial tumor cell population growth), and the
proposed development is therefore not only of academic interest. However, it is
often the case that more complicated models with nonlinearities and/or several
compartments are necessary to plausibly represent the system under observation.

Unfortunately, in general it will not be possible to find an explicit expression
for the likelihood function (3.4) since the transition densities are rarely known.
One possibility could be to approximate the likelihood function numerically, and
then optimize the approximated likelihood function directly. It is obviously nec-
essary to find other estimation procedures if the proposed model class is to be of
interest to a wider audience.
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