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Abstract:

• A new methodology, based on the asymptotic separation of probability laws, was
introduced by Gonçalves, Jacob and Mendes-Lopes (2000) in the development of the
statistical inference of bilinear models, namely in the construction of a consistent
decision procedure for the simple bilinear ones.

This paper presents a generalisation of that study by introducing in the procedure a
smoother decision statistics.

The aim of this decision method is to discriminate between an error process and a
simple bilinear model. So, we use it as a consistent test, its consistence being obtained
by establishing the asymptotic separation of the sequences of probability laws defined
by each hypothesis.

The convergence rate of the procedure is studied under the truthfulness of the error
process hypothesis. An exponential decay is obtained.
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1. INTRODUCTION

In Gonçalves, Jacob and Mendes-Lopes (2000) a new methodology of sta-
tistical decision to discriminate between an error process and a diagonal simple
bilinear model was presented. This methodology was inspired in an asymptotic
separation result obtained, in 1976, by Geffroy, which appeared particularly use-
ful to construct consistent tests and estimators for detecting a signal in a white
noise (Pieczinsky, 1986, Moché, 1989).

Let X = (Xt, t ∈ Z) be a real stochastic process whose law belongs to a set
of parametric laws (Pθ, θ ∈ Θ), with Θ = {θ1, θ2} . Following Geffroy (1976), we
say that the two laws Pθ1 and Pθ2 are asymptotically separated if there exists a
sequence of Borel sets of RT , (AT , T ∈ N), such that





P T
θ0

(AT ) −→
T→+∞

1

P T
θ1

(AT ) −→
T→+∞

0 ,

where P T
θ denotes the probability law of (X1, X2, ..., XT ) .

In this way, a consistent decision rule was defined and studied in Gonçalves,
Jacob and Mendes-Lopes (2000) to separate the hypothesis “H0 : X follows an
error process” against “H1 : X follows a diagonal bilinear model”.

With the aim of improving the rate of convergence of the decision procedure
we present, in this paper, a generalisation of that study in which a smoother
statistics is considered in the definition of the sequence of acceptance regions
(AT )T∈N. In fact, unlike what we have considered in that pioneer study, the
statistics here considered is, in general, a continuous function of the sample.

2. GENERAL PROPERTIES AND HYPOTHESES

Let us consider the diagonal bilinear model X = (Xt, t ∈ Z) defined by

(1) Xt = ϕXt−1 εt−1 + εt ,

where ϕ is a real number and ε = (εt, t ∈ Z) a real stochastic process.

We are going to construct a decision procedure to discriminate between the
hypotheses H0 : ϕ = 0 against H1 : ϕ = β (β > 0, fixed).

Let us denote the process X = (Xt, t ∈ Z) distribution and the correspond-
ing expectation by Pϕ and Eϕ respectively, when the parameter of the model is
equal to ϕ.
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We suppose that

C1: ε = (εt, t ∈ Z) is a strictly stationary and ergodic process.

C2: E
∣∣log |εt|

∣∣ < +∞ and E
(
log |εt|

)
+ log |ϕ| < 0.

Under these conditions, model (1) has a strictly stationary and ergodic
solution, Pϕ-a.s. unique, given by

Xt = εt +
+∞∑

n=1

ϕnεt−n

n−1∏

j=0

εt−1−j (a.s.) , t ∈ Z .

If, in adition, we have

C3: E
∣∣log |Xt|

∣∣ < +∞ and E
(
log |Xt|

)
+ log |ϕ| < 0 ,

then model (1) is invertible and

εt = Xt +
+∞∑

n=1

(−ϕ)nXt−n

n−1∏

j=0

Xt−1−j (a.s.) , t ∈ Z .

Under conditions C1, C2 and C3 we deduce, in view of the two equalities
above, that Xt = εt, Xt and εt denoting the σ-fields generated by (Xt, Xt−1, ...)
and (εt, εt−1, ...) respectively.

Hereafter we assume these general hypotheses concerning the stationarity,
ergodicity, and invertibility of model (1). We also define the process Y=(Yt, t∈Z)
by

Yt = Xt

(
Xt +

∞∑

n=1

(−ϕ)nXt−n

n−1∏

j=0

Xt−1−j

)
(a.s.) .

This process is also strictly stationary and ergodic. We will denote it by Yt (ϕ),
if its dependence on the parameter ϕ is to be emphazised.

We note that Xt = ϕYt−1 +εt, according to (1). Otherwise, taking into ac-
count that E| log |εt|| < +∞ and E| log |Xt|| < +∞, we have Yt (ϕ) 6= 0, a.s., ∀ϕ.

3. A CONSISTENT TEST

We are going to construct a decision procedure to distinguish, in model (1),
the hypotheses

H0 : ϕ = 0 against H1 : ϕ = β (β > 0)

from T observations of the process X, denoted by x1, x2, ..., xT .
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The procedure we are proposing is based, as referred above, on the notion of
asymptotic separation of two families of probability laws (Geffroy (1980), Moché
(1989)) and it generalises recent works as, for instance, Gonçalves, Jacob, Mendes-
Lopes (2000), Gonçalves, Martins, Mendes-Lopes (2001).

First of all, we establish the asymptotic separation of the families of prob-
ability laws associated to the hypotheses under investigation by presenting a
sequence of Borel sets of RT , (AT , T ∈ N) , called separation regions, such that





P T
0 (AT ) −→

T→+∞
1

P T
β (AT ) −→

T−→+∞
0

denoting by P T
ϕ the probability law of (X1, ..., XT ) when the parameter is equal

to ϕ.

We will accept H0 : ϕ = 0 against H1 : ϕ = β > 0 if (x1, ..., xT ) ∈ AT .

The separation regions that we are going to propose are inspired in previous
works. In those papers the test takes into account the number of times that

u
(
β
2u− v

)
> 0 when (u, v) = (yt−1, xt) , yt denoting the particular value of Yt,

t = 1, ..., T . So, the set

D =

{
(u, v) ∈ R2 : u > 0, v <

β

2
u

}
∪

{
(u, v) ∈ R2 : u < 0, v >

β

2
u

}

=

{
(u, v) ∈ R2 : u

(
β

2
u− v

)
> 0

}

is very important in the construction of a convergent test for the same hypotheses.

The generalization here studied consider a test statistic which is defined
following the same basical idea but using a smoother function, eventually a con-
tinuous one.

From the definition of D we have

(yt−1, xt) ∈ D ⇐⇒

(
yt−1> 0,

β

2
yt−1−xt > 0

)
or

(
yt−1< 0,

β

2
yt−1− xt < 0

)
.

So, if we consider a distribution function F of a symmetrical law we have

(yt−1, xt) ∈ D =⇒

(
2F (yt−1)− 1 ≥ 0, 2F

(
β

2
yt−1 − xt

)
− 1 ≥ 0

)

or

(
2F (yt−1)− 1 ≤ 0, 2F

(
β

2
yt−1 − xt

)
− 1 ≤ 0

)

=⇒
[
2F (yt−1)− 1

] [
2F

(
β

2
yt−1 − xt

)
− 1

]
≥ 0 .

The study here presented takes into account this product. Moreover, a
great degree of generality is achieved as the distribution function considered in
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the first factor may be different from that appearing in the second one. So, let
us define

g(u, v) =
[
2G(u)− 1

] [
2F

(
β

2
u− v

)
− 1

]
, (u, v) ∈ R2 ,

where F and G are distribution functions of symmetrical laws with decreasing
densities on R+.

Let us consider the following regions

AT =

{
(x1, x2, ..., xT ) ∈ RT :

T∑

t=2

g
(
yt−1 (β) , xt

)
≥ 0

}
.

In what follows, we take gt = g(yt−1 (β) , xt) and gT = 1
T

∑T
t=2 gt, and we

assume the hypothesis:

C4: the conditional distribution of εt given εt−1 is symmetrical.

We have the following result:

Lemma 3.1.

(i) Under the hypothesis ϕ = 0, lim
T

gT = E0 (g2) > 0.

(ii) Under the hypothesis ϕ = β > 0, lim
T

gT = Eβ (g2) < 0.

Proof: By the ergodic theorem we have

lim
T

gT = Eϕ (g2) (a.s.) ,

with

Eϕ (g2) = Eϕ

(
g
(
Y1 (β) , X2

))

= Eϕ

([
2G (Y1 (β))− 1

] [
2F

(
β

2
Y1 (β)−X2

)
− 1

])
.

Let us now study the sign of the limit under each one of the hypotheses H0

and H1. In what follows, we take Y1 (β) = Y1.

Under ϕ = 0 we have X2 = ε2 and so

E0 (g2) = E0

(
[2G (Y1)− 1]

[
2F

(
β

2
Y1 − ε2

)
− 1

])

= E0

(
[2G (Y1)− 1]E0

{[
2F

(
β

2
Y1 − ε2

)
− 1

]∣∣∣∣ ε1
})

= E0

(
[2G (Y1)− 1] I{Y1>0}E0

{[
2F

(
β

2
Y1 − ε2

)
− 1

]∣∣∣∣ ε1
})

+

+E0

(
[2G (Y1)− 1] I{Y1<0}E0

{[
2F

(
β

2
Y1 − ε2

)
− 1

]∣∣∣∣ ε1
})

.
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When Y1 > 0, we have 2G (Y1) − 1 > 0 and E0

{[
2F
(
β
2Y1 − ε2

)
− 1
]∣∣∣ ε1

}
> 0

using the symmetry of the law of -εt given εt−1; if Y1 < 0 then 2G (Y1)− 1 < 0

and E0

{[
2F
(
β
2Y1 − ε2

)
− 1
]∣∣∣ ε1

}
< 0. So, E0 (g2) > 0.

Under ϕ = β > 0 we have Y1 = X1ε1, X2 = βX1ε1 + ε2 and then

Eβ (g2) = Eβ

(
[2G (X1ε1)− 1]

[
2F

(
β

2
X1ε1 − βX1ε1 − ε2

)
− 1

])

= Eβ

(
[2G (X1ε1)− 1]Eβ

{[
2F

(
−
β

2
X1ε1 − ε2

)
− 1

]∣∣∣∣ ε1
})

= Eβ

(
[2G (X1ε1)− 1] I{X1ε1>0}Eβ

{[
2F

(
−
β

2
X1ε1 − ε2

)
− 1

]∣∣∣∣ ε1

})

+Eβ

(
[2G (X1ε1)− 1] I{X1ε1<0}Eβ

{[
2F

(
−
β

2
X1ε1 − ε2

)
− 1

]∣∣∣∣ ε1

})
.

As previously, 2G (X1ε1) − 1 > 0 and Eβ

{[
2F
(
−β

2X1ε1 − ε2

)
− 1
]∣∣∣ ε1

}
< 0,

when X1ε1 > 0; on the other hand, if X1ε1 < 0, 2G (X1ε1) − 1 < 0 and

Eβ

{[
2F
(
−β

2X1ε1 − ε2

)
− 1
]∣∣∣ ε1

}
> 0. Then Eβ (g2) < 0.

We immediately deduce, by the bounded convergence theorem, the follow-
ing result:

Corollary 3.1.

(i) If ϕ = 0, P0 (gT ≥ 0) −→ 1, as T −→ +∞.

(ii) If ϕ = β > 0, Pβ (gT ≥ 0) −→ 0, as T −→ +∞.

Taking into account the definition of regions AT , we conclude that the
probability laws of process (Xt, t ∈ Z) defined by the hypotheses H0 : ϕ = 0 and
H1 : ϕ = β > 0 are asymptotically separated.

So, AT is the acceptance region of a consistent test for these hypotheses.

4. CONVERGENCE RATE OF THE DECISION PROCEDURE

The convergence rate of the decision procedure, presented in the previous
paragraph as a test, may be evaluated when we consider, in the acceptance regions
AT , the true value of Yt, i.e., Yt (ϕ) , and we assume that the null hypothesis is
true. Let us denote these borelians by AT (ϕ) .
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We are going to evaluate the convergence rate of P0

(
AT (ϕ)

)
. We have

P0

(
AT (ϕ)

)
= P0

(
T∑

t=2

gt < 0

)

≤ E0

[
exp

(
−

T∑

t=2

gt

)]

= E0

{
E0

[
exp

(
−

T∑

t=2

gt

)∣∣∣∣∣ εT−1

]}

= E0

{
exp

(
−

T−1∑

t=2

gt

)
E0

[
exp (−gT )| εT−1

]
}

Firstly, we study E0

[
gt| εt−1

]
, t ∈ Z.

E0

[
gt| εt−1

]
=
[
2G
(
ε2
t−1

)
− 1
]{

2E0

[
F

(
β

2
ε2
t−1 − εt

)∣∣∣∣ εt−1

]
− 1

}
.

Let us suppose that ε verifies the following condition

C5: εt = ηt−1Zt, t ∈ Z

where ηt is a measurable and strictly positive function of εt, εt−1, ... with
0 < m ≤ ηt ≤ M and (Zt, t ∈ Z) is a sequence of independent and identically
distributed real random variables, with distribution function F and density f

that we suppose symmetrical and decreasing on R+. We also assume that Zt is
independent of εt−1.

So,

E0

[
F

(
β

2
ε2
t−1 − εt

)∣∣∣∣ εt−1

]
= E0

[
F

(
β

2
ε2
t−1 − ηt−1Zt

)∣∣∣∣ εt−1

]

=

∫ +∞

−∞
F

(
β

2
ε2
t−1 − ηt−1u

)
f(u) du

≥

∫ +∞

−∞
F

(
β

2
ε2
t−1 −Mu

)
f(u) du .

Choosing the function

G (v) =

∫ +∞

−∞
F

(
β

2
v −Mu

)
f(u) du ,

we note that, by lemma 5.1 (in the appendix), G is the distribution function of
a law with a symmetrical density, decreasing on R+. Moreover, we obtain

E0

[
F

(
β

2
ε2
t−1 − εt

)∣∣∣∣ εt−1

]
≥ G

(
ε2
t−1

)
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and so

E0

[
gt| εt−1

]
≥
[
2G
(
ε2
t−1

)
− 1
]2

.

From Hoeffding inequality (Hoeffding (1953)),

E0

[
e−gt

∣∣ εt−1

]
≤ e−E0[gt|εt−1]+

1
2 [2G(ε

2
t−1)−1]

2

≤ e−
1
2 [2G(ε

2
t−1)−1]

2

.

Then

P0(AT ) ≤ E0

{
exp

(
−

T−1∑

t=2

gt

)
exp

[
−
1

2

(
2G
(
ε2
T−1

)
− 1
)2
]}

= E0

{
exp

(
−

T−2∑

t=2

gt

)
E0

[
exp(−gT−1) exp

[
−
1

2

(
2G(ε2

T−1)− 1
)2
]∣∣∣∣ εT−2

]}
.

From lemma 5.5 (see appendix), we have the following inequality, for every
t ∈ Z,

(2) E0

{
exp (−gt−1) exp

[
−
1

2

(
2G
(
ε2
t−1

)
− 1
)2
]∣∣∣∣ εt−2

}
≤

≤ E0

[
exp (−gt−1)| εt−2

]
E0

[
exp

[
−
1

2

(
2G
(
ε2
t−1

)
− 1
)2
]∣∣∣∣ εt−2

]
.

In fact,

i) given εt−2, gt−1 =
[
2G
(
ε2
t−2

)
− 1
] [

2F
(
β
2 ε

2
t−2 − xt−1

)
− 1
]
has the form

of the function h(x) = c [2R (a− dx)− 1] presented in lemma 5.2 (see the ap-
pendix), as xt−1 = ηt−2Zt−1 under H0 and c = 2G

(
ε2
t−1

)
− 1 > 0, R = F,

a = β
2 ε

2
t−1 (> 0) , and d = ηt−2 (> 0) .

ii) On the other hand, 1
2

[
2G
(
d2x2

)
− 1
]2

= 1
2

[
G
(
d2x2

)
−G

(
−d2x2

)]2
is

a symmetrical function, increasing on R+, null in the origin and bounded.

As Zt−1 is independent of εt−2, the inequality (2) takes the form

E0

[
exp
(
−h (Zt−1)− g (Zt−1)

)]
≤ E0

[
exp (−h (Zt−1))

]
E0

[
exp (−g (Zt−1))

]
.

We can then write, with uT = exp

(
−

T−2∑
t=2

gt

)
,

P0

(
AT (ϕ)

)
≤

≤ E0

{
uTE0

[
exp (−gT−1)| εT−2

]
E0

[
exp

[
−1

2

(
2G
(
ε2
T−1

)
− 1
)2]∣∣∣ εT−2

]}
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= E0

{
E0

[
exp

(
−

T−1∑
t=2

gt

∣∣∣∣ εT−2

)
E0

[
exp

[
−1

2

(
2G
(
ε2
T−1

)
− 1
)2]∣∣∣ εT−2

]]}

≤ E0

{
E0

[
exp

(
−

T−1∑
t=2

gt | εT−2

)
E0

[
exp

[
−1

2

(
2G
(
m2Z2

T−1

)
− 1
)2]∣∣∣ εT−2

]]}
.

But E0

[
exp

[
−1

2

(
2G
(
m2Z2

T−1

)
− 1
)2]∣∣∣ εT−2

]
is constant as Zt−1 is inde-

pendent of εT−2, ∀t ∈ Z. So,

P0

(
AT (ϕ)

)
≤ E0

[
exp

[
−
1

2

(
2G
(
m2Z2

T−1

)
− 1
)2
]]

E0

[
exp

(
−

T−1∑

t=2

gt

∣∣∣∣∣ εT−2

)]
.

Using recursively the procedure leading to

E0

[
exp

(
−

T∑

t=2

gt

)]
≤ cE0

[
exp

(
−

T−1∑

t=2

gt

)]

we obtain

P0

(
AT (ϕ)

)
≤

{
E0

[
exp

[
−
1

2

(
2G
(
m2Z2

)
− 1
)2
]]}T−1

where Z is a random variable with the same law of Zt.

Finally, we may state the following result:

Theorem 4.1. Let X = (Xt, t ∈ Z) be a real stochastic process satisfying
the model (1) subject to the general conditions C1, C2 and C3.

If the error process satisfies condition C5 and the function G is defined by

G (v) =
∫ +∞
−∞ F

(
β
2 v −Mu

)
f(u)du then the proposed decision rule satisfies

P0 (AT (ϕ)) ≥ 1−

{
E0

[
exp

[
−
1

2

(
2G
(
m2Z2

)
− 1
)2
]]}T−1

, ∀T ∈ N .

5. APPENDIX

The convergence rate study has been developped assuming absolute conti-
nuity and symmetry of the distribution laws involved. So, in this appendix we
establish several lemmas concerning distribution functions of symmetrical densi-
ties.
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Lemma 5.1. Let f be a symmetrical density decreasing on R+ with dis-
tribution function F . Let a and b be fixed real numbers, with a > 0. Then the
function G̃ defined by

G̃ (v)=

∫ +∞

−∞
F (av − bu) f (u) du

is the distribution function of a law with symmetrical density g decreasing on R+.

Proof: As we can differentiate under the integral sign (Métivier, 1972,
p. 156) we obtain

d

dv
G̃ (v) =

∫ +∞

−∞
af (av − bu) f (u) du .

Then, as f is symmetrical,

d

dv
G̃ (−v) =

∫ +∞

−∞
af (−av − bu) f (u) du

=

∫ +∞

−∞
af (av + bu) f (u) du

=

∫ +∞

−∞
af (av − by) f (y) dy

=

∫ +∞

−∞
af (av − bu) f (u) du

=
d

dv
G̃ (v) .

Denoting d
dv
G̃ = g, g is a symmetrical function. Let us prove that g is a

density function and G̃ the distribution function of density g.

From Fubini, we obtain

∫ +∞

−∞
dv

∫ +∞

−∞
af (av − bu) f (u) du =

∫ +∞

−∞
f(u)

(∫ +∞

−∞
af (av − bu) dv

)
du .

But ∫ +∞

−∞
af (av − bu) dv =

∫ +∞

−∞
af (z)

1

a
dz = 1 .

Then ∫ +∞

−∞
dv

∫ +∞

−∞
af (av − bu) f (u) du = 1 .
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On the other hand, again from Fubini,

∫ x

−∞
g(v)dv =

∫ x

−∞

(∫ +∞

−∞
af (av − bu) du

)
dv

=

∫ +∞

−∞
f(u)

[∫ x

−∞
af (av − bu) dv

]
du

=

∫ +∞

−∞
f(u)

[∫ ax−bu

−∞
af (z)

1

a
dz

]
du

=

∫ +∞

−∞
F (ax− bu) f(u)du

= G̃ (v) .

From the definition of g and as f is decreasing on R+, it is obvious that g
is decreasing on R+.

Lemma 5.2. Let h (x) = c [2R (a− dx)− 1] , x ∈ R, where c, a, d are pos-
itive numbers and R is the distribution function of a symmetrical and decreasing
on R+ density, r. Let H(x) = e−h(x). Then H(x) +H(−x) is increasing on R+.

Proof: We have

d

dx
[H(x) +H(−x)] =

d

dx

[
e−h(x) + e−h(−x)

]

=
[
−h′(x)e−h(x) + h′(−x)e−h(−x)

]

= 2cdr (a− dx) e−h(x) − 2cdr (a+ dx) e−h(−x) .

Let us show that this derivative is non negative. As c and d are positive,
it is enough to show that

{
r (a− dx) ≥ r (a+ dx) , ∀x ≥ 0

e−h(x) ≥ e−h(−x), ∀x ≥ 0 .

As a > 0 and d > 0 and r is decreasing on R+, we have r (a− dx) ≥
r (a+ dx) , for every x ≥ 0 such that a− dx > 0.

But, as r is symmetrical, r is increasing on R− and if a− dx < 0 we have

r (a− dx) = r (dx− a) ≥ r (a+ dx) ,

as 0 ≤ dx− a < dx+ a.

Moreover, as r is a symmetrical density, the function

2R (x)− 1 = R (x)−R (−x)
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is odd and obviously increasing on R+.

As c and d are positive we can conclude, by an analogous way, that for
every x ≥ 0

c
[
2R (a− dx)− 1

]
≤ c

[
2R (a+ dx)− 1

]

that is

h(x) ≤ h(−x)

and, in consequence,

e−h(x) ≥ e−h(−x) .

Lemma 5.3. Let ϕ and f be two symmetrical densities and a > 0 such
that ϕ > f on [0, a[ and ϕ < f on ]a,+∞[. Let T be a positive and increasing
function, defined on R+. Then

∫ +∞

0
ϕ (x)T (x) dx <

∫ +∞

0
f (x)T (x) dx .

Proof: We have

∫ +∞

0
[ϕ (x)− f (x)]T (x) dx =

=

∫

[0,a[
[ϕ (x)− f (x)]T (x) dx +

∫

]a,+∞[
[ϕ (x)− f (x)]T (x) dx

< T
(
a−
) ∫

[0,a[
[ϕ (x)− f (x)] dx + T

(
a+
) ∫

]a,+∞[
[ϕ (x)− f (x)] dx

as T is an increasing function and where T (a−) denotes the left limit and T (a+)
the right limit on a.

As the first quantity is positive, we have

∫ +∞

0
[ϕ (x)− f (x)]T (x) dx < T

(
a+
) ∫

]0,+∞[
[ϕ (x)− f (x)] dx = 0 ,

taking into account that ϕ and f are symmetrical densities.

Lemma 5.4. Let h be the function of lemma 5.2, ϕ and f the probability
densities of lemma 5.3 and Y and Z real random variables with densities f and
ϕ, respectively. Then

E
[
e−h(Z)

]
≤ E

[
e−h(Y )

]
.
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Proof: We have

E
[
e−h(Z)

]
=

∫ +∞

−∞
e−h(z)ϕ (z) dz

=

∫ +∞

−∞
e−h(z)ϕ (−z) dz

=

∫ +∞

−∞
e−h(−u)ϕ (u) du

= E
[
e−h(−Z)

]
.

Then, with H (x) = e−h(x),

∫ +∞

−∞
H (x)ϕ (x) dx =

∫ +∞

−∞
H (−x)ϕ (x) dx

=

∫ +∞

−∞

H (x) +H (−x)

2
ϕ (x) dx

=

∫ 0

−∞

H(x)+H(−x)

2
ϕ(x) dx+

∫ +∞

0

H(x)+H(−x)

2
ϕ(x) dx

=

∫ +∞

0
(H (x) +H (−x))ϕ (x) dx,

as ϕ is symmetrical.

In the same way, we have

E
[
e−h(Y )

]
=

∫ +∞

0
[H (x) +H (−x)] f (x) dx .

As, by lemma 5.2, the function H (x)+H (−x) is increasing on R+, we can
apply lemma 5.3 to obtain

∫ +∞

0
ϕ (x) [H (x) +H (−x)] dx <

∫ +∞

0
f (x) [H (x) +H (−x)] dx ,

that’s to say,

E
[
e−h(Z)

]
< E

[
e−h(Y )

]
.

Lemma 5.5. Let g be a symmetrical function, increasing on R+, equal
to zero in the origin and bounded. Let Y be a real random variable with a
symmetrical and decreasing on R+ density f . Let h be the function of lemma
5.2. Then

E
[
e−g(Y )−h(Y )

]
< E

[
e−g(Y )

]
E
[
e−h(Y )

]
.
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Proof: Let us take

1

b
=

∫ +∞

−∞
e−g(x)f (x) dx .

We note that b > 1, as e−g < 1 almost everywhere.

We consider

ϕ (x) = be−g(x)f (x) .

Then ϕ is a symmetrical density.

On the other hand, as b > 1 and g (0) = 0, we obtain

ϕ (0) = be−g(0)f (0) > f (0) .

Moreover

ϕ (x) = f (x) ⇐⇒ be−g(x) = 1 .

As g is monotone increasing, there is a unique root a > 0 such that ϕ > f

in [0, a[ and ϕ < f in ]a,+∞[ .

Let Z be a real random variable with density ϕ. From lemma 5.4 we have

E
[
e−h(Z)

]
≤ E

[
e−h(Y )

]
⇐⇒

∫ +∞

−∞
e−h(x)ϕ (x) dx ≤

∫ +∞

−∞
e−h(x)f (x) dx .

As ϕ (x) = be−g(x)f (x) , we obtain

b

∫ +∞

−∞
e−h(x)e−g(x)f (x) dx ≤

∫ +∞

−∞
e−h(x)f (x) dx

or, using the b definition,

∫ +∞

−∞
e−h(x)e−g(x)f (x) dx ≤

∫ +∞

−∞
e−h(x)f (x) dx

∫ +∞

−∞
e−g(x)f (x) dx

which is equivalent to

E
[
e−g(Y )−h(Y )

]
≤ E

[
e−g(Y )

]
E
[
e−h(Y )

]
.
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[1] Geffroy, J. (1976). Inégalités pour le niveau de signification et la puissance
de certains tests reposant sur des données quelconques, C. R. Acad. Sci. Paris,
Ser. A, 282, 1299–1301.

[2] Geffroy, J. (1980). Asymptotic separation of distributions and convergence

properties of tests and estimators. In “Asymptotic Theory of Statistical Tests
and Estimation” (I.M. Chakravarti, Ed.), Academic Press, 159–177.
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2nd ed., Dunod, Paris.
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