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Abstract:

• A key aim of systems biology is to unravel the regulatory interactions among genes
and gene products in a cell. Here we investigate a graphical model that treats the
observed gene expression over time as realizations of random curves. This approach
is centered around an estimator of dynamical pairwise correlation that takes account
of the functional nature of the observed data. This allows to extend the graphical
Gaussian modeling framework from i.i.d. data to analyze longitudinal genomic data.
The new method is illustrated by analyzing highly replicated data from a genome ex-
periment concerning the expression response of human T-cells to PMA and ionomicin
treatment.
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1. INTRODUCTION

The identification of networked genetic interdependencies that form the ba-
sis of cellular regulation is one of the key issues in systems biology. Consequently,
many authors have investigated statistical approaches such as graphical models
to estimate genetic networks from high-throughput data [e.g., 8, 7, 11].

A graphical model is a representation of stochastic conditional dependen-
cies between the investigated variables. Among the simplest graphical models
is the class of graphical Gaussian models (GGMs) — see, e.g., Whittaker [13].
In this framework gene network may be constructed as follows. First, a positive
definite and well-conditioned estimate R = (rkl) of the linear correlation matrix
P =(ρkl) is inferred from the data. Second, the standardized inverse of this ma-
trix gives an estimate R̃=(r̃kl) of the partial correlations P̃ =(ρ̃kl). The strength
of these coefficients indicate the presence or absence of a direct association be-
tween each pair of genes. For large sample size computation of covariances and
GGM selection can be conducted using classical estimation and testing theory
as outlined in Whittaker [13]. However, the small sample size relative to the
large number of genes typically considered in genome experiments requires the
additional application of shrinkage and other regularization techniques [2, 12].

A drawback shared by the GGM approach and other graphical models such
as Bayesian networks is that these methods rely on the assumption of identically
and independently distributed (i.i.d.) data. However, an increasing proportion of
microarray expression experiments are concerned with longitudinal measurements
of mRNA and protein concentrations. For instance, stress response and cell cycle
experiments by design produce time course data. A further characteristic of these
data is that the time points at which the experiments are conducted are almost
always not equidistant but irregularly spaced.

In order to avoid these issues, in this paper we investigate GGM network
inference from the perspective of functional data analysis [9]. Specifically, we
describe a graphical model that treats the observed gene expression over time
as realizations of random curves, rather than to describe the individual time
points separately. This approach is based on the notion of dynamical correlation

which provides a similarity score for pairs of groups of randomly sampled curves.
Subsequently, it allows computation of partial dynamical correlations and the
identification of the associated network structure.

The remainder of the paper is organized as follows. In the next section we
summarize the basic notation for functional data analysis and also introduce the
functional inner product. Next, we discuss the concept of dynamical correlation
of which we describe two different variants, one introduced in this paper and one
by Dubin and Müller [3]. Subsequently, the dynamical correlation is employed
for GGM network selection. Finally, in order to compare the traditional GGM
method with the present approach we reanalyze data from a human T-cell exper-
iment with 58 genes, 10 time points, and 44 replications [10], and compare the
networks resulting from dynamical correlation with those from static correlation.
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2. METHODS

2.1. Setup and notation

We consider data from a typical gene expression time course experiment.
For p genes (variables) and n subjects (replications) mRNA concentrations are
measured over a time interval [A,B]. This results in functional observations
fik(t) where 1 ≤ i ≤ n and 1 ≤ k, l ≤ p. We assume all functions fik(t) to be
square-integrable so that the functional inner product

(2.1)
〈
g(t), h(t)

〉
=

1

B − A

∫ B

A

g(t)h(t) dt

exists, where g(t) and h(t) are any of the observed functions. The time average
of fik(t) may then be conveniently expressed by 〈fik(t), 1〉. The average over the
n replicates gives the empirical mean function f̄k(t) = 1

n

∑n
i=1

fik(t).

In practice, however, the functions fik(t) are not continuously measured
but rather obtained by experiments at discrete time points tj, with 1 ≤ j ≤ m
and A = t1 < t2 < . . . < tm−1 < tm = B. Note that the time points need not
be equidistant. If one assumes a linear approximation of g(t) and h(t) the inner
product of Eq. 2.1 turns into the weighted sum

(2.2)
〈
g(t), h(t)

〉
≈

m∑

j=1

g(tj)h(tj)
δj + δj+1

2(B − A)

where the δj = tj − tj−1 are the time differences between subsequent measure-
ments (with δ1 = δm+1 = 0).

In the random effects representation of Dubin and Müller [3] each observed
fik(t) is a realization of the random function

(2.3) fk(t) = µk(t) + µ0k + ǫ0k +
∞∑

u=1

ǫuk ηu(t) ,

where ǫ0k and ǫuk are random variables with E(ǫ0k) = 0 and E(ǫuk) = 0, µk(t)
is the fixed time dependent mean function with zero time average 〈µk(t), 1〉 = 0,
µ0k + ǫ0k represents the static random part and the remaining terms describe the
dynamic random part. In Eq. 2.3 the ηu(t) are orthonormal basis functions with
zero time average 〈ηu(t), 1〉 = 0.

In this notation the empirical mean function f̄k(t) is an estimate of
E(fk(t)) = µk(t)+µ0k. As µk(t) has time average zero we are also able to identify
the two components of E(fk(t)) by using µ̂0k = 〈f̄k(t), 1〉 and µ̂k(t) = f̄k(t)− µ̂0k.
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2.2. Dynamical correlation

2.2.1. Measuring similarity between two exactly known curves

Suppose for a moment that we have sufficient data to estimate the expres-
sion levels through time of two genes k and l exactly, i.e. that we know the mean
functions E(fk(t)) and E(fl(t)). In order to understand the functional connec-
tion between these two variables a measure of similarity between the two curves
is required. Dubin and Müller [3] suggest to introduce the notion of dynamical

correlation with the informal proposition that “if both trajectories tend to be
mostly on the same side of their time average (a constant) then the dynami-
cal correlation is positive; if the opposite occurs, then dynamical correlation is
negative”.

This immediately leads to the following straightforward definition of dy-
namical correlation between two curves g(t) and h(t). First, compute the time-
centered functions gC(t) = g(t) − 〈g(t), 1〉 and hC(t) = h(t) − 〈h(t), 1〉. Then
define the variances as

Var
(
g(t)

)
=

〈
gC(t), gC (t)

〉

and
Var

(
h(t)

)
=

〈
hC(t), hC(t)

〉
.

Finally, compute the the standardized functions gS(t) = gC(t)/
√

Var(g(t)) and
hS(t) = hC(t)/

√
Var(h(t)), and obtain the correlation by

Cor
(
g(t), h(t)

)
=

〈
gS(t), hS(t)

〉
.

2.2.2. The general case including sampling error

The above definition of dynamical correlation for a single curve extends in a
straightforward fashion to the case where each observed time course fik represents
a noisy realization of the mean function E(fk).

In order to estimate the correlation between two variables k and l we
first define the simultaneously time- and space-centered functions according to
fC

ik(t) = fik(t)−〈f̄k(t), 1〉. Note that here the inner product is computed over the
mean function f̄k(t). Based on the fC

ik(t) an estimate of the variance of variable
k is then given by

(2.4) V̂ark = σ̂kk = skk =
1

n − 1

n∑

i=1

〈
fC

ik(t), fC
ik(t)

〉
.
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This allows to compute standardized residual functions fS
ik(t) = fC

ik/
√

skk that
form the basis for the estimate of dynamical correlation

(2.5) Ĉorkl = ρ̂kl = rkl =
1

n − 1

n∑

i=1

〈
fS

ik(t), f
S
il (t)

〉
.

Correspondingly, the estimated dynamical covariance between variables k and l
is simply

(2.6) Ĉovkl = σ̂kl = skl = rkl

√
skksll .

This simple estimator of dynamical correlation exhibits several attractive
properties. In particular, it is a generalization of the standard correlation for
cross-sectional data. Specifically, if m = 1 and n > 1 then it reduces to the usual
maximum-likelihood estimator of correlation. Furthermore, it is also applicable
if there is only a single realization of each time series available (n = 1, m > 1).

2.2.3. The Dubin–Müller definition of dynamical correlation

Another related but different definition of dynamical correlation is given
by Dubin and Müller [3]. They propose to compute the standardized residual
functions according to

(2.7) fS
ik(t) = qik(t)/

√〈
qik(t), qik(t)

〉

using

(2.8) qik(t) = fik(t) − f̄ik(t) −
〈
fik(t), 1

〉
+

〈
f̄ik(t), 1

〉
.

This definition has the drawback that it is only defined if both m > 1 and n > 1.
As we will exemplify below, it also produces counter-intuitive correlations.

2.3. Estimating gene association networks using dynamical correlation

The basic idea to infer a network from the pairwise dynamical correlation
is to refer to the genes as the nodes and to the correlations as the connectivity
strengths assigned to the edges of the network. However, we cannot use the cor-
relations directly, because they represent only marginal dependencies and also
include indirect interactions between two variables. Instead, we need to rely on
the concept of partial correlation which describe the correlation between any two
variables i and j conditioned on all the other variables. It is straightforward to
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compute the matrix of partial dynamical correlations P̃ = (ρ̃kl) from the corre-
lation coefficients P = (ρkl) via the inverse relationship

Ω = P
−1 = (ωij)(2.9)

ρ̃kl = − ωkl√
ωkk ωll

(2.10)

[4]. Applying these equations to estimates R = (rkl) of (dynamical) correlations
allows to obtain estimates R̃ = (r̃kl) of the associated partial (dynamical) corre-
lations.

In order to test the significance of the correlations and to decide which of
the possible edges to include in the resulting gene association network statistical
tests are needed. In this paper we employ the “local fdr” network search as
proposed by Schäfer and Strimmer [11, 12]. The false discovery rate (fdr) is the
expected proportion of false positives among the proposed edges. The local fdr
is an empirical Bayes estimator of the false discovery rate proposed by Efron
[5, 6]. This method computes the posterior probability for an edge to be present
or absent, and takes account of the multiplicity in the simultaneous testing of
edges. The final network is obtained by visualizing all significant edges in an
undirected graph.

3. RESULTS

In the following section we first apply our method of computing dynamical
correlation to example data to clarify our definition and to compare it with the
related concept of Dubin and Müller [3]. Subsequently, we infer the gene asso-
ciation network for a longitudinal gene expression data set described in Rangel
et al. [10].

3.1. Illustrative example

In order to understand the concept of dynamical correlation and to illus-
trate the difference between our definition (Eq. 2.5) and that of Dubin and Müller
[3] we first consider a set of artificial examples. These are shown in Fig. 1 where
two negatively dependent variables are depicted. For instance, this may represent
the case where one gene is up-regulated and the other is correspondingly down-
regulated. For each gene there are two measured curves, and there are three
slightly different ways in which the sampled curves relate to each other (Fig. 1a,
b, and c). The exact definition of the curves can be found in Tab. 1. Note that
the two realizations are paired, i.e. the upper lines belong to individual 1 and the
lower ones to individual 2.



60 Rainer Opgen-Rhein and Korbinian Strimmer

Figure 1: Toy example to illustrate the concept of dynamical correlation
between two variables (“genes”). In all three cases a), b) and c)
there are two realizations (“individuals”). See main text for details,
and Tab. 1 for the underlying data.

Table 1: Data points of the toy examples in Fig. 1.

Data Variable 1 Variable 2

Time points 0 5 10 0 5 10

Fig. 1a
Realization 1 0 3 0 3 0 3
Realization 2 0.5 3.5 0.5 3.5 0.5 3.5

Fig. 1b
Realization 1 0 3.25 0 3 0.25 3
Realization 2 0.5 3.25 0.5 3.5 0.25 3.5

Fig. 1c
Realization 1 0 3.25 0 3 − 0.25 3
Realization 2 0.5 3.25 0.5 3.5 0.75 3.5
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Intuitively, one would expect that the dynamical correlation between the
two variables is strongly negative in all three cases. For our definition of dynami-

cal correlation according to Eq. 2.5 this is indeed the case: the correlations for the

three examples cases Fig. 1a, b, and c are − 0.946, − 0.982, and − 0.947, respec-

tively. In contrast, the dynamical correlation of Dubin and Müller [3] behaves in
a completely different fashion. For Fig. 1a it is not defined, for case b) it is equal

to +1 and for case c) it is equal to −1.

Therefore, it is easy to see that the Dubin and Müller [3] estimator is not

suited for detecting functional dependencies in genomic longitudinal data. This is
because that estimator is geared towards detecting changes in the relative trends

of the individual realizations, rather than between the common trend. However,

note that this is generally not the effect one wants to identify when looking for

gene interaction. In addition, the Dubin and Müller [3] definition of dynamical
correlation has the additional disadvantage over that of Eq. 2.5 that it is not

defined if there is only a single time course per gene available. In contrast, the

above toy examples show that our definition of dynamical correlation is able to
detect the main trend of positive or negative dependency between two variable,

and is not susceptible to the small changes in the sampled curves.

3.2. Gene expression time course data

We now employ our method of estimation of the (partial) dynamical corre-

lation to a real world example and compare it with the results of the traditional

GGM method. Specifically, we reanalyzed a microarray time series data set de-

scribed in detail in Rangel et al. [10]. These data characterize the response of
a human T-cell line (Jirkat) to a treatment with PMA and ioconomin. After

preprocessing the time course data consist of 58 genes measured across 10 time

points with 44 replications. Rangel et al. [10] used a state space model to estimate

the influence between genes and measured a genetic network by combining direct
effects and indirect effects via hidden states. This approach is generally very

time-consuming due to the necessity of using of the EM algorithm for optimiza-

tion. A peculiarity of the Rangel et al. [10] data is also that the measurements in

the experiment were taken at unequally spaced time points, i.e. after 0, 2, 4, 6, 8,
18, 24, 32, 48, and 72 hours after treatment. This was neglected in the original

state-space analysis which assumed equally spaced data. In contrast, note that

the present functional data approach allows the incorporation of arbitrary time

distances between subsequent measurements.

As approximation of the temporal expression of the 58 genes we used a

linear spline and employed Eq. 2.2 for the functional inner product. After es-

timating the dynamical correlations with Eq. 2.5 we computed the associated

partial correlation coefficients employing Eq. 2.9 and Eq. 2.10. Fig. 2 shows the
histogram of the estimated partial correlation coefficients after Fisher’s normaliz-
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ing z-transformation. Also depicted in this plot are the fitted overall distribution
(fat line) and the null (dashed line) and alternative distribution (filled histogram)

as estimated by the locfdr algorithm [5, 6]. The 0.2 local fdr cut-off values for

the partial correlations are indicated by the black triangles. As expected, the

distribution of the partial correlations is centered around zero and most of the
coefficients are not significant. Consequently, the resulting network is sparse and

there are only 54 significant edges. The network itself is displayed in Fig. 3b.

Figure 2: Histogramm of the Fisher z-transformed estimated partial dynamical
correlations. Values left and right the two black triangles are considered
significantly different from zero, and thus correspond to edges in a gene
dependency network.

It is instructive to compare the genetic network inferred with dynamical cor-

relation to the gene association network obtained by the classic GGM approach.
For this analysis we ignored the dynamic aspects of the data and assumed that

all measurements were taken at the same time point, which leads to 440 obser-

vations (44 replications times 10 time points) for each of the 58 genes. As this

number of observations is not small in comparison to the number of the genes
no regularization is needed (cf. Schäfer and Strimmer [12] for the opposite case).
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From the empirical correlation matrix we proceeded as above, obtaining estimates
of partial correlation and a static GGM network. This is displayed on the left side

of figure 3. For comparison, the network estimated with dynamical correlation

in shown on its right side. For clarity only the nodes which have at least one

connection are displayed.

Figure 3: Gene dependency networks inferred from human T-cell data [10]
using (a) static correlation and (b) dynamical correlation.

The network calculated with static correlation consists of 17 nodes with

12 edges, a smaller network than the one based on dynamical correlation.

This indicates that our dynamical estimator is able to identify additional time-
varying components of the interaction between the investigated genes.

4. DISCUSSION

A growing interest in genetics lies in observing and inferring the gene in-

teractions over time. Here, we introduced a method to infer a gene dependency
network from functional data. In this approach time course experiments are seen

as a realization of random curves. The method described generalizes the widely

used static GGM approach (see the corresponding references in [11]) and is able

to unravel the dependency structure of longitudinal data across the whole time
series rather than at single time points. Furthermore, unlike many other time

series method the functional approach does not require equally spaced measure-

ments. In addition, our algorithm is easily implemented and computationally

inexpensive (the calculation of the above gene dependency network takes only a
fraction of a second).
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In order to further develop our approach many extensions are conceivable.
For instance, in the above analysis of human T-cells the data was highly repli-

cated. In genomics, however, it is more typical that the sample size is very

small compared to the number of genes (this is the so-called “small n, large p”

paradigm). In this case, the empirical covariance is a highly inefficient estimator,
and needs to be regularized [12]. For small n this will also be the case with our

estimate of dynamical correlation (Eq. 2.5). Thus, shrinkage techniques similar

to those of Schäfer and Strimmer [12] are needed.

A further important extension is the inclusion of autoregressive aspects [1].
While our method covers the dynamical correlation through time it is not able

to account, e.g., for a time shift between any two variables. This is illustrated in

Fig. 4 which is a variation of the toy examples presented in section 3. For this

data the Dubin and Müller [3] estimate is (again) not defined and our suggested
dynamical estimator results in very small correlation close to zero, even though

it is clear by inspection that the two depicted variables are strongly connected.

These dependencies and the associated time shifts could be accounted for by mod-
eling the temporal mean via a system of differential equation (or in the discrete

case by some autoregressive process). We also note that for this reason we have

also refrained here from a comparison of the gene association network inferred

from dynamical correlation (Fig. 3b) with the state space network presented by
Rangel et al. [10]. Future work should regard for these aspects.

Figure 4: Example with a fixed time lag between the two variables.
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