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Abstract:

e We consider a set of n individuals described by p standardised variables, and we sup-
pose that the individuals are previously selected from a population and the variables
are a sample of variables assumed to come from a mixture of k& bipolar Watson dis-
tributions defined on the hypersphere. In this context we provide the identification
of the mixture through the EM algorithm and we also carry out a simulation study
to compare the maximum likelihood estimates obtained from samples of moderate
size with the respective asymptotic estimates. Our simulation results revealed good
performance of the EM algorithm for moderate sample sizes.
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1. INTRODUCTION

We consider multivariate data with n individuals described by p variables.
In the classical approach it is usual to assume that the p variables are fixed and
the n individuals are randomly selected from a population of individuals. Now, we
consider that the n individuals are fixed and the p variables are randomly selected
from a population of variables. We standardise the variables to be points on the
unit sphere in R™, denoted by S,,—1 = {x € R": x'x = 1}.

We suppose that the group of available variables on S, _; is composed of
k subgroups of variables and each subgroup comes from a bipolar Watson distri-
bution. So we associate the sample of variables to a mixture of k bipolar Watson
distributions defined on the hypersphere, as in Gomes [9]. This author consid-
ers an approach, based on the sampling of variables, and introduces some new
results concerning the estimation of the parameters of the bipolar Watson distri-
bution, taking into account not a sample of individuals but, a sample of variables.
This type of ideas was referred to by Hotelling [10] who, in the context of Princi-
pal Components, studied the convergence of the eigenvalues and eigenvectors of
the covariance matrix of groups of variables randomly chosen from a population
of variables, when the dimension of the groups increases. Escoufier [5] also pro-
posed a new coefficient for evaluating the proximity of two groups of variables,
but supposing that the variables are observed.

For the identification of the mixture, we use the well-known EM algo-
rithm proposed in Dempster, Laird and Rubin [3] (see Redner and Homer [14]).1
This algorithm was developed to solve the likelihood equations in problems of
incomplete data and we apply it to estimate the parameters of a mixture of
k bipolar Watson distributions (see Figueiredo [7]).

The bipolar Watson distribution has been much used for axial data on the
sphere (see Watson [16], Fisher, Lewis and Embleton [8] and Mardia and Jupp
[13]). This distribution is denoted by W, (u,&) and it has density probability
function given by

-1
(1.1)  f(x)= {1F1(;,Z,§)} exp{ﬁ(u’x)Q}, XESu_1, u€S,_1, £>0,

where the normalising constant is the reciprocal of a confluent hipergeometric
function defined by

1
Ln _ r %) &t ,—0.5 (n—3)/2

! Another possible method for the identification of the mixture is the k-means method pro-
posed in Diday and Schroeder [15] (see Gomes [9]).
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This distribution has two parameters: a directional parameter u and
a concentration parameter £, which measures the concentration about +u.
As ¢ increases, the distribution becomes more concentrated about tu. This is
a rotationally symmetric distribution about the principal axis +u and it is
bimodal, with modes u and —u.

Let X = [x![x?|...[x?] be a random sample of variables from the bipolar
Watson distribution W;,(u,§). The maximum likelihood estimator of u is the
p .
eigenvector associated with the largest eigenvalue @ of X X'=3 x'x'’, that
i=1
is, U is defined by (XX’)u=wu. So, it follows that the maximum likelihood
estimator of the directional parameter u based on the sample of variables is the
first principal component of the sample. The maximum likelihood estimator of £

o~

is the solution of the equation Y (£) = w/p, where the function Y (£) is defined by
Y(€) = g niFi(1/2,n/2,6).

The estimators E and w have asymptotic Gaussian distribution (see Gomes
[9] and Bingham [1]):

(1.3) £~ N(g,pyé(g)) and f < N(y(g)j

where the function Y4 (€) is defined by Y4 (€) = % In1Fi (3, 2,).

Yf; (s)) |

In this study we consider the particular case of a bipolar Watson distri-
bution. If we had assumed & <0 in (1.1), we would obtain a girdle Watson
distribution and the study of this distribution would be similar to the one that
is done in this paper.

In Section 2 we present the identification of the mixture of k£ bipolar Watson
distributions through the EM algorithm. In Section 3 we carry out a simu-
lation study to compare the behaviour of the estimators obtained through the
EM algorithm for moderate samples with the respective asymptotic estimators.
In Section 4 we give some concluding remarks.

2. IDENTIFICATION OF A MIXTURE OF k BIPOLAR WAT-
SON DISTRIBUTIONS DEFINED ON THE HYPERSPHERE

The density function of a mixture of £ bipolar Watson components C1, ..., Cy
defined on the hypersphere, whose identifiability was proved by Kent [12], is given
by

k k
g(X‘(ﬁ):Zij(X‘@j), XESn_l, O<7Tj<1, j:1,...,k, Zﬂj:l’
j=1

2.1
( ) ¢:(u1>"'7uka§17"'aék’yﬂ-l?-'wﬂ-k)’ 9]:(11]75]) s
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where (71, ...,m) are the proportions of the mixture and f(x|6;) is the density
function corresponding to the C; component.

As a mixture of distributions may be seen as a problem of incomplete
data (see Everitt and Hand [6]), the EM algorithm may be applied to solve the
likelihood equations in the estimation of the parameters of a mixture of k£ bipolar
Watson distributions.

Let [x!|x?|...|x"] be arandom sample from the mixture and let Z = [z1]...|zp]
be the missing data, where the indicator vector z; = (Z;1, Zia, ..., Zjx) with
1 if x'eC; &
Zij = { 0 if XZ¢C , Z Z;; = 1 indicates the component of the variable x' of
the mixture.

The log likelihood associated with the complete sample [Xl |...|xP|Z ] is given
by

P k
(2.2) L(gi)]xl,...,xp,Z) = ZZ tj(x ln{ﬂ'j (Xi|9j)},

where t(x%) is the posterior probability of x’ belonging to C; defined by

(2.3) tj(x') = —kﬂj f0x165)

> ™ f(x'0n)

h=1

The log likelihood associated with the complete sample given by (2.2) may
be written as

L(gf)’Xl,...,Xp,Z) = L(¢1|X1,...,XP,Z) +L(¢2|x1,...,xp,Z) ,

where
L(galx', %P, Z) = D> () In f(x°10;),  é1 = (61, .., O)
=1 j=1
and
p k '
L(¢2|X1,...,XP,Z) = ZZL‘]-(XZ) Inm;, P2 = (1, ..., Tg) -
i=1 j=1

To estimate the vector of unknown parameters ¢ of the mixture, the
EM algorithm proceeds iteratively in two steps:

E — Estimation and M — Maximisation .

The algorithm starts with the initial solution:

0 0 0 ¢0 0.0 0
¢ = (ul7...,uk,gl,...,gk,ﬂj’...,ﬂ-k) .
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In the m-th iteration, the two steps are:

E-Step

Use estimates ¢(™ of the parameters of the mixture in the m-th iteration
for j=1,...,k and i=1, ..., p to estimate the posterior probability of x* belonging
to the j-th component of the mixture

™ £ (x7]68™)

; .
> ™ (xiloy™)
h=1

(24) 1" (') =

M-Step
(m)

Use estimates ¢ i

L(¢nx', ... xP, 2).

(x%) to maximise the logarithm of the likelihood function

First, we consider the function L(¢1), subject to the constraint u;-uj =1

Ligr) = 303" 6 [~ {1 Fi(1/2,n/2,6)} + € (x| = Ma(ufuy — 1) .

=1 j=1

where \; is a Lagrange multiplier and tém) (x?) is defined in (2.4).
The maximum likelihood estimate of u; is the solution of the following
equation:

OL(¢1)

p
au]' = Zt§m)(xz)2£j x'x" /llj - 2)\111]' =0.

=1

(2.5)

We premultiply the last expression by u;/ to obtain

P
A =& Ztg.m) (x") uj/x'x "y, .
i=1

Then, the maximum likelihood estimator of u;/ in the (m+1)-th iteration,

ﬁg-mﬂ) is the eigenvector associated with the eigenvalue wj, that is
() (m+1) (m+1)

(2.6) (th (x')x'x’ ')uj = wju; , ji=1.k,
i=1

p . .
where w; is a eigenvalue of 231 tg-m) (x")x'x"’ and it is given by
1=

P
W = Z tgm) (XZ) ﬁngrl)/ xixi ! ﬁ§m+1) .
i=1
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Next, we show that we maximise L(¢;) if we consider the largest eigenvalue
of the matrix. In fact, the function L(¢;) can be written in the form

k

P k
) = =S 3 A6 WA (1/2,0/2.6) + 36

i=1 j=1 j=1

k ,
As InFi(1/2,n/2,¢;) >0, we have Z ( ) In 1 F1(1/2,n/2,&) >0

Ti M"@

p

We also have w; > 0 because ) tg-m) (x’)x’xl is a positive definite matrix.
i=1

Consequently, the function L(¢1) is maximised if @; is maximum.

Second, the maximum likelihood estimator of ; is the solution of the fol-
lowing equation

P = S0 v+ ) =0,

i=1
where the function Y'(.) is defined in Section 1. The solution of this equation
leads to the maximum of L(¢;) as we show that 82L(¢1)/8§J2» <0, V¢;. In fact,
p .
?L(¢1)/0€; = —i:ZI tg-m) (x')dY (&)/¢&; and Y (§) is an increasing function (see
Gomes [9]).

Then, the maximum likelihood estimator of ¢; in the (m+1)-th iteration,

Ej(m“), is the solution of the equation

Smily _ W L
> t; (x')
i=1
k
Third, we consider the function L(¢2), subject to the constraint ) m; = 1:
j=1
Shal
m
=Yy (3w 1),
i=1 j=1 Jj=1

where Ao is a Lagrange multiplier. The maximum likelihood estimator of 7
is the solution of the following equation

P
(m) (i
t: 7 (x
gy _ B0
= — Ay = .
371']' 7Tj

We sum the last equation for j from 1 to k& to obtain Ay = p. Then, the

maximum likelihood estimator of 7; in the (m+1)-th iteration, {m+1)

J is given by

(2.8) gmtl) =l i k.
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The estimation of the parameters u; and §; associated with the j-th com-
ponent gives us a privileged direction as well as a measure of dispersion of the
j-th cluster around this direction.

A partition (P, ..., P) of the sample of variables is obtained assigning the
variable x/ to the component for which the posterior probability is the largest,
that is,

(2.9) P, = {xi: ti(x") = m}ELiXth<Xi), hzl,...,k}

and when ¢;(x’) = t5(x") consider x’ € P; if j <h.

3. SIMULATION STUDY

We considered a mixture with equal proportions (7= m = 0.5) of two
bipolar Watson distributions: W, (u1,&1) and W, (ug, &), with & = & =&,
u; = (0,...,0,1) and uy = (0,...0, (1—cos? #)'/2, cos §), where 6 is the angle be-
tween u; and uy. The bipolar Watson distribution is rotationally symmetric
about the directional parameter, so if we had used, for each 6, other directional
parameters u; and ug, we would have obtained the same results in our study. For
the simulation of the bipolar Watson distribution we used a rejection-type method
(see Huo [11] and Bingham [2]). We considered two dimensions of the sphere
n =10,30. For each n, we assumed equal samples size p; = ps = p = 30(10)100,
several values of the concentration parameter {=10(10)50,100 and several val-
ues of the angle 6 = 18°,54°,90°. For each case, we considered 2500 replicates of
the EM algorithm. In each replicate, we used a randomly chosen initial solution
and a sufficiently large number of iterations (100) to obtain the final solution.
We supposed that the algorithm converged, in a certain replicate, if the condition:

(£(6m) = L)) /2(6) | < 10

holds in the last five iterations, where L(¢(™)) denotes the likelihood of the sample
in the m-th iteration. For each n and p, the EM algorithm converged in most
part of the replicates, it did not converge only in very few replicates when ¢ is
very small or 6 is small.

In each replicate we determined the following estimates Ej, w;/pj, 7=1,2,
0, 7, j=1,2 of the parameters §;, Y (§;), 1=1,2, 6, m;, j =1,2, respectively,

P .
where p; is the dimension of the j-th group, which is equal to > ¢;(x"). Then,
i=1
we calculated the average and the standard deviation of the estimates obtained
in all replicates, denoted by Ej, Ej/pj, ji=1,2, 5, ﬁj, j=1,2 and s(gj)7 s(w;/ps),

J=1,2, s(0), s(7j), j =1,2, respectively. If in a replicate the EM algorithm
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did not converge we excluded that replicate for calculating the average and the
standard deviation of the estimates.

By (1.3) the asymptotic expected value of g] and w;/p; are & and Y ()
respectively, j=1,2. In Table 1 and Figure 1, we indicate the values of Y (£) 2
for each n and &.

Table 1:  Values of Y (&) for each n and &.

n\¢§ 10 20 30 40 50 60 70 80 90 100

10 0.500 0.766 0.847 0.886 0.909 0.924 0.935 0.943 0.950 0.955
30 0.074 0.241 0.496 0.630 0.706 0.756 0.791 0.817 0.838 0.854

1,0

0,0

10 20 30 40 s0 &0 yOoooos0 ao 100

Concentration parameter

Figure 1: Values of Y () for n = 10 and n = 30.

As expected for each n, Y (£) is an increasing function with £, which tends
to 1, when ¢ increases (see Gomes [9], p.43-45). For each &, the function Y ()
increases when n decreases.

We determined the estimated relative bias of the estimators given by the
expressions: (& &)/%, (@ /pi—Y (E)/Y (&), i=1,2, (8-0)/8, (Fj—m))/m;,
j=1,2 and the estimated mean squared error (MSE) given by: 82(@) + (EJ —&;)?,
s2(@;/p;)+(@; /i =Y ()% 5=1,2, s*(0)+(0-0), s*(%;)+(F;—m;)% j=1,2.

*We obtained the function Y (£) using the Kummer function, which is defined by M(a,b, 2) =
1+Z{aa+1) a+1i—1)z }/{b ..(b+i—1)i} or by the integral M(a,b,z) =
/{F (b—a)(a)} [y ¥t t)b_a_ldt, where 1 F1(1/2,n/2,¢) = M(1/2,n/2,£).
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We indicate the results of our simulation study in the Tables A1-A4 of the
Appendix and in the Figures 2-8. In the tables of the Appendix, the algorithm
converged in all replicates for each case. We have also produced another 4 tables,
which were not included: two tables for the relative bias (for n=10 and n=30)
and two tables for the MSE (for n= 10 and n=30) of the estimators when the

concentration parameter £ varies.

In Figure 2 we observe that

e As expected, the estimators 51 and 52 are asymptotically unbiased, that
is the estimated relative bias of these estimators tends to 0 as the sample
size p increases. For fixed £ and p, the relative bias of ,;?1 and 52 tends
to decrease when 6 increases. For an angle # = 90° or # = 54°, the bias
of the estimators El and 22 is relatively small and when 6 = 90° the bias
is not greater than 10% of the true value of the concentration parameter
(for n=10,30, £=530,100 and p=30(10)100).

Relative hias
Relative bias
-
Relative bias
e

Sample size p Sample size p
fic] n
g8e
N
g
N
] o Vel w
i .. o
a 5 M IR jud
g v e e N
® Z ~ z
o oo Sl e o
4 [ -~ ]
4 S - T
-
00 ~
02 e
i " y
34 S B0 0 B0 S W0 3 40 50 B0 0 80 80 100 3 4 S0 B0 70 80 90 1m0
Sample siZe p Sample size p Sample size p

— &30 - 830 =100 F etp

Figure 2: Relative bias of the estimators {Al and 52 when p varies
(in top: n =10, in bottom: n =30 and from left to right:
angle 90°, 54°, 18°).
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MSE

In Figure 3 we observe that

As expected, in general the estimators fAl and 52 become more efficient

[ ]
as p increases. When the angle is large or moderate (0 = 90° or § = 54°)
and & = 30, these estimators have relatively small MSE and become less
efficient when £ increases.
500 700 1200
50 1000
400 *
\ 500 \\
300 \.‘ \.
\\ W 400 .\ W
N 2 R 2
00 ".1\ 300 \\\
v 20 \"‘*m,_\‘
100 e . T
T 100
0 [ e _
30 40 50 &0 70 80 a0 100 30 40 50 &0 70 a0 an 100
Sample size p Sample size p sample size p
200 200 300
\\
" naq "
\\ \\ A
100 Y 0100 ~\ i \
N 2 N
™, R mwd N
™., B e S SR, -
" T e e
T T T
g=a 7 e T
a i == 0
0 4 = &1 ™ s @ o 0 40 s 60 FO &) @ 100 i 40 & 60 70 80 a0 400
Sample size p Sample size p Sample size p
—Eg0 - -5y 6100 R g=100
Figure 3: Mean squared error of the estimators & and & when p varies
(in top: n =10, in bottom: n =30 and from left to right:
angle 90°, 54°, 18°).
In Figure 4 we observe that
e When the angle is moderate or large (6 = 54° or 6 = 90°), the bias of &

and & is very small and maintains approximately constant or increases
slightly as ¢ increases for £ > 20 when n = 10 and for £ > 30 when n = 30.
When n =10 and 6 = 18°, the bias of the estimators is relatively large,
but it decreases when ¢ increases.
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Relative bias
Relative hias

Relative bias
Relative bias

Concentration parameter Concentration parameter

Concentration parameter

_p=30751 ——p:30,§2 ....pzﬂj_é] _.p:_w_é\z

Figure 4: Relative bias of the estimators 51 and 22 when £ varies (in top: n = 10,

in bottom: n = 30 and from left to right: angle 90°, 54°  18°).

In Figure 5 we observe that

When the angle is moderate or large (0 = 54° or § = 90°), the MSFE of the
estimators & and & increases when ¢ increases for & > 30 and so these
estimators become less efficient.

The estimators w;/p; and Wy /pe are unbiased or have very small bias for
every p and £&. When 6 = 90° the bias of these estimators is not greater
than approximately 3% of the respective parameter. The estimators w1 /p;
and wy/p2 are asymptotically unbiased, that is, the estimated relative bias
of the estimators tends to 0 as the sample size p increases. See Tables
A1-A2 of the Appendix.

In Figure 6 we observe that

The estimators w;/p; and ws/py have bias approximately equal to 0 for
& > 20 when n = 10 and for £ > 30 when n = 30.

As the MSE of the estimators w;/p; and wy/p2 are 0 or approximately 0,
these estimators are very efficient. See Tables A3—-A4 of the Appendix.
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00 700 1200

1000

Concentration parameter Concentration parameter Concentration parameter

300

300

300

Concentration parameter Concentration parameter Concentration parameter

— G oG s — =0

Figure 5: Mean squared error of the estimators 21 and Eg when £ varies (in top: n=10,
in bottom: n =30 and from left to right: angle 90°, 54°, 18°).
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Figure 6: Relative bias of the estimators w;/p; and Wa/p2 when £ varies (intop: n=10,

in bottom: n =30 and from left to right: angle 90°, 54°, 18°).
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In Figure 7 we observe that

e The estimator 0 has relatively small MSE, except for n =30 and § = 30
when the relative bias and the standard deviation of ¢ are relatively large.
The MSE of the estimator # decreases when p increases.

30 0 400

300
n

MSE
5
=

w
W 200
=

100

Sample size p Sample size p sample size p

— n=10,E30 —-n=10,¢=100 - n=30,E=30 — =30, =100

Figure 7: Mean squared error of the estimator 9 when p varies
(from left to right: angle 90°, 54°, 18°).

In Figure 8 we observe that

~

e For every 6 and & > 20, the MSE of the estimator 6 decreases when
£ increases.

e The estimators m; and 7o are unbiased or present very small bias for the
analysed cases, except in some cases when # = 18°. See Tables A1-A2 of
the Appendix.

e The estimators m; and 7o have MSE equal to 0 or approximately 0, and
so these estimators are very efficient. See Tables A3—A4 of the Appendix.

120 1500 B0
1400
100 S0
1200 \ i
a0 o
o 4000 .
100011y \n
Y . w L "
woy oy 0300 \ B
N \ = } "
EVERY \ .
u 2000 \
400 4 \\l
- i 1000
L S
0=~ a T e
10 1] kil 40 Eil 100 10 il E] 40 50 100
Concentration parameter Concentration parameter Concentration parameter
_ n=10,p=30 ——n=10,p=50 ----n=30,p=30  ___ p=30, p=50

Figure 8 Mean squared error of the estimator 9 when & varies
(from left to right: angle 90°, 54°, 18°).
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4. CONCLUSION

The simulation study has revealed a good identification of a mixture of
bipolar Watson distributions defined on the hypersphere through the EM algo-
rithm.

The performance of this algorithm is good for moderate sample sizes, es-
sentially on the estimation of the prior probabilities and on the estimation of the
directional parameters of the mixture. For a large or moderate angle 6 between
the directional parameters of the mixture, the efficiency of the estimators of the
concentration parameters of the mixture is better for moderate values (neither
very small nor very large) of the true concentration parameters. The estimation
of the angle @ is very efficient in general and the efficiency of 6 improves as the
concentration parameter increases.
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APPENDIX

Table 2: Relative bias of the estimators for n= 10 with the sample size p

3 0 p & &2 {U\l/pl 17}2/p2 0 ™ )

30 0.071 0.071 0.008 0.008 0.000 0.005  —0.005
40 0.041 0.041 0.004 0.004 —0.001  —0.001 0.001
50 0.027 0.024 0.002 0.002 —0.001 0.004 —0.004
90° 60 0.018 0.017 0.001 0.001 0.000 —0.005 0.005
70 0.011 0.009 0.000 0.000 0.000 0.001  —0.001
80 0.008 0.005 0.000 —0.001 0.001 0.001  —0.001
90 0.003 0.002 —-0.001  —0.001 0.000 0.000 0.000
100 0.001  -0.001 —-0.001  —0.002 0.002 0.001  —0.001

30 0.061 0.109 0.006 0.013  —0.002 0.002  —0.002
40 0.042 0.080 0.004 0.010  —0.002 0.001  —0.001
50 0.025 0.065 0.002 0.008  —0.004 0.000 0.000
30 54° 60 0.020 0.051 0.001 0.006 —0.005 —0.002 0.002
70 0.011 0.044 0.000 0.005  —0.006 0.000 0.000
80 0.002 0.040 —0.001 0.005  —0.007 0.000 0.000
90 0.002 0.037  —0.001 0.005 —0.007 —0.001 0.001
100 —0.004 0.033  —0.002 0.005 —0.007 —0.001 0.001

30 0.152 0.398 0.011 0.030 0.256 0.116 —0.116
40 0.116 0.331 0.006 0.027 0.192 0.086  —0.086
50 0.086 0.269 0.003 0.023 0.157 0.070  —0.070
18° 60 0.070 0.262 0.004 0.022 0.125 0.061  —0.061
70 0.055 0.259 0.000 0.018 0.107 0.049  —0.050
80 0.044 0.173  —0.001 0.016 0.086 0.030  —0.030
90 0.034 0.161  —0.002 0.016 0.077 0.031  —0.031
100 0.018 0.132  —0.004 0.014 0.068 0.020  —0.020

30 0.088 0.092 0.002 0.003 0.000 0.000 0.000
40 0.059 0.063 0.002 0.002 0.000 —0.003 0.003
50 0.045 0.046 0.001 0.001 0.000 0.003  —0.003
90° 60 0.035 0.038 0.001 0.001 0.000 0.001  —0.001
70 0.027 0.029 0.001 0.001 0.000 0.000 0.000
80 0.024 0.024 0.000 0.000 0.000 0.000 0.000
90 0.021 0.019 0.000 0.000 0.000 0.002  —0.002
100 0.016 0.017 0.000 0.000 0.000 —0.001 0.001

30 0.088 0.156 0.002 0.005  —0.003 0.000 0.000
40 0.057 0.125 0.001 0.004 —0.003 0.002  —0.002
50 0.048 0.109 0.001 0.004 —0.004 —0.001 0.001
100 | 54° 60 0.036 0.099 0.001 0.003  —0.004 0.000 0.000
70 0.027 0.091 0.001 0.003  —0.004 0.001  —0.001
80 0.022 0.083 0.000 0.003  —0.005 0.000 0.000
90 0.018 0.081 0.000 0.003 —0.005 —0.001 0.001
100 0.014 0.080 0.000 0.003 —0.005 —0.001 0.001

30 0.103 0.116 0.003 0.003 0.041  —0.001 0.001
40 0.064 0.081 0.002 0.002 0.032 0.000 0.000
50 0.054 0.064 0.001 0.002 0.027  —0.002 0.002
18° 60 0.040 0.052 0.001 0.001 0.023  —0.001 0.001
70 0.029 0.046 0.001 0.001 0.021 0.001  —0.001
80 0.024 0.037 0.000 0.001 0.019 0.000 0.000
90 0.020 0.034 0.000 0.001 0.018 —0.002 0.002
100 0.015 0.032 0.000 0.001 0.017  —0.002 0.002
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Table 3: Relative bias of the estimators for n= 30 with the sample size p

~

3 0 P & & Wi/pr  W2/p2 0 ™ Ta

30 0.036 0.038 0.029 0.031  —0.001 0.001  —0.001
40 0.017 0.018 0.012 0.012 0.000 0.000 0.000
50 0.009 0.007 0.005 0.003 0.001 0.003  —0.003
90° 60 0.001 0.000 —0.004 —0.005 0.000 0.004 —0.004
70 —0.004 —-0.002 —0.008 —0.006 0.000 —0.001 0.001
80 —0.006 —0.008 —0.011  —0.020 0.001  —0.005 0.005
90 -0.011  -0.010 -0.015 —0.014 0.000 0.001  —0.001
100 -0.011 -0.013 —-0.016 —0.017 0.000 0.001  —0.001

30 0.040 0.067 0.028 0.053 0.048 0.009 —0.009
40 0.017 0.043 0.008 0.035 0.038 0.008  —0.008
50 0.003 0.026  —0.012 0.019 0.031 0.006  —0.006
30 54° 60 —0.005 0.019 —0.012 0.013 0.025 0.007  —0.007
70 —0.010 0.011  —-0.017 0.007 0.022 0.006  —0.006
80 —0.014 0.007  —0.021 0.002 0.021 0.006  —0.006
90 —0.018 0.005 —0.025 0.001 0.017 0.006  —0.006
100 —0.020 0.001  —0.027  —0.003 0.016 0.004 —0.004

30 0.085 0.166 0.065 0.113 0.994 0.218 —0.218
40 0.049 0.156 0.033 0.106 0.857 0.243 —0.243
50 0.025 0.157 0.011 0.106 0.773 0.274 —0.274
18° 60 0.020 0.153 0.006 0.100 0.700 0.274 —0.274
70 0.009 0.144  —0.006 0.096 0.629 0.286  —0.286
80 —0.003 0.148 —0.018 0.100 0.581 0.292  —0.292
90 —0.005 0.151  —0.021 0.100 0.531 0.290 —0.290
100 —0.006 0.140 —0.023 0.092 0.493 0.275  —0.275

30 0.070 0.074 0.010 0.011 0.000 0.001  —0.001
40 0.049 0.053 0.007 0.008  —0.001 0.005  —0.005
50 0.038 0.039 0.006 0.006 0.000 0.003  —0.003
90° 60 0.030 0.031 0.004 0.005 0.000 —0.001 0.001
70 0.026 0.025 0.004 0.004 0.000 0.001  —0.001
80 0.020 0.021 0.003 0.003 0.000 0.003  —0.003
90 0.018 0.017 0.003 0.003 0.000 —0.002 0.002
100 0.015 0.014 0.002 0.002 0.000 0.000 0.000

30 0.075 0.087 0.011 0.012 0.003 0.004 —0.004
40 0.051 0.065 0.008 0.009 0.002  —0.004 0.004
50 0.039 0.052 0.006 0.008 0.001 0.002  —0.002
100 | 54° 60 0.029 0.042 0.004 0.006  —0.001 0.002  —0.002
70 0.025 0.036 0.004 0.006 —0.001 0.002  —0.002
80 0.021 0.033 0.003 0.005  —0.002 0.000 0.000
90 0.018 0.028 0.003 0.004 —0.002 0.000 0.000
100 0.016 0.027 0.002 0.004 —0.002 —0.002 0.002

30 0.078 0.091 0.011 0.013 0.119 0.006  —0.007
40 0.054 0.067 0.008 0.010 0.095 —0.005 0.005
50 0.040 0.052 0.006 0.008 0.080 0.001  —0.001
18° 60 0.030 0.041 0.004 0.006 0.066 0.001  —0.001
70 0.026 0.034 0.004 0.005 0.059 0.001  —0.001
80 0.021 0.030 0.003 0.005 0.052  —0.002 0.002
90 0.016 0.025 0.002 0.004 0.047 0.001  —0.001
100 0.015 0.022 0.002 0.003 0.044 —0.004 0.004
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Table 4: Mean squared error of the estimators for n= 10 with the sample size p
13 0 P & & w1/p1 W2 /P2 0 T Ty
30 28.39 29.34 0.001 0.001 8.8 0.01 0.01
40 17.49 18.51 0 0 6.81 0.01 0.01
50 12.99 12.57 0 0 5.47 0.01 0.01
90° 60 10.00 10.14 0 0 4.67 0 0
70 8.41 8.52 0 0 3.92 0 0
80 7.14 6.90 0 0 3.25 0 0
90 6.40 6.53 0 0 2.92 0 0
100 5.77 5.47 0 0 2.67 0 0
30 29.61 42.68 0.001 0.001 6.43 0.01 0.01
40 20.20 29.07 0 0.001 4.89 0.01 0.01
50 13.51 21.59 0 0.001 3.80 0 0
30 54° 60 11.28 16.18 0 0.001 3.22 0 0
70 8.94 14.29 0 0.001 2.70 0 0
80 7.32 11.97 0 0.001 2.40 0 0
90 6.38 9.97 0 0.001 2.09 0 0
100 5.87 8.59 0 0.001 1.94 0 0
30 188.76 987.30 0.001 0.002 34.48 0.04 0.04
40 163.08 526.42 0.001 0.002 22.30 0.03 0.03
50 120.85 309.95 0.001 0.002 16.37 0.03 0.03
18° 60 66.77 299.22 0.001 0.002 10.97 0.03 0.03
70 83.52 214.79 0.001 0.001 9.52 0.03 0.03
80 75.39 167.57 0.001 0.001 7.45 0.02 0.02
90 77.56 133.97 0.001 0.001 6.14 0.02 0.02
100 47.93 86.04 0.001 0.001 5.42 0.02 0.02
30 391.95 393.74 0 0 2.34 0.01 0.01
40 233.19 258.01 0 0 1.82 0.01 0.01
50 172.30 181.35 0 0 1.37 0 0
90° 60 132.61 133.23 0 0 1.17 0 0
70 108.59 118.57 0 0 0.98 0 0
80 94.51 96.45 0 0 0.81 0 0
90 81.51 82.20 0 0 0.81 0 0
100 71.97 72.44 0 0 0.66 0 0
30 380.48 620.53 0 0 1.70 0.01 0.01
40 239.14 407.87 0 0 1.30 0.01 0.01
50 183.84 304.88 0 0 0.98 0.01 0.01
100 54° 60 140.48 263.35 0 0 0.88 0 0
70 112.76 209.09 0 0 0.79 0 0
80 93.25 179.25 0 0 0.64 0 0
90 79.89 164.52 0 0 0.64 0 0
100 71.10 150.27 0 0 0.56 0 0
30 554.58 560.82 0 0 2.79 0.01 0.01
40 309.45 342.75 0 0 2.07 0.01 0.01
50 231.62 238.22 0 0 1.51 0.01 0.01
18° 60 169.17 186.41 0 0 1.27 0 0
70 138.87 151.15 0 0 1.13 0 0
80 110.62 121.23 0 0 0.92 0 0
90 97.90 106.03 0 0 0.82 0 0
100 83.85 92.72 0 0 0.77 0 0
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Table 5: Mean squared error of the estimators for n= 30 with the sample size p
£ 0 p & &2 W1/p1  W2/p2 0 T T2
30 8.99 9.33 0.002 0.002 26.27 0.01 0.01
40 5.36 5.82 0.002 0.002 18.66 0.01 0.01
50 3.83 3.78 0.001 0.001 8.85 0 0
90° 60 3.03 3.13 0.001 0.001 7.78 0 0
70 2.52 2.52 0.001 0.001 6.81 0 0
80 2.17 2.10 0.001 0.001 5.92 0 0
90 1.97 1.96 0.001 0.001 5.06 0 0
100 1.74 1.85 0.001 0.001 4.67 0 0
30 13.87 19.54 0.004 0.004 17.86 0.01 0.01
40 8.14 11.07 0.002 0.003 12.06 0.01 0.01
50 5.24 7.29 0.002 0.002 9.08 0.01 0.01
30 54° 60 4.14 5.72 0.001 0.002 6.97 0 0
70 3.48 4.12 0.001 0.001 5.58 0 0
80 3.02 3.55 0.001 0.001 5.23 0 0
90 2.92 3.19 0.001 0.001 4.33 0 0
100 2.61 2.73 0.001 0.001 3.83 0 0
30 29.40 84.02 0.005 0.011 370.63 0.03 0.03
40 19.16 74.94 0.004 0.011 265.15 0.03 0.03
50 14.18 77.88 0.003 0.011 226.23 0.04 0.04
18° 60 14.27 80.57 0.003 0.011 200.45 0.04 0.04
70 12.62 72.60 0.003 0.011 148.84 0.04 0.04
80 11.84 72.02 0.003 0.010 134.46 0.05 0.05
90 11.80 78.76 0.003 0.011 112.28 0.23 0.23
100 12.62 73.23 0.003 0.010 104.27 0.05 0.05
30 139.69 154.52 0 0 2.92 0.01 0.01
40 85.91 92.13 0 0 2.08 0.01 0.01
50 65.74 65.13 0 0 1.59 0.01 0.01
90° 60 48.48 50.47 0 0 1.17 0 0
70 39.77 39.20 0 0 1.17 0 0
80 33.22 32.60 0 0 0.98 0 0
90 28.12 27.72 0 0 0.81 0 0
100 25.01 24.67 0 0 0.81 0 0
30 154.06 189.17 0 0 1.86 0 0
40 89.81 120.39 0 0 1.43 0.01 0.01
50 62.23 84.41 0 0 1.06 0.01 0.01
100 54° 60 46.53 63.51 0 0 0.84 0 0
70 40.38 52.90 0 0 0.75 0 0
80 32.60 44.35 0 0 0.67 0 0
90 29.15 37.53 0 0 0.58 0 0
100 25.36 33.66 0 0 0.58 0 0
30 196.39 234.80 0 0 7.18 0.01 0.01
40 113.25 141.25 0 0 4.67 0.01 0.01
50 76.84 96.11 0 0 3.39 0.01 0.01
18° 60 58.06 69.951 0 0 2.57 0 0
70 49.88 55.35 0 0 2.15 0 0
80 39.48 45.93 0 0 1.74 0 0
90 33.79 38.03 0 0 1.50 0 0
100 30.11 32.01 0 0 1.37 0 0




