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Abstract:

• In this paper we study bias-corrections to the weighted MLE (Dupuis and Morgen-
thaler, 2002), a robust estimator simply defined through a weighted score function.
Indeed, although the WMLE is relatively simple to compute, for most models it is
not consistent and hence not very helpful. For example, the model we consider in this
paper is the generalized linear latent variable model (GLLVM) proposed in Moustaki
and Knott (2000) (see also Moustaki, 1996, Sammel, Ryan, and Legler, 1997 and
Bartholomew and Knott, 1999). The score functions of this model are very compli-
cated. They contain integrals that need to be evaluated. Moreover, they are highly
nonlinear in the parameters which makes the use of complicated robust estimator
quite impossible in practice. Moustaki and Victoria-Feser (2006) propose to use a
weighted MLE and develop indirect inference (Gouriéroux, Monfort, and Renault,
1993, Gallant and Tauchen, 1996 and also Genton and de Luna, 2000, Genton and
Ronchetti, 2003) to remove the bias. It can be computed in a simple iterative fashion.
In this paper, we actually focus on indirect inference for bias correction in general.
We rely heavily on the findings of Moustaki and Victoria-Feser (2006).
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1. INTRODUCTION

Consider a general class of weighted MLE (WMLE) proposed by Dupuis

and Morgenthaler (2002) belonging to the class of M -estimators (Huber, 1981)

defined as the solution in θ of

1

n

n∑

i=1

ψc(xi; θ) =
1

n

n∑

i=1

s(xi; θ)w(xi, c) = 0 ,

with the underlying assumption that xi ∼ Fθ and the weights w(xi, c) are such

that smaller weights are given to observations with larger score function s(xi; θ)=

∂/∂θ log
(
∂/∂xFθ(x)

)
. A typical choice for the weights is Huber type weights,

which for a given tuning parameter c are given by

(1.1) w(x; c) = min

(
1;

c

‖s(x; θ)‖

)
,

where ‖...‖ denotes the Euclidean norm. If Fθ and/or the weight function are

not symmetric, then the resulting estimator is not consistent. Based on a first

order development of the bias, Dupuis and Morgenthaler (2002) propose a bias

correction given by

(1.2) B(θ̂) = −

∫
s(x; θ)w(x; θ) dFθ(x)

∫ (
∂

∂θ
s(x; θ)w(x; θ) + s(x; θ)

∂

∂θ
w(x; θ)

)
dFθ(x)

∣∣∣∣∣∣∣
θ=bθ

to be added to the inconsistent WMLE θ̂. The computation of two integrals

is still needed (and can be done by means of simulations) as well as the derivative

of the weight function. Alternatively, one can consider estimators of the type

1

n

n∑

i=1

s(xi; θ)w(xi, c) − a(θ) = 0 ,

with
a(θ) =

∫
s(x; θ)w(x, c) dFθ(x)

and hence estimate simultaneously the bias correction with the estimator.

This can become very complicated depending on the form of the score function.

In the following section, a bias correction for a WMLE is presented, in the same

spirit as (1.2) but based on the theory of indirect inference.

2. INDIRECT INFERENCE FOR BIAS REDUCTION

Indirect estimation (Gouriéroux, Monfort, and Renault, 1993, Gallant and

Tauchen, 1996) has been proposed as an estimation procedure for a complex

model Fθ with intractable likelihood functions. It involves the computation of
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an estimator π̂ for the parameters of an auxiliary model Fπ that does not provide

a consistent estimator of θ. In particular, let π̂ be an M -estimator defined

implicitly by ∫
ψ(x; π̂) dFn(x) = 0 .

As the sample size tends to infinity, this auxiliary estimate defines a mapping

from the parameter space of θ to the parameter space of the auxiliary model,

i.e. θ → π(θ), defined by

(2.1)

∫
ψ(x; π(θ)) dFθ(x) = 0 .

With indirect inference one tries in some sense to invert this map, i.e. π → θ(π),

and use this inverse to calculate the estimator θ̂ = θ(π̂). The latter can be

obtained implicitly by the solution in θ of

(2.2)

∫
ψ(x; π̂) dFθ(x) = 0 .

This indirect estimator results as a particular case of the general minimization

problem defining indirect estimators, i.e.

θ̂ = arg min
θ

(
π̂ − π(θ)

)T
Ω
(
π̂ − π(θ)

)
,

with π(θ) obtained as the solution of (2.1). The matrix Ω can be chosen on effi-

ciency arguments but for simplicity, on can choose Ω = I. The estimation of π(θ)

is the difficulty in applying the indirect method. If it is possible to create samples

x̃i(θ), i=1, ..., s ·n, simulated (with fixed seed) from Fθ for a given θ, then a

Monte Carlo estimate of π(θ) can be used. This estimate is defined as the

solution in π(θ) of
1

sn

sn∑

i=1

ψ
(
x̃i(θ); π(θ)

)
= 0 .

Gouriéroux, Monfort, and Renault (1993) show that this estimator is asymptot-

ically equivalent to the one proposed by Gallant and Tauchen (1996) (available

since 1992 as a working paper) defined by

(2.3) θ̂ = arg min
θ

(
1

sn

sn∑

i=1

ψ
(
x̃i(θ); π̂

)
)T

∆

(
1

sn

sn∑

i=1

ψ
(
x̃i(θ); π̂

)
)
,

with again ∆ chosen on efficiency arguments. When dim(θ) = dim(π) and ∆ = I,

the solution of (2.3) is given by the solution in θ of (2.2) in which the integral

is estimated by the mean over a simulated sample. We also note that when ψ is

the score function, then θ̂ = π̂.

Indirect inference has already been used with robust statistics: see Genton

and de Luna (2000) and Genton and Ronchetti (2003). Similar ideas can be found

in Cabrera and Fernholz (1999).
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θ̂ can be found iteratively using a Newton step. For that we need

∂

∂θ

∫
ψ(x; π̂) dFθ(x) =

∫
ψ(x; π̂) sT(x; θ) dFθ(x) .

Then the Newton step is given by

(2.4) θ̂
(k+1)

= θ̂
(k)
− S−1

(
π̂, θ̂

(k)) sn∑

i=1

ψ
(
x̃i(θ̂

(k)
); π̂
)
,

where

S
(
π̂, θ̂

)
=

sn∑

i=1

ψ
(
xi(θ̂); π̂

)
sT
(
xi(θ̂); θ̂

)

and π̂ is the (inconsistent) M -estimator. With this indirect estimator, there is

hence no need for simultaneous estimation of bias (computation of a(θ)). This

estimator has been proposed by Moustaki and Victoria-Feser (2006) in the context

of generalized linear latent variable models.

3. GENERALIZED LINEAR LATENT VARIABLE MODELS

(GLLVM)

Latent variable models are widely used in social sciences for studying the

interrelationships among observed variables. More specifically, latent variable

models are used for reducing the dimensionality of multivariate data, for assign-

ing scores to sample members on the latent dimensions identified by the model

as well as for the construction of measurement scales (e.g. in educational testing

and psychometrics). Moustaki and Knott (2000) proposed a generalized linear

latent variable model (GLLVM) framework for any type of observed data (metric

and categorical) in the exponential family. They extended the work of Mous-

taki (1996) and Sammel, Ryan, and Legler (1997) for mixed binary and metric

variables (the latter with covariate effects as well) and Bartholomew and Knott

(1999) for categorical variables. A similar framework is also discussed by Skro-

ndal and Rabe-Hesketh (2004) that includes multilevel models (random-effects

models) as a special case.

Formally, given a set of response variables x1, ..., xp, there exists a (smaller)

set of latent variables or factors z1, ..., zq that account for the dependencies among

the response variables. In other words, given the latent variables, the mani-

fest ones are conditionally independent. Factor analysis is the simplest case.

In general we suppose that the conditional distribution of the manifest variables

given the latent ones belongs to the exponential family, i.e.

gm

(
xm |z, θm

)
= exp

{
xm αm z

∗

φm

−
b(αm z

∗)

φm

+ c(xm, φm)

}
, m= 1, ..., p ,
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with αm = [αm0, ..., αmq], m=1, ..., p, the so-called loadings, φm, m=1, ..., p,

the scale parameters (for example for normal manifest variables),

z
∗ = [1, z1, ..., zq]

T = [1, zT ]T

and hence θm = (αm, φm)T . The latent variables z are supposed standard mul-

tivariate normal with density ϕ(z) (but the independence assumption can be

relaxed), hence, the marginal distribution is

f(x; θ) =

∫
· · ·

∫ [
p∏

m=1

gm

(
xm |z, θm

)
]
ϕ(z) dz .

The score functions become

s(1)m (x; θ) =
∂

∂αm

log
(
f(x; θ)

)
(3.1)

=
1

f(x; θ)

∫
· · ·

∫
g
(
x |z, θ

)(xm− b′(αm z
∗)

φm

)
z
∗ϕ(z) dz ,

s(2)m (x; θ) =
∂

∂φm

log
(
f(x; θ)

)
(3.2)

=
1

f(x; θ)

∫
· · ·

∫
g
(
x |z, θ

)

·

(
−
xm αm z

∗− b(αm z
∗)

φ2
m

+
∂

∂φm

c(φm, xm)

)
ϕ(z) dz ,

for m=1, ..., p. The integrals in (3.1) and (3.2) can be approximated using fixed

Gauss–Hermite quadrature (see e.g. Bock and Liberman, 1970), adaptive quadra-

ture points (see e.g. Bock and Schilling, 1997, Schilling and Bock, 2005), Monte

Carlo approximations (see e.g. Sammel, Ryan, and Legler, 1997) or Laplace

approximation (see e.g. Huber, Ronchetti, and Victoria-Feser 2004). All these

approximations lead to approximate ML estimators. The models we consider here

are one factor models and although it is known that Gauss–Hermite rule can give

biased estimators in some situations, we will nevertheless use it to compute the

integrals.

Moustaki and Victoria-Feser (2006) study the robustness properties of the

(approximated) MLE by means of the Influence Function (Hampel, 1968, 1974).

Not surprisingly, even with binary data, the MLE can be biased by data contam-

ination, which in this context appear as unexpected binary responses. Since the

(approximate) MLE is already quite complicate computationally, Moustaki and

Victoria-Feser (2006) propose to use a WMLE with consistency correction via

indirect inference. The WMLE π̂ is computed with Huber type weights (1.1).

The consistent estimator θ̂ is obtained using indirect inference and called Indi-

rect Globally Weighted Robust (IGWR) estimator. Its (approximate) asymptotic

covariance is also given in Moustaki and Victoria-Feser (2006) which is used for

inference and also for choosing the tuning constant c of the Huber weights on

efficiency arguments.
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4. SIMULATION STUDY

We report here the simulation study presented in Moustaki and Victoria-

Feser (2006). The model we consider is the one-factor model (q= 1) fitted to two

binary (m = 1, 2) and three normal (m = 3, 4, 5) manifest variables with param-

eter values

• α1 = [1.0, 0.7] ,

• α2 = [0.8, 1.0] ,

• α3 = [2.0, 0.6] and φ3 = 1 ,

• α4 = [2.5, 0.7] and φ4 = 1 ,

• α5 = [3.0, 0.8] and φ5 = 1 .

150 samples of size 200 where generated and contaminated in three ways:

• 3% of the first normal variable (i.e. observations of x3) set to an arbitrary

value (20) (pointmass 1);

• 3% of all three normal variables set to an arbitrary value (20) (pointmass 3);

• 3% of the data from the mixed GLLVM with α5 = [3.0, 8]T instead of

α5 = [3.0, 0.8]T (model deviation).

The MLE, IGWR and IGWR1 which is defined by the iterative procedure given

in (2.4) with only one iteration, were computed. The tuning constant was set to

c= 3.5, which corresponds to an efficiency level of 95% with respect to the MLE.

Figure 1 presents the distributions of the different estimators for the load-

ing of the first manifest variable (binary) α11 with all types of contamination

(including no contamination). Even if the contamination occurs on the normal

manifest variables, the MLE can be biased as can bee seen with the pointmass 3

contamination type. Figures 2 and 3 present the distribution of the different

estimators for respectively the mean of the third manifest variable (normal) α30

and the loading of the fifth manifest variable (normal) α51 with all types of

contamination. The bias on the MLE appears quite large, while both robust

estimators remain very stable. Without contamination, there is no apparent dif-

ference in distribution between the MLE and the robust estimators. Figure 4

presents the same analysis but for the estimators of the scale parameter for the

first normal variable φ3. The MLE of the scale parameter seems to be affected

only when the contamination occurs only on the corresponding manifest variable.

Again, the behavior of the robust estimators show great stability.

It should be noted that Moustaki and Victoria-Feser (2006) conclude that

although the IGWR1 seems to perform very well with the examples of this

simulations study, its bias increases more rapidly that the one of the IGWR

as the WMLE is more biased, i.e. as the tuning constant c decreases.
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Figure 1: Distribution of the estimators for the loading on the first binary
manifest variable. The horizontal line gives the true value.
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Figure 2: Distribution of the estimators for the mean on the first normal
manifest variable. The horizontal line gives the true value.
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Figure 3: Distribution of the estimators for the loading on the third normal
manifest variable. The horizontal line gives the true value.
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Figure 4: Distribution of the estimators for the scale on the first normal
manifest variable. The horizontal line gives the true value.
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5. ANALYSIS OF WEALTH DATA

Moustaki and Victoria-Feser (2006) also present an example based on a

sub-sample of size 100 households of the 1990 consumption survey in Switzerland,

provided by the Swiss Federal Statistical Office. The aim is to construct a measure-

ment scale for the level of wealth, and for the purpose of this exercise, five vari-

ables have been selected. These are:

• purchase of a dishwasher (1/0) (Dishwasher)

• purchase of a car (1/0) (Car)

• equivalent food expenditure in logarithm (Food)

• equivalent expenditures for clothing in logarithm (Clothing)

• equivalent expenditures for housing in logarithm (Housing)

The continuous variables are treated as normal variables. Variables from the same

survey have been analyzed before using the GLLVM by Moustaki and Knott

(1997), Bartholomew and Knott (1999) and Huber, Ronchetti, and Victoria-

Feser (2004). A one-factor model using both the ML and the IGWR estimators

is fitted to the data. The bounding constant c has been set to 5 corresponding

to an efficiency level of 94% (computed on the parameter values provided by the

IGWR). The parameter values estimated by the ML and the IGWR estimators

are presented in Table 1 together with their standard errors (the values in bold

correspond to significant variables at the 5% level).

Table 1: Parameter’s estimates and standard errors for the GLLVM
on the wealth data.

Parameters
MLE IGWR, c = 5

Estimate Stand. Err. Estimate Stand. Err.

α10 – 0.506 0.23 – 0.589 0.26
α20 – 0.623 0.23 – 0.537 0.23

Constants α30 6.922 0.23 6.887 0.28
α40 5.353 0.32 5.332 0.32
α50 7.087 0.33 7.140 0.29

α11 0.466 0.26 0.679 0.28
α21 – 0.167 0.24 0.216 0.25

Loadings α31 1.021 0.18 1.098 0.21
α41 1.412 0.31 1.415 0.28
α51 1.044 0.33 1.064 0.27

φ3 0.289 0.16 0.426 0.17
Variances φ4 1.280 0.27 1.056 0.20

φ5 1.475 0.22 0.935 0.14
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The ML estimator shows that only the variables (Food, Clothing and Hous-

ing) are indicators of wealth, whereas the IGWR adds the variable Dishwasher.

Both analyses exclude the variable Car. Variables Food and Housing are found

with both methods to be indicators of the latent variable, whereas the associa-

tion is stronger with the Clothing variable. For a diagnostics analysis, the weights

given in (1.1) have been computed for each observation at the IGWR values and

plotted in Figure 5. There are apparently (only) 5 outliers.
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Figure 5: IGWR’s weights against observation number for the wealth data.
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