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Abstract:

• Many strategies for asset allocation involve the computation of the expected value and
the covariance matrix of the returns of financial instruments. How much of each instru-
ment to own is determined by an attempt to minimize risk — the variance of linear
combinations of investments in these financial assets — subject to various constraints
such as a given level of return, concentration limits, etc. The covariance matrix
contains many parameters to estimate and two main problems arise. First, the data
will very likely have outliers that will seriously affect the covariance matrix. Second,
with so many parameters to estimate, a large number of return observations are
required and the nature of markets may change substantially over such a long period.
In this paper we discuss using robust covariance procedures, FAST-MCD, Iterated
Bivariate Winsorization and Fast 2-D Winsorization, to address the first problem
and penalization methods for the second. When back-tested on market data, these
methods are shown to be effective in improving portfolio performance. Robust asset
allocation methods have great potential to improve risk-adjusted portfolio returns and
therefore deserve further exploration in investment management research.

Key-Words:

• robust statistics; asset allocation; FAST-MCD; bivariate Winsorization; penalization.

AMS Subject Classification:

• 62G35, 62P20, 91B28.



98 Roy E. Welsch and Xinfeng Zhou



Application of Robust Statistics to Asset Allocation Models 99

1. INTRODUCTION

Asset allocation is the process that investors use to determine the asset

classes in which to invest and the weight for each asset class. Past studies have

shown that asset allocation explains 75 – 90% of the return variation and is the

single most important factor determining the variability of portfolio performance.

Among all the asset allocation models, Harry Markowitz’s mean-variance portfo-

lio theory is by far the most well-known and well-studied model for both academic

researchers and practitioners alike [17, 18]. The crux of mean-variance portfo-

lio theory assumes that investors prefer lower standard deviations/variances for

a given level of expected return. Portfolios that provide the minimum standard

deviation for a given expected return are termed efficient portfolios and those

that do not are termed inefficient portfolios.

For a portfolio with N risky assets to invest in, the portfolio return is the

weighted average return of each asset

rp ≡ w1r1 + w2 r2 + · · · + wN rN = w′r(1.1)

and the expected return and the variance of the portfolio can be expressed as

µp = w1µ1 + w2µ2 + · · · + wNµN = w′µ ,
(1.2)

var(rp) = var
(

w1r1 + w2 r2 + · · · + wN rN
)

= w′Σ w ,

where wi, ∀ i=1, ..., N , is the weight of the i-th asset in the portfolio; ri is the

return of the i-th asset in the portfolio; µi is the expected return of the i-th asset

in the portfolio; w is a N×1 column vector of wi’s; r is a N×1 column vector

of ri’s; µ is a N×1 column vector of µi’s; and Σ is the N×N covariance matrix

of the returns of N assets.

We can formulate the following problem to assign optimal weight to each

asset and identify the efficient portfolio:

min
w

w′Σ w s.t. w′µ = µp, w′e = 1 ,(1.3)

where µp is the expected portfolio return and e is N×1 column vector with

all elements 1. For each specified µp, the problem can be solved in closed form

using the method of Lagrange [23]. The simple mean-variance optimization only

requires two inputs–expected return vector and expected covariance matrix.

The model is based on a formal quantitative objective that will always give the

same solution with the same set of parameters. These all explain its popularity

and its contribution to modern portfolio theory (MPT).

Nevertheless, the original form of mean-variance portfolio optimization has

rarely been applied in practice because of several drawbacks. The method uses
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variance as the risk measure, which is often considered to be a simplistic mea-

surement when the asset returns do not follow normal distributions. In reality,

many of the financial assets’ returns do have fat tails or are skewed. Besides,

the one-period nature of static optimization also does not take dynamic factors

into account, and some researchers argue for more complicated models based on

stochastic processes and dynamic programming. However, the most serious prob-

lem of the mean-variance efficient frontier is probably the method’s instability.

The mean-variance frontier is very sensitive to the inputs, and these inputs are

subject to random errors in the estimation of expected return and covariance.

Small and statistically insignificant changes in these estimates can lead to a sig-

nificant change in the composition of the efficient frontier. This may lead us to

frequently and mistakenly rebalance our portfolio to stay on this elusive efficient

frontier, incurring unnecessary transaction costs.

The Markowitz portfolio optimization estimates the expected return and

the covariance matrix from historical return time series and treats them as

true parameters for portfolio selection. The historical returns for N assets over

T periods are denoted as R, a T×N matrix where each column vector ri,

∀ i=1, ..., N , represents the returns of asset i over different periods and each

row vector Rt, ∀ t=1, ..., T , represents the returns of different assets at period t.

The simple sample mean and covariance matrix are used as the parameters since

they are the best unbiased estimators under the assumption of multivariate nor-

mality. Despite the simple computation involved, this approach has high com-

plexity (large number of parameters). It suffers from the problem of high vari-

ance, which means the estimation errors can be significant and generate erro-

neous mean-variance efficient frontiers. This näıve “certainty equivalence” mean-

variance approach often leads to extreme portfolio weights (instead of a diversified

portfolio as the method anticipates) and dramatic swings in weights when there

is a minor change to the expected returns or the covariance matrix [7, 10, 12].

The problem is further exacerbated if the number of observations is of the same

order as the number of assets, which is often the case in financial applications to

select industry sectors or individual securities.

A number of alternative models have been developed to improve parameter

estimation. For example, factor-based models try to reduce the model complexity

(number of parameters) by explaining asset return variances/covariances using a

limited number of common factors. Multivariate GARCH models try to address

fat tails and volatility clustering by incorporating the time dependence of returns

in the covariance matrix. But neither approach effectively reduces or eliminates

the influences of outliers in the data. A small percentage of outliers, in some cases

even a single outlier, can distort the final estimated variance and covariance.

Evidence has shown that the most extreme (large positive or negative) coeffi-

cients in the estimated covariance matrix often contain the largest error and

as a result, mean-variance optimization based on such a matrix routinely gives

the heaviest weights — either positive or negative — to those coefficients that
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are most unreliable. This “error-maximization” phenomenon [24] causes the

mean-variance technique to behave very badly unless such errors are corrected.

In this study, we focus on investigating robust statistical approaches to

reduce the influence of outliers, to increase the stability of the portfolio and

to reduce asset turnover. The remainder of the paper is organized as follows.

In Section 2, we investigate and extend some robust statistical methods such

as FAST-MCD, Iterated Bivariate Winsorization, and Fast 2-D Winsorization

to estimate the covariance matrix. We also explore penalization methods as

a direct way to reduce asset turnovers. In Section 3, we apply these methods to

construct US industrial selection portfolios and show that these robust methods

dramatically improve risk-adjusted portfolio performance, especially when trans-

action costs are taken into consideration. In Section 4, we conclude this paper

by summarizing our findings and offering possible directions for future research.

2. METHODS

During the past decade, statisticians have developed a variety of robust esti-

mation methods to estimate both the mean and the covariance matrix [4, 8, 19, 20].

However, the use of robust estimators has received relatively little attention in

the finance literature overall, and in the context of estimating the expected value

and the covariance matrix of asset returns in particular [13, 22]. In this study,

we take the initiative to investigate the value of some robust approaches to asset

allocation problems.

2.1. FAST-MCD

The general principle of robust statistical estimation is to give full weights

to observations assumed to come from the main body of the data, but to reduce

or completely eliminate weights for the observations from tails of the contami-

nated data. The minimum covariance determinant (MCD) method [3], a robust

estimator introduced by Rousseeuw in 1985, eliminates perceived outliers from

the estimation of the mean and the covariance matrix. It uses the mean and the

covariance matrix of h data points (T/2 6 h < T ) with the smallest determinant

to estimate the population mean and the covariance matrix. The method has

a break-down value of (T −h)/T . If the data come from a multivariate normal

distribution, the average of the optimal subset is an unbiased estimator of the

population mean. The resulting covariance matrix is biased, but a finite sample

correction factor (ch,T ≥1) can be used to make the covariance matrix unbiased.

The multiplication factor ch,T can be determined through Monte Carlo simula-
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tion. For our specific purpose, the bias by itself does not affect the asset allocation

since all pairs of covariances are underestimated by the same factor.

MCD has rarely been applied to high-dimensional problems because it is

extremely difficult to compute. MCD estimators are solutions to highly non-

convex optimization problems that have exponential complexity of the order 2N

in terms of the dimension N of the data. Therefore, these original methods are

not suitable for asset allocation problems when N > 20. Yet, in practice, asset

allocation problems often include dozens of industrial classes or hundreds of

individual securities, which makes the MCD method computationally infeasible.

In order to cope with computational complexity problems, a heuristic FAST-MCD

algorithm developed by Rousseeuw and Van Driessen [25], provides an efficient al-

ternative. A näıve MCD approach would compute the MCD for up to
(

T
h

)

subsets,

while FAST-MCD uses sampling to reduce the computation and usually offers

a satisfactory heuristic estimation. Other equivariant robust covariance methods

are discussed in a recent book [20] and we are experimenting with the S-estimator

they recommend, SR-05.

The key step of the FAST-MCD algorithm takes advantage of the fact that,

starting from any approximation to the MCD, it is possible to compute another

approximation with a determinant no higher than the current one. The method

is based on the following theorem related to a concentration step (C-step):

Let H1 ⊂ {1, ..., n} be any h-subset of the original cross-sectional data,

put µ̂1 = 1
h

∑

t∈H1
Rt and Σ̂1 = 1

h

∑

t∈H1
(Rt − µ̂1) (Rt − µ̂1)

′. If det(Σ̂1) 6= 0,

define the distance d1(t) =
√

(Rt− µ̂1) Σ̂
−1
1 (Rt− µ̂1)

′, t=1, ..., T . Now take H2

such that {d1(i); i∈H2} := {(d1)1:T , ..., (d1)h:T } where (d1)1:T ≤ (d1)2:T ≤ · · · ≤
(d1)T :T are the ordered distances, and compute µ̂2 and Σ̂2 based on H2. Then

det(Σ̂2) ≤ det(Σ̂1) with equality if and only if µ̂2 = µ̂1 and Σ̂2 = Σ̂1.

If det(Σ̂1) > 0, the C-step yields Σ̂2 with det(Σ̂2) ≤ det(Σ̂1). Basically

the theorem indicates the sequence of determinants obtained through C-steps

converges in a finite number of steps from any original h-subset to a subset sat-

isfying det(Σ̂m+1) = det(Σ̂m). Afterward, running the C-step no longer reduces

the determinant. However, this process only guarantees that the resulting det(Σ̂)

is a local minimum instead of the global one. To yield the h-subset with global

minimum det(Σ̂) or at least close to optimal, many initial choices (often > 500)

of H1 are taken and C-steps are applied to each.

Simulated and empirical results showed that FAST-MCD typically gives

“good” results and is orders of magnitude faster than exact MCD methods.

Yet, the FAST-MCD method still requires substantial running times for large

N and T , and the probability of retaining outliers in the final h-subset increases

when N becomes large. We use the FAST-MCD as an affine equivariant bench-

mark for faster non-equivariant methods. Other examples of its use are contained

in [26, 30].
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2.2. Iterated bivariate Winsorization (I2D-Winsor)

The FAST-MCD estimator for the covariance matrix is positive semidefinite

and affine equivariant, which means the estimator behaves properly under affine

transformations of the data. If the affine equivariance requirement is dropped,

much faster estimators with high breakdown points can be computed. These

methods are often based on pair-wise robust correlation or covariance estimates

such as coordinate-wise outlier insensitive transformations (e.g. Huber-function

transformation, quadrant correlation) and bivariate outlier resistant models.

All these methods have quadratic complexity in the number of variables and lin-

ear complexity in the number of observations, so they reduce the computational

complexity to O(N2T ).

Huber’s function, defined as Hc(x) = min
{

max{−c, x}, c
}

, c > 0, has been

widely used to shrink outliers towards the median by the transformation

r̃ti = mi + si×Hc

(

(rti− mi)/si

)

,(2.1)

where mi and si are the median and the median absolute deviation from the

median of return vector ri. Essentially Huber’s function brings the outliers of

each variable to the boundary mi ± c×si and, as a result, reduces the impact of

outliers.

The one-dimensional Winsorization approach using the Huber function has

been a popular method in finance because of its intuitive appeal and easy com-

putation. Yet for covariance analysis, the method fails to take the orientation of

the bivariate data into consideration. To address the problem, bivariate Winsori-

zation methods have also been investigated. For each pair of variables, outliers

are shrunken to the border of an ellipse which includes the majority of the data

by using the bivariate transformation

r̃t,i,j = µ0 + min
(
√

c/D(rt,i,j) , 1
)

(rt,i,j − µ0) ,(2.2)

where, for each pair of ri and rj , rt,i,j =

[

rti

rtj

]

; µ0 =

[

mi

mj

]

; D(rt,i,j) is the Maha-

lanobis distance based on an initial bivariate covariance matrix Σ0 and location

µ0 : (rt,i,j −µ0)
′ Σ−1

0 (rt,i,j −µ0); c is a positive constant. The transformation

shrinks the outlier towards µ0 when D(rt,i,j) > c .

Based on the idea of shrinking data toward the border of a two-dimensional

ellipse, Chilson et al. developed an iterated bivariate Winsorization (I2D-Winsor)

method to estimate covariance and applied the method to cluster correlated genes

[5]. The method includes the following three steps:

Step A. For each pair of variables ri and rj , compute a simple robust

mean and adjusted MAD for each column and construct the initial estimate of
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mean and covariance matrix as

µ0 =

[

mi

mj

]

and Σ0 =







si

0.6745
0

0
sj

0.6745






.(2.3)

Step B. For each µk and Σk, calculate the Mahalanobis distance for each

return pair

Dt,k = (rt,i,j −µk)
′ Σ−1

k (rt,i,j −µk)(2.4)

and then calculate the weight for each rt,i,j as

zt = min
(
√

c/Dt,k , 1
)

,(2.5)

where the constant c is chosen as 5.99 (the 95% quantile of the χ2
2 distribution).

Step C. Update µk and Σk to µk+1 and Σk+1 using equations

µk+1 =
T
∑

i=1

zt rt,i,j

/

T
∑

i=1

zt ,

(2.6)

Σk+1 =
T
∑

i=1

z2
t (rt,i,j −µk+1) (rt,i,j −µk+1)

′

/

T
∑

i=1

z2
t .

This iteration is repeated until µk+1, Σk+1 and µk, Σk converge as de-

termined by the sum of absolute differences between two consecutive Σ being

less than a predefined error. The covariance matrix of variables ri and rj is then

set to Σk+1. Diagonal elements of the covariance matrix are obtained using bias

adjusted median absolute deviations from the median.

The I2D-Winsor method allowed parallel computation of high dimensional

correlation and covariance matrices for different gene expressions and obtained

good performance in heterogeneous cluster studies. But the method suffers the

drawback of failing to guarantee positive semidefiniteness of the covariance ma-

trix — a crucial requirement for mean-variance portfolio optimization. Maronna

et al. [21] proposed an adjustment method to obtain a positive semidefinite co-

variance matrix using a pair-wise robust covariance matrix. The method is based

on the observation that any positive semidefinite covariance matrix C can be

expressed as C =
∑

λ̂i âi â
′
i, where 0≤ λ̂1 ≤ · · · ≤ λ̂N are the eigenvalues and

âi (i=1, ..., N) are the corresponding eigenvectors. If C is not positive semidefi-

nite, then one or more of the eigenvalues are negative. To convert such a matrix

to a positive semidefinite one, a natural approach is to replace these negative

eigenvalues with positive ones. When C is the sample correlation, λ̂i’s are the

variances of the projected data on the direction of the corresponding eigenvectors.
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This indicates that in order to get rid of possibly negative eigenvalues in the quad-

rant covariance matrix Ĉ0, one can replace the λ̂i’s in C0 =
∑

λ̂i âi â
′
i by the

square of robust standard deviation estimates for the projected data. We can

compute the decomposition of Ĉ0: Ĉ0 = QΛQ′, where Q is the orthogonal ma-

trix of eigenvectors and Λ is the diagonal matrix of eigenvalues. Then we can

transform R to R̃ using the new basis Q : R̃ = RQ′ and compute the robust

standard deviation estimate (s̃j/0.6745) of the columns of R̃. Let D̃ be the di-

agonal matrix whose elements are (s̃j/0.6745)2 ordered from largest to smallest.

The final positive definite robust covariance matrix is Σ̂ = QD̃Q
′
.

By transforming the I2D-Winsor robust covariance matrix using Maronna’s

adjustment method, we guarantee the positive semidefiniteness of the final

covariance matrix and make it directly applicable to asset allocation problems.

2.3. Fast 2-D Winsorization (F2D-Winsor)

Khan et al. [11] proposed a fast two-step, two-dimensional Winsorization

method (F2D-Winsor) while investigating ways to make least-angle regression

(LARS) robust. Instead of repeated iteration of step B in I2D-Winsor, which

is computationally expensive, Khan’s method only implements step B once.

In order to achieve a similar level of robustness as I2D-Winsor, F2D-Winsor con-

structs an informative initial covariance matrix. We again combine F2D-Winsor

ideas from Khan’s paper and Maronna’s method to guarantee the positive semide-

finiteness of the covariance matrix and design the following F2D-Winsor method:

Step A. Initial covariance estimate. For each pair of variables ri and rj ,

compute simple robust location (median) and scale (adjusted MAD) estimates

for each variable. We then compute an initial covariance matrix using Khan’s

adjusted Winsorization method that is more resistant to bivariate outliers [11].

In the adjusted Winsorization method, two tuning parameters are used with c1

for the two quadrants (separated by mi and mj) that contain the majority of the

data and a smaller constant c2 for the other two quadrants. For example, c1 can be

taken to be 1.96 (µ±1.96 σ includes 95% of the data from the normal distribution)

and c2 = hc1 where h = n2/n1 with n1 the number of observations in the major

quadrants and n2 = T−n1, where T is the total number of observations. As shown

in Figure 1, the data are now shrunk to the boundary of the four smaller rectangles

instead of a large rectangle. As a result, the adjusted Winsorization method

handles bivariate outliers better than the univariate Winsorization. However,

it does raise a problem that the initial covariance matrix constructed from pair-

wise covariance may not be positive definite. To address the problem, Maronna’s

transformation is applied to convert the initial covariance matrix Σ0 to a positive

definite one.
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Figure 1: Adjusted Winsorization (for initial covariance) with c1 = 1.96,
where si and sj are estimated from adjusted MAD.

Step B. 2D-Winsorization based covariance matrix. For each pair of (ri,rj),

outliers are shrunk to the border of an ellipsoid by using the transformation

r̃t,i,j = µ0 + min
(√

c/Dt,0 , 1
)

(rt,i,j −µ0), with constant c = 5.99 (the 95% quan-

tile of the χ2
2 distribution). The covariance for each pair is calculated using this

modified data. Maronna’s transformation is again applied to guarantee the posi-

tive definiteness of the final covariance matrix.

2.4. L1-penalized mean-variance method (V1)

All these robust covariance matrix estimation methods try to increase the

stability of the allocation model by increasing the stability of the mean and co-

variance matrix of returns over time. Since the influence of outliers is reduced,

the updated return data tend to have less impact on the robust mean and co-

variance matrix, even if some of the new return vectors contain extreme values.

In this sub-section, we also implement a different class of penalization-based

robust estimators to directly increase model stability and reduce turnover.

If the expected return and covariance matrix are estimated from the histor-

ical sample R1, ...,RT , the original mean-variance portfolio optimization problem

min
w

w′ Σ w s.t. w′µ = µp, w′e = 1 ,(2.7)
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can be rewritten as

min
w,q

1

T

T
∑

i=1

(w′Rt − q)2 s.t. w′µ = µp, w′e = 1 .(2.8)

Lauprete [14] and Lauprete, et al. [15] proposed penalizing deviations from

the marketweights (wm,i =Mi/
∑N

j=1Mj with Mj being the market value of asset j)

as a possible way to reduce the influences of outliers and to reduce turnover.

These authors also considered using robust loss functions (M-estimators) in place

of least-squares loss in (2.8). A recent paper by DeMiguel and Nogales [6] replaces

M-estimators with S-estimators but omits any penalty term. If the market is

efficient (or nearly efficient as many researchers believe), a penalty term serves

as the prior in our optimization problem. We should penalize the final cost

function if the proposed asset weights deviate from the prior. As a result, extreme

deviations from the prior are unlikely. In this study, we focused on an L1 regulari-

zation method, which was the penalty function used in LASSO regression [27].

The regularized portfolio estimator can be expressed as [14]:

(

w(λ), q(λ)
)

= arg min
q∈R

(

1

T

T
∑

i=1

(w′Rt − q)2 + λ |w − wm|
)

(2.9)
s.t. w′µ = µp, w′e = 1 ,

where λ > 0 is the regularization parameter; |w−wm| is the L1-norm of w−wm:
∑N

i=1 |wi − wm,i| .

The term λ |w − wm| reflects the investor’s a priori confidence in the

market portfolio wm. A large λ means large penalty for any deviation and

strong confidence in wm; a small λ reflects weak confidence in wm. We choose

the parameter λ using 5-fold cross validation. For any given λ, we implement

the following steps:

Step A. Divide the T observations randomly into 5 subsets of T/5 obser-

vations. Call these subsets T (i) for i=1, ..., 5. For every i, run the optimization

to yield the optimal
(

ŵ(λ), q̂(λ)
)

for the in-sample data:

(

ŵ(λ), q̂(λ)
)

= arg min
q∈R

(

1

0.8 T

∑

t∈T\T (i)

(w′Rt − q)2 + λ |w − wm|
)

(2.10)
s.t. w′µ = µp, w′e = 1 .

Step B. For every i=1, ..., 5 apply
(

ŵ(λ), q̂(λ)
)

to the out-of-sample data

to calculate a sum of squared errors, PEλ(i) =
∑

t∈T (i)

[(

ŵλ(i)′Rt − q̂λ(i)
)2]

.

Step C. Calculate the total sum of squared errors PEλ =
∑5

i=1PEλ(i).
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A series of candidate values of λ from 0.01 to 2 are tested to yield a value

of λ with minimum total sum of squared errors PEλ. Once λ is selected, w(λ)

and q(λ) can be solved as the “optimal” solution to the corresponding quadratic

optimization problem. The lower bound of 0.01 was found by experimentation

and may be different for other data sets.

3. APPLICATION RESULTS

In this section, we show a real asset allocation application using daily re-

turns on 51 MSCI US industry sector indexes, from 01/03/1995 to 02/07/2005

(2600 trading days of data). Combining the stocks in these industry indexes

(∼ 700 stocks included) forms a general index for US equity markets broader

than the S&P 500. The robust methods discussed in Section 2 are applied to

find the “optimal” weights for each industry.

For every estimator, we use the following portfolio rebalancing strategy:

estimate the industry sector weights using the most recent 100 daily returns and

rebalance the portfolio weights every five trading days (a week). Since there are

2600 trading days in the data, there are 500 rebalances in total. In practice, there

are transaction costs when we change the weights of each asset using updated

information. So we will compare the results both without considering transaction

costs and with 5 cents for each $100 bought or sold. We apply a target return

constraint and convexity constraint to all estimates:

w′µ = µp , w′e = 1 .(3.1)

The resulting stream of ex-post portfolio returns is collected for each

estimator/target return combination. We calculate the following statistics of

the ex-post returns of each estimator/target return combination:

Mean: the sample mean of weekly ex-post returns;

STD: the sample standard deviation of weekly ex-post returns;

Information Ratio: IR = mean/STD×
√

52, where the standardization

by
√

52 makes the information ratio an annual estimate assuming

260 trading days per year;

α-VaR for α = 5% and 1%: the loss at the α-quantile of the weekly ex-post

return;

MaxDD: the maximum drawdown, which is the maximum loss in a week;

CRet: cumulative return;

Turnover: weekly asset turnover, defined as the mean of the absolute

weight changes
(
∑51

i=1 |wt,i− wt−1,i|
)

for 500 updates;
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Cret cost: cumulative return with transaction costs;

IRcost: Information ratio with transaction costs.

Except for the market model, which uses market weights and the corre-

sponding market returns, a range of target expected annual portfolio returns

from 10% to 20% are used for portfolio construction. Table 1 shows the sum-

marized results for annual expected return µp = 15% for V (mean-variance op-

timization with simple mean and covariance matrix), FAST-MCD, I2D-Winsor,

F2D-Winsor, V1 models and market index. More extensive tables are in Zhou [31].

Table 1: Performance of V, FAST-MCD, I2D-Winsor, F2D-Winsor, V1 models
and Market index for µp = 15%. For FAST-MCD, I2D-Winsor and
F2D-Winsor, the median instead of the mean of the returns is used as
the expected return of each asset.

µp = 15% V FAST-MCD I2D-Winsor F2D-Winsor V1 Market

mean 0.065% 0.096% 0.156% 0.155% 0.198% 0.160%

STD 1.962% 2.025% 1.948% 2.007% 2.431% 2.343%

IR 0.239 0.341 0.578 0.558 0.589 0.491

VaR(0.05) 3.06% 3.10% 3.10% 3.23% 3.71% 4.06%

VaR(0.01) 5.78% 6.33% 5.80% 5.52% 6.65% 5.28%

MaxDD –7.48% –8.57% –9.39% –9.40% –8.35% –10.01%

Cret 1.256 1.457 1.983 1.965 2.328 1.935

Cret cost 0.845 0.888 1.801 1.803 2.252 1.923

IRcost –0.054 –0.013 0.507 0.497 0.569 0.487

Turnover 1.59 1.99 0.39 0.35 0.13 0.02

Both the pair-wise Winsorization methods and the penalization method

yield significantly better results than mean-variance optimization with the sim-

ple mean and covariance matrix as inputs. The V method has significant asset

turnover (159%) and as a result the IRcost — the most popular performance

measure — is negative after the transaction costs are taken into consideration.

In contrast, I2D-Winsor, F2D-Winsor and V1 methods have much lower turnovers

(0.39, 0.35 and 0.13 respectively) and yield an IRcost of 0.507, 0.497 and 0.569

respectively, which are much higher than the V method. All these methods also

beat the market in VaR (5%), MaxDD and IRcost, which clearly shows their

value in active portfolio management.

The benefit of FAST-MCD is modest compared with the V method and

it is inferior to the market. The reason most likely lies in the strict assump-

tions of the MCD approaches. Although both MCD methods and pair-wise ro-
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bust estimators are designed to eliminate the effects of outliers, MCD models use

a restrictive contamination model assuming complete dependence of outliers

for different assets. Basically MCD models assume that each row of returns,

Rt, is either from the core distribution F0 or outlier generating distribution H.

The data are from the following mixed model:

F = (1−ε)F0 + εH , 0 < ε <
1

2
,(3.2)

where F is the mixed model; F0 is a multivariate normal distribution; H is an

arbitrary multivariate distribution that generates outliers.

Such a contamination model is rather restrictive for our application.

By looking at N -dimensional outliers, the models assume that all asset returns

for any given day are either from a core distribution F0 or outlier generating

distribution H. This assumption is only true if the market is the only factor that

determines asset returns or there are high correlations between different assets’

returns. In practice, the market return by itself only explains a small percent-

age of the variance of asset returns. Industrial factors and idiosyncratic risk have

been shown to explain the majority of the return variances. The pair-wise models

[1, 2] use a much more flexible mixed model for data:

Rt = (I−B)Yt + BZt ,(3.3)

with B = diag
(

[B1 B2 · · · BN ]
)

, Yt multivariate normal, Zt an arbitrary ran-

dom vector, and the Bi, Bernoulli random variables with success probability εi.

We can assume any format for the correlation matrix matrix of (B1, B2, . . . , BN ).

MCD models assume complete dependence B1 = B2 = · · · = BN , while pair-wise

models often assume independent Bi and Bj , i 6= j, or independently evaluate the

correlation for each pair of Bi and Bj . As a result, pair-wise robust estimators

offer more flexibility to calculate the covariances. Once the positive semidefi-

niteness property of the covariance matrix is guaranteed through transformation,

they provide far better results than FAST-MCD.

As shown in Table 2, pair-wise Winsorization methods are also faster than

the FAST-MCD method (10 hours) for the same data set. The sampling process

of FAST-MCD is much faster than the original MCD method, but the C-steps

still require extensive computation. Between the two pair-wise Winsorization

methods, F2D-Huber (35 minutes) is faster because it eliminates the repeated

iteration step in I2D-Winsor (3 hours), while I2D-Winsor is likely to yield a more

robust estimation of the covariance and indeed gives slightly better results than

F2D-Huber in our study. It is also worth noting that the estimated covariance

matrix often slightly underestimates the real covariance, so the estimation is

biased. Yet it is believed that for the constant c = 5.99 (the 95% quantile of the

χ2
2 distribution) that we chose, the bias would be small. Furthermore, the asset

weights depend on the relative size of the covariance, so the impact of bias on

our problem is even smaller.
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Table 2: Run Time for 500 Rebalancings.
All programs were run on a computer
with 3 GHz CPU and 3 GB of RAM.

Time V FAST-MCD I2D-Winsor F2D-winsor V1 Market

500 Rebalances 40 sec 10 hr 3 hr 35 min 4 hr < 4 sec

Penalization methods are more computationally intensive than pair-wise

Winsorization methods. The addition of the penalty term extends the dimension

of the optimization problems and increases the number of constraints. The cross-

validation of each penalty coefficient λ increases the computation further by ∼ 25

fold. Unlike robust estimation of the mean and covariance matrix, which only

need to calculate the parameters once for all µp, the optimization problem needs

to be performed for every µp. As a result, the run times of penalization methods

are often longer.

Though computationally intensive, the V1 method using the market index

as the prior carries great advantages. It yields the best information ratio with or

without transaction costs. Because of the L1 penalty term, most asset weights

are mainly restricted to the market weight, which dramatically reduces the asset

turnover compared with pair-wise Winsorization methods. Penalization methods

are especially valuable when the number of assets is of the same order of magni-

tude as the number of observations (in our study, T = 2N), since the covariance

matrix is often ill-conditioned.

We also compared our methods with some of the factor-based models, e.g.,

CAPM model, Principal Component Analysis model, Shrinkage model ([16]) and

multivariate GARCH models (e.g., Constant Conditional Correlation GARCH

and Dynamic Conditional Correlation GARCH [28, 29]). The results [31] show

that both pair-wise Winsorization methods and penalization methods perform

better than these traditional approaches.

4. CONCLUSION

The implementation of the mean-variance portfolio optimization is limited

in practice by difficulties in estimating model inputs, expected returns and the

covariance matrices of different assets, and the sensitivity of asset weights

assigned to these inputs. Traditionally, sample means and covariance matri-

ces from historical data were used, which are subject to large estimation errors.
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This paper investigates some of the recently developed robust statistical methods

such as FAST-MCD, Iterative 2-D Winsorization, Fast 2-D Winsorization and pe-

nalization methods. These methods prove to be valuable tools in improving risk-

adjusted portfolio performance and reducing asset turnover. Results also show

that the V1 penalization method outperforms the 2-D Winsorization methods.

However, they achieve this at the cost of significantly higher computational com-

plexity. The computational problem may be overcome by the recently developed

LARS algorithm [9]. LARS greatly speeds up computations for LASSO since

all solutions for all λ can be found in about the same time as one-least-squares

regression, which removes the need for a grid search on λ. If the LARS algorithm

can be successfully applied to penalized portfolio optimization, then penalization

methods can be used to allocate weights for 700 individual stocks directly instead

of 51 sector index funds. This is work in progress.
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