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We propose a penalized trimmed squares (PTS) estimator, where penalty costs for
discarding outliers are inserted into the loss function. We propose suitable penalties
for unmasking the multiple high-leverage outliers. The robust procedure is formu-
lated as a Quadratic Mixed Integer Programming (QMIP) problem, computationally
suitable for small sample data. The computational load and the effectiveness of the
new procedure are improved by using the idea of ǫ-insensitive loss function from sup-
port vector machines regression. The small errors are ignored, and the mathematical
formula gains the sparseness property. The good performance of the PTS estimator
allows identification of multiple outliers avoiding masking effects.
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1. INTRODUCTION

In linear regression models data often contain outliers and bad influential

observations. It is important to identify these observations and eliminate them

from the data set. If the data are contaminated with a single or few outliers the

problem of identifying such observations is not difficult. However, in most cases

data sets contain more outliers or a group of masking outliers and the problem

of identifying such cases becomes more difficult, due to masking effects.

The approaches to outlier identification can be separated into two catego-

ries: direct approaches and indirect approaches using residuals from the robust fit.

Among famous direct approaches, Hadi and Simonoff [9] presented a procedure

where it is attempted to separate the data into a set of “clean” data points

(of size k = (n+p−1)/2) and a set of points that contain the potential outliers.

The potential outliers are then tested to see how extreme they are relative to the

clean subset, using an appropriate diagnostic measure like the adjusted residual,

or Cook distance. Atkinson [1] proposed an identification method of multiple

outliers by using a simple forward search starting from initial random subsets.

The procedure requires again that at least one of the subsets does not contain

high-leverage outliers. Peña and Yohai [14] proposed a successful fast procedure

for detecting group of outliers in many situations, where due to masking effects

the usual diagnostics procedures fail. However, they do not claim that their

proposal keeps breakdown point of the original estimates. Their procedure has

two stages; in the first stage high-leverage points eliminated from the data set

irrespective of bad or good leverage points. Although in the second stage the effi-

ciency is improved by testing again the potential outliers, some precision may be

lost from the first stage. Generally, the key to the success of the above procedures

is to obtain a clean initial subset of data. An indirect approach to outlier identi-

fication is through a robust regression estimate. If a robust estimate is relatively

unaffected from outliers, then the residuals from the robust fit should be used

to flag the outliers. A famous estimator that preserves high breakdown point

(HBP) is the least trimmed squares LTS estimator of Rousseeuw and Leroy [16],

that minimize the sum of the k, (coverage k ≥ [(n+p−1)/2]) smallest squared

residuals. But is well known that the LTS loses efficiency. Some better pro-

posals obtain high breakdown points and simultaneously improve the efficiency

of the LTS estimator. Among them are the S estimators of Rousseeuw and

Yohai [18], the MM estimators of Yohai [24] Simpson, Ruppert, and Carroll [20]

and Coakley and Hettmansperger [7], which combine good asymptotic efficiency

under the normal linear model with HBP. These estimators, uses a less efficient

high-breakdown method as an initial estimate, and then uses an M estimation

strategy based on the redescending ψ function. Although they have achieved

good asymptotic properties, may have low finite-sample efficiencies if the design
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contains high leverage points. Morgenthaler [12] and Stefanski [21] argue that no

estimator with a breakdown point greater than 1/n, can have high finite-sample

efficiency in the presence of extreme leverage points. All these improvements to

LTS achieve high breakdown point, improve the efficiency and have the bounded

influence property. However, these estimators are based mainly on the initial

LTS regression coefficient value. In practice, their performance depends heavily

on the precision of the initial coefficient estimates. Sometimes, in data contam-

inated by high-leverage outliers, a bad initial coefficient value does not lead to

a good final robust estimation. Moreover, the LTS method requires the coverage k

or equivalently the number n−k of the most likely outliers that produces the

largest reduction in the residual sum of square when deleted. Unfortunately,

this knowledge of k is typically unknown, Gentleman and Wilk [8].

In this article we propose a different approach penalized trimmed squares

PTS, which does not require presetting the number n−k of outliers to delete

from the data set. The new estimator PTS is defined by minimizing a convex

objective function (loss function), which is the sum of squared residuals and

penalty costs for discarding bad observations. The robust estimate is obtained

by the unique optimum solution of the convex mathematical formula called QMIP.

The PTS estimator is very sensitive to the penalties defined a priori. In fact, these

penalty costs are a function of the robust scale σ and leverage of the design points

provided by the LTS and minimum covariance determinant MCD of Rousseeuw

and Van Driessen [17]. In particular, these penalties in the loss function regulate

the robustness and the efficiency of the estimator. The main purpose of the pre-

sented paper is first to construct a regression estimator that has high breakdown

point combined with good efficiency. For this purpose appropriate penalties for

high-leverage observations are developed so as to unmask the multiple outliers

and delete bad high-leverage outliers whereas keeping all of good high-leverage

points, if possible, in the data sample, otherwise most of them. Second, to im-

prove the computation time by bringing together the PTS loss function and the

idea of ǫ-insensitive loss function from support vector machines, Vapnik [23].

The support vectors have the advantage to reduce the complexity, as usually

not all observations but only the support vectors contribute to the predictions,

see Christmann [4]. Residuals within the interval (−ǫ, ǫ) are ignored in the loss

function, and those points outside the so-called ǫ-tube define the regression line.

The mathematical programming formula gains the sparseness property and as

a result the computation time is significantly reduced. Besides, the effective-

ness of the robust regression method is improved, since noisy training data are

ignored. For the support vector machines, Suykens et al. [22] and Christmann

and Steinwart [5], have emphasized among other properties and the advantage

of being robust. Both of the new estimators PTS and ǫ-insensitive PTS have

shown robustness against all type of outliers reasonable high breakdown point

and well efficiency. The PTS formula has the advantage to remove the outliers

and it suffers little from masking effects. Generally, the proposed estimator has
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the ability to handle a group of outliers. This is shown by means of Examples and

Monte Carlo Study. For small datasets and when the computation time is not

a problem, we recommend as robust regression procedure the PTS. For moderate

data sets the ǫ-insensitive PTS procedure is faster and successful.

In Section 2, we start from the LTS objective function and afterwards

the PTS procedure is described. Moreover, the masking problem is described

and a suitable penalty function is searched. A mathematical programming for-

mula QMIP is developed in Section 3, for obtaining a PTS estimate. In Section 4,

a support vector machines technique is developed with the new ǫ-insensitive loss

function. Some benchmark examples are studied in Section 5. The performance

of the new estimators PTS and IPTS are tested using Monte-Carlo simulation

study in Section 6. Finally, conclusions and future research are addressed in

Section 7.

2. TRIMMED SQUARES REGRESSION

We consider the linear regression model with p independent variables

y = X β + u ,

where y is the n×1 vector of the response variable y = (y1, y2, ..., yn)T ,

X is a full rank n×p matrix of the p×1 vectors of explanatory variables,

xi = (xi,1,xi,2, ...,xi,p), for i = 1, 2, ..., n, β is a p×1 vector of unknown pa-

rameters β = (β1, β2, ..., βp)
T , and u is a n×1 vector u = (u1, u2, ..., un)T of

iid random errors with expectation zero and variance σ2. We observe a sample

(yi, xi,1, xi,2, ..., xi,p), for i= 1, 2, ..., n, and construct an estimator for the un-

known parameters β. The Least Squares Estimator is defined by minimizing

the squared error loss function

min
β

n
∑

i=1

u2
i .

Unfortunately, points that are far from the predicted line (outliers) are over-

emphasized. Least Squares Estimators are very sensitive to outliers. We wish

to construct a robust estimator for the parameter β, in the sense that the influence

of any observation (xi, yi) on the sample estimator is bounded.

Rousseeuw and Leroy [16], introduced the Least Trimmed Squares LTS

estimator, which fits the best subset of k observations, removing the rest n− k

observations. The LTS estimator is defined by minimizing:

min
β

k
∑

i=1

u2
i ,(2.1)

s.t. u2
(1) < u2

(2) < u2
(3) < ... < u2

(k) ,
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where k is the coverage, k > n/2 chosen a priori, to maximize the so called

breakdown point, k = (n+p−1)/2. The estimator has high breakdown point

but loses efficiency, since n−k observations have to be removed from the sample

even they are not outliers. In real applications the coverage k is unknown.

The exact computation of LTS is difficult. Given coverage k, we have to find

the best set from all combinations (n, k). The exact algorithm for LTS is a com-

binatory one, and is suitable for small data sets, i.e. n < 50. Fast probabilistic

algorithms have been developed for larger samples. In the following proposed

robust procedures we consider only exact solutions.

X

y

y ≈ Xβ

Delete n − k potential outliers

Fit k points

Figure 1: LTS fitting with coverage k. (In practice the coverage k is unknown).

A problem with the LTS method is that the size n−k of the outlier subset

is rarely known. We propose a new approach that does not require presetting

the number n− k of outliers to delete from the data set. The basic idea is to

insert fixed penalty costs into the loss function for possible deletion. Thus, only

observations that produce reduction larger than their penalty costs are deleted

from the data set. The penalty costs are defined a priori, in the following section

the definition of the penalized trimmed squares estimator PTS is formalized and

suitable penalties for multiple high-leverage outliers are proposed. In this work,

the PTS estimator is defined over those k observations out of n with the largest

maximum likelihood estimation (MLE) fit. We consider as most likely outliers

the subset of the observations that produces significant reduction in the residual

sum of square when deleted. The proposed PTS estimator minimizes the total

sum of squared residuals which is split into two parts; the sum of the k squared

residuals in the clean data and the sum of the penalties for deleting the rest n−k
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observations,

min
β,k

(

Sk(β) + Sn−k(β)
)

,

or equivalently min
β,k

(

k
∑

i=1

u2
i + (n−k)×(cσ)2

)

,(2.2)

where, (cσ)2 can be interpreted as a penalty cost for deleting an observation,

σ is a robust residual scale, taken from LTS, and c is a cut-off parameter.

The estimator performance is very sensitive to the penalties defined a priori,

which regulate the robustness and the efficiency of the estimator. The choice of

the robust scale σ plays an important role in the coverage of the PTS estimator.

If we wish to obtain an initial clean subset from the PTS estimator (coverage 51%),

we choose as scale σ the square root of the minimum mean squared residuals re-

sulted from LTS with the same coverage. Alternatively, in order to delete only the

bad outliers, we could get the normalized robust scale σ from the LTS estimator.

The minimization problem (2.2) is convex, as it will be proved in Section 3,

therefore a global minimum exists. Given that the LTS estimate for coverage k

converges to the unique optimum solution of (2.1), the following proposition

is useful.

Proposition 2.1. If the PTS estimator for given penalty (cσ)2 converges

to the solution (βPTS , k), then for the same coverage k the LTS estimator yields

the equal estimate βLTS = βPTS .

Proof: For given penalty (cσ)2, the PTS is defined by solving the mini-

mization problem (2.2), and the resulted global minimum is

Sk,PTS = Sk(βPTS) + (n−k)×(cσ)2 .

From the resulted coverage k of the PTS solution, the LTS leads to a unique

minimum Sk(βLTS). Increasing this sum by a constant (n−k)×(cσ)2 yields the

unique global minimum sum Sk(βLTS) + (n−k)×(cσ)2, which is the same with

Sk,PTS , since both are global minimum. Therefore, both estimates βPTS and

βLTS coincide.

As a consequence of Proposition 2.1, the PTS estimator can be consid-

ered as high breakdown estimator, for small penalty cost (cσ)2. For instance,

asymptotically under Gaussian conditions, minimizing (2.2) with penalty cost of

c≈ 0.7, the solution of (2.2) converges to the LTS estimator with high breakdown

point ≈ 49%. Increasing the parameter c, we obtain better efficiency with rea-

sonable robustness. We have found that for c= 3, the PTS estimator works well

for the catastrophic outliers and this value has been used in the simulation and
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the examples. Moreover, the PTS estimate is the OLS estimate of the “clean”

data subset k. PTS can be approached equivalently by solving the problem

min
β

n
∑

i=1

ρcσ(ui) ,

(2.3) ρcσ(ui) =

{

u2
i for |ui|< cσ

√
1−hi ,

(cσ)2 for |ui| ≥ cσ
√

1−hi ,

where the leverages hi are introduced in the following paragraph. The PTS loss

function is simple, for large residual ui the sum of squared residuals is less rapidly

increasing. An interpretation of constant penalizing for big residuals is that the

observation (xi, yi) does not influence further the regression fitting and can be

considered as a deleted one.

As it is known from robust literature, Atkinson and Riani [2], a transfor-

mation of residuals that has been useful for outlier diagnostics, is the square

of adjusted residual,
u2

i

1−hi
, where hi (0<hi < 1) measures the leverage of the

i th observation, hi = xT
i (XTX)−1xi. The general principle of PTS estimator

(2.3) is to delete an observation if its reduction in the sum of squared errors,

Sk(β), is larger than the penalty cost
u2

i

1−hi
> (cσ)2. In the solution of the min-

imization problem (2.3), every residual in the clean data subset has an upper

bound |ui|< cσ(
√

1−hi). However, as the number of the observations to be

deleted increases, there is a combinatorial explosion of the number of deleted

subsets to be considered, which can lead to difficulties. Besides, as it is known

the leverage value hi can be distorted by the presence of collection of points,

which individually have small leverage values but collectively forms a high lever-

age group. Peña and Yohai [14] point out that the individual leverage hi of each

point might be small, whereas the final residual ui may appear very close to 0,

and this is a masking problem.

2.1. Masking problem and choice of penalties

For y-outliers and even for few x-outliers the PTS estimator has successful

performance. Unfortunately, masking problem arises when there is a group of

high leverage points in the same direction. In a set of identical high leverage

outliers, the leverage of each outlier is masked; the hi might be small (Peña and

Yohai [13]), hi ≪ 1. Deleting a masked leverage point, the reduction in the sum of

squared residuals may be small
u2

i

1−hi
≪ (cσ)2. In order to eliminate the distortion

of the masking problem appropriate penalties for high-leverage observations are

searched in this work to unmask the multiple outliers and delete bad high-leverage
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outliers. Most methods for multiple outlier detection as Hadi and Simonoff [9],

Peña and Yohai [14], seek to divide the data into two parts, a larger “clean data”

part and the outliers. The clean data are then used for the estimation of useful

parameters. In the PTS procedure we follow a similar principle, we propose to

down-weight the penalties using information from:

1) The initial leverage of each data point (xi, yi), hi = xT
i (XTX)−1xi.

2) The leverage of each point (xi, yi) as it joins the clean data subset

taken from MCD with coverage k (Rousseeuw and Van Driessen [17]),

is h∗i = xT
i (XT

k+1Xk+1)
−1xi, which can be considered as the lever-

age at the clean data set of coverage k. From robust literature, it is

expected that h∗i ≥ hi for the potential xi-outliers, i.e. for points not

included in Xk. For the remaining points, which are included in Xk,

we take h∗i = hi.

In a bounded influence estimate we wish for every data point (xi, yi),

|ui| ≤ cσ
√

1−h∗i . This can be obtained by weighting the penalty as
1−h∗

i

1−hi
(cσ)2.

Applying the proposed robust function (2.3) to the initial data set

ρ(1−h∗
i
)(1−hi)cσ(ui) =



















u2
i for |ui|< cσ

√
1−h∗

i√
1−hi

√
1−hi = cσ

√

1−h∗i ,

√

1−h∗i√
1−hi

(cσ)2 for |ui| ≥ cσ

√
1−h∗

i√
1−hi

√
1−hi = cσ

√

1−h∗i .

The above argument leads to the choice of penalty down-weighting with

(2.4) wi = min

{

1 ,

√

1− h∗i√
1− hi

}

.

Therefore, the deleting penalties become (ciσ)2, where ci = cwi. For minimizing

the penalty loss function in (2.2), a quadratic mixed integer programming formula

is used as it is developed in the next paragraph.

3. QMIP FORMULA FOR THE PTS

The new estimator PTS is defined from the solution of the problem (2.2)

or (2.3). In order to minimize the penalty loss function in a robust regression,

Zioutas and Avramidis [25] proposed a quadratic mixed integer programming
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formula, called QMIP:

min
β,ui,si,δi

n
∑

i=1

(

u2
i + δi(cwiσ)2

)

,(3.1)

s.t. xT
i β + ui ≥ yi − si

xT
i β − ui ≤ yi + si

si ≤ δiM

δi : zero-one variable

ui, si ≥ 0 for i= 1, ..., n ,

where, s is the pulling distance for moving an outlier towards the regression line,

δ is a zero-one decision vector, to indicate which observations must be removed

andM is an upper limit of the residuals ui, i=1, ..., n. Given any fixed δ ∈ {0, 1}n

from the 2n possible ones, and using matrix notation we have the following mixed

integer quadratic problem:

min
β

uTu + δTp ,

s.t. Xβ + u ≥ y − s

Xβ − u ≤ y + s

s ≤ δM

u, s ≥ 0 ,

where, p =
(

(cw1σ)2, (cw2σ)2, ..., (cwnσ)2
)T

, u = (u1, ..., un)T, s = (s1, ..., sn)T,

y = (y1, ..., yn)T, β = (β1, ..., βn)T and the matrix X= [x1,x2, ...,xn]T . This prob-

lem has linear constraints and a convex quadratic objective function, since the

Hessian of uTu has nonnegative eigenvalues (and it is therefore positive semi-

definite). Therefore we have a convex program, which will have a unique global

optimum solution according to the Karush–Kuhn–Tucker optimality conditions [3].

Considering that there is a finite number of possible δ, we can conclude that

a global optimum solution to the problem exist. Hence, the quadratic mixed

integer programming formula (3.1) is convex; therefore, a unique global optimum

solution can be obtained for the given data, which is an estimate of the PTS.

In the present work, the solution of the QMIP formula obtained by the

Fort/QMIP algorithm, Mitra et al. [11]. Computationally, the PTS estimation is

suitable for small number of observations, n< 50, otherwise it could be extremely

intensive. In the next paragraph we propose an ǫ-insensitive PTS procedure where

the QMIP formula gains sparseness and it becomes computationally reasonable

even for larger data sets.
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4. SUPPORT VECTORS TOLERANT REGRESSION

4.1. ǫ-Insensitive loss function
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X

y

ǫ

ui

y = Xβ

ǫ ≤ ui

Figure 2: ǫ-insensitive tolerant regression. Only the points outside the tube
enter the stochastic term. Points close to actual regression have ǫ loss.

In order, to improve the computation time we use the idea of ǫ-insensitive

loss function from support vector machines, proposed by Vapnik [23]. In the

ǫ-insensitive loss function small errors are not penalized and it is attempted to

fit a tube with radius ǫ to the data, by ignoring (tolerating) small errors, u< ǫ,

(4.1) |y−f(x)|ǫ = |y − xTβ|ǫ = max
(

0, |y−xTβ| − ǫ
)

.

Small errors (below some ǫ > 0) are not penalized in the loss function. The accu-

racy parameter ǫ controls the number of points outside the tube with radius ǫ.

The Support Vectors Regression (SVR) based on the ǫ-insensitive loss function

has the advantage to offer sparseness of the solution, Vapnik [23] and Schölkopf

and Smola [19]. Christmann and Steinwart [5], [6] proved that kernel methods

including SVR have good robustness properties for classification and regression

problems if these kernel methods use a bounded and universal kernel and a loss

function with bounded first derivative.

We adapt the support vectors technique to our approach modifying the

ǫ-insensitive loss function in a squared form, and all the errors smaller than ǫ

are penalized with a constant value ǫ2. Thus, the proposed ǫ-insensitive loss
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function becomes

(4.2) (y−f(x))2ǫ = (y − xTβ)2ǫ = max
[

ǫ2, (y − xTβ)2
]

,

where, the accuracy parameter ǫ controls the number of points outside the tube,

and trades off a potential loss in prediction accuracy with gain of sparseness

property and faster solutions.

We bring together, the loss functions of the new ǫ-insensitive and the Penal-

ized Trimmed Squares. Thus, a new estimator called IPTS can yield by solving

the problem

min
β

n
∑

i=1

ρǫ,ciσ(ui) ,

(4.3) ρǫ,ciσ(ui) =















ǫ2 for |ui| ≤ ǫ ,

u2
i for ǫ < |ui| < ciσ

√
1−hi ,

(ciσ)2 for |ui| ≥ ciσ
√

1−hi ,

where ciσ = max{ǫ, ciσ}. Under Gaussian conditions good efficiency could be

obtained for ǫ = 0.612σ, Schölkopf and Smola [19]. From our empirical results

ǫ= σ was a good choice for faster computation and efficiency. The minimization

of the loss function (4.3) is equivalent to the following constraint optimization

problem QMIP

min
β,ui,si,δi

n
∑

i=1

(

u2
i + δi(cwiσ)2

)

,

s.t. xT
i β + ui ≥ yi − si(4.4)

xT
i β − ui ≤ yi + si

ui ≥ ǫ

si ≤ δiM

δi : zero-one variable

ui, si ≥ 0 for i= 1, ..., n ,

where cwiσ = max{ǫ, c wiσ}, δi is a zero-one decision variable, to indicate which

observations must be deleted. The IPTS formula is convex, see Section 3, there-

fore a unique optimum solution can be found and the IPTS is estimated. The

tolerance constraint of the above formula leads to sparsity. It should be noted

that due to the third constraint any residual smaller than ǫ penalizes the objec-

tive function with ǫ2. A final note must be made regarding the sparseness of

the above formula (4.4). All points inside the ǫ-tube do not contribute to the

solution: we could remove any one of them, and still obtain the same solution.
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The new mathematical programming formula is still convex, see Section 3, and

therefore the unique global optimum solution of the convex problem (4.4) yields

an estimation of IPTS. In the same solution those δi = 1 flag the deleted

outliers. This way of identifying outliers with the IPTS, guarantees faster

numerical solvability.

��

��

��

��

��

��

��

��

��

��

��

X

y

ǫ

ǫ

cσ

y = Xβ

outliers

Figure 3: IPTS regression. Appropriate emphasis is given on medium residuals
(risk part). De-emphasize small or big errors.

4.2. The Algorithm of IPTS Procedure for large data sets

The parameter ǫ can be useful for the desired accuracy and sparseness.

In present case, however, our main goal is the identification of the outliers and

faster computation, therefore larger values for the parameter ǫ could be used.

Besides, as the size of the data set increases, it would be reasonable to increase the

sparseness of the mathematical formula (4.4) in order to reduce the computational

time. It should be noted that small changes in the parameter ǫ might increase the

sparseness without affecting the correct identification of the outliers. However,

as the radius ǫ increases, efficiency of the IPTS estimator may be lost. Therefore,

for large data sets, we propose an algorithm of the IPTS procedure which is

described briefly as follows:
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• Step 1. Estimate the robust scale σ and leverage h∗i , and determine the
penalty costs (ciσ)2.

• Step 2. Solve the QMIP formula for the IPTS estimator.

• Step 3. Remove the detected outliers from the data i.e. points for which
δi = 1 in Step 2.

• Step 4. Estimate OLS on the clean data set. This is the final IPTS esti-
mator.

Following these steps we obtain the IPTS estimator, which shows good perfor-

mance as it is illustrated via Examples from literature and Monte Carlo Study

in the next sections. More steps could improve further the IPTS estimator by

reincluding deleted observations similar to Hadi and Simonoff [9]. However, this

is not the goal of the present work.

5. EXAMPLES

The PTS and IPTS procedures have the advantage to remove the outliers

and suffers less from masking effects. This is shown by means of real examples

or artificial data sets encountered in the literature. The first four data sets, dis-

cussed by Rousseeuw and Leroy [16], have become standard “benchmark” data

sets for detecting outliers in regression. The high breakdown estimators like

LMS, LTS, the MM or its improved versions and the identification procedures

of Hadi and Simonoff [9] correctly identify the outliers for these four data sets.

Both of our proposals PTS and IPTS identify the true outliers correctly as sig-

nificantly outlying. Further, the proposed procedures in this article have been

tested with many other examples of Rousseeuw and Leroy [16]; in all cases we

got good results.

Telephone Data. We start with the data, which relate the number of

telephone calls in Belgium to the variable year, for 24 years. Cases 15–20 are

unusually high; cases 14 and 21 are marginal. The outliers draw the OLS regres-

sion line upwards, masking the true outliers, while swamping in the clean cases

2–24 as too low. The MM estimator is similar to the other high breakdown esti-

mators and correctly flags the outliers. Also, our estimators the PTS and IPTS

correctly identify the true outliers.

The Stars Data. This set consists of 47 measurements of the logarithm

of effective temperature at the surface of a star and the logarithm of the light

intensity of the star. Although there is a direct relationship between the two

variables for most of the stars, the four red giants (cases 11, 20, 30 and 34) have

low temperature with high light intensity, and a scatter plot shows them as clear

outliers and leverage points. The OLS- and M-estimate lines are very similar,

being drawn toward the outliers are masked. The bounded influence estimator is
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less sensitive to the outliers than are the OLS and M estimators, having (small)

positive slope, but the outliers are still masked. The high breakdown estimators

LTS and MM find the true relationship if the efficiency level is set lower than the

typical 95% (for efficiencies up to 80–90%). Considering stronger efficiency the

MM estimator fails for this data. Application of the PTS and IPTS procedure

both flags correctly the outliers.

Modified Wood Gravity Data. We next analyze the five predictors

data set, based on real data but modified by Rousseeuw [15] to contain outliers

at cases 4, 6, 8 and 19. All of the identification methods discussed above, as well,

the OLS, M, and bounded influence estimates, fail to identify the outliers.

The MM estimator is successful for this data, with the true outliers having large

residuals. The proposed PTS and IPTS estimators are also successful.

Hawkins, Bradu and Kass Data. The data generated by Hawkins

et al. [10] for illustrating the merits of a robust technique. This artificial data

set offers the advantage that at least the position of the good or bad leverage

points is known. The Hawkins, Bradu and Kass data consists of 75 observa-

tions in four dimensions. The first ten observations is a group of identical bad

leverage points, the next four points are good leverage while the remaining are

good data. The problem in this case is to fit a hyperplane to the observed

data. Plotting the regression residuals from the model obtained from the stan-

dard OLS estimator, the bad high-leverage point data are masked and do not

show up from the residual plot. Some robust methods not only fail to identify

the outliers, but they also swamp in the good cases 11–14. The MM estimate is

Y =−0.9525 + 0.1492X1 + 0.1968X2 + 0.1793X3, which means that the true out-

liers are masked, whereas cases 11–14 are swamped in. Less efficient versions of

the MM (up to 80%) give results similar to LTS and correctly flag the outliers.

The LTS estimate is Y = −0.524 + 0.2723X1 + 0.0552X2− 0.1876X3, and cor-

rectly flags the outliers. An initial estimate of robust design weights reveals the

first 14 points of this data set as high leverage points. Application of the PTS

and IPTS to these data, starting with robust scale estimate about σ= 0.61 from

the LTS and down-weighting the penalty cost with weights wi from (2.4), rejects

only the first 10 points as outliers, which are known as the bad leverage points.

More specifically, the IPTS estimate gives Y =−0.6599+0.2393X1+0.0598X2 −
0.1026X3, and its computation time is much faster than the PTS procedure.

New Artificial Data. These data have been created by Hadi and Simo-

noff [9], in order to illustrate the performance of various robust methods in outlier

identification. The two predictors were originally created as uniform (0, 15) and

were then transformed to have a correlation of 0.5. The depended variable was

then created to be consistent with the model y = x1 + x2 + u with u∼N(0, 1).

The first 3 cases (1–3) were contaminated to have predictor values around (15, 15),

and to satisfy y = x1 + x2 + 4. Scatterplots or diagnostics have failed to detect

the outliers. Many identification methods fail to identify the three outliers. Some
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bounded influence estimates have largest absolute residual at the clean case 17,

indicating potential swamping. The LMS regression line in cases 6, 11, 13, 17 and 24

yields larger absolute LMS residual values than the true outliers. The more effi-

cient high breakdown methods like LTS, MM do identify the three outliers as

the most outlying cases in the sample, but the residuals are to small to be con-

sidered significantly outliers. In contrast, robust methods proposed by Hadi and

Simonoff [9], PTS estimator and IPTS identify correct the clean set 4–25, with

each of the cases 1–3 having residuals greater than 3.78.

6. MONTE CARLO RESULTS

In this section we perform Monte Carlo experiments to evaluate the per-

formance of our robust procedure and compare it with the well-known methods

discussed in this article. To carry out one simulation run, we proceeded as follows.

The distributions of independent variables and errors and the values of param-

eters are given. The observations yi, were obtained following the regression

model second degree p = 2, yi = β0 +β1x1i + β2 x2i + ui, where the coefficient

values are β1 = 1.20, β2 = −0.80 and a zero constant term β0 = 0.0. We pre-

fer the Gauss distribution for the iid error term u∼N(0, σ2 = 162), while x1i

and x2i are iid values drawn also from normal distributions N(µ= 20, σ2 = 62)

and N(µ= 30, σ2 = 82) respectively. We consider that the sample may contain

three types of outliers, regression outliers (“bad” high-leverage points), “good”

high-leverage points, and response outliers (y-outliers). An extra value is drawn

from the uniform distribution U(a= 80, b= 220) and for the regression outlier is

added to x1i or x2i, for the “good” leverage point is added to x1i or x2i but the

value of the dependent variable yi follows their contamination, according to the

above regression model, for the response outlier is added to yi. All simulation re-

sults are based on 100 replications enough to obtain a relative error < 10% with

a reasonable confidence level of at least 90% for all the simulation estimates.

The robust scale estimate σ from LTS with coverage k = 28 is used throughout

the simulation study. We report the results only of the available well-known ro-

bust high breakdown methods. The methods examined are, therefore, five differ-

ent types of robust estimators: the LTS estimator with coverage k= [(n+p−1)/2],

the MM and S1S estimators using in both initially the LTS regression estimate,

the proposed PTS estimator solving the QMIP in (3.1), the proposed IPTS

estimator solving the QMIP in (4.4). We run all of the computer programs on a

1200 Mhz Athlon AMD Processor. The computations for the robust estimators

LTS and MM were carried out using the S-Plus package, while S1S estimator has

been computed by the S1S algorithm given in Coakley and Hettmansperger [7].

The simplex iterations for the QMIP solution were carried out on the same

machine using the solver FortMP/QMIP-Fortran Code provided by CARISMA,

Brunel University, U.K., 2003.
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All of the following conclusions were supported by careful examination of

the individual estimates. Tables 1, 2, 3 and 4 display results concerning the

performance of the four robust estimators corresponding to the following cases:

Table 1, based on data contaminated by “bad” and “good” high leverage points.

Table 2, based on data contaminated only by “good” leverage points. Table 3,

based on data contaminated by “bad” high leverage outliers. Table 4, based on

data contaminated by “bad” high leverage outliers (heavier contamination).

Table 1: x-outliers 6, “good” leverage points 4, y-outliers 6, n= 50.
True: β0 = 0.0, β1 = 1.20, β2 =−0.80.

Estimator LTS MM S1S PTS IPTSǫ=0.8σ

Mean estimate of β0 – 0.67 1.82 8.54 0.03 – 1.12

Mean estimate of β1 1.01 0.98 0.96 1.13 1.21

Mean estimate of β2 – 0.68 – 0.75 – 0.75 – 0.81 – 0.80

Mean absolute error of β̂0 7.76 5.96 9.53 3.89 2.82

Mean absolute error of β̂1 0.34 0.27 0.34 0.14 0.05

Mean absolute error of β̂2 0.15 0.09 0.08 0.07 0.06

Mean square error of β̂ 98.91 71.53 146.05 25.43 14.78

Norm of bias of β̂ 7.78 5.97 9.54 3.90 2.82

Trace of covariance 98.41 68.18 73.05 25.42 13.54

Mean square fitting error
353 314 344 275 263(true value σ2=256)

Computation Time (secs) 11 3

Table 1 presents the measures of the performance criteria for the four es-

timators in the presence of bad and good high leverage outliers. Taking account

all the performance criteria, the PTS and IPTS outperform the other estima-

tors. In this Table, we see that IPTS outperform the PTS estimator and the

IPTS procedure is faster, as it was expected. As far as the computation time of

MM, LTS and S1S concern, these are not shown in Tables 1, 2, 3 and 4. This is

these estimates results from probabilistic solutions. As it has been mentioned

in the previous sections, the PTS and IPTS estimates are the exact solution

of QMIP formulas. Therefore, the computation time between probabilistic and

exact solutions is not comparable. Not surprisingly, most of the methods are

more effective in the case of clean data. For the simulation conducted over clean

data contaminated only by “good” high leverage points, Table 2, the IPTS es-

timator outperforms the other estimators. The performance of PTS, MM, S1S

and LTS was reasonable well with PTS much better. Of course, one can improve

the efficiency of the robust estimates, but at the cost of losing robustness and

outlier detection.
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Table 2: “good” leverage points 6, n= 50.
True: β0 = 0.0, β1 = 1.20, β2 =−0.80.

Estimator LTS MM S1S PTS IPTSǫ=0.8σ

Mean estimate of β0 0.53 – 1.16 – 2.26 – 1.67 – 1.26

Mean estimate of β1 1.17 1.20 1.20 1.21 1.21

Mean estimate of β2 – 0.77 – 0.75 – 0.91 – 0.75 – 0.77

Mean absolute error of β̂0 7.55 3.02 3.66 2.88 2.79

Mean absolute error of β̂1 0.08 0.04 0.09 0.04 0.03

Mean absolute error of β̂2 0.10 0.07 0.10 0.07 0.06

Mean square error of β̂ 76.93 18.02 22.88 15.80 14.91

Norm of bias of β̂ 7.55 3.03 3.66 2.88 2.79

Trace of covariance 76.65 16.67 17.81 13.02 13.33

Mean square fitting error
308 266 268 263 262(true value σ2=256)

Computation Time (secs) 9 2

In case of only bad high leverage contamination, shown in Table 3, the

penalized trimmed squares approach has shown remarkable improvement in both

robustness and efficiency, with IPTS the best. As a final conclusion of Tables 1, 2, 3

and taking account all the performance criteria, the IPTS procedure improves

reasonable the performance of the PTS. Also, the IPTS procedure is faster.

Table 3: “bad” leverage points 6, n= 50.
True: β0 = 0.0, β1 = 1.20, β2 =−0.80.

Estimator LTS MM S1S PTS IPTSǫ=0.8σ

Mean estimate of β0 4.95 1.04 3.06 0.91 0.02

Mean estimate of β1 0.87 1.04 0.81 1.10 1.15

Mean estimate of β2 – 0.77 – 0.74 – 0.82 – 0.76 – 0.76

Mean absolute error of β̂0 11.42 5.46 6.94 4.11 3.92

Mean absolute error of β̂1 0.44 0.22 0.42 0.17 0.13

Mean absolute error of β̂2 0.22 0.12 0.17 0.10 0.10

Mean square error of β̂ 229.69 48.59 103.16 27.24 22.61

Norm of bias of β̂ 11.45 5.47 6.99 4.13 3.93

Trace of covariance 205.12 47.48 93.67 26.41 22.60

Mean square fitting error
378 298 327 282 274(true value σ2=256)

Computation Time (secs) 9 2.9
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The most fruitful result concerning the IPTS procedure is presented in Table 4.

Data are heavy contaminated by bad high leverage outliers. A masking problem

arises affecting the performance of the other robust estimators. The IPTS proce-

dure with ǫ = 1.5σ has improved significantly the performance criteria and the

computation load as well.

Table 4: “bad” leverage points 10, y-outliers 6, n = 50.
True: β0 = 0.0, β1 = 1.20, β2 =−0.80.

Estimator LTS MM S1S PTS IPTSǫ=1.5σ

Mean estimate of β0 0.03 – 0.97 6.39 – 1.14 – 1.69

Mean estimate of β1 0.77 0.76 0.79 1.15 1.16

Mean estimate of β2 – 0.57 – 0.51 – 0.52 – 0.74 – 0.74

Mean absolute error of β̂0 9.46 7.42 12.48 5.12 4.37

Mean absolute error of β̂1 0.56 0.54 0.65 0.21 0.18

Mean absolute error of β̂2 0.28 0.31 0.30 0.10 0.09

Mean square error of β̂ 128.07 87.84 202.22 57.56 30.50

Norm of bias of β̂ 9.50 7.51 12.51 5.15 4.25

Trace of covariance 127.84 86.63 161.21 56.25 27.63

Mean square fitting error
456 432 490 293 277(true value σ2=256)

Computation Time (secs) 13 0.5

For large data sets, we could increase the radius ǫ in order to earn compu-

tation time, and following the algorithm of subsection 4.2, we obtain reasonable

efficiency. In Tables 5 and 6, the success in outlier detection is obvious in large

data sets as also the reduction of the computation time of the IPTS estimator

as we increase the tube radius.

Table 5: Large artificial data set, 500 points in R
2 including 120 outliers.

Estimator LTS PTS IPTSǫ=1.5σ IPTSǫ=2.0σ IPTSǫ=2.5σ

Deleting outlier success 95% 95% 95% 95% 95%

Computation time (sec.) 3800 3800 2500 681 21

Table 6: Hawkins et al. [10] artificial data, 75 points in R
3 including 10 outliers.

Estimator LTS PTS IPTSǫ=1.5σ

Deleting outlier success 100% 100% 100%

Computation time (sec.) 255 255 1.4
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7. CONCLUSIONS AND FUTURE WORK

The PTS estimate procedure based on robust residual scale and leverage

from the LTS and MCD respectively, can be used successfully in regression prob-

lems. Through benchmark Examples and Monte Carlo simulation the proposed

estimators have shown robustness against all type of outliers. The robust esti-

mates presented in this article give directly a useful diagnostic tool to identify

multiple outliers. The penalized procedure has the advantage to remove the catas-

trophic outliers and it does not suffer from masking problems. Generally, the

proposed estimator PTS has the ability to handle effectively a group of outliers.

The new estimator PTS is obtained through a convex quadratic mixed integer

programming formula (QMIP). The computational effort to solve this formula

is heavy. Following a modification of ǫ-insensitive technique from Support Vector

Machines we have improved significantly the computational time and the effec-

tiveness of the proposed estimator. However, the computational load of the IPTS

estimator is still heavy for large data sets (n > 100), since the IPTS procedure

is based on Quadratic Mixed Integer Programming which is partly a combina-

torial problem. Based on the above optimum criteria and results, we conclude

that the PTS estimator outperforms in many circumstances and is reasonable

for both regression and response outliers. Therefore, it is accessed that for small

sample data the added computational complexity is worth the potential benefits.

Further improvements in the penalized procedure are a subject of ongoing

research; for example, determine possible better choices of the penalties and

continue the method in a second stage to reconsider the outliers, following one

step MM-type procedure. Concerning the computation effort, further research

is needed to improve the computational time for large size sample data by deter-

mining possible better choice of the ǫ-insensitive size for the IPTS procedure

or implementing probabilistic techniques, similar to LTS or others known from

robust literature. As a final remark, since the number of outliers in a medium

sample data is not known, we recommend the use of the PTS or IPTS procedure.
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