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Abstract:

• Heavy tailed-models are quite useful in many fields, like insurance, finance, telecom-
munications, internet traffic, among others, and it is often necessary to estimate a
high quantile, i.e., a value that is exceeded with a probability p, small. The semi-
parametric estimation of this parameter relies essentially on the estimation of the tail
index, the primary parameter in statistics of extremes. Classical semi-parametric es-
timators of extreme parameters show usually a severe bias and are known to be very
sensitive to the number k of top order statistics used in the estimation. For k small
they have a high variance, and for large k a high bias. Recently, new second-order
“shape” and “scale” estimators allowed the development of second-order reduced-bias
estimators, which are much less sensitive to the choice of k. Here we shall study, under
a third order framework, minimum-variance reduced-bias (MVRB) tail index estima-
tors, recently introduced in the literature, and dependent on an adequate estimation
of second order parameters. The improvement comes from the asymptotic variance,
which is kept equal to the asymptotic variance of the classical Hill estimator, provided
that we estimate the second order parameters at a level of a larger order than the
level used for the estimation of the first order parameter. The use of those MVRB
tail index estimators enables us to introduce new classes of reduced-bias high quantile
estimators. These new classes are compared among themselves and with previous
ones through the use of a small-scale Monte Carlo simulation.
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1. INTRODUCTION

Let X1, X2, ..., Xn be a set of n independent and identically distributed

(i.i.d.) random variables (r.v.’s), from a population with distribution function

(d.f.) F , in the max domain of attraction of Gγ , γ ∈ R, with

Gγ(x) =





exp
[
−(1 + γx)

− 1
γ
]
, 1 + γx > 0 if γ 6= 0 ,

exp(−e−x) , x ∈ R if γ = 0 .

The parameter γ is the extreme value index and we then use the notation

F ∈ D(Gγ). In this paper we shall work only with heavy-tailed models, i.e.,

models F ∈ D(Gγ) with γ > 0. Then γ is often called tail index.

Let us define U(t) := F←(1−1/t), t >1, with F←(x) := inf
{
y : F (y) ≥ x

}

denoting the generalized inverse function of F . We have

(1.1) F ∈ D(Gγ), γ > 0 ⇐⇒ 1−F ∈ RV−1/γ ⇐⇒ U ∈ RVγ

(Gnedenko, 1943; de Haan, 1970), where, for any real a, RVa stands for the class

of regularly varying functions at infinity with index of regular variation a, i.e.

positive measurable functions g such that limt→∞ g(tx)/g(t) = xa, for all x > 0.

We are interested in the estimation of a high quantile, χ1−p, a typical pa-

rameter in the most diversified areas of application. Such a quantile is a value

exceeded with a small probability p, i.e., such that F (χ1−p) = 1− p. More specif-

ically, we want to extrapolate beyond the sample, and to estimate

(1.2) χ1−p = U(1/p) , p = pn→ 0, npn→K as n→∞, K ∈ [0, 1] .

Denoting by X1:n < ... < Xn:n the order statistics (o.s.’s) from the original sam-

ple, Weissman (1978) proposed, for heavy-tailed models, the following semi-

parametric estimator of χ1−p ,

(1.3) Q
(p)
γ̂ (k) := Xn−k:n cγ̂

n , cn := k
np → ∞, as n→∞ ,

where γ̂ is any consistent estimator of γ. For γ ∈ R, we can find semi-parametric

high quantile estimators in de Haan and Rootzén (1983), Ferreira et al. (2003) and

Matthys and Beirlant (2003). As usual in semi-parametric estimation of param-

eters from extreme value models, we shall assume that k = kn is an intermediate

sequence, i.e., a sequence of integer values in [1, n], such that

(1.4) kn → ∞ , kn = o(n), as n → ∞ .
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For heavy tails, the classical tail index estimator, usually the one which is plugged

in (1.3) for a semi-parametric quantile estimation, is the Hill estimator γ̂ =

γ̂(k) =: H(k) (Hill, 1975),

(1.5) H(k) := 1
k

k∑

i=1

Vik = 1
k

k∑

i=1

Ui ,

the average of the log-excesses Vik := lnXn−i+1:n− lnXn−k:n, 1≤ i≤ k < n, as

well as the average of the scaled log-spacings

(1.6) Ui := i
(
lnXn−i+1:n− lnXn−i:n

)
, 1 ≤ i ≤ k < n .

We thus get the so-called classical quantile estimator, Q
(p)
H (k), based on the Hill

tail index estimator H. It is known that for intermediate k and if the first order

condition (1.1) holds, H(k) and Q
(p)
H (k) are consistent for the estimation of γ and

χ1−p, respectively. The main problem with these semi-parametric estimators is

a high variance for small k, i.e., high thresholds, and a high bias for large k.

To obtain information on the distributional behaviour of these estimators,

we shall also assume a second order condition, that measures the rate of conver-

gence of lnU(tx)− lnU(t) to γ lnx,

lim
t→∞

lnU(tx) − lnU(t) − γ lnx

A(t)
=

xρ−1

ρ
⇐⇒

(1.7)

⇐⇒ lim
t→∞

U(tx)/U(t) − xγ

A(t)
= xγ xρ−1

ρ
,

for all x > 0, where ρ ≤ 0 is the shape second order parameter and the function

|A| must be of regular variation with index ρ (Geluk and de Haan, 1987). To be

able to reduce the bias of these estimators, it is quite useful to assume that we

are working in Hall’s class of heavy-tailed models (Hall, 1982; Hall and Welsh,

1985) where, with γ > 0, ρ < 0, C > 0 and D1 6= 0,

(1.8) U(t) = C tγ
(
1 + D1 tρ + o(tρ)

)
, t → ∞ .

Then, the second order condition (1.7) holds with A(t) = ρD1 tρ := γ β tρ.

Proposition 1.1 (de Haan and Peng, 1998). Under the secondorder frame-

work in (1.7), and for intermediate k, i.e., whenever (1.4) holds, we may guarantee

the asymptotic normality of H(k) in (1.5). Indeed, we may write,

(1.9) H(k)
d
= γ +

γ√
k

Zk +
A(n/k)

1−ρ

(
1+ op(1)

)
,

with Zk =
√

k
(∑k

i=1 Ei/k − 1
)
, and {Ei} i.i.d. standard exponential r.v.’s.
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Consequently, if we choose k such that
√

k A(n/k) → λ 6= 0, finite, as n → ∞,√
k
(
H(k)−γ

)
is asymptotically normal, with variance equal to γ2 and a non-null

mean value given by λ/(1−ρ).

The result in (1.9) has recently led researchers to consider the possibility of

dealing with the asymptotic bias dominant term in an appropriate way, building

second-order reduced-bias estimators, discussed by Peng (1998), Beirlant et al.

(1999), Feuerverger and Hall (1999), Gomes et al. (2000), among others. In the

above mentioned papers, authors have been able to remove the dominant com-

ponent of the asymptotic bias, but with an increase of the asymptotic variance.

More recently, Gomes et al. (2004b), Caeiro et al. (2005) and Gomes et al. (2007a)

proposed minimum-variance reduced-bias (MVRB) estimators, based on an ex-

ternal estimation of second order parameters, built in such way that they were

able to reduce the bias without increasing the asymptotic variance, which is kept

equal to γ2, the asymptotic variance of the Hill estimator.

If we look at (1.9), we see that the dominant component of the bias of Hill’s

estimator is A(n/k)/(1−ρ) = γβ (n/k)ρ/ρ, for models in (1.8). This component

can be easily estimated and removed from Hill’s estimator, leading to any of the

asymptotically equivalent estimators (Caeiro et al., 2005),

Hβ̂,ρ̂(k) := H(k)

(
1 − β̂

1− ρ̂

(n

k

)ρ̂)
,

(1.10)

Hβ̂,ρ̂(k) := H(k) exp

(
− β̂

1− ρ̂

(n

k

)ρ̂)
,

where ρ̂ and β̂ need to be adequate consistent estimators of the second order

parameters ρ and β, if we want to keep the asymptotic variance at γ2. This

requires an external estimation of the second order parameters using a number

of top o.s.’s k1, larger than the number of top o.s.’s, k, used for the tail index

estimation, and an estimator ρ̂ of ρ such that ρ̂ − ρ = op(1/ lnn).

On the basis of the different papers dealing with high quantile semi-para-

metric estimation for heavy tails, among which we mention Gomes and Figueiredo

(2006) and Caeiro and Gomes (2007), we can state the following result.

Proposition 1.2. Under the conditions of Proposition 1.1, the validity of

(1.2), a known tail index γ and cn defined in (1.3),

(1.11) Q(p)
γ (k)

d
= χ1−p

(
1 +

γ√
k

Bk +
1− cρ

n

ρ
A(n/k)

(
1+ op(1)

))
,

with Bk an asymptotically standard normal r.v. Consequently, if
√

k A(n/k)→ λ,

finite,
√

k
(
Q

(p)
γ (k)/χ1−p−1

)
is asymptotically normal, with variance γ2 and mean
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value λ/ρ. If γ is unknown and is estimated by any consistent estimator γ̂,

(1.12) Q
(p)
γ̂ (k)

d
= χ1−p

(
1 + (γ̂−γ) ln cn +

γ√
k

Bk +
1− cρ

n

ρ
A(n/k)

(
1+ op(1)

))
.

Consequently, if
√

k A(n/k) → λ, finite, and ln cn/
√

k → 0, as n → ∞, then√
k

ln cn

(
Q

(p)
γ (k)/χ1−p − 1

)
has asymptotically the same distribution as

√
k (γ̂ − γ).

From (1.12) it is obvious that the behaviour of γ̂ rules strongly the be-

haviour of Q
(p)
γ̂ . The summand (1− cρ

n)A(n/k)/ρ, asymptotically equivalent to

A(n/k)/ρ and the dominant component of the bias of Q
(p)
γ in (1.11), does not in-

fluence the limiting distribution of Q
(p)
γ̂ . But, as already noticed in Matthys et al.

(2004), the removal of this term for finite samples, typically leads to an improve-

ment in the overall stability of the quantile estimates as a function of k. Since

χ1−p/Xn−k:n
p∼ cγ

n

(
1+ (cρ

n−1)A(n/k)/ρ
)
, we shall consider the new estimators,

(1.13) Q
(p)
γ̂ (k) = Q

(p)
γ̂ (k; β̂, ρ̂) := Xn−k:n cγ̂

n

(
1 + γ̂ β̂

(n

k

)ρ̂ cρ̂
n−1

ρ̂

)
,

asymptotically equivalent, up to the second order, to the estimators already pro-

posed before by Matthys et al. (2004), Beirlant et al. (2006) and Gomes and

Pestana (2007b),

(1.14) Q
(p)

γ̂ (k) = Q
(p)

γ̂ (k; β̂, ρ̂) := Xn−k:n cγ̂
n exp

(
γ̂ β̂
(n

k

)ρ̂ cρ̂
n−1

ρ̂

)
.

We shall replace γ̂ by any of the MVRB estimators H(k) = Hβ̂,ρ̂(k) and H(k) =

Hβ̂,ρ̂(k), generally denoted by H̃(k), with Hβ̂,ρ̂(k) and Hβ̂,ρ̂(k) given in (1.10).

Remark 1.1. Since cρ
n ln cn = o(1), the asymptotic behavior of (1.13) and

(1.14) does not change if we replace c ρ̂
n by 0. In the simulation study, we did not

notice any change in the performance of the estimators with this replacement.

Anyway, we shall keep working with the quantile estimators defined in (1.13).

Is section 2, and assuming a third order framework in order to get full

information on the leading terms of asymptotic bias, we study the tail index

estimators H̃(k) in (1.10), as well as Q
(p)eH , with Q

(p)
γ̂ given in (1.13). In Section 3,

a small-scale simulation study helps us to identify the behaviour of the quantile

estimators in (1.13) for finite samples. Finally, in Section 4, we draw a short final

conclusion.
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2. ASYMPTOTIC PROPERTIES

2.1. Third order framework

In order to derive the asymptotic bias of the MVRB estimators under study,

we shall work with a sub-class of Hall’s class such that

(2.1) U(t) = C tγ
(
1 + D1 tρ + D2 tρ+ρ∗+ o

(
tρ+ρ∗

))
, t → ∞ ,

C > 0, D1 6= 0, ρ < 0, ρ∗ < 0. Note that, compared to Hall’s class in (1.8) we

merely specify the summand o(tρ). Note also that, with hθ(x) := (xθ−1)/θ, θ < 0,

A(t) = ρ D1t
ρ = γβ tρ, ρ′= max(ρ, ρ∗) ≥ ρ and

B(t) = β′ tρ
′

=





(
(1 + ρ∗/ρ)D2/D1

)
tρ

∗

, ρ < ρ∗ ,
(
2D2/D1− D1

)
tρ, ρ = ρ∗ ,

−D1 tρ, ρ > ρ∗ or D2 = 0 ,

we may write for any x > 0,

(2.2) ln
U(tx)

U(t)
− γ lnx = A(t)hρ(x) + A(t)B(t)hρ+ρ′(x)

(
1 + o(1)

)
,

which is, for arbitrary ρ and ρ′, the third order condition used in the paper by

Gomes et al. (2004a), equivalent to the ones assumed in Gomes et al. (2002) and

Fraga Alves et al. (2003). As mentioned before, we shall essentially consider the

validity of (2.1), which is equivalent to consider that (2.2) holds with ρ ≤ ρ′ and

A(t) = α tρ for some real α.

Remark 2.1. The class in (2.1) contains most of the heavy-tailed mod-

els used in applications, like the Fréchet, with U(t) =
(
ln(t/(t−1))

)−γ
, the Burr,

with U(t) = (t−ρ−1)−γ/ρ, t > 1, the Generalized Pareto (GP ), with U(t) =

(tγ −1)/γ, t > 1, and the Student’s-tν , ν > 0, with d.f.

F (x) = F (x |ν) =
Γ
(
(ν +1)/2

)

Γ(ν/2)
√

πν

∫ x

−∞
(1 + z2/ν)−(ν+1)/2 dz , x ∈ R, ν > 0 .

Although ρ∗= ρ′= ρ for all these classical models, we have decided to work with

a slight more general condition, the one in (2.1). Indeed, it is not so hard to

find examples where ρ′ 6= ρ. Gomes and Oliveira (2003) noticed that shifting

the data can change the asymptotic behavior of the tail and the value of the

second order parameters, i.e., if X is our original parent, and Y = X + a, then

UY (t) = UX(t) + a, and consequentially,

UY (t) = C tγ
(
1 + D1 tρ + a t−γ/C + D2 tρ+ρ∗+ o

(
tρ+ρ∗

))
, t → ∞ .
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In Table 1 we present, for the above mentioned models, the values of the first,

second and third order parameters in (2.1) and the values of β and β′ in A(t) =

γβ tρ and B(t) = β′ tρ. In this table, cν = (νB(ν/2, 1/2))1/ν (c1 = π leading to

the usually called Cauchy d.f.), where B is the complete Beta function.

Table 1: Study of some distributions in Hall’s class.

Distribution C D1 D2 γ ρ ρ∗ β β′

Fréchet 1 −
γ

2
− γ

12
γ −1 −1

1

2

5

6

Burr 1
γ

ρ

γ(ρ+γ)

2ρ2
γ ρ ρ 1 1

GP
1

γ
−1 0 γ −γ −γ 1 1

Student’s tν

√
v c−1

ν
− (ν+1)c2ν

2(ν+2)
−ν (ν+1)(ν+3)c4ν

8(ν+2)2 (ν+4)

1

ν
− 2

ν
− 2

ν

(ν+1)c2ν

ν+2

(ν2+4ν+2)c2ν

(ν+2)(ν+4)

2.2. Estimation of second order parameters

The reduced-bias tail index and quantile estimators require the estimation

of the second order parameters ρ and β, which will be now briefly discussed.

2.2.1. Estimation of the shape second order parameter ρ

We shall consider here particular members of the class of estimators of the

second order parameter ρ proposed by Fraga Alves et al. (2003), but parame-

terized by a tuning real parameter τ (see Caeiro and Gomes, 2006). Denoting

M
(j)
n (k) := 1

k

∑k
i=1V

j
ik the j-moment of the log-excesses, j =1, 2, 3, these ρ-esti-

mators depend on the statistics

T (τ)
n (k) :=





(
M

(1)
n (k)

)τ
−
(
M

(2)
n (k)/2

)τ/2

(
M

(2)
n (k)/2

)τ/2
−
(
M

(3)
n (k)/6

)τ/3
, if τ 6= 0 ,

ln
(
M

(1)
n (k)

)
− 1

2 ln
(
M

(2)
n (k)/2

)

1
2 ln

(
M

(2)
n (k)/2

)
− 1

3 ln
(
M

(3)
n (k)/6

) , if τ = 0 ,
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which converge towards 3(1−ρ)/(3−ρ) for any real τ , whenever the second order

condition (1.7) holds, k is such that (1.4) holds and
√

k A(n/k)→∞, as n→∞.

The ρ-estimators considered have the functional expression,

(2.3) ρ̂τ (k) = ρ̂(k; τ) := −min
(
0 , 3

(
T (τ)

n (k)−1
)/(

T (τ)
n (k)−3

))
.

Proposition 2.1 (Fraga Alves et al., 2003). If the second order condition

(1.7) holds, with ρ < 0, (1.4) holds and
√

k A(n/k) → ∞, then ρ̂(k; τ) in (2.3)

converge in probability to ρ, as n → ∞. Under the third order framework in

(2.2),

(2.4) ρ̂(k; τ)
d
= ρ +

(
γ σρW ρ

k√
k A(n/k)

+ υ1A(n/k) + υ2B(n/k)

)(
1+ op(1)

)
,

where W ρ
k is an asymptotically standard normal r.v., σρ = (1−ρ)3

ρ

√
(2ρ2−2ρ+1),

υ1 ≡ υ1(γ, ρ, τ) =
ρ
[
τ (1−2ρ)2 (3−ρ) (3−2ρ) + 6ρ

(
4 (2−ρ) (1−ρ)2−1

)]

12 γ (1−ρ)2 (1−2ρ)2
,

υ2 =
ρ′(ρ + ρ′)(1 − ρ)3

ρ(1 − ρ − ρ′)3
.

Consequently, if
√

k A2(n/k) → λ
A

and
√

k A(n/k)B(n/k) → λ
B
, finite, then√

k A(n/k) (ρ̂(k; τ)−ρ)
d−→ N(λ

A
υ1 + λ

B
υ2, γ2σ2

ρ).

Corollary 2.1. Under the third order framework in (2.1), if (1.4) holds,√
k A(n/k) → ∞ and

√
k A(n/k)B(n/k) → λ

B
, finite, then ρ̂n(k; τ) − ρ =

Op

(
1/(

√
k A(n/k))

)
. But, if we chose k such that

√
k A(n/k)B(n/k) → ∞, then

1/(
√

k A(n/k)) = o(B(n/k)) and ρ̂n(k; τ) − ρ = Op(B(n/k)).

A comment on the choice of the tuning parameter τ . From Proposi-

tion 2.1, we can conclude that the tuning parameter τ only affects ρ̂(k; τ) asymp-

totic bias. If ρ′= ρ, and consequentially B(n/k) = O(A(n/k)), we can always

choose τ = τ0 so that the asymptotic bias υ1A(n/k) + υ2B(n/k) in (2.4) is null,

even when
√

k A2(n/k) → λA > 0 and
√

k A(n/k)B(n/k) → λB 6= 0. It is enough

to choose the value τ0 which is the solution of υ1γ β + υ2β′ = 0. Such a value is

independent of γ and, with ξ = β′/β, is given by

(2.5) τ0 ≡ τ0(ρ, ξ) =
−6
[
4ξ (1−ρ5) + ρ (1−2ρ)

(
4(2−ρ) (1−ρ)2−1

)]

(1−2ρ)3 (3−ρ) (3−2ρ)
.

Although τ0, as a function of ρ, is not always monotone, it converges to 3(1−ξ/2),

as ρ → −∞ and to −8ξ/3, as ρ → 0.
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Using the available values ρ, β and β′, from Table 1, we have for the

Fréchet model, ρ = −1, ξ = 5/3 and τ0 = −217/270 ≃ −0.8. For models like the

Burr and the GP , where β′= β and consequently ξ = 1, we present in Figure 1

(left) τ0(ρ,1) as function of ρ. For Student’s tν distribution, ρ, β and β′ are

functions of ν, and the value τ0 in (2.5) can also be written as a function of ν:

τ0(ν) =
12
(
384 + 1216 ν + 1440 ν2 + 720 ν3 + 72 ν4 − 61 ν5 − 21 ν6 − 2 ν7

)

(1+ν) (4+ν)4 (2+3ν) (4+3ν)
.

This function τ0(ν) is shown in Figure 1 (right), as a function of ν.

-6 -5 -4 -3 -2 -1
Ρ

-2.5

-2

-1.5

-1

-0.5

0.5

1

Τ0HΡ, 1L

2 4 6 8 10
Ν

-1

-0.5

0.5

1

1.5

2

Τ0HΝL

Figure 1: Left: τ0(ρ, 1) as function of ρ. Right: τ0(ν) for Student’s tν .

As an example, for the GP (γ = 0.5), we have τ0(−0.5, 1) = −213/448 ≃
−0.48. In Figure 2 and to illustrate the comment above, we picture a sample

path of ρ̂(k; τ) with τ = τ0 and τ = 0, the value of τ most commonly suggested

for models with |ρ|< 1. We conclude that ρ̂τ0(k) = ρ̂(k; τ0) is indeed more stable

than ρ̂0(k) = ρ̂(k; 0) around the true value ρ = −0.5.

0 5000 10000 15000 20000 25000

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

k

τ = 0

τ = −0.48

Figure 2: Sample path of the estimator ρ̂(k; τ), τ = 0,−0.48, for one sample
of size n = 25000 from the GP distribution with γ = 0.5.

Remark 2.2. Indeed, for an appropriate tuning parameter τ the ρ-estima-

tors in (2.3) show highly stable sample paths as functions of k, the number of
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top o.s. used, for a wide range of large k-values. The theoretical and simulated

results in Fraga Alves et al. (2003), together with the use of these estimators in

different reduced-bias statistics, has led to advise in practice the estimation of ρ

through the estimator in (2.3), computed at the value

(2.6) k1 :=
[
n0.995

]
,

not chosen in any optimal way, and the choice of the tuning parameter τ = 0

for ρ ∈ [−1, 0) and τ = 1 for ρ ∈ (−∞,−1). As usual, [x] denotes the integer

part of x. However, practitioners should not choose blindly the value of τ in

(2.3), and as pointed out in Caeiro and Gomes (2006), even negative values of τ

should be possible candidates. It is indeed sensible to draw a few sample paths

of ρ̂τ (k) = ρ̂(k; τ), as functions of k, electing the value of τ which provides the

highest stability for large k, by means of any stability criterion, like the one

suggested in Gomes et al. (2005) or Gomes and Pestana (2007a). For not too

small n, we are frequently led to the above mentioned choice: ρ̂0 if ρ≥−1 and ρ̂1

if ρ < −1, when we consider only the tuning parameters τ = 0 and τ = 1 as the

possible alternatives. In practice, the adequate choice of τ is much more crucial

than the choice of k1, discussed in the following.

A few comments on the choice of the level k1 for the ρ-estimation.

On the basis of the results in Proposition 1.1 and Proposition 2.1, it seems sensible

to estimate the second order ρ using a number k1 of o.s.’s of a larger order than k,

the number of o.s.’s used for the estimation of the tail index γ. We now make

the following comments on the choice of the value k1 that should be used for the

estimation of the second order parameter ρ.

(1) The ideal situation would perhaps be the choice of an “optimal” k1 for the

estimation of ρ, in the sense of a value that enables the asymptotic normality

of the ρ-estimator with a non-null asymptotic bias. For models in (2.1),

k1 is then such that
√

k1 A(n/k1)B(n/k1) → λ
B1

, finite and non-null. We

then get k1 = O
(
n−2(ρ+ρ′)/(1−2(ρ+ρ′))

)
. Denoting ρ̂ = ρ̂(k1; τ) for any ρ̂(k; τ)

in (2.3), ρ̂− ρ is of the order of 1/
(√

k1 A(n/k1)
)

= O
(
nρ′/(1−2(ρ+ρ′))

)
=

o(1/ lnn), i.e.,

(2.7) ρ̂ − ρ = op(1/ lnn), as n → ∞ ,

a condition needed later on. In practice, such a k1 has only a “limited”

interest at the current state-of-the-art. It is however of theoretical interest.

(2) Assume next the validity of the following condition:

Condition U : There exist a tuning parameter τ∗ and a level k1, with√
k1 A(n/k1)B(n/k1) → ∞, such that, with ρ̂(k; τ) defined

in (2.3), ρ̂∗− ρ = ρ̂(k1; τ
∗) − ρ = Op

(
1/(

√
k1 A(n/k1))

)
.



12 Frederico Caeiro and M. Ivette Gomes

This is obviously a strong assumption, practically equivalent to saying that

for any specific model there is a τ∗ and a k1 such that ρ̂∗= ρ̂(k1; τ
∗) is

an unbiased estimator for ρ, so that the bias has no influence in the rate

of convergence, which is kept at 1/
(√

k1 A(n/k1)
)
. Indeed, such a claim is

made on the basis of the high stability of sample paths of the ρ-estimates

in (2.3) for a specific τ = τ∗ and large values of k (see Figure 2 and the

comment made above on the choice of τ). Then, the use of a value k1

larger than the so-called “optimal” level in item 1., but intermediate, like

for instance, the one suggested in Gomes and Martins (2002),

(2.8) k1 := min
(
n−1, 2n/ ln lnn

)
,

enables us to guarantee that ρ̂∗− ρ = op(1/ lnn). Indeed, if we assume the

validity of Condition U for k1 in (2.8), we get ρ̂∗−ρ = Op

(
1/(

√
k1A(n/k1))

)
=

Op

(
(ln lnn)(1−2ρ)/2/

√
n
)
, which is obviously of smaller order than {1/ lnn},

i.e., (2.7) holds. This will be the unique situation under which we may work

with the k1 suggested in Gomes and Martins (2002), i.e, the one in (2.8),

and still guarantee the above mentioned property on the ρ-estimator, and a

possible generalization of the third-order results derived for H̃β,ρ to H̃β̂∗,ρ̂∗ ,

with β̂∗ an adequate β-estimator, to be specified later on, in Section 2.2.2.

(3) If we consider a level k1 of the order of n1−ǫ, for some small ǫ > 0, we

may also guarantee that (2.7) holds for a large class of models, without the

need to assume a condition as strong as Condition U. This is the reason

why, such as done in Caeiro et al. (2004b), Gomes and Pestana (2007a,b)

and Gomes et al. (2004b, 2007a), we advise in practice, as a compromise

between theoretical and practical considerations, the use of an intermediate

level like the one in (2.6) or any other level k1 = [n1−ǫ] for some ǫ > 0, small.

2.2.2. Estimation of the scale second order parameter β

Let us introduce the notation N
(α)
n (k) := 1

k

∑k
i=1

(
i
k

)α−1
Ui, with Ui defined

in (1.6). For the estimation of β we shall here consider the estimator in Gomes

and Martins (2002), with the functional expression,

(2.9) β̂ρ̂(k) = β̂(k; ρ̂) :=
(k

n

)ρ̂

(
1
k

k∑
i=1

(
i
k

)−ρ̂
)

N
(1)
n (k) − N

(1−ρ̂)
n (k)

(
1
k

k∑
i=1

(
i
k

)−ρ̂
)

N
(1−ρ̂)
n (k) − N

(1−2ρ̂)
n (k)

.
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Theorem 2.1 (Gomes et al., 2004b). If the second order condition (1.7)

holds, with A(t) = γ β tρ, ρ < 0, if (1.4) holds, and if
√

k A(n/k)→∞, then, with

ρ̂n(k; τ) and β̂ρ̂(k) given in (2.3) and (2.9), respectively, and ρ̂ = ρ̂n(k; τ) such

that (2.7) holds, i.e., ρ̂ − ρ = op(1/ lnn), as n → ∞, β̂ρ̂(k) is consistent for the

estimation of β. Moreover,

(2.10) β̂ρ̂(k) − β
p∼ −β ln(n/k) (ρ̂ − ρ) = op(1) .

2.3. Asymptotic properties of the tail index estimators, under a third

order framework

We shall study now the asymptotic behaviour, under a third order frame-

work, of the MVRB estimators H and H, generally denoted H̃. We assume first

that we know the two second order parameters β and ρ. Next we estimate both

second-order parameters externally at a level k1 of a larger order than the level k

at which we compute the tail index.

Theorem 2.2.

(a) Under the second order framework in (1.8), and for intermediate k, i.e.,

whenever (1.4) holds, we may write,

(2.11) H̃β,ρ(k)
d
= γ +

γ√
k

Zk + op

(
A(n/k)

)
,

where Zk is the asymptotically standard normal r.v. in (1.9). Also, if we

choose k such that
√

k A(n/k) → λ, finite, as n → ∞,
√

k
(
H̃β,ρ(k) − γ

)

are asymptotically normal, with variance γ2 and a null mean value, even if

λ 6= 0.

(b) If we further assume (2.1), more information can be given for the term

op(A(n/k)), and we get the asymptotic distributional representations:

(2.12) Hβ,ρ(k)
d
= γ+

γ√
k

Z∗k+
A(n/k)B(n/k)

1−ρ−ρ′

(
1−(1−ρ−ρ′)A(n/k)

γ (1−ρ)2B(n/k)

)(
1+op(1)

)
,

and

(2.13) Hβ,ρ(k)
d
= γ+

γ√
k

Z∗k+
A(n/k)B(n/k)

1−ρ−ρ′

(
1− (1−ρ−ρ′)A(n/k)

2γ (1−ρ)2B(n/k)

)(
1+op(1)

)
,

with Z∗k asymptotically standard normal. If
√

k A(n/k)B(n/k)→ λ
B
, finite

(and then,
√

kA2(n/k)→λ
A
, also finite),

√
k
(
Hβ,ρ(k)−γ

)
and

√
k
(
Hβ,ρ(k)−γ

)

are asymptotically normal with the same variance, equal to γ2, and asymp-

totic bias bH = λ
B
/(1−ρ−ρ′)−λ

A
/(γ(1−ρ)2) and b

H
= λ

B
/(1−ρ−ρ′)−λ

A
/

(2γ (1−ρ)2), respectively.
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Proof: The first part of the theorem has been proved in Caeiro et al.

(2005). Regarding the second part: from the third order set-up in (2.2), we get

H(k)
d
= γ +

γ√
k

Zk +
A(n/k)

1−ρ
+ Op

(
A(n/k)√

k

)
+

A(n/k)B(n/k)

1−ρ−ρ′
(
1+ op(1)

)
.

Consequently, as Hβ,ρ(k) = H(k)×
(
1 − A(n/k)/(γ (1−ρ))

)
for models in (2.1),

Hβ,ρ(k)
d
= γ +

γ√
k

Zk +

(
A(n/k)B(n/k)

1−ρ−ρ′
− A2(n/k)

γ (1−ρ)2
+Op

(
A(n/k)√

k

))(
1+ op(1)

)
,

Hβ,ρ(k)−Hβ,ρ(k)
p∼ A2(n/k)/(2γ (1−ρ)2), and the results in the theorem follow.

Note that since
√

k Op

(
A(n/k)/

√
k
)
→ 0, for the intermediate levels k considered,

the term Op

(
A(n/k)/

√
k
)

is irrelevant for the asymptotic bias.

Remark 2.3. Notice that H and H have the same asymptotic variance

and b
H

= bH +λA/(2γ (1−ρ)2), with λA ≥ 0. So if both bias are positive, H

should have, asymptotically, a better performance than H.

Theorem 2.3.

(a) Under the initial conditions of Theorem 2.2, let us consider the tail index

estimators H̃β̂,ρ̂ with β̂ and ρ̂ consistent for the estimation of β and ρ,

respectively, both computed at the level k1 of a larger order than the level k

at which we compute the tail index, and such that (2.7) holds. Then√
k
(
H̃β̂,ρ̂(k)− γ

)
are asymptotically normal, with variance equal to γ2 and

a null mean value, even if
√

k A(n/k) → λ 6= 0, as n → ∞.

(b) If we work under the third order framework in (2.1), consider β̂ρ̂(k) in (2.9),

β̂ = β̂ρ̂(k1), and choose k such that
√

k A(n/k)→∞, but
√

k A(n/k)B(n/k)→
λ

B
, finite, then

√
k
(
Hβ̂,ρ̂(k) − γ

)
and

√
k
(
Hβ̂,ρ̂(k) − γ

)
are asymptotically

normal with variance γ2 and asymptotic bias bH and b
H

, respectively,

given in Theorem 2.2, provided that we can guarantee that (ρ̂− ρ) lnn =

op

(
1/
√

k A(n/k)
)
. This last condition on ρ̂ holds if we further assume the

validity of Condition U for k1 in (2.8).

Proof: If we estimate consistently β and ρ through β̂ and ρ̂ under the con-

ditions of the theorem, we may use Taylor’s expansion series, and as ∂H̃β,ρ/∂β
p∼

A(n/k)/(β(1−ρ)), ∂H̃β,ρ/∂ρ
p∼ −A(n/k)

(
ln(n/k) + 1/(1−ρ)

)
/(1−ρ), we get

(2.14) H̃β̂,ρ̂(k)− H̃β,ρ(k)
p∼ −A(n/k)

1−ρ

{
β̂−β

β
+ (ρ̂ − ρ)

[
ln(n/k) +

1

1−ρ

]}
.

The first part of the theorem, related to levels k such that
√

k A(n/k) → λ, finite,

follows thus straightforwardly from (2.14).
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Next, from (2.10), (β̂ − β)/β
p∼ − ln(n/k1) (ρ̂−ρ) = op

(
1/(

√
k A(n/k))

)
,√

k
(
H̃β̂,ρ̂(k)−H̃β,ρ(k)

)
= op

(
1/
√

k
)

and the stated asymptotic normality of H̃β̂,ρ̂

follows as well. We may further write

(2.15) H̃β̂,ρ̂(k)− H̃β,ρ(k)
p∼ −A(n/k)

1−ρ
(ρ̂−ρ)

(
ln(k/k1) +

1

1−ρ

)
.

If we assume the validity of Condition U for the level k1 in (2.8) and consider

H̃β̂∗, ρ̂∗ , we straighforwardly guarantee that
√

k (ρ̂∗−ρ)A(n/k) ln(k/k1) = op(1).

Consequently, the use of (2.15), with (β̂, ρ̂) replaced by (β̂∗, ρ̂∗), enables us to get

the results in the theorem.

2.4. Asymptotic properties of the reduced-bias quantile estimators,

under a third order framework

We shall provide in theorems 2.4 and 2.5 the distributional behaviour of

the quantile estimators under study, for models in (2.1).

Theorem 2.4. Under the third order framework in (2.1), for intermediate k,

i.e., whenever (1.4) holds, and whenever ln(np) = o(
√

k), we can write,

Q
(p)
H(k)(k)/χ1−p

d
= 1 +

(
H(k)−γ

)
ln cn +

γ√
k

Bk − hρ(cn)A(n/k) + Op

(
A(n/k)√

k

)

(2.16)
−
(
hρ+ρ′(cn)A(n/k)B(n/k) +

1

2
h2

ρ(cn)A2(n/k)

)(
1+ op(1)

)
,

where Bk is an asymptotically standard normal r.v., hθ(x) = (xθ−1)/θ, θ < 0.

Consequently, if
√

k A(n/k) → λ, finite, and ln cn/
√

k → 0, as n → ∞, then√
k

ln cn

(
Q

(p)
H(k)(k)/χ1−p−1) has asymptotically the same distribution as

√
k (H(k)−γ),

i.e., it is asymptotically normal, with variance γ2 and mean value λ/(1−ρ).

Proof: From (2.2), and as t → ∞, we get,

(2.17)
U(tx)

U(t)
= xγ

{
1+hρ(x)A(t)+

(
hρ+ρ′(x)A(t)B(t)+

1

2
h2

ρ(x)A2(t)
)(

1+o(1)
)
}

.

Denoting by γ̂ any consistent tail index estimator and since Xn−k:n
d
= U(Yn−k:n),

where Y is a standard Pareto r.v., we can write

Q
(p)
γ̂(k)(k)/χ1−p =

(
Xn−k:n

U(1/p)

)
cγ̂(k)
n =

(
Xn−k:n

U(n/k)

)(
U(n/k)

U(ncn/k)

)
cγ̂(k)
n .
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Using the delta method, together with the fact that ln cn/
√

k → 0, as n → ∞,

c
γ̂(k)
n

p∼ cγ
n

{
1+ (γ̂(k)−γ) ln cn

}
. From (2.17), we obtain

Q
(p)
H(k)(k)/χ1−p

d
=

(
1+

γ√
k

Bk + Op

(
A(n/k)√

k

))

×
{
1− hρ(cn)A(n/k) −

(
hρ+ρ′(cn)A(n/k)B(n/k) + h2

ρ(cn)A
2(n/k)/2

)(
1+op(1)

)}

×
(
1+

(
γ̂(k)−γ

)
ln cn

)(
1+op(1)

)
,

and, with γ̂ replaced byH, (2.16) as well as the asymptotic normality follow.

Theorem 2.5.

(a) Under the conditions of Theorem 2.4, let us consider the tail index estimator

H̃ = H̃β̂,ρ̂ with (β̂, ρ̂) consistent estimators of (β, ρ), both computed at k1,

with k = o(k1) and such that (ρ̂−ρ) lnn = op(1). Then, if
√

kA(n/k)→ λ,
√

k
ln cn

(
Q

(p)eH(k)
(k)/χ1−p − 1

)
has asymptotically the same distribution as

√
k
(
H̃(k) − γ

)
, i.e., they are both asymptotically normal, with variance

equal to γ2 and a null mean value (even if λ 6= 0).

(b) If we choose k such that
√

kA(n/k) → ∞, but
√

k A(n/k)B(n/k) → λ
B
,

finite,
√

k
ln cn

(
Q

(p)eH(k)
(k)/χ1−p−1

)
and

√
k
(
H̃(k)−γ

)
also have asymptotically

the same distributions, i.e., they are asymptotically normal, with variance

equal to γ2 and asymptotic bias given in Theorem 2.2, provided that we

can guarantee that (ρ̂−ρ) lnn = op

(
1/
√

k A(n/k)
)
.

Proof: Let as first assume to know β and ρ. Then, since Q
(p)eHβ,ρ

(k; β, ρ) =

Q
(p)eHβ,ρ

(k)
(
1+ H̃β,ρ(k)β

(
n
k

)ρ
hρ(cn)

)
for models in (2.1), we can use (2.16) and get

Q
(p)eHβ,ρ

(k; β,ρ)/χ1−p
d
= 1+

(
Hβ,ρ(k) − γ

)
ln cn +

γ√
k

Bk + Op

(
A(n/k)√

k

)

(2.18)
−
(
hρ+ρ′(cn)A(n/k)B(n/k) +

1

2
h2

ρ(cn)A
2(n/k)

)(
1+op(1)

)
,

Then
√

k
ln cn

(
Q

(p)eHβ,ρ(k;β,ρ)
(k)/χ1−p − 1

)
has asymptotically the same distributions

as
√

k
(
H̃β,ρ(k) − γ

)
. Since, H̃β̂,ρ̂(k) = γ (1+op(1)), cρ

n → 0, cρ
n ln cn → 0, for any

intermediate k, we may use Cramer’s delta-method, and write

H̃β̂,ρ̂(k) β̂
(n

k

)ρ̂
hρ̂(cn)

p∼ hρ(cn)A(n/k)

{
1 +

β̂−β

β
+ (ρ̂−ρ) ln(n/k)

}
.

Consequently,
(
Q

(p)eH
β̂,ρ̂

(k; β, ρ) − Q
(p)eHβ,ρ

(k; β, ρ)
)/

χ1−p
p∼
(
H̃β̂,ρ̂(k) − H̃β,ρ(k)

)
ln cn
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and
(
Q

(p)eH
β̂,ρ̂

(k; β̂, ρ̂) − Q
(p)eHβ,ρ

(k; β, ρ)
)/

χ1−p
p∼

p∼
(
H̃β̂,ρ̂(k)− H̃β,ρ(k)

)
ln cn + hρ(cn)A(n/k)

{
β̂−β

β
+ (ρ̂−ρ) ln(n/k)

}
.

The remaining of the proof is analogous to the proof of Theorem 2.3.

3. A SMALL-SCALE SIMULATION STUDY

We have implemented, for Fréchet underlying parents, a Monte Carlo sim-

ulation of size 5000 for RH ≡ Q
(p)
H /χ1−p, RH ≡ Q

(p)

H
/χ1−p and R

H
≡ Q

(p)

H
/χ1−p.

Results for Q, not presented, have also been simulated and almost overlap the

ones for Q. For every estimator R = R(k), we have simulated for p = 1/n and

p = 1/(n lnn), the mean value, the root mean squared error (RMSE) and the op-

timal sample fraction, OSFR = k0/n = arg mink{RMSE (R(k))}/n. The second

order parameters were estimated through ρ̂0 = ρ̂(k1; 0) and β̂0 = β̂ρ̂0
(k1), with

ρ̂(k; τ) and β̂ρ̂(k) defined in (2.3) and (2.9), respectively, and k1 given in (2.6).

Table 2: Simulated mean values /RMSE at optimal levels.

n 100 500 1000 5000

Fréchet parent with γ = 0.25 and p = 1/n

RH 1.056 / 0.191 1.053 / 0.136 1.053 / 0.118 1.037 / 0.080

R
H

0.969 / 0.164 0.984 / 0.116 0.988 / 0.099 0.992 / 0.061

R
H

1.007 / 0.154 1.006 / 0.108 1.004 / 0.092 1.004 / 0.057

Fréchet parent with γ = 0.25 and p = 1/(n lnn)

RH 1.106 / 0.298 1.089 / 0.259 1.085 / 0.172 1.057 / 0.112

R
H

0.960 / 0.236 0.984 / 0.162 0.988 / 0.135 0.991 / 0.080

R
H

1.009 / 0.224 1.013 / 0.152 1.009 / 0.127 1.009 / 0.076

A few remarks for Fréchet parents:

• For Fréchet parents, the RMSE of RH(k)(k) and R
H(k)

(k) is always smaller

(or equal) than the RMSE of the classical quantil estimator, RH(k)(k).

• Also, the normalized quantile estimator R
H(k)

(k) has always the smallest

mean squared error.
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Figure 3: Underlying Fréchet parent with γ = 0.25, p = 1/n, and n = 1000.
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Figure 4: Underlying Fréchet parent with γ = 0.25, p = 1/(n lnn) and n = 1000.

4. CONCLUSION

The MVRB estimators proposed in this paper are bias-corrected Hill esti-

mators which perform better than the classical Hill estimator for all k, the number

of top o.s.’s used in the estimation of the tail index γ. Despite of this, it is sensible

to understand their comparative behaviour at optimal levels, not only for finite

sample size, but also asymptotically, as recently done in Gomes and Neves (2007)

for some of the classical estimators, like the well-known Hill, moment, maximum

likelihood and the recently introduced mixed moment estimator (Fraga Alves et

al., 2007). It is thus crucial to have information on the order of the dominant

component(s) of their asymptotic bias, the main contribution in this paper, for

the MVRB tail index estimators in (1.10) and the associated quantile estima-

tors in (1.13). The adaptive choice of the threshold is now becoming feasible for

a wide class of models, but it is outside of the scope of this paper.
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