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Abstract:

• One common way to deal with extreme value analysis in spatial statistics is by using
the max-stable process. By employing a representation of simple max-stable processes
in de Haan and Ferreira ([3]), we propose a stationary max-stable process as a model
of the dependence structure in two-dimensional spatial problems. We calculate its
two-dimensional marginal distributions, which creates the opportunity to estimate
the dependence parameter. The model is used in Buishand, de Haan and Zhou ([1])
for a spatial rainfall problem.
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1. INTRODUCTION

Problems of spatial statistics connected with high values of the spatial

process need to be dealt with using extreme value theory (EVT), since the de-

pendence between locations at high levels may differ from the dependence at

moderate levels.

A case in point is the estimation of high quantiles of the total rainfall in

a certain area. Engineers often need extreme rainfall statistics for the design of

structures for flood protection. The observed rainfall data is only available on a

few fixed monitoring stations. In order to study the high quantiles of the total

rainfall, it is necessary to model the extreme rainfall process with dependence.

Considering the dependence structure, Cooley, Nychka and Naveau ([2])

used a Bayesian hierarchical model: locally the extreme rainfall is modeled by a

one-dimensional EVT distribution and the parameters of this distribution follow

some spatial dependence model.

A different way of introducing dependence is via a max-stable process. The

mathematical setting of a spatial model for extreme rainfall is as follows. Consider

independent replications of a stochastic process with continuous sample paths

{

Xn(t)
}

t∈R
,

n = 1, 2, ... . Suppose that the process is in the domain of attraction of a max-

stable process, that is, there are sequences of continuous functions an > 0 and bn

such that as n → ∞

(1.1)

{

max1≤i≤n Xi(t) − bn(t)

an(t)

}

t∈R

w−→
{

η̃(t)
}

t∈R

in C-space. Necessary and sufficient conditions have been given by de Haan and

Lin ([4]). The limit process {η̃(t)} is a max-stable process. Without loss of

generality we can assume that the marginal distribution of η̃ can be written as

exp
{

−
(

1 + γ(t)x
)−1/γ(t)

}

for all x with 1 + γ(t)x > 0 where the function γ is continuous.

Buishand, de Haan and Zhou ([1]) simulated extreme rainfall from a max-

stable process. Combining simulations of extreme rainfall with resampling from

the non-extreme observations, an overview on the total rainfall can be generated.

This is a novel solution for problems connected to both spatial statistics and

extreme value analysis.
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A major difficulty in the above methodology is to find a reasonable model

for the max-stable process. With a suitable standardization, we can restrict

ourselves to discussing the standardized process, called simple max-stable,

{

η(t)
}

:=
{

(

1 + γ(t) η̃(t)
)1/γ(t)

+

}

,

whose marginal distribution functions are all standard Fréchet: exp(−1/x), x > 0.

For application, it would be nice to have a stationary simple max-stable

process. There are two different representations of stationary simple max-stable

processes in literature. We consider one of them as follows, see Corollary 9.4.5,

de Haan and Ferreira ([3]).

All simple max-stable process in C+(R) (the positive continuous functions

on R) can be generated in the following way. Consider a Poisson point process

on (0, +∞] with mean measure dr/r2. Let {Zi}∞i=1 be a realization of this point

process. Further consider i.i.d. stochastic processes V, V1, V2, ... in C+(R) with

EV (s) = 1 for all s ∈ R and E sups∈I V (s) < ∞ for all compact interval I. Let

the point process and the sequence V, V1, V2, ... be independent. Then

(1.2)
{

η(s)
}

s∈R

d
=
{

max
i≥1

ZiVi(s)
}

s∈R

is a simple max-stable process. Conversely each simple max-stable process has

such a representation.

We use this result in a two-dimensional context and propose the following

model

(1.3) η(s1, s2) := max
i≥1

Zi exp
{

W1i(βs1) + W2i(βs2) − β
(

|s1| + |s2|
)

/2
}

for (s1, s2) ∈ R
2. The processes W11, W21, W12, W22, W13, W23, ... are independent

copies of double-sided Brownian motions W defined as follows. Take two inde-

pendent Brownian motions B1 and B2. Then

(1.4) W (s) :=

{

B1(s), s ≥ 0 ;

B2(−s), s < 0 .

The positive constant β reflects the amount of spatial dependence at high levels

of local observation: “β small” means strong dependence and “β large” means

weak dependence. For this model, we shall prove that the dependence between

extreme observations at two locations depends only on the distance between the

locations.
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The process η satisfies the requirements as follows:

E exp
{

W1(βs1) + W2(βs2) − β
(

|s1| + |s2|
)

/2
}

= 1 for (s1, s2) ∈ R
2 ,

and

E sup
a1≤s1≤b1
a2≤s2≤b2

exp
{

W1(βs1) + W2(βs2) − β
(

|s1| + |s2|
)

/2
}

< ∞

for all a1< b1, a2 < b2 real .

Meanwhile, the one-dimensional marginal distribution functions of (1.3) are all

e−1/x, x > 0. Notice that only a one-dimensional Poisson point process is used

in η. Thus, this process is easy to simulate.

Similar to de Haan and Pereira ([5]), in order to use this model in studying

spatial extremes, we have to prove that the process η is shift stationary and

we have to calculate the two-dimensional marginal distributions.

Since the two-dimensional process η is a combination of two one-dimen-

sional processes, for the stationarity it is sufficient to prove the same for the

one-dimensional version, i.e. that the process

(1.5) η′(s) := max
i≥1

Zi exp
{

W1i(βs1) − β |s1|/2
}

is stationary. This follows from the fact that the process η′ can be obtained

as the limit of the pointwise maximum of i.i.d. Ornstein–Uhlenbeck processes

(cf. e.g. Example 9.8.2, de Haan and Ferreira ([3])). The stationarity follows

from the stationarity of the Ornstein–Uhlenbeck process.

It remains to calculate the two-dimensional marginal distributions. This is

done in Section 2.

2. THE TWO-DIMENSIONAL MARGINAL DISTRIBUTION OF η

The two-dimensional marginal distribution of η′ in (1.5) is calculated in

de Haan and Ferreira ([3]), section 9.8. We state it as the following proposition.

Proposition 2.1. Suppose {η′(s)}s∈R
is defined as in (1.5). Then for

x, y ∈ R and s1, s2 ∈ R,

− log P
(

η′(s1)≤ ex, η′(s2)≤ ey
)

=

= e−x Φ

(

√

|s1− s2|
2

+
−x + y
√

|s1− s2|

)

+ e−y Φ

(

√

|s1− s2|
2

+
x − y

√

|s1− s2|

)

.
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This is useful in similar calculation for the two-dimensional process η.

Besides Proposition 2.1, we need the following Lemma.

Lemma 2.1. Suppose N is normally distributed with mean 0, variance u,

then with non-random constants a > 0 and b,

(2.1) E eN−u/2 Φ(aN+ b) = Φ

(

au + b√
a2u + 1

)

.

Proof: SupposeN1 is standard normally distributed, and independent of N,

then we have

E eN−u/2 1N1≤aN+b = EN E
(

eN−u/2 1N1≤aN+b |N
)

= E eN−u/2 Φ(aN+ b) ,

which is the left side of (2.1). By Fubini’s Theorem, it can be recalculated in the

following way

E eN−u/2 1N1≤aN+b = EN1 E
(

eN−u/2 1N1≤aN+b |N1

)

= EN1

∫ ∞

N1−b

a

et−u/2 1√
2πu

e−
t2

2u dt

= EN1

∫ ∞

N1−b

a

1√
2πu

e−
(t−u)2

2u dt

= EN1

(

1 − Φ

(

N1− b

a
√

u
−
√

u

))

.

By a similar trick — introducing a standard normal variable N2 independent of

N1, the calculation can be finished to prove the lemma.

EN1

(

1 − Φ

(

N1− b

a
√

u
−
√

u

))

= EN1 E
(

1
N2≥N1−b

a
√

u
−√u

|N1

)

= EN1,N2 1
N2≥N1−b

a
√

u
−√u

= P

(

N2 ≥ N1− b

a
√

u
−
√

u

)

= Φ

(

au + b√
a2u + 1

)

.

We remark that the last calculation is similar to that of Lemma 2.1 in Gupta,

González-Faŕıas and Domı́nguez-Molina ([6]).

The lemma can be used to derive the two-dimensional marginal distribu-

tions as follows. As in the proof of Proposition 2.1 (cf. de Haan and Ferreira ([3]),
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Section 9.8), we have

− log P
(

η(u1, u2)≤ ex, η(v1, v2)≤ ey
)

=(2.2)

= E max
(

eW1(βu1)+W2(βu2)−(|βu1|+|βu2|)/2−x, eW1(βv1)+W2(βv2)−(|βv1|+|βv2|)/2−y
)

= EW1 E

(

max
(

eW1(βu1)+W2(βu2)−(β|u1|+β|u2|)/2−x,

eW1(βv1)+W2(βv2)−(β|v1|+β|v2|)/2−y
) ∣

∣

∣
W1

)

= E e−x+W1(βu1)−β|u1|/2

· Φ

(

√

β|u2 − v2|
2

+
y − x + W1(βu1) − W1(βv1) − β|u1|/2 + β|v1|/2

√

β|u2 − v2|

)

+ E e−y+W1(βv1)−β|v1|/2

· Φ

(

√

β|u2 − v2|
2

+
x − y + W1(βv1) − W1(βu1) − β|v1|/2 + β|u1|/2

√

β|u2 − v2|

)

.

Now we can calculate the two parts in (2.2) separately. Without loosing general-

ity, we only focus on the first part.

Case 1: 0 ≤ u1 ≤ v1 .

In this case e−x+W1(βu1)−β|u1|/2 is independent of the other part. Hence,

E e−x+W1(βu1)−β|u1|/2

· Φ

(

√

β|u2 − v2|
2

+
y − x + W1(βu1) − W1(βv1) − β|u1|/2 + β|v1|/2

√

β|u2 − v2|

)

=

= e−xE Φ





√

β|u2 − v2|
2

+
y − x −

(

W1(βv1) − W1(βu1) − β(v1− u1)/2
)

√

β|u2 − v2|





= e−x P



N ≤
√

β|u2 − v2|
2

+
y − x −

(

W1(βv1) − W1(βu1) − β(v1− u1)/2
)

√

β|u2 − v2|





= e−x Φ

(

√

β|u2 − v2| + β(v1− u1)

2
+

y − x
√

β|u2 − v2| + β(v1− u1)

)

.

Case 2: 0 ≤ v1 < u1 .

Note that E eW1(βv1)−βv1/2 = 1 and W1(βv1) is independent of W1(βu1)−W1(βv1),
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we have

E e−x+W1(βu1)−β|u1|/2

· Φ

(

√

β|u2 − v2|
2

+
y − x + W1(βu1) − W1(βv1) − β|u1|/2 + β|v1|/2

√

β|u2 − v2|

)

=

= e−x E eW1(βu1)−W1(βv1)−β(u1−v1)/2

· Φ

(

√

β|u2 − v2|
2

+
y − x + W1(βu1) − W1(βv1) − β|u1|/2 + β|v1|/2

√

β|u2 − v2|

)

.

Since W1(βu1)−W1(βv1) is normally distributed with mean 0, variance β(u1−v1),

we can apply Lemma 2.1 with the constants a = 1/
√

β|u2 − v2|, u = β(u1− v1)

and

b =

√

β|u2 − v2|
2

+
y − x − βu1/2 + βv1/2

√

β|u2 − v2|
.

The final result is

E e−x+W1(βu1)−β|u1|/2

· Φ

(

√

β|u2 − v2|
2

+
y − x + W1(βu1) − W1(βv1) − β|u1|/2 + β|v1|/2

√

β|u2 − v2|

)

=

= e−x Φ

(

√

β|u2 − v2| + β(u1 − v1)

2
+

y − x
√

β|u2 − v2| + β(u1− v1)

)

.

Case 3: v1 < u1 < 0 and u1≤ v1 < 0 .

These two cases are similar to Case 1 and 2 respectively. The final results are all

the same as follows.

E e−x+W1(βu1)−β|u1|/2

· Φ

(

√

β|u2 − v2|
2

+
y − x + W1(βu1) − W1(βv1) − β|u1|/2 + β|v1|/2

√

β|u2 − v2|

)

=

= e−x Φ

(

√

β|u2 − v2| + β|u1− v1|
2

+
y − x

√

β|u2 − v2| + β|u1− v1|

)

.

Case 4: u1 and v1 have different signs.

In this case W1(βu1) and W1(βv1) are independent, we can calculate the expec-

tation with respect to W1(βv1) first, then with respect to W1(βu1).

E e−x+W1(βu1)−β|u1|/2

· Φ

(

√

β|u2 − v2|
2

+
y − x + W1(βu1) − W1(βv1) − β|u1|/2 + β|v1|/2

√

β|u2 − v2|

)

=

= e−x E eW1(βu1)−β|u1|/2 Φ

(

√

β|u2− v2| + β|v1|
2

+
y − x + W1(βu1) − β|u1|/2
√

β|u2 − v2| + β|v1|

)

.
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Now we can again apply Lemma 2.1 with the constants a = 1/
√

β|u2−v2| + β|v1|,
u = β|u1| and

b =

√

β|u2 − v2| + β|v1|
2

+
y − x − β|u1|/2

√

β|u2 − v2| + β|v1|

to get that

E e−x+W1(βu1)−β|u1|/2

· Φ

(

√

β|u2 − v2|
2

+
y − x + W1(βu1) − W1(βv1) − β|u1|/2 + β|v1|/2

√

β|u2 − v2|

)

=

= e−x Φ





√

β|u2 − v2| + β
(

|u1| + |v1|
)

2
+

y − x
√

β|u2 − v2| + β
(

|u1| + |v1|
)



 .

Notice that due to the different signs of u1 and v1, |u1− v1| = |u1| + |v1|.

By defining h = |u1− v1| + |u2 − v2|, all these cases can be combined to-

gether as

E e−x+W1(βu1)−β|u1|/2

· Φ

(

√

β|u2 − v2|
2

+
y − x + W1(βu1) − W1(βv1) − β|u1|/2 + β|v1|/2

√

β|u2 − v2|

)

=

= e−x Φ

(√
βh

2
+

y − x√
βh

)

.

Symmetrically, the second part of (2.2) can be simplified as

e−y Φ

(√
βh

2
+

x − y√
βh

)

.

Combining these two parts, we get the following theorem about the two-dimen-

sional marginal distribution of η.

Theorem 2.1. Suppose the simple max-stable process η is defined in (1.3).

Given any two coordinates (u1, u2) and (v1, v2) on R
2, denote the distance be-

tween them as h := |u1−v1| + |u2−v2|. Then the two-dimensional distribution

function of
(

η(u1, u2), η(v1, v2)
)

is

P
(

η(u1, u2)≤ ex, η(v1, v2)≤ ey
)

=(2.3)

= exp

{

−
(

e−x Φ

(√
βh

2
+

y − x√
βh

)

+ e−y Φ

(√
βh

2
+

x − y√
βh

)

)}

,

where Φ is the standard normal distribution function and x, y ∈ R.



80 Laurens de Haan and Chen Zhou

Note that the two-dimensional marginal distribution depends on only h.

It agrees with the shift stationarity discussed in Section 1.

Similar to de Haan and Pereira ([5]), Theorem 2.1 is useful in estimating β.

By taking x = y = 0, we get that

P
(

η(u1, u2)≤ 1, η(v1, v2)≤ 1
)

= exp

{

−2 Φ

(√
βh

2

)}

.

Consequently, we have that

β =
4

h

(

Φ←
(

−1

2
log P

(

η(u1, u2)≤ 1, η(v1, v2)≤ 1
)

)

)2

.

Hence we can estimate β if we know how to estimate

L(u1,u2),(v1,v2)(1, 1) := − log P
(

η(u1, u2)≤ 1, η(v1, v2)≤ 1
)

.

In fact, this problem has been solved by Huang and Mason (cf. Huang ([8]),

Drees and Huang ([7])). Suppose we have i.i.d. observations of η as η1, η2, ... .

Write
{

ηi,n(s1, s2)
}n

i=1
for the order statistics at location (s1, s2). Then the esti-

mator

L̂
(k)
(u1,u2),(v1,v2)(1,1) :=

1

k

n
∑

j=1

1{
ηj(u1,u2)≥ηn−k+1,n(u1,u2) or ηj(v1,v2)≥ηn−k+1,n(v1,v2)

}

is consistent provided k = k(n)→∞, k(n)/n→ 0, n→∞. It is asymptotically

normal under certain mild extra conditions.

Hence, from the two-dimensional marginal distribution, we can estimate β

when we have the observation at two specific locations. An application of this

method is in Buishand, de Haan and Zhou ([1]), Section 5.
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