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Abstract:

e One common way to deal with extreme value analysis in spatial statistics is by using
the max-stable process. By employing a representation of simple max-stable processes
in de Haan and Ferreira ([3]), we propose a stationary max-stable process as a model
of the dependence structure in two-dimensional spatial problems. We calculate its
two-dimensional marginal distributions, which creates the opportunity to estimate
the dependence parameter. The model is used in Buishand, de Haan and Zhou ([1])
for a spatial rainfall problem.
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1. INTRODUCTION

Problems of spatial statistics connected with high values of the spatial
process need to be dealt with using extreme value theory (EVT), since the de-
pendence between locations at high levels may differ from the dependence at
moderate levels.

A case in point is the estimation of high quantiles of the total rainfall in
a certain area. Engineers often need extreme rainfall statistics for the design of
structures for flood protection. The observed rainfall data is only available on a
few fixed monitoring stations. In order to study the high quantiles of the total
rainfall, it is necessary to model the extreme rainfall process with dependence.

Considering the dependence structure, Cooley, Nychka and Naveau ([2])
used a Bayesian hierarchical model: locally the extreme rainfall is modeled by a
one-dimensional EVT distribution and the parameters of this distribution follow
some spatial dependence model.

A different way of introducing dependence is via a max-stable process. The
mathematical setting of a spatial model for extreme rainfall is as follows. Consider
independent replications of a stochastic process with continuous sample paths

{Xn(®)}em

n=1,2,.... Suppose that the process is in the domain of attraction of a max-
stable process, that is, there are sequences of continuous functions a,, > 0 and b,
such that as n — oo

maxi<i;<n Xz - bn w ~
(1.1) { = an(t()t) ) }tER—’ {n(t)}teR

in C-space. Necessary and sufficient conditions have been given by de Haan and
Lin ([4]). The limit process {7(¢)} is a max-stable process. Without loss of
generality we can assume that the marginal distribution of  can be written as

exp {—(1 + (t) x)fl/y(t)}

for all x with 1+ ~(¢)x > 0 where the function 7 is continuous.

Buishand, de Haan and Zhou ([1]) simulated extreme rainfall from a max-
stable process. Combining simulations of extreme rainfall with resampling from
the non-extreme observations, an overview on the total rainfall can be generated.
This is a novel solution for problems connected to both spatial statistics and
extreme value analysis.
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A major difficulty in the above methodology is to find a reasonable model
for the max-stable process. With a suitable standardization, we can restrict
ourselves to discussing the standardized process, called simple max-stable,

i} = {1+ a0)" 0},

whose marginal distribution functions are all standard Fréchet: exp(—1/x), x > 0.

For application, it would be nice to have a stationary simple max-stable
process. There are two different representations of stationary simple max-stable
processes in literature. We consider one of them as follows, see Corollary 9.4.5,
de Haan and Ferreira ([3]).

All simple max-stable process in CT(R) (the positive continuous functions
on R) can be generated in the following way. Consider a Poisson point process
on (0, +oc] with mean measure dr/r?. Let {Z;}32, be a realization of this point
process. Further consider i.i.d. stochastic processes V, Vi, Vs, ... in CT(R) with
EV(s) =1 for all s € R and E sup,;V(s) < oo for all compact interval I. Let
the point process and the sequence V, Vi, V5, ... be independent. Then

(1.2) (1)} ,en = {I?Sf‘ Z"V"(S)}seR

is a simple max-stable process. Conversely each simple max-stable process has
such a representation.

We use this result in a two-dimensional context and propose the following
model

(1.3)  n(s1,50) = max Z; eXp{Wn’(ﬁSl) + Wai(Bs2) — B(]s1] + ’32’)/2}

for (Sl, 52) S RQ. The processes W117 ng, ng, WQQ, ‘/1/137 W23, ... are independent
copies of double-sided Brownian motions W defined as follows. Take two inde-
pendent Brownian motions By and Bs. Then
Bi(s), s>0;
(1.4) Wi(s) :=
Bay(—s), s<0.

The positive constant § reflects the amount of spatial dependence at high levels
of local observation: “0G small” means strong dependence and “@ large” means
weak dependence. For this model, we shall prove that the dependence between
extreme observations at two locations depends only on the distance between the
locations.
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The process n satisfies the requirements as follows:

E exp{Wl(le) + Wa(Bs2) — B(]s1] + |52|)/2} =1 for (s1,s2) € R? |
and

E sup exp{Wi(8s1) + Wa(Bs2) = B(|s1| + |s]) /2} < o0
a1<s51<b1
a2<52<by
for all a1 < bl, ag < by real.

Meanwhile, the one-dimensional marginal distribution functions of (1.3) are all
e~1/* 2> 0. Notice that only a one-dimensional Poisson point process is used
in 1. Thus, this process is easy to simulate.

Similar to de Haan and Pereira ([5]), in order to use this model in studying
spatial extremes, we have to prove that the process 7 is shift stationary and
we have to calculate the two-dimensional marginal distributions.

Since the two-dimensional process 7 is a combination of two one-dimen-
sional processes, for the stationarity it is sufficient to prove the same for the
one-dimensional version, i.e. that the process

(1.5) W (s) += max Z; exp{Wu(B51) = Blsal/2}

is stationary. This follows from the fact that the process 1’ can be obtained
as the limit of the pointwise maximum of i.i.d. Ornstein—Uhlenbeck processes
(cf. e.g. Example 9.8.2, de Haan and Ferreira ([3])). The stationarity follows
from the stationarity of the Ornstein—Uhlenbeck process.

It remains to calculate the two-dimensional marginal distributions. This is
done in Section 2.

2. THE TWO-DIMENSIONAL MARGINAL DISTRIBUTION OF 75

The two-dimensional marginal distribution of 7' in (1.5) is calculated in
de Haan and Ferreira ([3]), section 9.8. We state it as the following proposition.

Proposition 2.1. Suppose {1(s)},cg is defined as in (1.5). Then for
z,y € R and s1,s2 € R,

— logP(n’(sl) <e” n(sy) < ey) =

_ e Visimsal  —zdy _y o [ VIs1— 8o T -y
= e + +e Vo + .
2 Vis1— 2 2 Vst — 2]
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This is useful in similar calculation for the two-dimensional process 7.
Besides Proposition 2.1, we need the following Lemma.

Lemma 2.1. Suppose N is normally distributed with mean 0, variance u,
then with non-random constants a > 0 and b,

(2.1) E N2 p(aN+b) = <1>( autb > .

vatu+1

Proof: Suppose /V; is standard normally distributed, and independent of NV,
then we have

E e 1y canyp = ENE<€N_U/2 1N, <anN+b | N) = BN B(aN+b)

which is the left side of (2.1). By Fubini’s Theorem, it can be recalculated in the
following way

E eN-u/2 In<aN+b = Eny E<€N7u/2 1IN a4 | Nl)

E /OO R & dt
ey [ — e u
Ny - Nor

B &0 1 _(t=w)? J
B Nl/fvl—m/%ue o

s o{22 )

By a similar trick — introducing a standard normal variable Na independent of

N1, the calculation can be finished to prove the lemma.

N~ b
EN1(1—<I>< o —\/ﬁ>> - EN1E<1N2Z%_\/E!N1>

= EN17N2 lNQZ]Z{/%b_\/a

Ni—b
:P<N22 LI u>

a+\/u

_ @ < au—+b )
Valu+1) '
We remark that the last calculation is similar to that of Lemma 2.1 in Gupta,
Gonzélez-Farfas and Dominguez-Molina ([6]). O

The lemma can be used to derive the two-dimensional marginal distribu-
tions as follows. As in the proof of Proposition 2.1 (cf. de Haan and Ferreira ([3]),
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Section 9.8), we have

(2.2) —IOgP<77(U17U2) <e”, n(vy,v2) < 6y) =

B max<6W1(BU1)+W2(5uz)—(|ﬁU1|+\ﬁU2\)/2—$7 eW1(ﬂv1)+Wz(ﬁv2)—(\ﬁv1|+\ﬁv2|)/2—y>

— EW1 E (max <6W1 (Bu1)+Wa(Buz)—(Blur \+,8|u2|)/2fz’
M) W)= Ol /2 | W1>

- E e*erWl (Bu1)—PBlu1]/2

& \/5|U2—U2|+y—ﬂ?+Wl(/3u1)—W1(ﬁvl)—B|U1|/2+ﬁ|vl|/2
2 VBluz — v

+ E e~y tWi(Bv1)=plu|/2

® Vﬁ!ng—vzl+:c—y+W1(ﬁv1)—Wl(ﬁul)—ﬂ\v1l/2+ﬂ\ml/2 _
2 V/Blug — va

Now we can calculate the two parts in (2.2) separately. Without loosing general-

ity, we only focus on the first part.

Case 1: 0<u; <wq.
In this case e~ #TW1(Bu1)=Blul/2 ig independent of the other part. Hence,

E e*x+W1(ﬁu1)*5|U1\/2

VBluz —wva| y —x+ Wi(Bur) — Wi(Bv1) — Blul/2 4 Blur]/2)
B + -
2 V/Blug — va

VBluz — s . y—x— (Wl(ﬁvl) — Wi (Bur) = B(v1 — ul)/2)

— e *E®
) 2 N
ey B Y= (W80 ~ W) — e — w)/2)
- 2 VBluz — va]
—z v/ Blug — va| + B(v1 — u1) y—T
— P + .
’ ( 2 V/Bluz — va| + B(v1 — wy)

Case 2: 0<v; <wuy.
Note that F eW1(8v1)=6v1/2 =1 and W; (Bvy) is independent of Wy (Buy ) —Wi(Bvy),
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we have

E e~ ot Wi(Bur)—pBlui|/2

VBluz —wva| y —x+ Wi(Bur) — Wi(Bvr) — Blul/2 + Blur]/2|
. n _
2 /Blug — va

— % | W1 (Bur)=Wi(Bv1)—B(u1—v1)/2

g VB2 —val |y — x4 WilBur) = Wa(Buy) — Blual/2 + Blos /2
2 V Bluz — vs

Since Wi (Buy ) —Wi(fv1) is normally distributed with mean 0, variance 5(u1—v1),

we can apply Lemma 2.1 with the constants a = 1/4/|us — va|, u = B(u1 — v1)

and
b — v/ Bluz — va] +y—l’—ﬂu1/2+ﬂvl/2
2 \/5|U2*02\ .

The final result is
E e~ tWi(Bu1)—Blui|/2

, ¢<\/ﬂ|uz — vl | Y=o+ W) — Wa(Bur) - ﬁ!u1\/2+5!v1\/2> _

2 V/Bluz — 3]

2 o [ V/Bluz —va] + Bluy — v1) y—x
— ® .
‘ < 2 * v/ Blug — va| + Bu1 — 1)

Case 3: vi<u;<0 and u1<v1<0.

These two cases are similar to Case 1 and 2 respectively. The final results are all
the same as follows.

E e—ﬂc+W1 (Bu1)—Blu1l/2

o VP2 —va| |y — x4 Wi(Bur) = Wa(Boy) — Blu]/2+ Blual/2 ) _
2 V/Bluz — s

_ g \/ﬁ\U2—v2!+5\U1—01!+ y—= '
2 V/ Blug — va| + Blur — v1]

Case 4: wu; and v; have different signs.

In this case W (Su1) and Wi(fBv1) are independent, we can calculate the expec-
tation with respect to Wi (Bvy) first, then with respect to Wi (Bu1).

E e*I+W1(ﬂU1)*ﬁ\U1|/2

VBlug —va| |y — x4+ Wi(Bur) — Wi(Bvr) — Blui|/2 + Blur]/2)
. d + —
2 VBlug — va]

_ ot | (M(Bun)-Bluil/2 (p(\/ﬁ\l@— v2| + Blv1] Ly Wi (Bu1) — ﬁ\uﬂ/?) _

2 V/Blus — va| + Bl
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Now we can again apply Lemma 2.1 with the constants a = 1/\/BJua —ve| + BJv1],
u = [Blui| and

_ \/ﬂlu2—v2\+ﬂ!v1|+ y—x — Blu]/2

b
2 V/Bluz — va| + Blui]

to get that

E €—x+W1(6u1)—B\u1|/2

VBluz —wa| y —ax+ Wi(Bur) — Wi(Bv1) — Blui]/2 4 Blur]/2|
. 4 —
2 /Blug — va

\/ﬂ\UQ—U2|+ﬂ(|U1\+!’U1|) _
= e TP 5 + Yy—x
\/Blus = vs] + B(|ua| + o)
Notice that due to the different signs of u; and vy, |u; — v1| = |ug| + |v1].

By defining h = |u; — v1| 4 |ug — va|, all these cases can be combined to-
gether as

E e—I+W1(5u1)—ﬁ|u1|/2

& \/m+y—ﬂf+W1(57~L1)—Wl(ﬂvl)—ﬂ\Uﬂ/?Jrﬂlvll/? _
2 V/Blug — va

- e—x@<@+%> .

Symmetrically, the second part of (2.2) can be simplified as

eyq><‘/ﬁ x_y> .

> /B

Combining these two parts, we get the following theorem about the two-dimen-

sional marginal distribution of 7.

Theorem 2.1. Suppose the simple max-stable process 1 is defined in (1.3).
Given any two coordinates (uy,u2) and (vi,ve) on R?, denote the distance be-
tween them as h:=|uy;—v1| + |ug —va|. Then the two-dimensional distribution
function of (n(u1,u2), n(vi,v2)) is

(23)  P(n(u1,u) < ¢, v, e) < ) =

where ® is the standard normal distribution function and z,y € R.
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Note that the two-dimensional marginal distribution depends on only h.
It agrees with the shift stationarity discussed in Section 1.

Similar to de Haan and Pereira ([5]), Theorem 2.1 is useful in estimating (.
By taking x = y = 0, we get that

P(n(ul,uQ) <1, n(vr,v9) < 1) - exp{—Q q><\/§7h)} .

Consequently, we have that

2
g = 2(@“ <—; logP(n(ul,uQ) <1, n(vi,vg) < 1))) .

Hence we can estimate (8 if we know how to estimate

Ly uz)y(or,02) (1, 1) 1= —10gP<?7(U17U2) <1, n(vi,ve) < 1) :

In fact, this problem has been solved by Huang and Mason (cf. Huang ([8]),
Drees and Huang ([7])). Suppose we have i.i.d. observations of n as 1,72, ....
Write {m,n(sl, 32)}?:1 for the order statistics at location (s, s2). Then the esti-
mator

n

7 (k) _1
(ul,u2):(v1,v2)( ;1) = k Zl1{nj(ul,u2)2nn_k+17n(u1,u2) or 7’]j(’l]1,UQ)Znn_k+17n(U1,U2)}
J:

is consistent provided k = k(n) — oo, k(n)/n—0, n — oo. It is asymptotically
normal under certain mild extra conditions.

Hence, from the two-dimensional marginal distribution, we can estimate 3
when we have the observation at two specific locations. An application of this
method is in Buishand, de Haan and Zhou ([1]), Section 5.
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