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1. INTRODUCTION

Statistical inference about rare and damaging events can fairly be designed

upon those observations which are considered extreme in some sense. There are

different ways of mapping such observations yielding alternative approaches to

statistical inference on extreme values: the classical Gumbel parametric method

of block of Annual Maxima, Peaks-Over-Threshold (POT) parametric meth-

ods and the recently denominated Peaks-Over-Random-Threshold (PORT) semi-

parametric methods, which is nothing more than a fairly small variant of POT

for statistical inference conditionally on an intermediate random threshold.

However, regardless of the specific approach we intend to follow, statistical

inference is clearly improved if one makes a priori assumptions about the most

appropriate type of decay of the underlying tail distribution function 1− F , i.e.,

about whether it decays exponentially fast, is polynomially decreasing or exhibits

a light tail with finite right endpoint. This is supported by Extreme Value Theory,

stemming from the fundamental Theorem of Fisher and Tippett (1928), which

ascertains that all possible non-degenerate weak limit distributions of partial

maxima of independent and identically distributed random variables X1, X2, ...

are (Generalized) Extreme Value distributions.

The Generalized Extreme Value distribution (GEVd) comprises Fréchet,

Weibull and Gumbel distributions. A distribution function (d.f.) F that belongs

to the Fréchet domain of attraction is called a heavy-tailed distribution, the

Weibull domain encloses light-tailed distributions with finite right endpoint and

the particularly interesting case of the Gumbel domain embraces a great variety

of tail distribution functions ranging from light to moderately heavy, whether

detaining finite right endpoint or not.

Hence, separating statistical inference procedures according to the most

suitable domain of attraction for the underlying distribution has become a usual

practice in the literature either by following a parametric or a semi-parametric

approach. Following a semi-parametric approach, the only assumption made is

that the underlying d.f. is in the domain of attraction of the GEVd. In this

setup, any inference concerning the tail of the underlying distribution is based

exclusively on those observations lying above an intermediate random threshold,

giving rise to the PORT method. The latter compares with the alternative setup

of restricting attention to a random number of observations exceeding a given

high increasing deterministic level u, an approach engraved in the POT method.

Our aim here is to give a brief overview of several well-known testing proce-

dures in the context of statistical choice of extreme value conditions, along with

some recent proposals using location/scale invariant statistics that have been

built on the k excesses above a random threshold. This random threshold is
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consensually an intermediate order statistic. The development of statistical pro-

cedures and techniques with the specific intention of dealing with extreme data

in a more systematic and reliable way renders, to our best knowledge, a challenge

that many applied fields such as environmetrics, climatology, telecommunications

or finance hold in common.

The paper proceeds as follows. Section 2 contains some notation and sets

general ground rules in the context of extreme value analysis. For analyzing

extreme values there are different approaches, according to the underlying as-

sumptions on F and the specific observations of the random sample available

for statistical inference purposes. In this sequence, Sections 3 and 4 provide ref-

erences and brief descriptions of several contributions in both parametric and

semi-parametric setup. Finally, Section 5 brings the PORT-method into focus by

means of an application to real data.

2. PRELIMINARIES AND SOME NOTATION

When we are interested in modeling large observations, we are usually

confronted with two extreme value models:

• Generalized Extreme Value distribution (GEVd) with d.f.

(2.1) Gγ(x) :=







exp
(

−(1 + γx)−1/γ
)

, 1 + γx > 0 if γ 6= 0 ,

exp
(

− exp(−x)
)

, x ∈ R if γ = 0 .

• Generalized Pareto distribution (GPd) with d.f.

(2.2) Hγ(x) :=







1 − (1 + γx)−1/γ , 1 + γx > 0 and x ∈ R
+ if γ 6= 0 ,

1 − exp(−x) , x ∈ R
+ if γ = 0 .

The introduction of scale δ > 0 and location λ ∈ R, results in the full GEV

and GP families of distributions given by Gγ(x; λ, δ) = Gγ

(

(x−λ)/δ
)

and

Hγ(x; λ, δ) = Hγ

(

(x−λ)/δ
)

, respectively, which play a central role in statisti-

cal inference of extreme values.

GEVd and MAX-Domain: The Fisher–Tippett theorem of extreme

values (Fisher and Tippett, 1928) states that all possible non-degenerate weak

limit distributions of partial maxima of independent and identically distributed

(i.i.d.) random variables X1, X2, ... are (Generalized) Extreme Value distributions.

That is, assume there exist normalizing constants an > 0 and bn ∈ R such that,
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for all x

(2.3) lim
n→∞

P
{

a−1
n

(

max(X1, ..., Xn) − bn

)

≤ x
}

= G(x) ,

where G is some non-degenerate distribution function, we can redefine the con-

stants in such a way that the limit G is one of the GEV family of distributions

given by (2.1) in the von Mises–Jenkinson form (von Mises, 1936; Jenkinson,

1955). We then say that G = Gγ and the underlying d.f. F is in the domain of

attraction of Gγ (notation: F ∈ D(Gγ)). In case of γ < 0, γ = 0 or γ > 0, the

Gγ reduces to Weibull, Gumbel or Fréchet distribution function, respectively.

GPd and POT-Domain: The use of GPd is suggested by the result of

Balkema and de Haan (1974) and Pickands (1975), who proved that F ∈ D(Gγ)

if and only if the upper tail of F is, in a certain sense, close to the upper tail

of Hγ . While restricting attention to a top portion of the original sample, the GPd

comes into play since it appears as the limiting distribution for the excesses

Yi = Xi− u |Xi > u, i=1, ..., ku over a sufficiently high threshold u (POT method).

For γ < 0, γ = 0 and γ > 0, the Hγ d.f. in (2.2) reduces to Beta, Exponential and

Pareto distribution functions, respectively. In both classes, the extreme value

index γ is closely related to the tail heaviness of the distribution. In that sense,

the value γ = 0 (exponential tail) can be regarded as a change point: γ < 0

refers to short tails with finite right endpoint xF := sup
{

x : F (x) < 1
}

, whereas

for γ > 0 d.f.’s are heavy tailed. In many applied sciences where extremes come

into play, it is assumed that the extreme value index γ of the underlying d.f.

equals 0, and statistical inference procedures concerning rare events on the tail

of F , such as the estimation of small exceedance probabilities or return periods,

bear on this assumption. Moreover, Gumbel and exponential models are also

preferred because of the greater simplicity of inference associated with Gumbel

or exponential populations.

Here and throughout this paper, let us denote by X1:n ≤ ... ≤ Xn:n the order

statistics pertaining to the i.i.d. random variable X1, X2, ..., Xn, after arranging

these by nondecreasing order.

3. TESTING EXTREMES UNDER A PARAMETRIC APPROACH

In a parametric set-up, the main assumption regards the existence of a suit-

able class of models for describing the random variable attached to the process

that is generating the data under study. These only three possible classes are mo-

tivated by Extreme Value Theory, and depend mainly on the shape parameter γ,

and eventually on location and scale parameters.
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Annual Maxima (AM): Suppose that the maximum of a random sam-

ple can be obtained in each of k equally spaced observation periods. The class of

GEVd functions, Gγ , may be prescribed in order to model maxima of k subsam-

ples taken from a given set of data of size k ·n, that is,

(3.1) Zi := X(i)
n:n = max

{

X
(i)
1 , ..., X(i)

n

}

, i = 1, ..., k .

A typical course of action lying in this classical Gumbel method is to take annual

maxima. In this AM setup, the following testing problem has been treated ex-

tensively in the literature, with main emphasis on testing the Gumbel hypothesis

for the d.f. of the {Zi}
k
i=1 defined in (3.1):

(3.2) H0 : γ = 0 vs. H1 : γ 6= 0 .

The testing problem (3.2) has received much attention in the literature; in fact,

the hydrologists have long made use of extreme value distributions for estimat-

ing probabilities of flood events and the correct choice of the GEVd under ap-

proach is of crucial importance, since the three types differ considerably in their

right tails. Among the papers concerned with the special testing problem G0

against {Gγ : γ 6= 0}, or against one-sided alternatives {Gγ : γ > 0}, {Gγ : γ < 0},

we refer to Van Montfort (1970), Bardsley (1977), Otten and Van Montfort (1978),

Tiago de Oliveira (1981), Gomes (1982), Tiago de Oliveira (1984), Tiago de

Oliveira and Gomes (1984), Hosking (1984), Marohn (1994), Wang et al. (1996)

and Marohn (1998a). Somewhat connected with the problem (3.2), there is

the problem of goodness-of-fit tests for the Gumbel model, which has received

the attention of Stephens (1976), Stephens (1977), Stephens (1986) and Kinni-

son (1989). The tests therein considered are mostly based on the well known

goodness-of-fit statistics: Kolmogorov, Cramér–von Mises and Anderson–Darling

statistics.

Largest Observations (LO): It may be that, when considering yearly

data, some years contain several values that are larger then the maxima of other

years. Although the requirement of only a simplified data summary carries reduc-

tion of possible dependencies in the sampled data, the loss of information provided

by the largest observations in the sample can, by itself, motivate this alternative

approach. Hence, suppose we take the k largest observations in the sample.

If the underlying d.f. F ∈ D(Gγ), the non-degenerate joint limiting behavior of

the k largest random variables determines the probability density function (p.d.f.)

(3.3) fγ(z1, z2, ..., zk) = gγ(zk)
k−1
∏

i=1

gγ(zi)

Gγ(zi)
, z1 > z2 > ... > zk ,

where gγ(z) = ∂Gγ(z)/∂z, in the sense that, after appropriately normalized with

constants an > 0 and bn,
(

Xn:n− bn

an
,

Xn−1:n− bn

an
, ...,

Xn−k+1:n− bn

an

)

d
−→
n→∞

(

Z1, Z2, ..., Zk

)

.
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This multivariate model, introduced in Weissman (1978), has received the general

designation of extremal process. In light of this result, statistical procedures to

discern between Gumbel and Fréchet or Weibull distributions have been consid-

ered, for instance, in Gomes and Alpuim (1986), Hasofer and Wang (1992), Wang

(1995) and Wang et al. (1996). The key insight for the testing problem G0 against

{Gγ : γ 6= 0}, or against the one-sided alternatives {Gγ : γ > 0}, {Gγ : γ < 0}

is thus to assume that, with k fixed, the joint stochastic behavior of the largest

k random variables tends to be properly described by the p.d.f (3.3) pertaining

to γ = 0, i.e.,

f0(z1, z2, ..., zk) = exp

(

− exp(−zk) −
k
∑

i=1

zi

)

, z1 > z2 > ... > zk ,

which enables replacement of the normalized top order statistics with (Z1,Z2, ...,Zk).

Under this assumption, Hasofer and Wang (1992) prove that the following test

statistic

W (k) :=
1

k−1

(

1
k

k
∑

i=1
Zi−Zk

)2

1
k

k
∑

i=1

(

Zi−Zk

)2
−

(

1
k

k
∑

i=1
Zi−Zk

)2 ,

akin to the Shapiro–Wilk goodness-of-fit statistic (see Shapiro and Wilk, 1965),

can be considered as approximately normal with mean (k − 1)−1 and variance

22 (k−2)(k−1)−2
(

(k+1)(k+2)
)−1

.

Despite the above results concern a fixed number k of top observations, we

can find in Hasofer and Wang (1992) an attempt to make k to increase with n, but

at a much slower rate, through the specification of k = c1nc2 in the simulation

study. Wang (1995) also mention the case where k →∞ and k = o(n), as n→∞.

Furthermore, Wang (1995) relies on the Hasofer and Wang test to select the num-

ber k of largest order statistics for suitable statistical inference in the Gumbel

domain. In general, if G is a goodness-of-fit statistic, then at a certain nomi-

nal level of the test α, say, choose k+1 = min
{

i : g(i) ∈ critical region of G(i)
}

,

provided the adopted statistic G is scale and location invariant and, of course,

sensitive to small deviations from the null hypothesis.

Combination of AM and LO: In Gomes (1989), for instance, the test-

ing problem specifying the Gumbel d.f. G0 in the (simple) null hypothesis is

handled with a combination of blocking split of the sample data and the k largest

observations in each of the m blocks through what is called the multidimen-

sional — GEVγ model, as follows: a set of independent, identically distributed

k-dimensional random vectors {Xi : i = 1, ..., m}, and after suitable normaliza-

tion, with common p.d.f of the vectors Zi = (Xi−λ)/δ is given by fγ(z) defined

in (3.3). Note that both AM and LO approaches can be particular cases of this
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multidimensional model, taking k = 1 and m = 1, respectively. In Gomes (1987)

a truncated sample of the largest values of a sample, whose size increases to

infinity and whose limiting distribution is in the class of GEVd is considered

for goodness-of-fit purposes. Using the reduction to the exponentials of Gumbel

distributions the author develops two-sided tests of exponentiality for the trans-

formed variables, the tests being the Kolmogorov–Smirnov, Cramér–vonMises

and Stephens goodness-of-fit test.

Peaks Over Threshold (POT): Suppose we pick up those observations

exceeding a fixed high threshold u. As described in Section 2, given a random

sample (X1, X2, ..., Xn) from the d.f. F , the GPd is regarded as a good approxi-

mation for the distribution of the excesses Wi := Xi− u over a sufficiently high

threshold u if and only if F ∈ D(Gγ). A clear difference between the designated

AM and POT setups is that the k yearly maxima do not necessarily carry over

as to yield the k largest observations from the original sample.

In this POT setup the following testing problem has been frequently con-

sidered, rendering priority to testing the Exponential hypothesis for the d.f. of

the excesses {Wi}
ku

i=1, i.e., H0 : γ = 0 versus H1 : γ 6= 0. The maximum likelihood

method may then be applied under the assumption that those ku observations

over the threshold u follow exactly a GPd, provided a scale normalization σu, i.e.

Hγ,σu
(w) = 1 −

(

1 + γw/σu

)−1/γ
,

for all positive w such that 1 + γ/σu w > 0. The parametrization τ = −γ/σ

(Davison and Smith, 1990; Grimshaw, 1993) can be used for reducing dimen-

sionality and therefore construct a likelihood ratio test based on the log-profile

likelihood. In view of applications, the problem of detecting the presence of expo-

nential distribution, under the POT approach, has received particular attention

from hydrologists. Davison and Smith (1990) addresses this testing problem in

the context of river-flow exceedances. Van Montfort and Witter (1986) illustrates

the “lack”-of-fit statistic towards exponentiality γ̂/
√

v̂ar(γ̂), where γ̂ denotes the

Maximum Likelihood (ML) estimator of γ, in the sequence of a thorough appli-

cation of the POT method to rainfall data. Among the numerous works con-

nected with the special problem of testing exponential against other GPd upon

the tail we mention, for instance, Van Montfort and Witter (1985), Gomes and

Van Montfort (1986) and Brilhante (2004). Chaouche and Bacro (2004) introduce

the test statistic S = W/(W−Wn:n), where again Wi are independent random

variables with the same d.f. Hγ,σu
, and obtain its empirical distribution via sim-

ulation. Moreover, when using Probability Weighted Moments of different orders

to adapt S, a method to purge the influence of σu off these new test statistics

is provided. Giving heed to the Local Asymptotic Normality theory, Falk (1995)

followed by Marohn (1998b) and Marohn (2000), aim at asymptotically optimal

tests for discriminating between different values of the extreme value index γ.
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Goodness-of-fit tests for the Generalized Pareto distribution

Fitting the GPd function to data, which we expect to be lying far away

in the tail, has been worked out in Castillo and Hadi (1997). The problem

of goodness-of-fit tests for the GP model has been studied by Choulakian and

Stephens (2001), with the following proposals for Cramér–vonMises and Ander-

son–Darling statistics:

W 2 =
k
∑

i=1

(

Hγ̂,σ̂(Xn−i+1:n) −
2(k− i) + 1

2k

)2

+
1

12 k
,

A2 = −k −
1

k

k
∑

i=1

(

2(k− i) + 1
)(

log Hγ̂,σ̂(Xn−i+1:n) + log
(

1− Hγ̂,σ̂(Xi:n)
)

)

,

where (γ̂, σ̂) are ML estimators. A table of critical points is provided with good

accuracy for k ≥ 25. Konstantinides and Meintanis (2004) assess the presence of

a GPd by means of a transformation of the data to reduce to exponential, then

search for traces of exponentiality in the empirical Laplace transform. They also

adapt the critical points leading to what promises to be a more accurate level

of the test, pursuing the path of Davison and Smith (1990) claim that tables for

testing the presence of a exponential distribution (see Van Montfort and Wit-

ter (1986) lack of fit statistic mentioned upstairs) give in general critical values

which are too high, thus resulting in a very conservative test. Comparison with

Choulakian and Stephens (2001) are also present by means of a simulation study.

Luceño (2006) assigns more weight to the tails than the usual practice relating

Cramér–von Mises and Aderson–Darling statistics goodness-of-fit test statistics

and considers a maximum goodness-of-fit estimation method, which enables us

to deal successfully with the estimation of GPd parameters, overcoming the oc-

casional lack of convergence in ML estimation.

4. TESTING EXTREMES UNDER A SEMI-PARAMETRIC

APPROACH

Following a semi-parametric approach, the only assumption made is that

the extreme value condition (2.3) is satisfied, i.e., the underlying d.f. F ∈ D(Gγ).

In this framework, the extreme value index γ is the parameter of prominent

interest since, in both GEV and GP classes of distributions, it determines the

shape of the tail of the underlying distribution function F .

To this extent, γ = 0 can be regarded as a benchmark value, since a nega-

tive γ is inevitably associated with short tails with finite right endpoint, while a

positive (tail index) γ is connected with the presence of a heavy-tailed distribu-

tion. In many applied sciences where extremes are relevant, the case of simplest
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inference γ = 0 is assumed and bearing on this assumption, extreme characteris-

tics such as exceedance probabilities or return periods are easily estimated.

As a matter of fact, separating statistical inference procedures according to

the most suitable domain of attraction for the sampled distribution has become

a usual practice. Methodologies for testing the Gumbel domain against Fréchet

or Weibull max-domains have been of great usefulness. This fit-of-attraction

problem, crafted from a semi-parametric setup, can be rephrased as a test for

(4.1) H0 : F ∈ D(G0) versus H1 : F ∈ D(Gγ)γ 6=0 .

or against one-sided alternatives F ∈ D(Gγ)γ<0 or F ∈ D(Gγ)γ>0.

Statistical tests that tackle the problem (4.1) can be traced back to the sem-

inal papers by Galambos (1982) and Castillo et al. (1989). The latter presents a

cunning procedure for fit of attraction diagnostics from the curvature of the graph

of the sample distribution function hinged on the Gumbel probability paper.

Predicated on this (so-called) curvature method, the authors introduce a test to

assess whether the upper tail distribution function might be classified as convex,

concave or a straight line.

Further testing procedures for (4.1) can be found in Fraga Alves and Gomes

(1996), Fraga Alves (1999). Segers and Teugels (2000) have recently suggested

a large sample test for the Gumbel domain with asymptotics deriving from the

limiting distribution of Galton’s ratio under the extreme value condition (2.3),

which Rao’s test statistic (see e.g. Serfling, 1980) for simple null hypothesis was

applied to, with the ulterior aim of establishing a decision rule. In the process,

the authors were confronted with the need of blocking the original sample of size

n into m subsamples, each of size ni, i = 1, ..., m also under pledge of largeness.

Recently, Neves et al. (2006) and Neves and Fraga Alves (2007) have in-

troduced two testing procedures that are based on the sample observations lying

above a random threshold. More specifically, in the last two references, the de-

signed statistics for testing (4.1) are based on the k excesses over the (n−k)-th

ascending intermediate order statistic Xn−k:n, where k = kn is such that k → ∞

and k = o(n) as n →∞. Clearly, the latter only differs from the POT approach

on the absence of a parametric model and on the fact that the intermediate

random threshold is now playing the role of the deterministic sufficiently high

threshold u which, only by itself, we find relevant enough to motive the Peaks

Over Random Threshold (PORT) methodology. Now following a semi-parametric

approach supported on concepts from the theory of regularly varying functions,

Neves and Fraga Alves (2007), reformulate the asymptotic properties of the Ha-

sofer and Wang test statistic (denoted below with Wn(k)) in case k = kn behaves

as an intermediate sequence rather than remaining fixed while the sample size n

increases (which was case covered by Hasofer and Wang, 1992). In the process,

a new Greenwood-type test statistic Gn(k) (cf. Greenwood, 1946) proves to be

useful in assessing the presence of heavy-tailed distributions.



Testing Extreme Value Conditions 93

Furthermore, motivated by eventual differences in the relative contribution

of the maximum to the sum of the k excesses over the random threshold at

different tail heaviness, a complementary test statistic Rn(k) was introduced by

Neves et al. (2006) in order to discern between max-domains of attraction.

Under the null hypothesis of Gumbel domain of attraction plus extra mild

second order conditions on the upper tail of F and on the growth of the interme-

diate sequence kn, we have that

[Ratio-test] Rn(k) :=
Xn:n−Xn−k:n

1
k

k
∑

i=1

(

Xn−i+1:n−Xn−k:n

)

− log k
d

−→
n→∞

Λ ,(4.2)

[Gt-test] Gn(k) :=

1
k

k
∑

i=1

(

Xn−i+1:n−Xn−k:n

)2

(

1
k

k
∑

i=1
Xn−i+1:n−Xn−k:n

)2 ,(4.3)

√

k/4
(

Gn(k)−2
) d
−→
n→∞

N(0, 1) ,

[HW-test] Wn(k) :=
1

k

[

1 −
Gn(k) − 2

1+
(

Gn(k)−2
)

]

,(4.4)

√

k/4
(

k Wn(k)−1
) d
−→
n→∞

N(0, 1) ,

where Λ stands for a Gumbel random variable. The critical regions for testing

the two-sided alternative (4.1), at a nominal size α, are given by Vn(k) < vα/2

or Vn(k) > v1−α/2, where V has to be conveniently replaced by T , R, or W

and vε denotes the ε-quantile of the corresponding limiting distribution. The

limiting distribution of Gn(k) [resp. Wn(k)] shifts towards the right [resp. left] for

distributions in the Fréchet domain of attraction (F ∈ D(Gγ)γ>0) and towards

the left [resp. right] for distributions lying in the Weibull domain (F ∈ D(Gγ)γ<0).

Notice that the test statistic S in Chaouche and Bacro (2004) may be seen as

the POT-counterpart of
(

1−Rn(k)
)−1

. An extensive simulation study involving

Ratio, Gt and HW tests, let us to perceived the following guidelines:

• The test based on the G∗
n is shown to good advantage when testing the

presence of heavy-tailed distributions is in demand.

• While the Gt-test barely detects small negative values of γ, the HW is

the most powerful test under study with respect to alternatives in the

Weibull domain of attraction.

• The simulations have emphasized the admonition for controlling the

actual size of the test to apply, keeping low within acceptable bounds

the probability of incorrect rejection of the null hypothesis. Since the

test based on the very simple Ratio statistic tends to be a conservative

test and yet detains a reasonable power, it proves to be a valuable

complement to the remainder procedures.
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Testing Extreme Value conditions

From its grounds, any inferential methodology considered in the field of Ex-

treme Values is inextricably bound to the validity of an extreme value condition.

Inevitably, the methods of the previous sections do not escape such a requirement.

Hence, assessing whether the hypothesis that “F ∈ D(Gγ)” is strongly supported

by the data at hand, becomes an impending problem. On this matter, Dietrich

et al. (2002) introduce the test statistic

(4.5) En(k) := k

∫ 1

0

(

log Xn−[kt]:n− log Xn−k:n

γ̂+
−

t−γ̂
− − 1

γ̂−
(1 − γ̂−)

)2

tη dt ,

for some η > 0, where γ̂+ and γ̂− are the same estimators of γ+ = max(0, γ) and

γ− = min(γ, 0) as in Dekkers et al. (1989). Furthermore, in case we wish to test

the null hypothesis that F ∈ D(Gγ)γ≥0, a simple version is available:

PEn(k) := k

∫ 1

0

(

log Xn−[kt]:n− log Xn−k:n

γ̂+
+ log t

)2

tη dt .

Under extra mild condition upon the growth of k, the limit distributions of En(k)

and PEn(k) are attainable, with their specific forms being established by using

an asymptotic expansion for the tail empirical quantile function due to Drees

(1998). A table of critical points several values of γ is provided, although some

corrections have become available in Hüsler and Li (2006). Aside from the latter,

Drees et al. (2006) deal with the testing of extreme value conditions pertaining

to γ >−1/2, via the statistic

(4.6) Tn(k) := k

∫ 1

0

(

n

k
Fn

(

â
(n

k

) x−γ̂ −1

γ̂
+ b̂
(n

k

)

)

− x

)2

xη−2 dx ,

for some η > 0, with Fn = 1−Fn. The use ML estimators for γ and a as in

Drees et al. (2004) is recommend, while b̂(n/k) := Xn−k:n. Similarly as before,

under mild restrictions upon the growth of k, the limit distribution of Tn(k) is

attainable and its specific form can be established using a tail approximation

to the empirical distribution function. Again, tables of critical points at quite

good accuracy are provided in Hüsler and Li (2006), where an exhaustive simu-

lation study is carried out in order to draw general guidelines for the adequate

specification of η in the most suitable test for the problem at hand.

Notwithstanding, if we strongly suspect we are dealing with heavy tailed

phenomena, Beirlant et al. (2006) provide a goodness-of-fit procedure for testing

the inherent Pareto-type behavior upon the tail of the underlying distribution

function F .
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5. AN ILLUSTRATIVE EXAMPLE

The potential of Extreme Value theory in assessing statistical models for

tail-related values has gained widespread recognition in fields ranging from

hydrology to insurance, finance and, more recently, in telecommunications and

engineering.

As an illustrative example of methodologies embraced in the previous sec-

tion, consider the 36 699 file lengths, in bytes, extracted from the Internet Traffic

Archive (http://ita.ee.lbl.gov/index.html). In the light of extreme value anal-

ysis, the main concern here is not towards the accumulation of many file lengths,

none of these being dominant (in which case the normal assumption would rea-

sonably follow from the Central Limit Theorem), but the interest goes instead

to the transmission of such huge batches of data that could possibly compromise

the capacity of the system, thus making the normal distribution inadequate to

describe the small set of data arising with such individual large and, therefore,

dominant contributors. This same data set is analyzed in a paper by Tsourti and

Panaretos (2004). Their exploratory analysis for independence seems to ascer-

tain that an application of the testing procedures mentioned in this paper, to the

available data set, will not be hindered by the pernicious effects of seasonality

and clustering.
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Figure 1: Plot of the sample paths returned by the three test statistics
for the Gumbel domain.

Hence, we have found it reasonable to proceed with three tests in (4.2)–

(4.4). The results are depicted in Figure 1. All the tests point towards a defi-

nite rejection of the null hypothesis that the underlying distribution function F

belongs to the Gumbel domain. Nevertheless, the validity of condition (2.3) is

still questionable. So far, we have only found evidences in the data of that F can

be in any domain except for the Gumbel domain, but the question “does the un-

derlying d.f. F belongs to any domain of attraction at all?” remains unanswered.
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Figure 2: (a)–(b) Plot of the sample paths for the T-test and E-test statistics
with accompanying critical points; (c) Plot of the ML estimates;
(d) Plot of the Moment estimates.

Owing to these last remarks and following practical recommendations of Hüsler

and Li (2006), we have furthermore considered application of the T-test and the

E-test, given in (4.6) and (4.5), with η = 1 and η = 2, respectively. Figure 2

displays the results with respect to a significance level α = 0.05. Although the

moment estimator yields a stable plateau near γ = 1 for quite long, the conjunc-

tion of the two testing procedures seems to advise rejection of the null hypothesis

on that the tail of F obeys the dictates of an extreme value law.
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